Bounds on the coefficient 00000000

Probing anomalous interactions at the LHC

Matteo Maltoni

When the M meets the P

Louvain-la-Neuve, 20 January 2021

Introduction	
• 00 0000	

Bounds on the coefficient

Takeaways 00000000

The SMEFT

The SMEFT extends the SM by adding higher-dimensional operators

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{b}_{\mu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{2}g^{2}_{s}f^{abc}f^{abc}g^{b}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{c}_{\nu} +$ $\frac{1}{2}iq_{*}^{2}(\bar{q}_{*}^{a}\gamma^{\mu}q_{*}^{a})q_{*}^{a} + \bar{G}^{a}\partial^{2}G^{a} + q_{*}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}q_{*}^{c} - \partial_{\nu}W_{*}^{+}\partial_{\nu}W_{*}^{-} M^2 W_{\mu}^+ W_{\mu}^- - \frac{1}{2} \partial_{\nu} Z_{\mu}^0 \partial_{\nu} Z_{\mu}^0 - \frac{1}{2d^2} M^2 Z_{\mu}^0 Z_{\mu}^0 - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H \frac{1}{2}m_{k}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2d}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{d^{2}} + \frac{1}{2d}M\phi^{0}\phi^{0}]$ $\frac{2M}{2}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\mu W^+W^-) = Z^0(W^+\partial_rW^- - W^-\partial_rW^+) + Z^0(W^+\partial_rW^- - W^-)$ $W_{\nu}^{-}\partial_{\nu}W_{\nu}^{+}) - igs_{\nu}[\partial_{\nu}A_{\mu}(W_{\nu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\nu}^{-}) - A_{\nu}(W_{\nu}^{+}\partial_{\nu}W_{\nu}^{-} - W_{\nu}^{+}W_{\nu}^{-})]$ $W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{+}_{\nu}W^{-}_{\nu} +$ $\frac{1}{2}g^2W^+W^-W^+W^- + g^2c^2(Z^0W^+Z^0W^- - Z^0Z^0W^+W^-) +$ $g^{2}s_{-}^{2}(A_{+}W^{+}A_{+}W^{-} - A_{+}A_{+}W^{+}W^{-}) + g^{2}s_{+}c_{+}[A_{+}Z^{0}(W^{+}W^{-} W_{+}^{+}W_{-}^{-}$) - 2 $A_{a}Z_{-}^{0}W_{+}^{+}W_{-}^{-}$] - $g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}]$ - $\frac{1}{2}a^{2}\alpha_{b}[H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]$ $gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}gM_{\mu}^{M}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) W^{-}_{a}(\phi^{0}\partial_{a}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})]+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g_{c}^{-}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig_{c}^{s_{\mu}^{2}}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) +$ $igs_w MA_a (W^+_a \phi^- - W^-_a \phi^+) - ig \frac{1-2c_w^2}{2c_w} Z^0_a (\phi^+ \partial_a \phi^- - \phi^- \partial_a \phi^+) +$ $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] \frac{1}{4}g^2 \frac{1}{c^2} Z_{\mu}^0 Z_{\mu}^0 [H^2 + (\phi^0)^2 + 2(2s_{w}^2 - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s_{w}^2}{c} Z_{\nu}^0 \phi^0 (W_{\nu}^+ \phi^- + \phi^-)^2 \phi^+ \phi^-]$ $W^{-}_{-}\phi^{+}) - \frac{1}{2}iq^{2}\frac{t^{2}}{m}Z^{0}_{-}H(W^{+}_{+}\phi^{-} - W^{-}_{-}\phi^{+}) + \frac{1}{2}q^{2}s_{m}A_{\mu}\phi^{0}(W^{+}_{+}\phi^{-} +$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+}) - g^{2}t_{\mu}^{a}(2c_{w}^{2}-1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-}$ $q^1 s^2_m A_m A_n \phi^+ \phi^- - \bar{e}^{\lambda} (\gamma \partial + m^{\lambda}_e) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \bar{\nu}^{\lambda} - \bar{u}^{\lambda}_e (\gamma \partial + m^{\lambda}_e) u^{\lambda}_e$ $d^{\lambda}(\gamma \partial + m^{\lambda}_{4})d^{\lambda}_{4} + igs_{\mu}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{2}(\bar{u}^{\lambda}\gamma^{\mu}u^{\lambda}_{4}) - \frac{1}{2}(\bar{d}^{\lambda}\gamma^{\mu}d^{\lambda}_{4})] +$ $\frac{ig}{hc}Z_{\mu}^{0}(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_{\nu}^{2}-1-\gamma^{5})e^{\lambda}) + (\bar{u}_{i}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{\nu}^{2}-1-\gamma^{5})e^{\lambda}) + (\bar{u}_{i}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{\nu}^{2}-1-\gamma^{5}$ $(1 - \gamma^5)u_i^{\lambda}) + (\bar{d}_i^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_i^{\lambda})] + \frac{ig}{2\sqrt{5}}W_{\mu}^+[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + (\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda})] + (\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) +$ $(\bar{u}_i^\lambda \gamma^\mu (1 + \gamma^5) C_{\lambda\kappa} d_i^\kappa)] + \frac{ig}{\pi \sigma^0} W^-_\mu [(\bar{e}^\lambda \gamma^\mu (1 + \gamma^5) \nu^\lambda) + (\bar{d}_i^\kappa C^\dagger_{\lambda\kappa} \gamma^\mu (1 + \nu^5) \nu^\lambda)]$ $\gamma^{5}(u_{1}^{\lambda})] + \frac{ig}{2\sqrt{2}} \frac{m_{\lambda}^{\lambda}}{M} [-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] \frac{g}{2}\frac{m_{\pi}^{*}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{6}}\phi^{+}[-m_{d}^{s}(\bar{u}_{i}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{i}^{s}) +$ $m_{u}^{\lambda}(\bar{u}_{i}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{i}^{\kappa}] + \frac{ig}{\pi M_{c}\pi^{5}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{i}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{i}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{i}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{i}^{\kappa})]$ $\gamma^5 [u_i^\kappa] = \frac{g}{2} \frac{m_A^\lambda}{G} H(\bar{u}_i^\lambda u_i^\lambda) - \frac{g}{2} \frac{m_A^\lambda}{G} H(\bar{d}_i^\lambda d_i^\lambda) + \frac{ig}{2} \frac{m_A^\lambda}{G} \phi^0(\bar{u}_i^\lambda \gamma^5 u_i^\lambda) \frac{ig}{2} \frac{m_A^3}{42} \phi^0(\bar{d}_s^\lambda \gamma^5 d_s^\lambda) + \bar{X}^+ (\partial^2 - M^2) X^+ + \bar{X}^- (\partial^2 - M^2) X^- + \bar{X}^0 (\partial^2 - M^2) X^ \frac{M^2}{(2\pi)}X^0 + \tilde{Y}\partial^2 Y + igc_w W^+_v (\partial_a \tilde{X}^0 X^- - \partial_a \tilde{X}^+ X^0) + igs_w W^+_v (\partial_a \tilde{Y} X^- {}^{u}\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y \partial_{\mu}\tilde{Y}X^{+}$) + $igc_{\mu}Z^{0}_{\mu}(\partial_{\mu}\tilde{X}^{+}X^{+} - \partial_{\mu}\tilde{X}^{-}X^{-})$ + $igs_{\mu}A_{\mu}(\partial_{\mu}\tilde{X}^{+}X^{+} - \partial_{\mu}\tilde{X}^{-}X^{-})$ $\partial_{a}\bar{X}^{-}X^{-}) - \frac{1}{3}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] +$ $\frac{1-2c_w^2}{2w}igM[\bar{X}^+X^0\phi^+ - \bar{X}^-X^0\phi^-] + \frac{1}{2w}igM[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] +$ $igMs_{\nu}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

Introduction	
000 0000	
The SMEFT	

 $\mathcal{L}_{SMEFT} =$

Choosing the distributions 0000 Bounds on the coefficient 00000000

Takeaways 00000000

The SMEFT extends the SM by adding higher-dimensional operators

$$\begin{split} & -\frac{1}{2} (\partial_{y} \partial_{y} \partial_{y} \partial_{y} - g^{-1} \partial_{z} \partial_{y} \partial_{y} \partial_{y} \partial_{z} - g^{-1} \partial_{z} \partial_{z} \partial_{y} \partial_{y} \partial_{z} - g^{-1} \partial_{z} \partial_{z} \partial_{z} \partial_{z} \partial_{z} - g^{-1} \partial_{z} \partial_{z} \partial_{z} \partial_{z} \partial_{z} \partial_{z} - g^{-1} \partial_{z} \partial_{z}$$

 $+\sum_{i}rac{C_{i}}{\Lambda^{d-4}}O_{i}^{d}$

Introduction

Generating the even

Choosing the distributions

Bounds on the coefficient 00000000 Takeaways 00000000

The SMEFT

The SMEFT extends the SM by adding higher-dimensional operators

$\mathcal{L}_{SMEFT} =$

 $\begin{array}{l} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$ $\frac{1}{3}m_{b}^{2}H^{2}-\partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-}-M^{2}\phi^{+}\phi^{-}-\frac{1}{3}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0}-\frac{1}{4M}M\phi^{0}\phi^{0}-\beta_{b}|\frac{2M^{2}}{c^{2}}+$ $\frac{2M}{2}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{\sigma^2}\alpha_h - igc_w[\partial_{\nu}Z^0_{\beta}(W^+_{\nu}W^-_{\nu} \begin{array}{c} & W_{+}^{*}W_{+}^{*}) - Z_{+}^{0}(W_{+}^{*}\partial_{w}W_{-}^{*} - W_{+}^{*}\partial_{w}^{*}W_{-}^{*}) + Z_{+}^{0}W_{+}^{*}\partial_{w}W_{-}^{*} - \\ & W_{-}^{*}\partial_{w}W_{+}^{*})) - ig_{Su}[\partial_{w}A_{+}(W_{+}^{*}W_{-}^{*} - W_{+}^{*}W_{+}^{*}) - A_{+}(W_{+}^{*}\partial_{w}W_{-}^{*} - \\ & W_{\mu}^{*}\partial_{w}W_{+}^{*}) + A_{\mu}(W_{+}^{*}\partial_{w}W_{-}^{*} - W_{+}^{*}\partial_{w}W_{+}^{*})] - \frac{1}{2}g^{*}W_{+}^{*}W_{+}^{*}W_{+}^{*}W_{+}^{*}W_{+}^{*} \\ & g^{*}W_{+}^{*}W_{+}^{*}W_{+}^{*}W_{+}^{*} + g^{*}\partial_{w}^{*}(Z_{+}^{*}W_{+}^{*}) - Z_{+}^{*}Z_{+}^{*}W_{+}^{*}W_{+}^{*}W_{+}^{*} + \\ \end{array}$ $\frac{1}{2}\phi^{2}\alpha_{1}[H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]$ $gMW_{+}^{+}W_{-}^{-}H - \frac{1}{2}gM_{-}^{M}Z_{+}^{0}Z_{+}^{0}H - \frac{1}{2}ig[W_{+}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) W^{-}_{a}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + [g[W^{+}_{a}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) - W^{-}_{a}(H\partial_{\mu}\phi^{+} - \phi^{-}\partial_{\mu}H)]$ $\phi^+ \partial_\mu H)] + \frac{1}{2}g \frac{1}{c_c} (Z^0_{\delta}(H \partial_\mu \phi^0 - \phi^0 \partial_\mu H) - ig \frac{s^2_{\alpha}}{c_c} M Z^0_{\delta}(W^+_{\delta} \phi^- - W^-_{\delta} \phi^+) +$ $\begin{array}{l} igs_w MA_{\mu}(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) - ig\frac{1-2c_{\mu}^2}{2c_{\mu}}Z^0_{\mu}(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) + \\ igs_w A_{\mu}(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) - \frac{1}{4}g^2W^+_{\mu}W^-_{\mu}[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \end{array}$ $\frac{1}{2}g^{2}\frac{1}{2T}Z_{\nu}^{0}Z_{\nu}^{0}[H^{2} + (\phi^{0})^{2} + 2(2s_{\nu}^{2} - 1)^{2}\phi^{+}\phi^{-}] - \frac{1}{2}g^{2}\frac{s_{\nu}^{2}}{2}Z_{\nu}^{0}\phi^{0}(W_{\nu}^{+}\phi^{-} +$ $W_{v}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{d^{2}}{d^{2}}Z_{u}^{0}H(W_{v}^{+}\phi^{-} - W_{v}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{v}A_{v}\phi^{0}(W_{v}^{+}\phi^{-} +$ $\begin{array}{l} W^-_\mu\phi^+) + \frac{1}{2} i g^2 s_\mu, \tilde{A}^-_\mu H^0 (W^+_\mu\phi^- - W^-_\mu\phi^+) - g^2 \frac{i s_\mu}{2} (2c_\mu^2 - 1) Z^0_\mu A^-_\mu\phi^+\phi^- - g^1 s_\mu^2 A^-_\mu\phi^+\phi^- - e^3 (\gamma \partial + m_\pi^2) e^{\lambda} - \bar{v}^{\lambda} \gamma \partial \bar{v}^{\lambda} - \bar{u}^3_\lambda (\gamma \partial + m_\pi^2) u^\lambda_\mu - \end{array}$ $d_{1}^{3}(\gamma \partial + m_{\lambda}^{3})d_{1}^{\lambda} + i g s_{w}A_{w}[-(e^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(a_{\lambda}^{\lambda}\gamma^{\mu}a_{\lambda}^{\lambda}) - [(d_{\lambda}^{\lambda}\gamma^{\mu}d_{\lambda}^{\lambda})] +$ $\frac{1}{2a}Z_{s}^{0}(\hat{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\hat{e}^{\lambda}\gamma^{\mu}(4s_{\nu}^{2}-1-\gamma^{5})e^{\lambda}) + (\hat{u}_{s}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{\nu}^{2}-1)e^{\lambda})$ $(1 - \gamma^5)u_i^3) + (\bar{d}_i^3 \gamma^{\mu} (1 - \frac{4}{3}s_{\mu}^2 - \gamma^5)d_i^3)] + \frac{4g}{\pi^2 \pi}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) +$ $(\hat{v}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\kappa^{5}}W_{\sigma}^{-}[(\hat{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})]$

 $-\frac{1}{2}\partial_{\mu}g^{\mu}_{\mu}\partial_{\mu}g^{\mu}_{\mu} - g_{\mu}f^{abc}\partial_{\mu}g^{\mu}_{\mu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{2}g^{2}_{\mu}f^{abc}f^{adc}g^{b}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{c}_{\nu} +$

$$\begin{split} &\gamma^5[u_2^\lambda][+\frac{2}{\gamma_2^6}\frac{m^2}{M}(-\phi^+(b^\lambda(1-\gamma^5)v^\lambda)+\phi^-(b^\lambda(1+\gamma^5)v^\lambda)] -\\ &\frac{4}{\gamma_2^2}\frac{m^2}{M}(H(b^\lambda c^\lambda)+i\phi^0(c^\lambda\gamma_5 c^\lambda)]+\frac{2}{\gamma_2^2}\frac{m^2}{\gamma_2^2}\phi^+[-m_4^2(a_2^2C_{4\kappa}(1-\gamma^5)d_2^2)+\\ &m_6^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)d_2^2)+\frac{2}{\gamma_2^2}\frac{m^2}{\gamma_2^2}\phi^-[m_4^\lambda(d_2^2C_{4\kappa}(1+\gamma^5)u_2^2)-m_4^\lambda(d_3^\lambda C_{4\kappa}(1-\gamma^5)u_2^2)] -\\ &m_6^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)d_2^2)+\frac{2}{\gamma_2^2}\frac{m^2}{\gamma_2^2}\phi^-[m_4^\lambda(d_2^2C_{4\kappa}(1+\gamma^5)u_2^2)-m_4^\lambda(d_3^\lambda C_{4\kappa}(1-\gamma^5)u_2^2)] -\\ &m_6^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)+\frac{2}{\gamma_2^2}\frac{m^2}{\gamma_2^2}\phi^-[m_4^\lambda(d_2^2C_{4\kappa}(1+\gamma^5)u_2^2)-m_4^\lambda(d_3^\lambda C_{4\kappa}(1-\gamma^5)u_2^2)] -\\ &m_6^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)+\frac{2}{\gamma_2^2}\frac{m^2}{\gamma_2^2}\phi^-[m_4^\lambda(d_2^2C_{4\kappa}(1+\gamma^5)u_2^2)-m_4^\lambda(d_3^\lambda C_{4\kappa}(1-\gamma^5)u_2^2)] -\\ &m_6^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)+\frac{2}{\gamma_2^2}\frac{m^2}{\gamma_2^2}\phi^-[m_4^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)-m_4^\lambda(a_2^\lambda C_{4\kappa}(1-\gamma^5)u_2^2)] -\\ &m_6^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)+\frac{2}{\gamma_2^2}\frac{m^2}{\gamma_2^2}\phi^-[m_4^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)-m_4^\lambda(a_2^\lambda C_{4\kappa}(1-\gamma^5)u_2^2)] -\\ &m_6^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)+\frac{2}{\gamma_2^2}\frac{m^2}{\gamma_2^2}\phi^-[m_4^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)] -\\ &m_6^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)+\frac{2}{\gamma_2^2}\frac{m^2}{\gamma_2^2}\phi^-[m_4^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)] -\\ &m_6^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)+\frac{2}{\gamma_2^2}\frac{m^2}{\gamma_2^2}\phi^-[m_4^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)] -\\ &m_6^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)+\frac{2}{\gamma_2^2}\frac{m^2}{\gamma_2^2}\phi^-[m_4^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)] -\\ &m_6^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)+\frac{2}{\gamma_2^2}\phi^-[m_4^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)] -\\ &m_6^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)+\frac{2}{\gamma_2^2}\phi^-[m_4^2C_{4\kappa}(1+\gamma^5)u_2^2)] -\\ &m_6^\lambda(a_2^2C_{4\kappa}(1+\gamma^5)u_2^2)+\frac{2}{\gamma_2^2}\phi^-[m_4^2C_{4\kappa}(1$$

$$\begin{split} &\gamma^{*}(y_{1}^{*}) = \frac{2}{3} \frac{1}{3} H(y_{1}^{*}y_{1}^{*}) = \frac{2}{3} \frac{1}{3} H(y_{1}^{*}y_{1}^{*}) + \frac{2}{3} \frac{1}{3} \phi^{*}(y_{1}^{*}+y_{2}^{*}) \\ &\frac{2}{3} \frac{1}{3} \phi^{*}(y_{1}^{*}+y_{2}^{*}) + X^{*}(\theta^{*} - M^{*})X^{*} + Y^{*}(y_{2}^{*})X^{*} - Q_{2}X^{*}X^{*}) + y_{3}y_{4}W_{4}^{*}(y_{4}^{*})X^{*} - Q_{4}X^{*}X^{*} + y_{5}y_{4}W_{4}^{*}(y_{4}^{*})X^{*} - Q_{4}X^{*}X^{*}) + y_{5}y_{4}W_{4}^{*}(y_{4}^{*})X^{*} - Q_{4}X^{*}X^{*} + y_{5}y_{4}W_{4}^{*}(y_{4}^{*})X^{*} - Q_{4}X^{*}X^{*} + y_{5}y_{4}W_{4}^{*}(y_{4}^{*})X^{*} - Q_{4}X^{*}X^{*} + y_{5}y_{4}W_{4}^{*}(y_{4}^{*})X^{*} - Q_{4}X^{*}X^{*} + X^{*} + X^{*}X^{*} + X^{*}X^{*} + X^{*} +$$

 $\frac{1-2k_{w}^{2}}{2k_{w}}igM[\hat{X}^{+}X^{0}\phi^{+} - \hat{X}^{-}X^{0}\phi^{-}] + \frac{1}{2k_{w}}igM[\hat{X}^{0}X^{-}\phi^{+} - \hat{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\hat{X}^{0}X^{-}\phi^{+} - \hat{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\hat{X}^{+}X^{+}\phi^{0} - \hat{X}^{-}X^{-}\phi^{3}]$

	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{q}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\hat{l}_{p}e_{r}\varphi)$
$Q_{\bar{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	Q_{y0}	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{\gamma \varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\tilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{J\nu}_{\mu}W^{J\nu}_{\nu}W^{K\mu}_{\rho}$	Q_{gD}	$(\varphi^{\dagger}D^{\rho}\varphi)^{\star}(\varphi^{\dagger}D_{\mu}\varphi)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{s}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\mu}_{\nu} W^{K\mu}_{\rho}$				
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A}_{\mu\nu}$	Q_{eW}	$(\bar{l}_{\mu}\sigma^{\mu\nu}e_{\tau})\tau^{I}\varphi W^{I}_{\mu\nu}$	$Q_{gl}^{(1)}$	$(\varphi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \varphi)(\overline{l}_{\mu} \gamma^{\mu} l_{\nu})$
$Q_{\varphi \overline{Q}}$	$\varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_{\mu}\sigma^{\mu\nu}e_{r})\varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i \overrightarrow{D}^{I}_{\mu} \varphi)(\overline{l}_{\mu} \tau^{I} \gamma^{\mu} l_{\nu})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I}_{\mu\nu}$	Q_{uG}	$(\bar{q}_{\mu}\sigma^{\mu\nu}T^{A}u_{\nu})\bar{\varphi}G^{A}_{\mu\nu}$	$Q_{\mu\nu}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overline{e}_{\mu} \gamma^{\mu} e_{\tau})$
Q_{qW}	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I}_{\mu\nu}$	Q_{uW}	$(\bar{q}_{\mu}\sigma^{\mu\nu}u_{r})\tau^{I}\bar{\varphi}W^{I}_{\mu\nu}$	$Q_{qq}^{(1)}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overline{q}_{\mu}\gamma^{\mu}q_{r})$
Q_{qB}	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_\tau) \bar{\varphi} B_{\mu\nu}$	$Q_{qq}^{(3)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\overline{q}_{\mu}\tau^{I}\gamma^{\mu}q_{r})$
Q_{qB}	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{AC}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overline{u}_{p} \gamma^{\mu} u_{r})$
Q_{gWB}	$\varphi^{\dagger}\tau^{I}\varphi W^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_{p}\sigma^{\mu\nu}d_{r})\tau^{I}\varphi W^{I}_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overline{d}_{p} \gamma^{\mu} d_{r})$
$Q_{\overline{W}\overline{n}}$	$\varphi^{\dagger}\tau^{I}\varphi \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_{\mu}\sigma^{\mu\nu}d_{\tau})\varphi B_{\mu\nu}$	Q_{qqd}	$i(\tilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Introduction		Choosing the distributions	
000 ●000			
The O_G operator	or		

 $O_G = g_s f_{abc}~G^{a,\mu}_\nu G^{b,\nu}_\rho G^{c,\rho}_\mu$

Introduction		Choosing the distributions	
000 0●00			
The O_G operator	or		

$$O_G = g_s f_{abc} \ G^{a,\mu}_{\nu} G^{b,\nu}_{\rho} G^{c,\rho}_{\mu}$$

SM gluon interactions

Introduction		Choosing the distributions	
000 0000			
The O_G operator	or		

$$O_G = g_s f_{abc} \ G^{a,\mu}_{\nu} G^{b,\nu}_{\rho} G^{c,\rho}_{\mu}$$

SM gluon interactions

SMEFT gluon interactions

Introduction		Choosing the distributions	
000 0000			
The O_G operator	or		

$$O_G = g_s f_{abc} \ G_{\nu}^{a,\mu} G_{\rho}^{b,\nu} G_{\mu}^{c,\rho}$$

SM gluon interactions

SMEFT gluon interactions

$$\sigma = \sigma^{SM} + \frac{C_G}{\Lambda^2} \sigma^{1/\Lambda^2} + \left(\frac{C_G}{\Lambda^2}\right)^2 \sigma^{1/\Lambda^4} + \dots$$

	luction
000	
0000	

Generating the events $\bigcirc 0000000$

Choosing the distributions

Bounds on the coefficient

Takeaways 00000000

We concentrate on three-jet production

• LHC is a proton accelerator: $pp \Rightarrow qq, gg, qg$

	luction
000	
0000	

Generating the events $0 \bullet 000000$

Choosing the distributions 0000 Bounds on the coefficient

Takeaways 00000000

We concentrate on three-jet production

- LHC is a proton accelerator: $pp \Rightarrow qq, gg, qg$
- pp > jj shows $\sigma^{1/\Lambda^2} = 0$

	luction
000	
0000	

Generating the events 0000000

Choosing the distributions

Bounds on the coefficient

Takeaways 00000000

We concentrate on three-jet production

- LHC is a proton accelerator: $pp \Rightarrow qq, gg, qg$
- pp > jj shows $\sigma^{1/\Lambda^2} = 0$
- \bullet pp > jjj @LO

Generating	the	
0000000		

Bounds on the coefficient

Takeaways 00000000

We concentrate on three-jet production

vents

- LHC is a proton accelerator: $pp \ \Rightarrow \ qq, gg, qg$
- pp > jj shows $\sigma^{1/\Lambda^2} = 0$
- $\bullet pp > jjj$ @LO

	luction
000	
0000	

Generating the events 0000000

Choosing the distributions

Bounds on the coefficient 00000000 Takeaways 00000000

We use computer simulations to generate the events

Generating	
0000000	

nerating the events $000 \bullet 0$

Choosing the distributions

Bounds on the coefficient 00000000 Takeaways 00000000

We use computer simulations to generate the events

14

	luction
000	
0000	

Generating the events 000000

Choosing the distributions

Bounds on the coefficient

Takeaways 00000000

We use computer simulations to generate the events

	Choosing the distributions	
000	0000	
()()()()		

Some quantities used in jet analysis

	Choosing the distributions	
000	0000	
0000		

Some quantities used in jet analysis

	luct	ion
000		
0000		

Bounds on the coefficient 00000000

Takeaways 00000000

We focus on variables which separate the cross-section contributions with different sign

	ti	
000		
0000		

Bounds on the coefficient 00000000

Takeaways 00000000

We focus on variables which separate the cross-section contributions with different sign

	luction
000	
0000	

Bounds on the coefficient $\bigcirc 0000000$

Takeaways 00000000

	ti	
000		
0000		

Bounds on the coefficient 0 = 0000000

Takeaways 00000000

The chi-square function sets bounds on the coefficient

$$\chi^2 = \sum_i \left(\frac{x_i^{exp} - x_i^{th}}{\Delta_i}\right)^2$$

 21

Introd	luctio	
000		
0000		

Bounds on the coefficient 0000000

Takeaways 00000000

• The LHC data we are interested in is not public yet

Introd	luctio
000	
0000	

Bounds on the coefficient 00000000

Takeaways 00000000

• The LHC data we are interested in is not public yet

000	
0000	

Bounds on the coefficient

Takeaways 00000000

000	
0000	

Bounds on the coefficient 00000000

Takeaways 00000000

The chi-square function sets bounds on the coefficient

25

Bounds on the coefficient 00000000

Takeaways 00000000

The chi-square function sets bounds on the coefficient

- $\Lambda = 1$ TeV, 68% CL
- Interference contribution $\mathcal{O}(\Lambda^{-2})$

 $C_G \in [-0.136, 0.136]$

• New Physics contribution $\mathcal{O}(\Lambda^{-4})$

 $C_G \in [-0.032, 0.041]$

000	
0000	

Bounds on the coefficient

Takeaways 00000000

The procedure can be repeated using any distribution

 $\Lambda = 1$ TeV, 68% CL

Distribution	Upper bound on C_G	Lower bound on C_G
$p_{T}[j_{1}]$	$1.36 \cdot 10^{-1} (4.06 \cdot 10^{-2})$	$-1.36 \cdot 10^{-1} (-3.19 \cdot 10^{-2})$
$\frac{ (\boldsymbol{p_1} \times \boldsymbol{p_2}) \cdot \boldsymbol{p_3} }{ \boldsymbol{p_1} \times \boldsymbol{p_2} \boldsymbol{p_3} }$	$6.29 \cdot 10^{-1} (2.11 \cdot 10^{-1})$	$-6.29 \cdot 10^{-1} (-2.45 \cdot 10^{-1})$
$ \eta[j_3] $	$1.11 \ (2.62 \cdot 10^{-1})$	$-1.11 (-2.44 \cdot 10^{-1})$
$ \eta[j_1] $	$3.33 (2.55 \cdot 10^{-1})$	$-3.33 (2.60 \cdot 10^{-1})$

Introduction 000 0000			Takeaways ●00000000
Takeaway	′S		

• The interference of SM and O_G operator is small, for multijet production, because a cancellation occurs between phase space regions with different cross-section signs

Introduction 000 0000		Takeaways 0●000000

- The interference of SM and O_G operator is small, for multijet production, because a cancellation occurs between phase space regions with different cross-section signs
- Some variables can separate the different regions quite well with simple cuts

Introduction 000 0000		Takeaways 00●00000

- The interference of SM and O_G operator is small, for multijet production, because a cancellation occurs between phase space regions with different cross-section signs
- Some variables can separate the different weights with simple cuts
- These variable distributions over the interference can be used to set constraints on the C_G coefficient

Introduction 000 0000		

- The interference of SM and O_G operator is small, for multijet production, because a cancellation occurs between phase space regions with different cross-section signs
- Some variables can separate the different weights with simple cuts
- $\bullet\,$ These variable distributions over the interference can be used to set constraints on the C_G coefficient
 - The bounds from variables which are sensitive to the sign changes are, by more than one order of magnitude, better than the bounds from the other ones

000	

- The interference of SM and O_G operator is small, for multijet production, because a cancellation occurs between phase space regions with different cross-section signs
- Some variables can separate the different weights with simple cuts
- $\bullet\,$ These variable distributions over the interference can be used to set constraints on the C_G coefficient
 - The bounds from variables which are sensitive to the sign changes are, by more than one order of magnitude, better than the bounds from the other ones
 - The best bounds are comparable to the ones from the $\mathcal{O}(\Lambda^{-4})$ contribution

000	

- The interference of SM and O_G operator is small, for multijet production, because a cancellation occurs between phase space regions with different cross-section signs
- Some variables can separate the different weights with simple cuts
- $\bullet\,$ These variable distributions over the interference can be used to set constraints on the C_G coefficient
 - The bounds from variables which are sensitive to the sign changes are, by more than one order of magnitude, better than the bounds from the other ones
 - The best bounds are comparable to the ones from the $\mathcal{O}(\Lambda^{-4})$ contribution
- This precision should be available with current LHC data

000 0000		

- The interference of SM and O_G operator is small, for multijet production, because a cancellation occurs between phase space regions with different cross-section signs
- Some variables can separate the different weights with simple cuts
- These variable distributions over the interference can be used to set constraints on the C_G coefficient
 - The bounds from variables which are sensitive to the sign changes are, by more than one order of magnitude, better than the bounds from the other ones
 - The best bounds are comparable to the ones from the $\mathcal{O}(\Lambda^{-4})$ contribution
- This precision should be available with current LHC data
- The procedure is general and can be applied to any other process with interference suppression

Introduction 000 0000		Takeaways 00000000

- The interference of SM and O_G operator is small, for multijet production, because a cancellation occurs between phase space regions with different cross-section signs
- Some variables can separate the different weights with simple cuts
- $\bullet\,$ These variable distributions over the interference can be used to set constraints on the C_G coefficient
 - The bounds from variables which are sensitive to the sign changes are, by more than one order of magnitude, better than the bounds from the other ones
 - The best bounds are comparable to the ones from the $\mathcal{O}(\Lambda^{-4})$ contribution
- This precision should be available with current LHC data
- The procedure is general and can be applied to any other process with interference suppression

C. Degrande, M. Maltoni, "Reviving the interference: framework and proof-of-principle for the anomalous gluon self-interaction in the SMEFT", arXiv:2012.06595 [hep-ph]