Continuous gravitational waves from known pulsars

Andrew Miller 20 Jan. 2021 When the M meets the P

Photo credit: Hubble, ESA/NASA

- * Dead stars formed after supernova
- * Super dense: mass of our sun, radius of ~10 km
- * Rotate very fast: ~100 times/second!
- * Lighthouse effect: we see a beam of light at regular intervals from the poles

What are pulsars?

How do pulsars emit gravitational waves?

- In general, gravitational waves are emitted when a mass distribution changes over time, e.g. deviations from axial spherical symmetry while rotating
- * Pulsars could have 'bump' or 'mountain'
- * Rotational energy —> gravitational-wave energy
- But, mountain is so small, < O(mm), that very little energy is lost —> very slow change in frequency
- * Continuous gravitational waves!
 - * Quasi-monochromatic, quasi-infinite

How do we detect gravitational waves from known pulsars?

- * We use laser interferometry to measure the tidal effect of gravitational waves
- * Astronomers measure the most important parameters that affect the tidal forces: the source's location, the rotational frequency, the rate of change of the frequency, etc.
- * With this information, we analyze the data for a particular sky location by correcting for all changes in gravitationalwave frequency due to the Doppler effect and the loss of rotational energy over time
- * These corrections create a pure sinusoid at a fixed frequency, so we perform a single Fourier Transform and look for a peak

What have we found?

- * No gravitational waves yet!
- * The mountains are really small
- * Pulsars with different histories have different constraints on their deformations
 - * Some only require an O(nm) distortion to produce gravitational waves, while others $O(\mu m)$

