be

Study of the Anomalous Couplings in On-shell H \rightarrow WW* analysis

Tomáš Kello

EOS be.h Equinox meeting

9.9.2021

Motivation

Or is this resonance really SM Higgs that we measure?

• constrains were set on **spin-parity properties** of discovered resonance $m_h = 125.10$ GeV

Consistent with SM-like Higgs boson $J^{CP} = 0^{++}$

- exotic scenarios with $J^{CP} = 1^-, 1^+, 2^+$ were excluded in Run-1 [ATLAS, CMS] but ...
- allowing for small 0-spin anomalous couplings (AC) to gauge bosons (HVV)

$VV \coloneqq WW, ZZ, \gamma\gamma, gg, \gamma Z$

• Run-2 results has improved constrains on AC in H \rightarrow ZZ \rightarrow 4l [HIG-19-009] and $H \rightarrow \tau \tau$ [HIG-20-007]

HVV scattering amplitude

• general form of minimum **0-spin expansion of SM** up to $\mathcal{O}(q^2)$

$$\mathcal{A}(\text{HVV}) \sim \begin{bmatrix} a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}} q_{V1}^{2} + \kappa_{2}^{\text{VV}} q_{V2}^{2}}{(\Lambda_{1}^{\text{VV}})^{2}} \end{bmatrix} m_{V1}^{2} \epsilon_{V1}^{*} \epsilon_{V2}^{*} + \begin{bmatrix} a_{2}^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} \\ a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \\ \end{bmatrix} + \begin{bmatrix} a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \\ a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \end{bmatrix}$$
SM BSM CP-even loop $0_{\Lambda 1}^{+}$ SM-loop 0_{h}^{+} BSM CP-odd loop 0^{-1}

HWW/HZZ vertex

 Assume gauge invariance and real couplings so κ^{WW}_{1,2} = κ^{ZZ}_{1,2} = -exp(iφ_{Λ1}) = ±1
 Assume custodial symmetry so a^{WW}_i = a^{ZZ}_i ≔ a_i
 a₁ ≠ 0 is SM coupling
 anomalous couplings a₂, a₃, Λ₁

$$\begin{array}{l} \mbox{CP-conserving} \\ \mbox{anomalous} \\ \mbox{couplings} \end{array}$$

$$\begin{array}{l} \Lambda_1 \leftrightarrow 0^+_{\Lambda_1} & \mathcal{O}(10^{-3} - 10^{-2}) \\ a_2 \leftrightarrow 0^+_h & \mathcal{O}(10^{-3} - 10^{-2}) \\ a_3 \leftrightarrow 0^- & \mathcal{O}(<10^{-3}) \\ \end{array}$$

 $f^{(i)\mu\nu} = \varepsilon^{\mu}_{Vi} q^{\nu}_{Vi} - \varepsilon^{\nu}_{Vi} q^{\mu}_{Vi}$ field strength

 Λ_1 = scale of BSM physics

 $q_{Vi} = V$ boson momentum

 $ilde{f}_{\mu
u}^{(i)} = rac{1}{2} arepsilon_{\mu
u
ho\sigma} f^{(i)
ho\sigma}$ dual field strength tensor

$HZ\gamma/H\gamma\gamma$ vertex

- Assume gauge invariance and real couplings so κ^{γγ}_{1,2} = 0; κ^{Zγ}_{1,2} = −exp(iφ_{Λ1}) = ±1

 α^{γγ/Zγ}₂, α^{γγ/Zγ}₃ constrained by direct Hγγ/HZγ
 - $measurements \rightarrow \textit{to be ignored}$
- > anomalous coupling to be considered in VBF/VH production $\Lambda_1^{Z\gamma}$

CP-conserving anomalous couplings

 $\Lambda_1^{Z\gamma} \longleftrightarrow 0_{\Lambda_1}^{Z\gamma} \quad \mathcal{O}(10^{-3} - 10^{-2})$

HVV scattering amplitude

• general form of minimum **0-spin expansion of SM** up to $\mathcal{O}(q^2)$

$$\mathcal{A}(\text{HVV}) \sim \begin{bmatrix} a_{1}^{\text{VV}} + \frac{k_{1}}{\Lambda_{1}} + \frac{k_{2}}{\Lambda_{1}} + \frac{k_{1}}{\Lambda_{1}} + \frac{k_{1}}{\Lambda_{1$$

Hgg vertex

- Assume gauge invariance and real couplings so $\kappa_{1,2}^{gg} = 0$
- > anomalous coupling to be considered in ggF+2j production a_2^{gg} , a_3^{gg} with VBF-like topology
- Hgg effective couplings are induced by quark loops which means they have direct relation to Yukawa couplings

CP-properties of Yukawa interaction to be probed by Hgg couplings

 $a_2^{gg} \leftrightarrow 0_{gg}^+ \quad \mathcal{O}(10^{-3} - 10^{-2})$ $a_3^{gg} \leftrightarrow 0_{gg}^- \quad \mathcal{O}(<10^{-3})$

 $f^{(i)\mu\nu} = \varepsilon^{\mu}_{Vi} q^{\nu}_{Vi} - \varepsilon^{\nu}_{Vi} q^{\mu}_{Vi}$ field strength

 Λ_1 = scale of BSM physics

 $q_{Vi} = V$ boson momentum

 $ilde{f}_{\mu
u}^{(i)} = rac{1}{2} arepsilon_{\mu
u
ho\sigma} f^{(i)
ho\sigma}$ dual field strength tensor

In this presentation

- Overview of the anomalous couplings $H \rightarrow WW^*$ analysis for Full Run-2 at CMS more examples than full scale results
- Focus on HWW couplings in ggF 0/1-jet, VBF/VH 2-jet fully leptonic signal regions
- Additional study of HZγ coupling in VBF/VH 2-jet regions and Hgg couplings with VBF-like topology region.
- Interpretation in terms of **anomalous couplings** but translation to **EFT** parametrisation is ongoing
- **DISCLAIMER:** analysis is still in **BLINDED** regime (no data in signal region and expected likelihood scans only)

Signal model parametrisation

- Assume one anomalous coupling at the time
- 2 vertices in case of VBF/VH production and HWW couplings (prod. + decay)

$$\mathcal{A}(\text{HWW}) = \left(a_1 A_1^{\text{prod}} + a_i A_i^{\text{prod}}\right) * \left(a_1 A_1^{\text{decay}} + a_i A_i^{\text{decay}}\right)$$

1 vertex in case of ggF 0/1-jet production and HWW couplings (decay only), similar in case of ggF 2-jet and Hgg couplings (production only)

$$\mathcal{A}(\text{HWW}) = \left(a_1 A_1^{\text{decay}} + a_i A_i^{\text{decay}}\right)$$
$$\mathcal{A}(\text{Hgg}) = \left(a_1 A_1^{\text{prod}} + a_i A_i^{\text{prod}}\right)$$

 In case of VBF/VH production and HZγ coupling we assume that decay vertex is not affected

$$\mathcal{A}(\mathrm{H}Z\gamma) = \left(a_1A_1^{\mathrm{prod}} + a_iA_i^{\mathrm{prod}}\right) * a_1A_1^{\mathrm{decay}}$$

Signal model parametrisation

• Instead of ACs, it is useful to use effective fractional cross-section f_{a_i}

$$f_{a_{i}} = \frac{|a_{i}|^{2}\sigma_{i}}{|a_{i}|^{2}\sigma_{i} + |a_{1}|^{2}\sigma_{1}} \qquad f_{a_{1}} = 1 - f_{a_{i}} \qquad g = \sqrt{\frac{\sigma_{1}}{\sigma_{i}}} \qquad \sigma_{i} \leftrightarrow a_{i} = 1, a_{i\neq j} = 0$$

$$ggF: \qquad \mathcal{P}_{ggF} = \mu_{F} \left(f_{a_{1}} * T_{1} + \sqrt{f_{a_{i}}} \sqrt{f_{a_{1}}} * g * T_{2} + f_{a_{i}} * g^{2} * T_{3} \right)$$

$$VBF/VH: \qquad \mathcal{P}_{VBF/VH} = \mu_{V}^{2} \left(f_{a_{1}}^{2} * T_{1} + \sqrt{f_{a_{1}}} \sqrt{f_{a_{i}}} * g * T_{2} + f_{a_{1}}f_{a_{i}} * g^{2} * T_{3} + \sqrt{f_{a_{1}}} \sqrt{f_{a_{i}}} * g^{3} * T_{4} + f_{a_{i}}^{2} * g^{4} * T_{5} \right)$$

$$HZ\gamma \text{ case:} \qquad \mathcal{P}_{HZ\gamma} = \mu_{HZ\gamma}^{2} \left(f_{a_{1}}^{2} * T_{1} + \sqrt{f_{a_{1}}} \sqrt{f_{a_{1}}} \sqrt{f_{a_{1}}} * g * T_{2} + f_{a_{1}}f_{A_{1}^{2}} * g^{2} * T_{3} \right)$$

$$Where T_{i} \text{ are distribution templates used in final fit:} \qquad T_{1} \equiv SM \qquad T_{3}^{ggF}, T_{5}^{VBF/VH} \equiv BSM$$

and μ are signal strength parameters

 $T_{2...4} \equiv$ Interference templates

09/09/2021

Analysis Strategy

- 1. Signal channels with 2 jets provide enough information to feed MELA ("Matrix Element Likelihood Approach") and calculate Kinematic Discriminant (KD)
 - MELA requires 3x 4-vector to calculate per-event-probability using LO ME (JHUGen)
 - 3 types of KDs + m_{ll} distribution is used to produce multidimensional discriminant

Example:

 D_{Int} : INT vs. pure SM/BSM (2 plots) D_{Prod} : ggF vs. VBF/VH (3 bins) D_{BSM} : SM vs. BSM signal (10 bins) m_{ll} : dilepton invariant mass (4 bins)

Analysis Strategy

2. Signal channels with 0 or 1 jet cannot use MELA KDs and uses $2D m_{II} vs. m_T^H$ templates instead (the same was done in Run-1)

Signal Templates

- Signal samples (SM, BSM and SM-BSM mix) were generated by JHUGen V7 for 2016-2018
- each signal sample (pure SM, pure BSM and mixed SM-BSM) can be **re-weighted to considered AC hypothesis** (ggF: $H_1 - H_3$, VBF/VH: $H_1 - H_5$, HZ γ : $H_1 - H_3$) using **MELA**

Trigger, Reconstruction & Base Selection

Trigger:

• Combination of both single and double lepton triggers is used with different $p_{\rm T}$ thresholds

Object reconstruction:

- Electrons and muons are reconstructed offline using tight MVA-based (e) and/or cut-based (e,μ) identification and isolation criteria
- Jets (AK4 PF) are clustered from particle flow candidates using the anti-kT algorithm (ΔR = 0.4). Additional tight selection ID and loose pile-up ID criteria are applied to reduce noise and pile-up effects
- Fat **(AK8 PF)** jets were reconstructed as well ($\Delta R = 0.8$)
- **MET** is defined as the negative sum of the transverse momentum of all PF candidates

Base Selection:

Uncertainties

- Experimental, theoretical and statistical
- Affect both background and signal MC
- Can be correlated/uncorrelated among years
- Enter Likelihood function in a form of **nuisance parameters**

Uncertainty Group	Affected Process	Туре	Correlation
Integrated Luminosity	All MC but top, WW, DY	normalization	partially
Fake rate (statistical)	non-prompt	shape	uncorrelated
Fake rate (30% jet composition)	non-prompt	normalization per basis observable bin	correlated
B-tag SF	all MC	shape	partially
Trigger efficiency	all MC	shape	uncorrelated
Prefiring weight	all MC	shape	uncorrelated, 2016 and 2017
Lepton ID efficiency	all MC	shape	uncorrelated
Lepton pT scale	all MC	normalization per basis observable bin	uncorrelated
Jet Energy Corrections	all MC	normalization per basis observable bin	uncorrelated
Jet Energy Resolution	all MC	normalization per basis observable bin	uncorrelated
Jet PU ID scale	all MC	shape	uncorrelated
Unclustered MET	all MC	normalization per basis observable bin	uncorrelated
Pileup reweighting	WW, top, DY, ggF and VBF	normalization per basis observable bin	uncorrelated
Parton showering	WW, ggF and VBF	normalization per basis observable bin	correlated, 2017 and 2018
Underlying event	WW, ggF and VBF	normalization per basis observable bin	correlated, 2017 and 2019
Single top/tt composition	top	shape	correlated
Top pT reweighting	top	shape	correlated
WW NNLL resummation	WW	shape	correlated
VgS cross-section	VgS	normalization	correlated
VZ cross-section	VZ	normalization	correlated
PDF (cross-section & acceptance)	all MC	normalization	correlated
Higher order QCD (cross-section and acceptance)	all MC	shape (bkg+ggF), normalization (rest)	correlated
CR/SR acceptance	top, DY	normalization on CRs	correlated
DY rateparam	DY	rateparam (floating in fit)	correlated
top rateparam	top	rateparam (floating in fit)	correlated
WW rateparam	WW	rateparam (floating in fit)	correlated
MC stat	all MC		

Maximum Log Likelihood scans - Preliminary

Example of a_2 (0_h^+ HWW) coupling expected likelihood values (CRs included in fits)

Maximum Log Likelihood scans - Preliminary

Example of $\Lambda_1^{Z\gamma}$ (HZ γ) coupling

Ongoing Run-2 analysis VBF+VH resolved 2016

Example of $a_3^{
m gg}$ ($0_{
m gg}^-$ Hgg) coupling

Ongoing Run-2 analysis ggF+2j 2016

Challenges of the analysis

- Integral value of SM-BSM interference templates can be negative (destructive effect) → we check that the combination of templates remains positive
- Still some of the uncertainties are problematic templates yield negative values/shapes are complicated/empty bins →we partially fix this by treating them as symmetric normalized unc. + other tricks (autorebin)
- UL datasets start to be available we might need to switch to them
- Combination between channels is technically demanding

Summary

- Overview of of the anomalous couplings $H \to WW^*$ analysis for Full Run-2
- Showing examples of Likelihood scans for several anomalous couplings
- Aiming for combination of all HWW channels among all years
- Several technical issues, uncertainty studies still ongoing
- It is likely we will be **delayed by the switch to UL datasets**
- EFT interpretation of AC is ongoing
- Planning for combination with HZZ and H $\tau\tau$ analyses

Reference

[ATLAS]: ATLAS Collaboration. Determination of spin and parity of the Higgs boson in the WW* \rightarrow evµv decay channel with the ATLAS detector. Eur. Phys. J. C75 (2015) 231. <u>https://arxiv.org/abs/1503.03643</u>

[CMS]: CMS Collaboration. Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV. Phys. Rev. D 92, 012004 (2015). <u>https://arxiv.org/abs/1411.3441</u>

[HIG-19-009]: CMS Collaboration. Constraints on anomalous Higgs boson couplings to vector bosons and fermions in its production and decay using the four-lepton final state. CERN-EP-2021-054 <u>https://arxiv.org/abs/2104.12152</u>

[EFT]: Andrei V. Gritsan, Jeffrey Roskes, Ulascan Sarica, Markus Schulze, Meng Xiao, Yaofu Zhou. New features in the JHU generator framework: constraining Higgs boson properties from on-shell and off-shell production. Phys. Rev. D 102, 056022 (2020). <u>https://arxiv.org/abs/2002.09888</u>

Maximum Log Likelihood scans - Preliminary

Example of Λ_1 ($0^+_{\Lambda 1}$ HWW) coupling expected likelihood values (CRs included in fits)

Maximum Log Likelihood scans - Preliminary

Example of a_3 (0⁻HWW) coupling expected likelihood values (CRs included in fits)

EFT interpretation

• HVV scattering amplitude approach is equivalent to effective Lagrangian in Higgs basis

$$\mathcal{L}_{hvv} = \mathcal{L}_{hvv}^{SM} + \sum_{n=1}^{\infty} \sum_{i}^{\infty} \frac{c_{i}^{(n)}}{\Lambda^{n}} \mathcal{O}_{i}^{(n+4)} \longrightarrow \mathcal{L}_{hvv} = \frac{h}{v} \left[(1 + \delta c_{z}) \frac{(g^{2} + g'^{2})v^{2}}{4} Z_{\mu} Z_{\mu} + c_{zz} \frac{g^{2} + g'^{2}}{4} Z_{\mu\nu} Z_{\mu\nu} + c_{zz} \frac{g^{2} + g'^{2}}{4} Z_{\mu\nu} \tilde{Z}_{\mu\nu} + \tilde{c}_{zz} \frac{g^{2} + g'^{2}}{2} Z_{\mu\nu} \tilde{Z}_{\mu\nu} + \tilde{C}_{zz} \frac{g^{2} + g'^{2}}{2$$

• ... so the ACs can be associated with Lagrangian couplings leaving only 4 independent parameters a_1^{ZZ} , a_2^{ZZ} , a_3^{ZZ} and $\kappa_1^{ZZ}/(\Lambda_1^{ZZ})^2$ + value of Weinberg angle

$$\begin{split} \delta c_z &= \frac{1}{2} a_1^{ZZ} - 1, \qquad \qquad c_{zz} = -\frac{2 s_w^2 c_w^2}{e^2} a_2^{ZZ} \\ c_{z\Box} &= \frac{m_Z^2 s_w^2}{e^2} \frac{\kappa_1^{ZZ}}{(\Lambda_1^{ZZ})^2}, \qquad \qquad \tilde{c}_{zz} = -\frac{2 s_w^2 c_w^2}{e^2} a_3^{ZZ} \end{split}$$

See [EFT] for formulas

09/09/2021

EFT interpretation

• Again we can use MELA to reweight templates to any EFT hypothesis

 \rightarrow Using SU(2)xU(1) symmetry we get relations:

$$\begin{split} a_{1}^{WW} &= a_{1}^{ZZ}, \\ a_{2}^{WW} &= c_{w}^{2}a_{2}^{ZZ} + s_{w}^{2}a_{2}^{\gamma\gamma} + 2s_{w}c_{w}a_{2}^{Z\gamma}, \\ a_{3}^{WW} &= c_{w}^{2}a_{3}^{ZZ} + s_{w}^{2}a_{3}^{\gamma\gamma} + 2s_{w}c_{w}a_{3}^{Z\gamma}, \\ \frac{\kappa_{1}^{WW}}{(\Lambda_{1}^{WW})^{2}}(c_{w}^{2} - s_{w}^{2}) &= \frac{\kappa_{1}^{ZZ}}{(\Lambda_{1}^{ZZ})^{2}} + 2s_{w}^{2}\frac{a_{2}^{\gamma\gamma} - a_{2}^{ZZ}}{M_{Z}^{2}} + 2\frac{s_{w}}{c_{w}}(c_{w}^{2} - s_{w}^{2})\frac{a_{2}^{Z\gamma}}{M_{Z}^{2}}, \\ \frac{\kappa_{2}^{Z\gamma}}{(\Lambda_{1}^{Z\gamma})^{2}}(c_{w}^{2} - s_{w}^{2}) &= 2s_{w}c_{w}\left(\frac{\kappa_{1}^{ZZ}}{(\Lambda_{1}^{ZZ})^{2}} + \frac{a_{2}^{\gamma\gamma} - a_{2}^{ZZ}}{M_{Z}^{2}}\right) + 2(c_{w}^{2} - s_{w}^{2})\frac{a_{2}^{Z\gamma}}{M_{Z}^{2}} \end{split}$$

ightarrowAssuming EFT scale $\Lambda = 100 GeV$

Example: for pure 0_h^+ (so $a_2^{ZZ} = 1$) we need to set $a_2^{WW} = c_W^2$ (neglecting $a_2^{\gamma\gamma}$, $a_2^{Z\gamma}$ constrained in another study)

• One more issue with total Higgs width now changing with coupling adjustments (before it was "hidden" in μ —parameter) \Rightarrow fitting formula more complicated

EFT interpretation

Example of $c_{\rm ZZ}$ vs. $\delta c_{\rm Z}$ scan (both linearly related to $a_1^{\rm ZZ}$, $a_2^{\rm ZZ}$)

Signal Templates

- Signal samples (SM, BSM and SM-BSM mix) were generated by JHUGen V7 for 2016-2018
- To increase statistics: each signal sample (pure SM, pure BSM and mixed SM-BSM) can be re-weighted to considered AC hypothesis (ggF: $H_{1..3}$, VBF/VH: $H_{1..5}$, HZ γ : $H_{1..3}$)
- H_i is then averaged sum of all available re-weighted samples
- Interference templates are then derived as:

ggF:
$$T_2 = (H_2 - H_1 - H_3 * g^2)/g$$

VBF/VH: $T_i = G_{ji} H_j$

• Reweighting is done using **MELA ('Matrix Element Likelihood Approach')**

Maximum Log Likelihood Method

