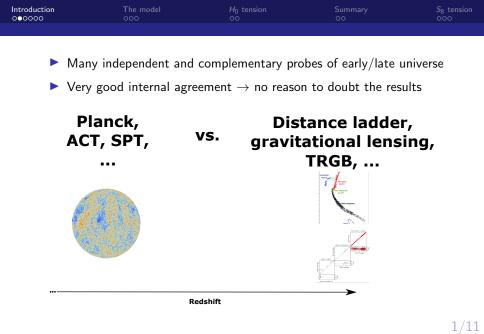
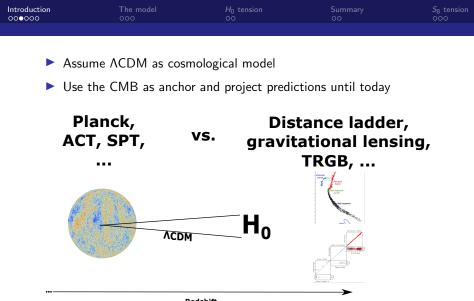
Dark matter-dark energy interactions and their cosmological implications

Matteo Lucca Université Libre de Bruxelles (ULB)

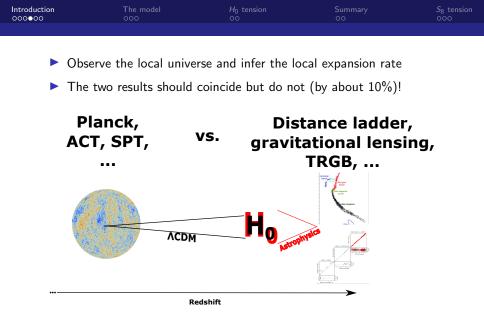
Based on Lucca & Hooper 2020 [2002.06127] and Lucca 2021a [2105.09249]


Presentation for the EOS be.h Equinox meeting


Introduction	The model	H ₀ tension	Summary	S_8 tension
●00000	000	00	00	

A way to short introduction to the H_0 tension

Matteo Lucca


Matteo Lucca

2/11

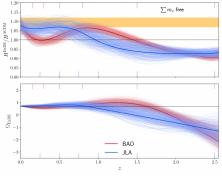
Matteo Lucca

3/11

Matteo Lucca

Introduction	The model	H ₀ tension	Summary	S_8 tension
000000	000	00	00	

What could cause the discrepancy?


- ▶ Option 1: wrong astrophysical assumptions at play but by now too many independent observables would need to be very wrong at the same → very unlikely
- ▶ Option 2: systematics in CMB or late-time probes → very unlikely too for the same reason
- Option 3: ∧CDM is wrong and the universe is expanding faster than expected because of unknown physics → very much possible

Out of the plethora of possible "solutions", one very representative example is given by **dark matter** - **dark energy interactions**

Introduction	The model	H ₀ tension	Summary	S ₈ tension
00000●	000	00	00	

Generalities of late-time "solutions":

- CMB anisotropy data alone unsuitable to constrain late-time modifications of ACDM (only effect is to enlarge error bars)
- Fundamental to consider at least BAO and SNIa data, which have however been shown to strongly prefer ΛCDM over late-time variations of the expansion history (Poulin et al. '18 [1803.02474])
- Emergence of general no-go theorem for late-time solutions

Adapted from Poulin et al. '18 [1803.02474]

Matteo Lucca

Introduction 000000	The model ●00	H ₀ tension	Summary 00	S_8 tension

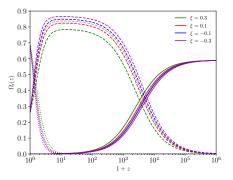
The model

Matteo Lucca

Introduction	The model	H ₀ tension	Summary	S ₈ tension
000000	○●○	00	00	

Dark matter-dark energy interactions:

Main difference with respect to ACDM: DM and DE energy densities not conserved singularly but coupled via an energy transfer function Q


$$\dot{\rho}_c + 3H\rho_c = Q$$
 and $\dot{\rho}_x + 3H\rho_x(1+w_x) = -Q$

- ► Many possible choices for coupling function due to large freedom in the phenomenology of the interaction → Intuitive approach: dependence on the fluids' energy densities and H
- One of the most stable and successful options is $Q = \xi H \rho_x$ (Gavela et al. '09, '10 [0901.1611, 1005.0295], Di Valentino et al. '17, '19 [1704.08342, 1908.04281]), with clear cosmological meaning: $\Lambda = \Lambda_0 (1 + z)^{\xi}$
- As a consequence of this choice:
 - 1. If $\xi = 0$: one recovers ΛCDM
 - 2. If $\xi < 0$: energy flows from the DM to the DE (iDMDE model)
 - 3. If $\xi > 0$: energy flows from the DE to the DM (iDEDM model)

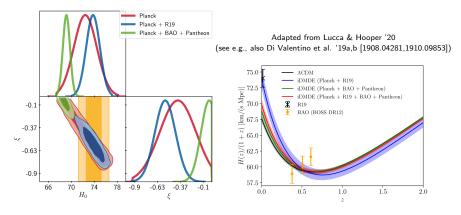
Matteo Lucca

Introduction 000000	The model 00●	H ₀ tension 00	Summary 00	S ₈ tension 000
Key conseque	nces:			

If ξ is negative (positive) Ω_c increases (decreases) in the past with respect to ΛCDM, while Ω_x decreases (increases)

- ▶ The Hubble parameter increases (decreases) during the MD epoch
- ► The redshift of matter-radiation equality *z_{eq}* increases (decreases)

Matteo Lucca


Introduction 000000	The model 000	H_0 tension	Summary 00	S_8 tension

DM-DE interactions as a solution to the *H*₀ tension (the iDMDE model)

Matteo Lucca

Introduction 000000	The model 000	H_0 tension	Summary 00	S_8 tension

For the specific case of DM-DE interactions:

- No-go theorem still applies
- DM-DE interactions are therefore not a successful solution

8/11

Matteo Lucca

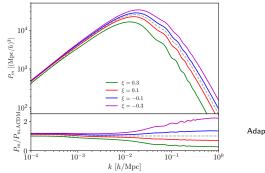
Introduction	The model	H ₀ tension	Summary	S_8 tension
000000	000	00	●○	

Summary

Matteo Lucca

Introduction 000000	The model 000	H ₀ tension 00	Summary ○●	S_8 tension
Summary:				

- ► The *H*⁰ tension is a discrepancy between the early-time inference and the local measurement of the Hubble parameter today
- Systematics and astrophysics aside, this tension (and others) might hint to a cosmological model beyond ACDM
- DM-DE interactions can be motivated at a very fundamental level and present large phenomenological freedom
- A very appealing choice assumes a coupling of the form $Q = \xi H \rho_x$
- The model fails to successfully solve the H₀ tension because of a broad *no-go theorem* against late-time models
- It can however significantly reduce the S₈ tension without worsening other tensions nor the fit to the data (please ask questions on this!)

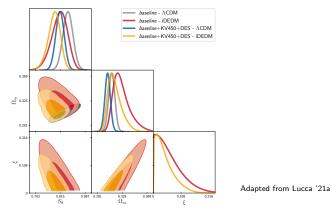

Introduction	The model	H_0 tension	Summary	S_8 tension
000000	000		00	$\bullet \circ \circ$

DE-DM interactions as a solution to the S₈ tension (the iDEDM model)

Matteo Lucca

Introduction 000000	The model 000	H ₀ tension 00	Summary 00	S_8 tension $0 \bullet 0$
Recap: Wher	η ξ is positive $\Omega_c($	z) is lower in the p	ast compared to A	CDM

- The redshift of matter-radiation equality decreases
- Shift of the peak of the matter power spectrum to lower values and overall suppression of the amplitude (in particular for k > k_{eq})


Adapted from Lucca '21a

10/11

Matteo Lucca

Introduction	The model	H ₀ tension	Summary	S_8 tension
000000	000	00	00	

Considering data from Planck+BAO+Pantheon and from KV450+DES:

11/11

Successful solution (tension below 1.5σ once all data is included)

 Without worsening nor introducing any other tension and without worsening fit to data

Matteo Lucca