Feebly coupled dark matter and displaced new physics at colliders

Based on JHEP 05 (2021) 234 (arXiv:2102.06221) in collaboration with L. Calibbi, F. D'Eramo, L. Lopez-Honorez and A. Mariotti

Sam Junius EOS be.h equinox meeting 09/09/2021

Feebly interacting dark matter

- Nature of DM is still unknown despite many dedicated experiments
- Feebly interaction DM easily escapes (in)direct DM experiments
- DM can be produced through the freeze-in mechanism

[Hall et. al. 2009]

DM Relic Density: $\Omega_{DM}h^2 = 0.12$ [Planck 2018]

Freeze-in production of DM

- DM is never in equilibrium with any SM particle
- Abundance gradually builds up due to mediator decay processes

Freeze-in production of DM

- DM is never in equilibrium with any SM particle
- Abundance gradually builds up due to mediator decay processes

Freeze-in during reheating era

0.001

 10^{-8}

%/u= 10⁻¹³

 10^{-18}

10⁻²³

0.001

0.100

10

 $X = m_B / I$

1000

- Standard freeze-in happens during radiation era ($T_R >> m_B$)
- For $T_R < m_B$, freeze-in during early matter dominated era

Probing early universe using the LHC

• Exploit the link between DM abundance and decay length to probe the reheating temperature in case of a discovery

Case 1: m_x, m_B and cτ are reconstructed Requiring Ωh²=0.12 Exact prediction of T_R

Simplified model classification

Sensitivity to simplified models

	DV	DJ	DJ							
Label	+	+	+	DL	DLV	$\mathrm{D}\gamma$	DT	RH	HSCP	\mathbf{KT}
	MET	MET	μ							
$\mathcal{F}_{l\phi} \ \& \ \mathcal{S}_{l\chi}$				\checkmark					\checkmark	\checkmark
$\mathcal{F}_{ au\phi} \ \& \ \mathcal{S}_{ au\chi}$	\checkmark	\checkmark		\checkmark					\checkmark	\checkmark
$\mathcal{F}_{q\phi} \ \& \ \mathcal{S}_{q\chi}$	\checkmark	\checkmark						\checkmark		
$\mathcal{F}_{t\phi} \ \& \ \mathcal{S}_{t\chi}$	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark		
$\mathcal{F}_{G\chi}$	\checkmark	\checkmark						\checkmark		
$\mathcal{F}_{W\chi}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark
$\mathcal{S}_{H\phi} \ \& \ \mathcal{F}_{H\chi}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark

Topphilic scenario

 $\mathcal{L}_{\mathcal{F}_{t_R\phi}} \supset - \lambda_{\phi} \bar{\Psi}_B t_R \phi$

In case of a discovery, this gives us an upper limit on ${\rm T_{_R}}$

Singlet-triplet model

 $\mathcal{L}_{\mathcal{F}_{W\chi}} \supset \frac{1}{\Lambda} (W^a_{\mu\nu} \bar{\chi_S} \sigma^{\mu\nu} \chi^a_T + \text{h.c.})$

---- $T_R = 10^6 \text{ GeV}$ ---- $T_R = 10^5 \text{ GeV}$ ---- $T_R = 10^4 \text{ GeV}$

— $T_R = 10^3 \text{ GeV}$

— $T_R = 200 \text{ GeV}$

— $T_R = 50 \text{ GeV}$

 $\chi_T = \begin{pmatrix} \chi_h^0 / \sqrt{2} & \chi^+ \\ \chi^- & -\chi_h^0 / \sqrt{2} \end{pmatrix}$

Summary

- Link between DM freeze-in production and mediator decay length
- If $T_R < m_B$, these models can be probed by LLP searches
- A displaced vertex discovery can probe the early universe
- Focusing on different signatures can help narrowing down the specific model

Back-up slides

Upper limit on reheating temperature

$$\Omega_{DM}h^2 \sim \rho_{DM} \sim m_{DM} \cdot Y_{DM} \qquad Y_{DM} \approx 10^4 \left(\frac{T_R}{m_B}\right)' \frac{\Gamma_B M_{pl}}{m_B^2}$$

- Decreasing $m_{_{DM}}$ allows for larger $Y_{_{DM}}$ and hence larger $T_{_{R}}$
- $m_{_{DM}}$ cannot decrease indefinitely due to Ly- α bounds $m_{_{DM}}{>}10 keV$
- This leads to upper limit on $T_{_{\rm R}}$ if $m_{_{\rm B}}$ and $c\tau_{_{\rm B}}$ can be determined

Leptophilic scenario

$$\mathcal{L}_{\mathcal{S}_{\ell_R\chi}} \supset - \lambda_{\chi} \Phi_B \bar{\chi} \mu_R$$

LLP searches used

Signature	Exp. & Ref.	L	Maximal sensitivity	Label	
R-hadrons	CMS [59]	$12.9 { m fb^{-1}}$	$a\tau \geq 10$ m	RH	
Heavy stable charged particle	ATLAS [60]	$36.1~{\rm fb}^{-1}$	$c\tau \gtrsim 10~{ m m}$	HSCP	
Disappearing tracks	ATLAS [61]	$36.1 { m ~fb}^{-1}$	$c\tau \approx 30~{ m cm}$	DT	
Disappearing tracks	CMS $[62, 63]$	$140 { m ~fb}^{-1}$	$c\tau\approx 60~{\rm cm}$		
	$CMS [64]^{\dagger}$	$19.7 { m ~fb}^{-1}$	$a\pi \sim 2$ am		
Displaced leptons	CMS [65]	$2.6~{\rm fb}^{-1}$	$C_{\ell} \approx 2 \mathrm{Cm}$	DL	
	ATLAS [66]	$139 { m ~fb^{-1}}$	$c\tau \approx 5 \text{ cm}$		
Displaced vertices + MET	ATLAS [67]	$32.8 { m ~fb^{-1}}$	$c\tau \approx 3 \text{ cm}$	DV+MET	
Delayed jets $+$ MET	CMS [68]	$137 { m ~fb^{-1}}$	$c\tau\approx 1-3~{\rm m}$	DJ+MET	
Displaced vertices + μ	ATLAS [69]	$136 {\rm ~fb^{-1}}$	$c\tau \approx 3 \text{ cm}$	$\mathrm{DV}{+}\mu$	
Displaced dilepton vertices	ATLAS [70]	$32.8~{\rm fb}^{-1}$	$c\tau \approx 1-3 \text{ cm}$	DLV	
Delayed photons	CMS [71]	$77.4 { m ~fb^{-1}}$	$c\tau \approx 1 \text{ m}$	$\mathrm{D}\gamma$	

LLP searches used

- [59] **CMS** Collaboration, C. Collaboration, Search for heavy stable charged particles with 12.9 fb^{-1} of 2016 data, .
- [60] **ATLAS** Collaboration, M. Aaboud et al., Search for heavy charged long-lived particles in the ATLAS detector in 36.1 fb⁻¹ of proton-proton collision data at $\sqrt{s} = 13$ TeV, Phys. Rev. **D99** (2019), no. 9 092007, [arXiv:1902.01636].
- [61] **ATLAS** Collaboration, M. Aaboud et al., Search for long-lived charginos based on a disappearing-track signature in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, JHEP 06 (2018) 022, [arXiv:1712.02118].
- [62] CMS Collaboration, A. M. Sirunyan et al., Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at $\sqrt{s} = 13$ TeV, arXiv:1804.07321.
- [63] CMS Collaboration, A. M. Sirunyan et al., Search for disappearing tracks in proton-proton collisions at $\sqrt{s} = 13$ TeV, arXiv:2004.05153.
- [64] CMS Collaboration, V. Khachatryan et al., Search for Displaced Supersymmetry in events [71] with an electron and a muon with large impact parameters, Phys. Rev. Lett. 114 (2015), no. 6 061801, [arXiv:1409.4789].
- [65] CMS Collaboration, Search for displaced leptons in the e-mu channel, CMS-PAS-EXO-16-022.
- [66] **ATLAS** Collaboration, G. Aad et al., Search for displaced leptons in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector, arXiv:2011.07812.

- [67] **ATLAS** Collaboration, M. Aaboud et al., Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector, Phys. Rev. **D97** (2018), no. 5 052012, [arXiv:1710.04901].
- [68] CMS Collaboration, A. M. Sirunyan et al., Search for long-lived particles using nonprompt jets and missing transverse momentum with proton-proton collisions at $\sqrt{s} = 13$ TeV, Phys. Lett. B797 (2019) 134876, [arXiv:1906.06441].
- [69] **ATLAS** Collaboration, G. Aad et al., Search for long-lived, massive particles in events with a displaced vertex and a muon with large impact parameter in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, arXiv:2003.11956.
- [70] **ATLAS** Collaboration, G. Aad et al., Search for displaced vertices of oppositely charged leptons from decays of long-lived particles in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Lett. **B801** (2020) 135114, [arXiv:1907.10037].
- 71] CMS Collaboration, A. M. Sirunyan et al., Search for long-lived particles using delayed photons in proton-proton collisions at √s = 13 TeV, Phys. Rev. D 100 (2019), no. 11 112003, [arXiv:1909.06166].

Freeze-in contribution diagrams

IR freeze-in (renormalizable operator)

UV freeze-in (non-renormalizable operator)

Inflationary reheating

 After inflation, inflaton starts oscillating and produces thermal bath

$$\rho_M \sim a^{-3} \quad \rho_R \sim a^{-3/2}$$

• At T=T_R, the inflaton decays away and universe is radiation dominated $\rho_R \sim a^{-4}$