

Flavor conservation is not a fundamental symmetry in the SM

Fermions do change flavour:

- \circ Quarks: CKM matrix \rightarrow quark mixing observed
- \circ Leptons: PMNS matrix \rightarrow neutrino mixing observed

How about charged leptons?

- $\circ \rightarrow$ (charged) Lepton Flavour Violation (cLFV)
- Not observed yet

In the SM

- Loop with neutrino oscillations
- Vanishingly small branching ratios

Lepton Flavor Violation

Various **BSM** models: Supersymmetry, extended gauge models, heavy neutrinos, etc.

Predict LFV couplings to be tested at the LHC

- lepton-flavor violating processes

$$- \mu \rightarrow e\gamma, \tau \rightarrow e\gamma, etc.$$

$$- \mu \rightarrow eee, \tau \rightarrow \mu ee, etc.$$

$$- \mu^+ e^- \rightarrow e^- \mu^+$$

$$- Z^0 \rightarrow \mu e, \tau e, etc.$$

$$- H \rightarrow \mu e, \tau e, etc.$$

$$- K^0 (B^0, D^0, ...) \rightarrow \mu e, \tau e, etc.$$

$$- K^+ (B^+, D^+, ...) \rightarrow \pi^+ \mu e, \pi^+ \tau e, etc.$$

$$- \mu^- + (A, Z) \rightarrow e^- + (A, Z)$$

Low energy results provide constraints (often with assumptions)

Need multiple measurements to understand the full picture

Selections: Two tight leptons with opposite sign in Z mass region [70,110] GeV

- B-Jet-Veto: suppresses ttbar
- Low transverse Mass or Missing transverse momenta

Use of BDT cut/neural network classifiers to discriminate signal from background processes for tau final states

CMS	B(Z→eµ)	< 7.3 × 10-7
ATLAS 139 fb ⁻¹ (Run 1 + Run2)	$egin{aligned} & B(Z{ ightarrow} e\mu)\ & B(Z{ ightarrow} \mu au)\ & B(Z{ ightarrow} e au) \end{aligned}$	< 3.04 x 10 ⁻⁷ < 6.5 x 10 ⁻⁶ < 5.0 x 10 ⁻⁶
LEP	$egin{aligned} B(Z { ightarrow} \mathbf{e}\mu)\ B(Z { ightarrow} \mu au)\ B(Z { ightarrow} \mathbf{e} au) \end{aligned}$	< 1.7 x 10 ⁻⁶ < 1.2 x 10 ⁻⁵ < 9.8 x 10 ⁻⁶

LFV Z→II' decays

CMS Run 2 New

Null result for $\mu \rightarrow e_{\gamma}$ strongly constrains B(H $\rightarrow e_{\mu}$) to < 10⁻⁸ while $\tau \rightarrow \mu_{\gamma}/\tau \rightarrow e_{\gamma}$ and other measurements constrain $B(H \rightarrow e_{\tau})$ and $B(H \rightarrow \mu_{\tau}) \approx 10\%$

Strategy:

• Main backgrounds are the Z $\rightarrow \tau \tau$, W+jets, ttbar and QCD production.

- Analysis employs categorization in VBF and non-VBF categories
 - CMS: subcategorisation of non-VBF in O-jet, 1-jet and 2 jet final states
- Fit BDT distribution to obtain final results

LFV H(125) \rightarrow II' decays

	CMS (Run2)	ATLAS (
B(H→ μτ)	< 0.15 %	< 0.28
B(H→e τ)	< 0.22 %	< 0.47

& many more.....

	< 3.76 × 10-7	LFV Heavy Higgs (200-900 GeV)	
W decays	Eur. Phys. J. C (2016) 76:232	JHEP 03 (2020) 103	CMS
CMS (13 TeV, 33.2 fb ⁻¹ , 90%CL) B/D and W decays	$< 8.0 \times 10^{-8}$	σ (gg->H) × B(H $\rightarrow \mu \tau$)	51.9 fb - 1.6 fb
BYD and W decays BELLE BABAR LHCb	<pre>SHEPOI(2021)163 < 2.1 × 10⁻⁸ < 5.3 × 10⁻⁸ < 4.6 × 10⁻⁸</pre>	σ(gg->H) x B(H →eτ)	97.4 fb- 2.3 fb

What about more Heavy states? Can we find them @ LHC

History of LFV heavy X -> Il searches

Heavy state		CMS (2016, eµ) JHEP 04 (2018) 073	20 Phys. Rev.	
	Ζ'	4.4 TeV	4.5	
	RPV	4.2 TeV (λ=0.1) 3.8 TeV (λ=0.01)	3 λ ₃₁₁	
	QBH	5.3 TeV	5.5, 4.9, 3.4, 2.9	

ATLAS

16 eμ, eτ, μτ D 98 (2018) 092008

, 3.7, 3.5 TeV

.4, 2.9, 2.6 TeV = 0.11, λ_{313} = 0.07

4.5 TeV (ADD n=6) 9, 2.6 TeV (RS)

CMS PAS EXO-19-014

Search for heavy resonances and quantum bla in eµ, eτ, and $\mu\tau$ final states in proton-proton at $\sqrt{s} = 13$ TeV (137 fb⁻¹)

Model-independent, inclusive, signature-based
 Interpretation in three models

+model independent limits

ack holes	Analysis Team		
collisions	Diego Beghin	Reza Goldouzian	
search	Amandeep Kaur Kalsi	Sebastian Weidenbe	
	Xuyang Gao	Swagata Mukherje	
	Barbara Clerbaux	Arnd Meyer	

Used 2016, 2017, and 2018 pp collisions at a center-of-mass energy of 13 TeV (137.1 fb ⁻¹)	eµ	et	μT
Background samples: tt→2l2v : POWHEG binned in Mll, NNLO QCD + NLO EW WW→2l2v : POWHEG binned in Mll, NNLO WZ, ZZ : POWHEG and amc@NLO binned in decay mode WZ: NLO ZZ: NNLO	Events selected by single muon and photon triggers	Events selected by single electron and photon triggers	e Events selected by muon triggers
DY→II : amc@NLO binned in MII, NLO Single Top : POWHEG Signal samples RPV : CalcHEP simulation (LO, cross-section scaled	μ: p _T >53 GeV, η <2.4, HighPtID, tracker iso < 0.1, Electron :p _T > 35 GeV, HEEP ID	τ: p _T > 50 GeV, $ \eta < 2.3$, Deep Tau tight anti-jet, loose anti-e and tight anti-μ Electron : p _T > 50 GeV, HEEP ID	τ: p _T >50 GeV, η <2.3, De tight anti-jet, loose and tight anti-μ μ: p _T >53 GeV, η < 2.4 HighPtID, tracker iso <
to NLO) QBH : Dedicated QBH generator v3.0 (LO) Z' : PYTHIA8 (LO) CUETP8M1/CP5 tunes	At least an eµ pair	At least an eτ pair m _T (e,E _T ^{miss}) > 120 GeV No extra electron or muon	At least an μτ pair m _T (μ,E _T ^{miss}) > 120 GeV No extra electron or m
• No requirement on oberge of lepton		$m_{ m T}=\sqrt{2p_{ m T}^l\cdot p_{ m T}^{ m mi}}$	$\Delta ss(1 - \cos \Delta \phi(ec{p}_{ ext{T}}^{l}, ec{p}_{ ext{T}}^{ ext{mi}}))$

• No requirement on charge of lepton pairs 9

Analysis Strategy

No other signal specific cut in order to stay model independent

Main backgrounds:

- Top and Diboson events: estimated from simulation
- W+jets and multijet events using fake rate method from data

Fake rate method:

- Probability of a jet passing pre-selection cuts to also pass lepton selection
- •Derived a jet dominated control sample in data using relaxed lepton identification criteria (e.g. electron isolation or shower shape variables and so on..) to evaluate the contribution of jets passing the full lepton selection
- Fake rate parametrized as function of pt and eta of lepton

Tau final states (e_{τ} , μ_{τ})

Main backgrounds:

- W+jets and multijet events determined from data using Fake factors obtained in jet enriched region.
- •Top and Diboson events: from simulation

Fake factor estimation:

•Probability of a jet to be misidentified as a τ_h •Invert $m_T(e/\mu, E_T^{miss})$ cut i.e. < 120 GeV •Calculate the probability for an accompanying jet to be misidentified as a τ_h candidate in bins of tau candidate pt, its pt ratio with parent jet and pseudorapidity

Collinear mass Approximation

- Tau is boosted and tau-decay products are produced collinearly
- Missing transverse energy is only coming from tau-neutrinos

$$m_{col} = \frac{m_{ris}}{\sqrt{x_{vis}}}$$
$$x_{vis} = \frac{p_T(\tau_h)}{p_T(\tau_h) + p_{T\ col}}$$
$$p_{T\ col} = \max\left(\frac{\vec{p}_T \cdot \vec{p}_T(\tau_h)}{p_T(\tau_h)}, 0\right)$$

Collinear mass distribution in Tau final states (e_{τ} , μ_{τ})

$e\tau$ final state

No significant excess observed over SM prediction

Dominant systematic uncertainty from Fake- τ estimation

Results of this search are currently the best limits from the LHC in the considered models.

Heavy gauge boson (Z') interpretation

- QBH produced if $\sqrt{s} > MP$
- Spin-O, colorless, charge-neutral QBH
- number of extra dimensions (n)

Results of this search are currently the best limits from the LHC in the considered models.

QBH interpretation

RPV SUSY interpretation

R-parity (R) = $(-1)^{3B+L+2s}$

- Resonant production of τ sneutrino LSP
- Decay to leptons of different flavours

Assume all RPV couplings vanish, except λ'_{311} , λ_{i3j} , λ_{j3i}

Results of this search are currently the best limits from the LHC in the considered models.

In narrow width approximation

$$\sigma \mathbf{B} \approx (\lambda_{311}')^2 [(\lambda_{132})^2 + (\lambda_{231})^2] / (3(\lambda_{311}')^2 + [(\lambda_{132})^2 + (\lambda_{231})^2]).$$

2D Limit Contour plots

Model Independent Limits

- Event counting above a mass threshold
- •No assumptions on the signal shape other than a flat product of acceptance times efficiency as a function of the mass
- To derive limit for a specific model from the MI limit, the model-dependent part of the efficiency needs to be applied
- f_m is obtained by calculating events over m^{min} over number of generated MC events

$$(\sigma BA\epsilon)_{\text{excl}} = \frac{(\sigma BA\epsilon)_{MI}m^{\text{min}}}{f_m(m^{\text{min}})}$$

- Charged LFV is an extremely clean and sensitive probe for physics beyond the Standard Model
- Strong portfolio of charged LFV searches in CMS and ATLAS
- Presented some searches
- Unfortunately no sign of new physics yet But these searches sets the strongest constraints to date

Stay tuned.... more to come

Summary

BACKUP

- PU reweighting: minimum bias σ =69.2 mb, with 5% uncertainty
- Prefiring uncertainty (2016–2017)
- Luminosity: 2.5% uncertainty
- Electron uncertainties: energy scale and related to high energy electron id
- Muon uncertainties: energy scale , high pt ID and isolation
- Tau uncertainties: energy scale + Tau ID
- Trigger scale factor uncertainty
- Jet Energy Scale and Resolution
- MET uncertainty: unclustered MET
- Normalization uncertainties: tt(5%), WW(3%), DY (2%), single top (5%), WZ and ZZ (4%)
- Data driven BGs (50%)
- tt uncertainties: PDF + Qscale (arxiv: 1705.04105)
- WW uncertainties: PDF + Qscale (arxiv:1705.00598)

CMS LFV : EXO-19-014

Channel	RPV (TeV)		Z' (TeV)	QBH (TeV)
	$\lambda = \lambda' = 0.01$	$\lambda=\lambda'=0.1$		
eμ	2.2 (2.2)	4.2 (4.2)	5.0 (4.9)	5.6 (5.6)
$e\tau$	1.6 (1.6)	3.7 (3.7)	4.3 (4.3)	5.2 (5.2)
μτ	1.6 (1.6)	3.6 (3.7)	4.1 (4.2)	5.0 (5.0)