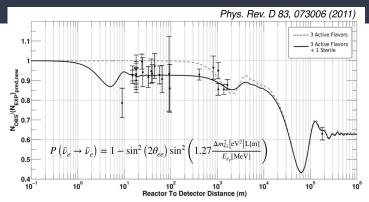
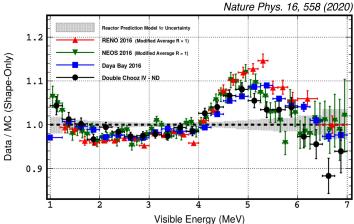
Status of the SoLid experiment

EOS be.h Equinox meeting

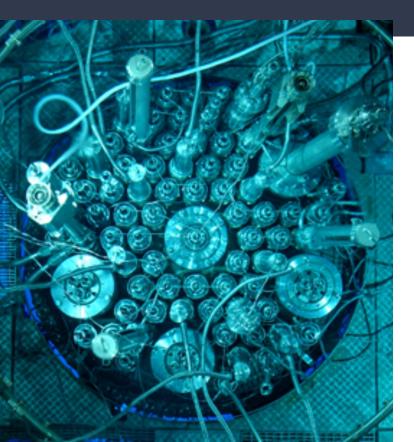

Simon Vercaemer for the SoLid experiment simon.vercaemer@uantwerpen.be


Overview

- Introducing the SoLid experiment
- Background description
- Signal selection
- Alternative analysis: Heavy Neutral Leptons
- Upgrade to the Phase 2 detector

Introducing the SoLid experiment

Physics motivation



Reactor antineutrino anomaly

- Consistent deficit observed at short (< 1 km)
 baselines compared to predictions
- Deficit could be explained by an additional (sterile) neutrino of $\Delta m^2 \cong 1-10 \text{ eV}^2$
- Sterile neutrino hypothesis given more weight by unrelated anomalies (Gallium, LSND)
- Reactor antineutrino spectrum distortion, a.k.a. the 5 MeV bump
 - Excess observed at 5 MeV by most large reactor experiments
 - Among the fissile isotopes in commercial reactors,
 235U is considered most likely
- Also an anti-proliferation component

The BR2 reactor

- Belgian Research Reactor 2
- Located on the SCK-CEN site in Mol, Belgium
- Rated for 50 100 MW_{Th}
 - Typically 60 MW_{Th}
 - o 5 or 6 month-long reactor cycles per year
- Highly enriched ²³⁵U
- Compact conical core
 - Ø ~ 0.5 m
 - o h ~ 1 m
 - Experimental hall starts as close as 5.5 m from the core
- Low neutron and gamma backgrounds in experimental hall
- 37 m above sea level, 6-8 m MWE overburden

The SoLid detector

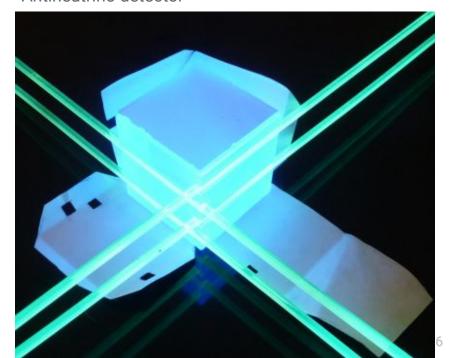
A highly segmented modular antineutrino detector using dual solid scintillators and multiplexed readout

Highly segmented

- Built from 12.800 optically isolated cells
- Each cell measures 5 x 5 x 5 cm³

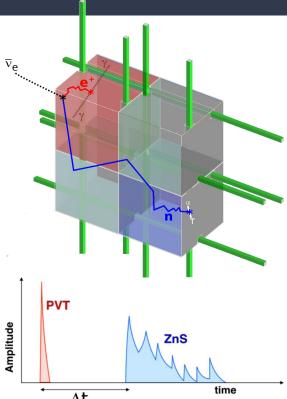
Modular

- 16 x 16 cells make a plane
- 10 planes make a module
- Detector consists of 5 modules


Dual solid scintillators

- PVT cube as neutrino target and for positron and gamma detection
- ⁶LiF:ZnS(Ag) layers for neutron capture and detection

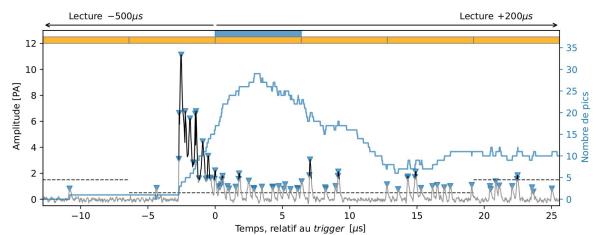
Multiplexed readout


- 64 WLS fibres bring light from the cells to the edge of the detector
- Each fibre is read out by a SiPM
- o 3200 fibre-SiPMs pairs service 12800 cells Simon Vercaemer EOS Equinox Meeting 2021

Antineutrino detector

The SoLid detector

A highly segmented modular antineutrino detector using dual solid scintillators and multiplexed readout



Antineutrino detector

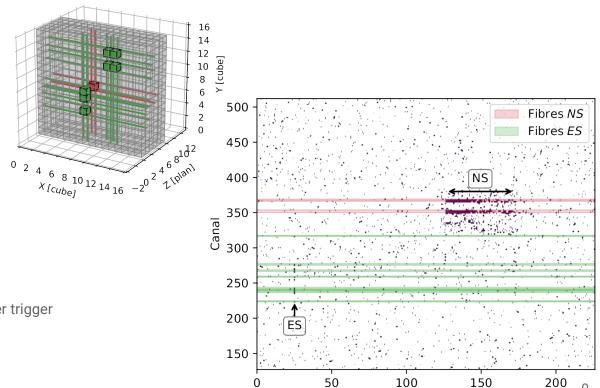
- Inverse beta decay reaction: $v + p \rightarrow n + e^+$
- Prompt signal from e⁺ scintillation and annihilation gammas in PVT
 - Fast scintillator, very brief pulse (few ns)
 - Provides *v* interaction cube
- Delayed signal from capture of thermalised neutron on ⁶Li
 - $\circ \qquad \mathsf{n} + {}^{\mathsf{6}}\mathsf{Li} \to \alpha + {}^{\mathsf{3}}\mathsf{H}$
 - \circ α and ${}^{3}H$ scintillate in ZnS(Ag)
 - Slow scintillator, extended pulse (10s μ s)
 - \circ Neutron cube close to v cube
 - Neutron capture time: $\tau = 68 \,\mu s$

Trigger system

- Random trigger
 - Operates at 1 Hz
- Threshold trigger
 - Triggers signal above 2 MeV threshold
 - Coincidence required between horizontal and vertical fibre, within 75 ns
- Neutron trigger
 - Targets neutron scintillation in ZnS(Ag)
 - Counts peaks over threshold in rolling time window

Data collection

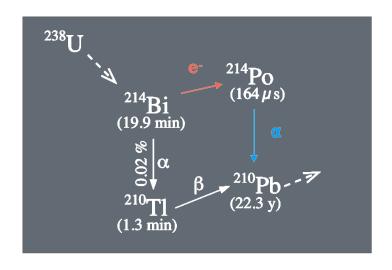
Random trigger


- Reads full detector for 13.6 μ s
- Saves raw waveforms

Threshold trigger

- \circ Reads triggering plane for 13.6 μ s
- Suppresses signal below ~100 keV

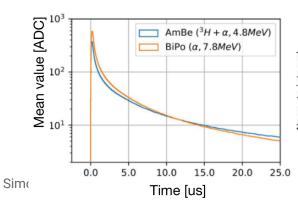
Neutron trigger

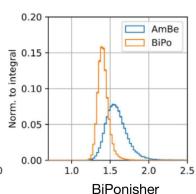

- Reads triggering plane and 3 or 4 neighbouring planes (either side)
- \circ Reads 500 μ s before and 200 μ s after trigger
- Suppresses signal below ~100 keV

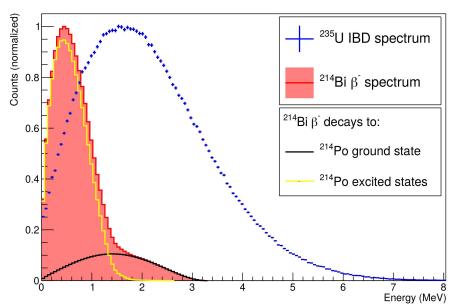
Temps [μ s]

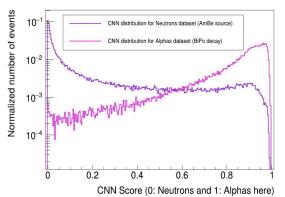
Background description

Backgrounds: BiPo

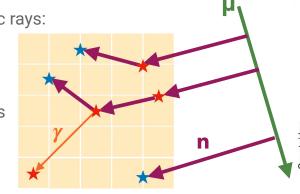


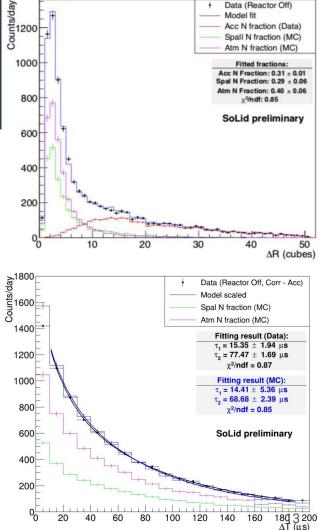

Radioactive decay sequence in the Uranium series:


- 1. $^{214}\text{Bi} \rightarrow ^{214}\text{Po} + e^{-}$ Q = 3.27 MeV e^{-} mimics prompt signal
- 2. $^{214}\text{Po} \rightarrow ^{210}\text{Pb} + \alpha$ $t_{1/2}$ = 168 μ s α mimics delayed signal when in ZnS
- Internal constant contamination in ZnS layers
- External variable source: ²²²Rn release from concrete


Backgrounds: BiPo

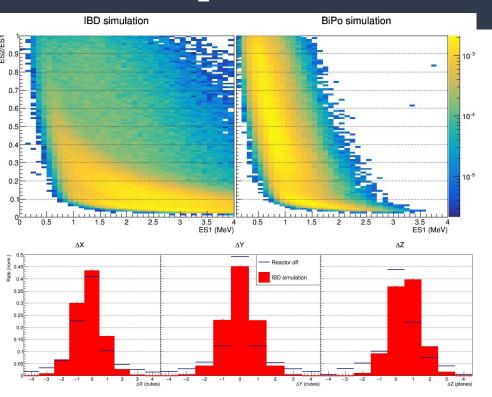
- Exploit difference between IBD's α + 3 H and BiPo's single α
 - Different energies (4.8 MeV vs 7.8 MeV)
 - o 2 particles vs only 1
 - Slightly different scintillation pattern: 'BiPonisher' and 'BiPonator'
- Lack of annihilation gammas
- Limited energy range
- Differences in ∆T and topology





Backgrounds: cosmic neutrons

High energy neutrons created by cosmic rays:


- Recoil on nuclei in the detector Recoil mimics prompt
- 2. Neutron thermalises and captures Identical to IBD neutron capture
- High rate due to low overburden
- Pressure dependent rate
- Main source of background
 - I ow overburden
 - Exponentially decreasing energy spectrum over IBD energy range (and beyond)
 - High variety of topologies
 - Virtually identical △T to IBD

Signal selection

Basic sequential selections

- Prompt requirements
 - Energy
 - Energy balance
 - Spatial spread
- Delayed requirements
 - o BiPonisher/BiPonator
- Coincidence requirements
 - ΔT
 - $\circ \qquad \Delta X, \Delta Y, \Delta Z, \Delta R$
- → ~ 10% IBD efficiency, S/B ≅ 0.06

Higher level selection

Annihilation gammas (Topology):

- Method:
 - Find highest energy cluster
 - Split detector in hemispheres
 - o Tracking by minimized likelihood of cubes

barycenter

Envelope

Gamma 2

Half space

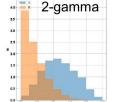
Gamma 1 Half space

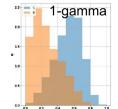
Gamma 1

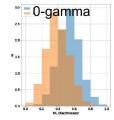
(EM1)

barycenter

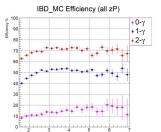
Cube inside the

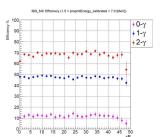

envelope

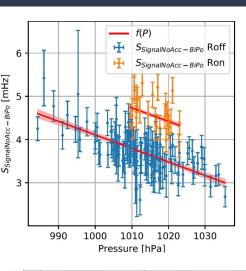

most energetic cube outside AC

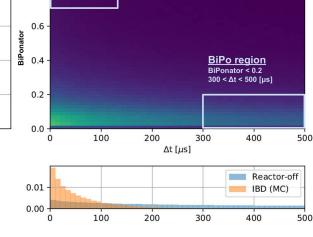

- Adds variables
 - Number of gammas reconstructed Gamma 2
 - Energy
 - Opening angle
 - Distances
- Classification in 0, 1, 2 gammas
 - Improved background rejection

Machine learning:


- Improved background rejection, dual approach (no cutting edge)
 - uBDT
 - o GBDT




Efficiency flatness



Simon Vercaemer - EOS Equinox Meeting 2021

Neutrino signal in data

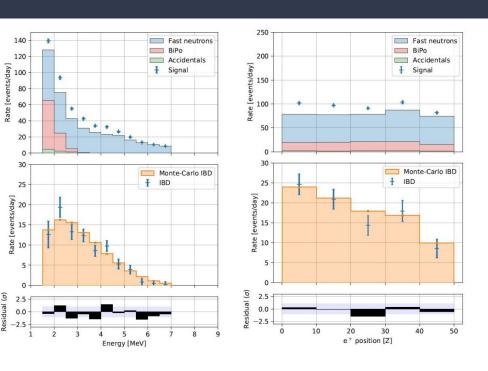
- BiPo varies with Rn releases
 - Can be determined in situ from high ∆T and low BiPonisher coincidence data

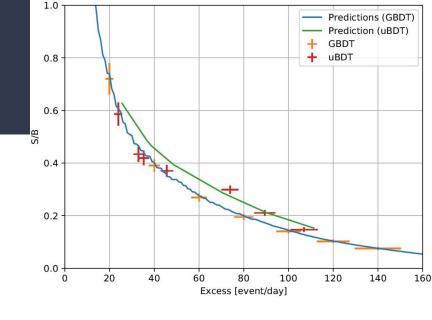
Signal region
BiPonator > 0.7

1 < Δt < 141 [us]


1.0 -

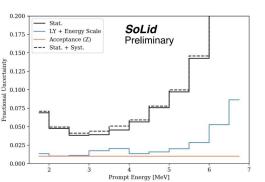
0.8 -

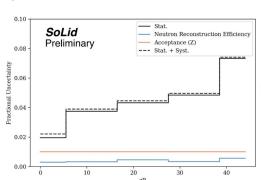

0.6

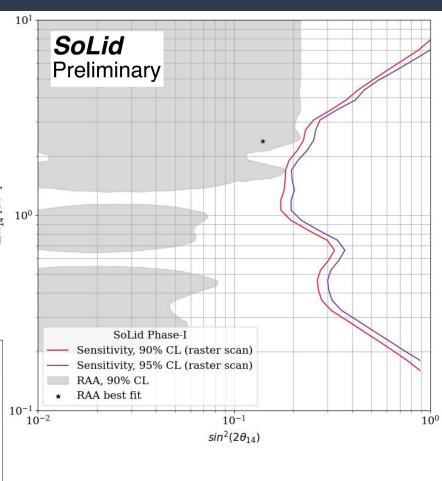

0.4

- Cosmic neutron rate varies with atmospheric pressure
 - o Pressure dependence established during reactor off period
 - Extrapolated rate subtracted from reactor on period

Neutrino excess

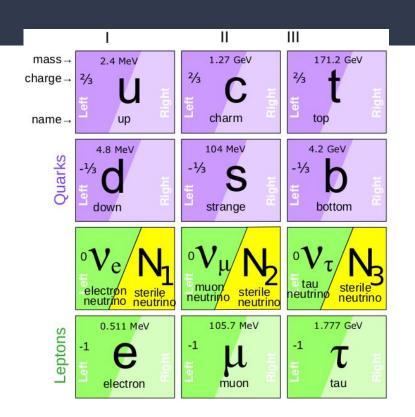




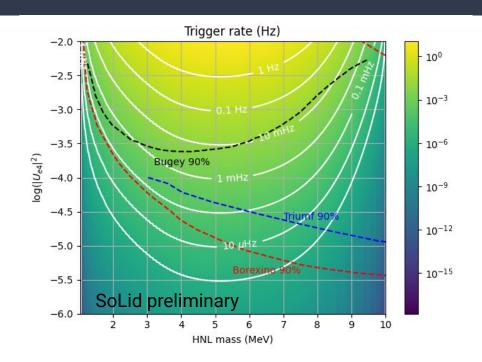

- Observed excess consistent with IBD simulations
 - ~9 % efficiency, S/B ≈ 0.2
- We are sitting on a lot more data
- Background subtraction works well
- Systematic uncertainties under way
- A major detector upgrade took place last year

Oscillation sensitivity

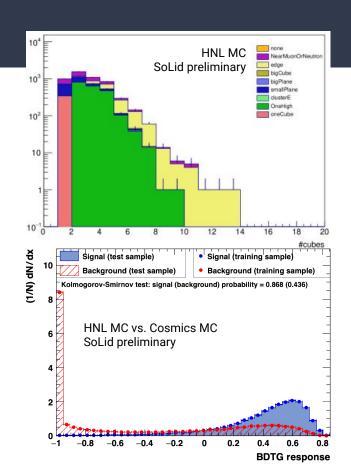
- Feldman-Cousins construction to estimate sensitivity to sterile neutrino oscillations
- Systematic uncertainties related to light yield, energy scale and neutron capture efficiency are currently taken into account
- Ongoing effort to assess the impact of remaining systematics and improve sensitivity with new analysis techniques



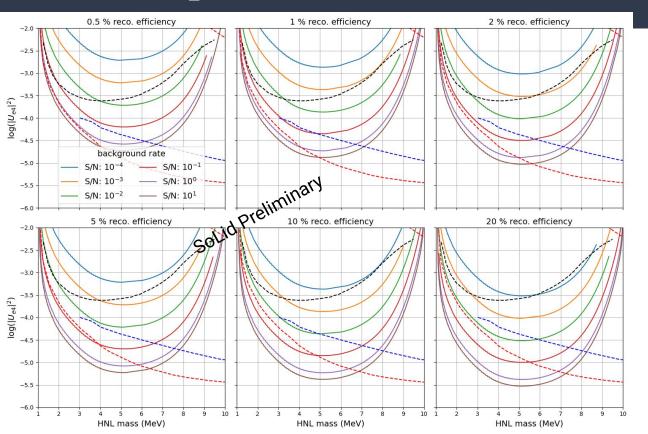
Alternative analysis: Heavy Neutral Leptons


Heavy neutral leptons

- nuMSM introduces 3 right handed neutrinos
- Virtually no mass limit HNLs
- Resolves significant issues
 - Neutrino masses (seesaw)
 - Universe's baryon asymmetry
 - Dark matter candidates
- Sterile, only produced via mixing
- Small mixing angle, low production rate
- Unstable, detect decay products
 - o Radiative $N_i \rightarrow \nu_j + \gamma \over N_i \rightarrow \nu_i + \gamma + \gamma$ if $m(N_i) > m(\nu_i)$
 - o Invisible $N_i \rightarrow \nu_j + \nu_k + \overline{\nu}_k$
 - \circ e⁺e⁻ mode $V_i \rightarrow \nu_j + e^+ + e^-$ if m(N) > 2 m_e = 1.022 MeV


SoLid as HNL detector

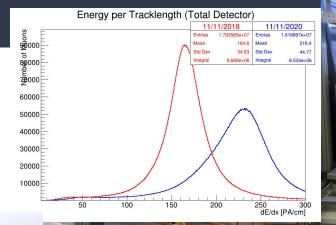
- BR2 as neutrino source
 - \circ ~ 60 MW_{Th} \to 12x10¹⁸ v/s (12 EBq)
 - 12 EBq is isotropic, need to apply geometric efficiency ($\sim 0.13 \%$) $\rightarrow 16 PBq$
 - Small mixing angle → Less Bq
 - Long decay time → Even fewer Bq
- Mass range limited by ²³⁵U v spectrum and e⁺e⁻ decay mode requirement
 - 1.022 MeV < m(N) ≤ 9 MeV
- No neutron in e⁺e⁻ decay
 - → rely on threshold trigger
 - Minimum 2 MeV visible energy
 - Single plane only



Signal selection

- Background simulations
 - Cosmics, BiPo: recycled from IBD analysis
 - Single gammas: HNL specific, WIP
- Signal simulation using Pythia
 - Several HNL masses
 - Full reactor spectrum
- Preliminary list of variables composed
 - Neutron/muon/alpha veto
 - Fiducialization
 - ES energy
 - ES spatial spread
 - Still being refined/expanded
- Manual and TMVA optimizations under way

SoLid's potential



- Various reconstruction efficiencies and S/B ratios compared with current exclusion limits
- Preliminary cut based analysis at 30% eff. and 10⁻⁵ S/B
- Also working on GBDT approach (not even preliminary figures there)

Upgrade to the Phase 2 detector

Detector upgrade

- July to November 2020: SiPM upgrade
 - Took place in Antwerp
 - Data taking since half November 2020
 - 44% more light collected
 - Preliminary analysis indicates improved
 S/N at higher IBD efficiency
- Ongoing: Firmware update

SoLi_d

