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The SMEFT

The SMEFT extends the SM by adding higher-dimensional operators
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The O operator

The Og operator introduces new interactions

Oc = gs fabe GUHGYHYGSP
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The O operator

The Og operator introduces new interactions
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OG = gs fabe GZYHGPVVGZ’I)

SM gluon interactions SMEFT gluon interactions
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Generating the events
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We concentrate on three-jet production

e LHC is a proton accelerator: pp = qq, 99, qg
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We use computer simulations to generate the events
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We use computer simulations to generate the events

pp > jjj QLO
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Choosing the distributions
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Some quantities used in jet analysis
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g the distributions

We focus on variables which separate the cross-section contributions
with different sign

pr > 200 GeV
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Choosing the distributions
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Bounds on the coefficient
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The chi-square function sets bounds on the coefficient

pr = 200 GeV
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The chi-square function sets bounds on the coefficient
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The chi-square function sets bounds on the coefficient
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o The LHC data we are interested in is not public yet
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The chi-square function sets bounds on the coefficient
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The chi-square function sets bounds on the coefficient
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The chi-square function sets bounds on the coefficient
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Bounds on the coefficient
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The chi-square function sets bounds on the coefficient

o A=1TeV, 68% CL
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Bounds on the coefficient
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The procedure can be repeated using any distribution

A=1TeV, 68% CL

Distribution Upper bound on Cg Lower bound on Cg
prj1] 1.36-10~T (4.06-1072) -1.36-10~ T (-3.19-10~?)

% 6.29-10~1 (2.11-1071)  -6.29-10~! (-2.45.10~1)
[nli3]| 1.11 (2.62-1071) -1.11 (-2.44-1071)
[nl71]] 3.33 (2.55-10° 1) -3.33 (2.60-10 1)
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Takeaways

o The interference of SM and O¢ operator is small, for multijet production,
because a cancellation occurs between phase space regions with different
cross-section signs

28



Takeaways
0e000000

Takeaways

o The interference of SM and O¢ operator is small, for multijet production,
because a cancellation occurs between phase space regions with different
cross-section signs

@ Some variables can separate the different regions quite well with simple cuts
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on the Cg coefficient
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interference suppression

34



Takeaways
0O000000e

Takeaways

o The interference of SM and O¢ operator is small, for multijet production,
because a cancellation occurs between phase space regions with different
cross-section signs

e Some variables can separate the different weights with simple cuts

o These variable distributions over the interference can be used to set constraints
on the Cg coefficient

o The bounds from variables which are sensitive to the sign changes are, by more
than one order of magnitude, better than the bounds from the other ones
o The best bounds are comparable to the ones from the O(A~%) contribution

e This precision should be available with current LHC data

o The procedure is general and can be applied to any other process with
interference suppression

C. Degrande, M. Maltoni, ”Reviving the interference: framework and
proof-of-principle for the anomalous gluon self-interaction in the SMEFT”,
arXiv:2012.06595 [hep-ph]
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