ttZ measurements: results, path forward.

• Marek Niedziela

EOS be.h Winter Solstice Meeting 16th of December, 2020

⇒	Theory x-section:	0.8	6 pb	± 8%
⇒	2016+2017 measurement:	0.9	5 pb	± 8%
\Rightarrow	Run2 ATLAS measuremen	t:	1.05	$pb\pm10\%$

- Direct probe of the coupling of top quark and Z boson.
- Test of Standard Model prediction.
- Important background for other ttV processes, e.g. ttH.
- But also: sensitive to potential new physics.

Background estimation, search regions

- Nonprompt l (data-driven)
 - → estimated directly from data by measuring and applying "tight-to-loose" ratio.
- Diboson processes WZ and ZZ (MC)
 - $\rightarrow~$ WZ is the main source of systematic uncertainty.

- $t(\bar{t})X$ (MC)
 - $\label{eq:main contribution comes from tZq and} \\ tWZ \mbox{ processes, includes also ttH.}$
- Photon conversions $X\gamma$ (MC)
- Rare (MC)

CMS 77.5 fb^{-1} results (2016+2017)

Great cooperation with theorists 1812.08622, 1905.07815

Inclusive results summary

CMS 77.5 fb^{-1} results (2016+2017)

Theory x-section: $0.86 \text{ pb} \pm 8\%$ 2016+2017 measurement: 0.95 pb \pm 8% Run2 ATLAS measurement: $1.05 \text{ pb} \pm 10\%$ CMS C_{tZ}/Λ^2 - CMS 35.9 fb⁻¹ (95% CL) h SMEFIT (95% CL) TopFitter (95% CL) $C_{tZ}^{[I]}/\Lambda^2$ ······ Indirect (68% CL) C_{ot}/Λ^2 6---- $C_{\omega Q}^{-}/\Lambda^{2}$

-10

-20

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \sum_{d,i} rac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

- *d* dimension
- Λ mass scale
- c Wilson coefficients
- \$\mathcal{O}^{(d)}\$ effective operators of dimension \$d\$

10

CMS 77.5 fb^{-1} (2016+2017) EFT approach

7/15

CMS full run 2 results?

Distributions from thesis J. Knolle, theory from [1], [2], [3]

CMS full run 2 results: What about EFT

Distributions from thesis J. Knolle, theory from [1], [2], [3]

CMS ttV EFT analysis

CMS recently published **ttV EFT analysis**, targeting multiple signals with one or more top quarks produced in association with additional leptons.

10/15

CMS ttV EFT analysis

- It's not possible to isolate samples pure in each contribution, so each search region is populated by events from different processes, e.g. ttZ and tZq.
- Each EFT operator can contribute to multiple processes, which requires simultaneous analysis of all considered operators across all search regions.

Operators involving two quarks and one or more bosons							
Operator	Definition	WC	Processes affected				
$^{\ddagger}O_{\mathbf{u}\phi}^{(ij)}$	$\overline{\mathbf{q}}_{i}\mathbf{u}_{j}\tilde{\varphi}(\varphi^{\dagger}\varphi)$	$c_{t\phi} + ic_{t\phi}^I$	tīH, tHq				
$O_{\varphi q}^{1(ij)}$	$(\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi) (\overline{\mathbf{q}}_{i} \gamma^{\mu} \mathbf{q}_{j})$	$c_{\varphi Q}^- + c_{\varphi Q}^3$	tīH, tīlv, tīll, tHq, tllq				
$O_{\varphi q}^{3(ij)}$	$(\varphi^{\dagger} i \overrightarrow{D}_{\mu}^{I} \varphi) (\overline{\mathbf{q}}_{i} \gamma^{\mu} \tau^{I} \mathbf{q}_{j})$	$c_{\varphi Q}^3$	tīH, tīlv, tīll, tHq, tllq				
$O_{\varphi u}^{(ij)}$	$(\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi) (\overline{\mathbf{u}}_{i} \gamma^{\mu} \mathbf{u}_{j})$	c _{φt}	tīH, tīlv, tīll, tllq				
$^{\ddagger}O_{\varphi ud}^{(ij)}$	$(\tilde{\varphi}^{\dagger}iD_{\mu}\varphi)(\overline{\mathbf{u}}_{i}\gamma^{\mu}\mathbf{d}_{j})$	$c_{\phi tb} + i c_{\phi tb}^{I}$	tīH, tllq, tHq				
$O_{uW}^{(ij)}$	$(\overline{\mathbf{q}}_i \sigma^{\mu\nu} \tau^I \mathbf{u}_j) \tilde{\varphi} \mathbf{W}^I_{\mu\nu}$	$c_{tW} + ic_{tW}^I$	$t\bar{t}H, t\bar{t}l\nu, t\bar{t}l\bar{l}, tHq, tl\bar{l}q$				
$O_{dW}^{(ij)}$	$(\overline{\mathbf{q}}_i \sigma^{\mu\nu} \tau^I \mathbf{d}_j) \varphi \mathbf{W}^I_{\mu\nu}$	$c_{bW} + ic_{bW}^{I}$	tīH, tīllī, tHq, tllīq				
$^{\ddagger}O_{uB}^{(ij)}$	$(\overline{\mathbf{q}}_i \sigma^{\mu\nu} \mathbf{u}_i) \tilde{\varphi} \mathbf{B}_{\mu\nu}$	$(c_W c_{tW} - c_{tZ})/s_W +$	$t\bar{t}H, t\bar{t}l\nu, t\bar{t}l\bar{l}, tHq, tl\bar{l}q$				
		$i(c_W c_{tW}^I - c_{tZ}^I)/s_W$					
$O_{uG}^{(ij)}$	$(\overline{\mathbf{q}}_i \sigma^{\mu\nu} T^A \mathbf{u}_j) \tilde{\varphi} G^A_{\mu\nu}$	$c_{tG} + ic_{tG}^I$	tīH, tīlv, tīll, tHq, tllq				
Operators involving two quarks and two leptons							
Operator	Definition	WC	Processes affected				
$O_{\ell q}^{1(ijkl)}$	$(\overline{\ell}_i \gamma^{\mu} \ell_j) (\overline{\mathbf{q}}_k \gamma^{\mu} \mathbf{q}_\ell)$	$c_{Q\ell}^{-(\ell)} + c_{Q\ell}^{3(\ell)}$	tīlv, tīlī, tlīq				
$O_{\ell a}^{3(ijkl)}$	$(\overline{\ell}_i \gamma^\mu \tau^I \ell_i) (\overline{\mathbf{q}}_k \gamma^\mu \tau^I \mathbf{q}_\ell)$	$c_{O\ell}^{3(\ell)}$	tīlv, tīlī, tlīq				
$O_{\ell u}^{(ijkl)}$	$(\overline{\ell}_i \gamma^{\mu} \ell_j) (\overline{\mathbf{u}}_k \gamma^{\mu} \mathbf{u}_\ell)$	$c_{t\ell}^{(\tilde{\ell})}$	tīll				
$O_{e\overline{q}}^{(ijkl)}$	$(\bar{\mathbf{e}}_i \gamma^{\mu} \mathbf{e}_i) (\overline{\mathbf{q}}_k \gamma^{\mu} \mathbf{q}_\ell)$	$c_{Oe}^{(\ell)}$	tītlī, tlīq				
$O_{eu}^{(ijkl)}$	$(\bar{\mathbf{e}}_i \gamma^{\mu} \mathbf{e}_i) (\overline{\mathbf{u}}_k \gamma^{\mu} \mathbf{u}_\ell)$	$c_{te}^{(\tilde{\ell})}$	tīll				
$^{\ddagger}O^{1(ijkl)}_{\ell equ}$	$(\overline{\ell}_i \mathbf{e}_j) \varepsilon (\overline{\mathbf{q}}_k \mathbf{u}_\ell)$	$c_t^{S(\ell)} + i c_t^{SI(\ell)}$	tīlī, tlīq				
$^{\ddagger}O_{\ell equ}^{3(ijkl)}$	$(\overline{\ell}_i \sigma^{\mu\nu} \mathbf{e}_i) \varepsilon (\overline{\mathbf{q}}_k \sigma_{\mu\nu} \mathbf{u}_\ell)$	$c_t^{T(\ell)} + i c_t^{TI(\ell)}$	tīlv, tīlī, tlīq				

To be able to measure the effects of new physics on the observed yields, one has to parametrize the yields in Wilson Coefficients. The matrix element can be written as a sum of SM and new physics components (restrained to $\mathcal{O}(6)$ operators):

$$\mathcal{M} = \mathcal{M}_{\mathrm{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{M}_i.$$
 (1)

Cross section is proportional to the square of matrix element. The event weight can be expressed as

$$w(\frac{\vec{c}}{\Lambda^{2}}) = s_{0} + \sum_{i} s_{1i} \frac{c_{i}}{\Lambda^{2}} + \sum_{i} s_{2i} \frac{c_{i}^{2}}{\Lambda^{4}} + \sum_{i,j} s_{3ij} \frac{c_{i}}{\Lambda^{2}} \frac{c_{j}}{\Lambda^{2}}$$
(2)

The yield in given event category becomes also a function of the s_N and c_i coefficients and can be expressed as:

$$N(\frac{\vec{c}}{\Lambda^2}) = S_0 + \sum_i S_{1i} \frac{c_i}{\Lambda^2} + \sum_i S_{2i} \frac{c_i^2}{\Lambda^4} + \sum_{i,j} S_{3ij} \frac{c_i}{\Lambda^2} \frac{c_j}{\Lambda^2}$$
(3)

Results

Results

Coefficient	ttZ paper	ttV paper
c _{tZ}	[-1.1, 1.1]	[-3.32,2.15]
C _{\(\phi\)t}	[0.3,5.4]	[-18.62,12.31]

- Results presented in ttZ paper benefit from optimized search regions and larger dataset.
- Furthermore, in ttZ paper only 4 coefficients are considered and a completely different approach is exploited.
- Framework developed for ttV measurement provides a flexible approach, allowing to a simultaneous treatment of several signals with BSM yields taken per event from MC rather than by reweighting.
- The ttV approach offers a broader view while using a simple search regions definitions. It is a new method and both measurement types can be treated as complimentary.
- With an analysis framework for several ttV processes, one could think of applying the new approach parallel to the procedure used for dedicated searches.

On-going efforts at UGent

- ⇒ ttZ full run 2 : inclusive measurement, expected to reduce measurement uncertainty from 8% to 7%.
- \Rightarrow Extended measurement of differential cross section.
- $\Rightarrow~$ Plans for EFT interpretation, possibly combined with tZq.
- $\Rightarrow~$ Project run by me and J. Knolle, fellow EOS postdoc.

- ⇒ tZq full run 2 : inclusive measurement, expected to reduce measurement uncertainty from 15% to 11%.
- \Rightarrow Plans for EFT interpretation, possibly with ttZ.
- \Rightarrow ttrace $trace{t}\gamma$ full run 2 : inclusive x-sec, expected uncertainty \approx 6.4%.
- \Rightarrow First measurement of differential cross section.
- \Rightarrow EFT interpretation for c_{tZ} and c_{tZ}^{\prime} .

 \Rightarrow First CMS results on that process.

- ttW full run 2 : inclusive measurement, expected to reduce measurement uncertainty from 23%.
- \Rightarrow Plans for EFT interpretation.
- ⇒ EOS PhD student T. Tran working on this project.

Thank you for your attention!

Back-up

Object selection

Electrons

 $\Rightarrow~{
m p_T}>$ 10 GeV, $|\eta|<$ 2.5

 \Rightarrow Missing inner hits j 2

Muons

 $\Rightarrow~{
m p_T}>$ 10 GeV, $|\eta|<$ 2.4

 \Rightarrow Medium POG ID, PFMuon, tracker or global

All Leptons

- $\Rightarrow~|d_{xy}| < 0.05~\text{cm},~|d_z| < 0.1~\text{cm},~\text{SIP}_{3D} < 8$
- \Rightarrow miniisolation: $I_{mini} < 0.4$
- \Rightarrow **TOP Lepton MVA** Loose ID :

> 0.0 (electrons) and > 0.05 (muons)

Jets

- $\Rightarrow~{
 m p_T}>$ 30 GeV, $|\eta|<$ 2.4
- \Rightarrow loose (tight) POG ID
- \Rightarrow well separated from any lepton
- \Rightarrow b-tagging: DeepFlavor medium WP

Lepton MVA ID

3ℓ final state

- $\Rightarrow\,$ 3 leptons with $\mathrm{p_{T}}$ > 40,20,10 GeV
- \Rightarrow one OSSF lepton pair 10 GeV close to Z

4ℓ final state

- $\Rightarrow~$ 4 leptons with $\rm p_{T}$ > 40,10,10,10 GeV
- \Rightarrow one OSSF lepton pair 20 GeV close to Z

Event categorisation

 \Rightarrow inclusive measurement \rightarrow 14 exclusive categories for fit:

N(ℓ)	N(j)	N(b)	
3	1, 2, 3, \geq 4	0	
3	2, 3, 4, \geq 5	$1, \geq 2$	
4	≥ 2	0, ≥ 1	