Status of the SoLid experiment

EOS be.h Winter Solstice meeting

Universiteit Antwerpen

SoLid

Simon Vercaemer for the SoLid experiment simon.vercaemer@uantwerpen.be

Overview

- Introducing the SoLid experiment
- Background description
- Signal selection
- Alternative analysis: Heavy Neutral Leptons
- Upgrade to the Phase 2 detector

Introducing the SoLid experiment

Physics motivation

- Reactor antineutrino anomaly
 - Consistent deficit observed at short (< 1 km) baselines compared to predictions
 - Deficit could be explained by an additional (sterile) neutrino of $△m^2 \cong 1-10 \text{ eV}^2$
 - Sterile neutrino hypothesis given more weight by unrelated anomalies (Gallium, LSND)
- Reactor antineutrino spectrum distortion (a.k.a. the 5 MeV bump)
 - Excess observed at 5 MeV by most large reactor experiments
 - Among the fissile isotopes in commercial reactors, ²³⁵U is considered most likely
- Also an anti-proliferation component

The BR2 reactor

- Belgian Research reactor 2
- Located on the SCK-CEN site in Mol, Belgium
- Rated for 50 100 MW_{Th}
 - Typically 60 MW_{Th}
 - 5 or 6 month-long reactor cycles per year
- Highly enriched ²³⁵U
- Compact conical core
 - Ø ~ 0.5 m
 - h ~ 1 m
 - Experimental hall starts as close as 5.5 m from the core
 - Low neutron and gamma backgrounds in experimental hall
- 37 m above sea level, 6-8 m MWE overburden

The SoLid detector

A highly segmented modular antineutrino detector using dual solid scintillators and multiplexed readout

- Highly segmented
 - Built from 12.800 optically isolated cells
 - Each cell measures 5 x 5 x 5 cm³
- Modular
 - 16 x 16 cells make a plane
 - 10 planes make a module
 - Detector consists of 5 modules
- Dual solid scintillators
 - PVT cube as neutrino target and for positron and gamma detection
 - ⁶LiF:ZnS(Ag) layers for neutron capture and detection
- Multiplexed readout
 - 64 WLS fibres bring light from the cells to the edge of the detector
 - Each fibre is read out by a SiPM
- 3200 fibre-SiPMs pairs service 12800 cells Simon Vercaemer - EOS winter solstice meeting 2020

Antineutrino detector

The SoLid detector

A highly segmented modular antineutrino detector using dual solid scintillators and multiplexed readout

Antineutrino detector

- Inverse beta decay reaction: $v + p \rightarrow n + e^+$
- Prompt signal from e⁺ scintillation and annihilation gammas in PVT
 - Fast scintillator, very brief pulse (few ns) 0
 - Provides v interaction cube 0
- Delayed signal from capture of thermalised neutron on ⁶Li
 - $n + {}^{6}Li \rightarrow \alpha + {}^{3}H$ \bigcirc
 - α and ³H scintillate in ZnS(Ag) \bigcirc
 - Slow scintillator, extended pulse (10s μ s) 0
 - Neutron cube close to v cube
 - Neutron capture time: $\tau = 68 \, \mu s$ 0

Trigger system

- Random trigger
 - Operates at 1 Hz
- Threshold trigger
 - Triggers signal above 2 MeV threshold
 - Coincidence required between horizontal and vertical fibre, within 75 ns
- Neutron trigger
 - Targets neutron scintillation in ZnS(Ag)
 - Counts peaks over threshold in rolling time window

Simon Vercaemer - EOS winter solstice meeting 2020

Data collection

- Random trigger
 - Reads full detector for 13.6 μ s
 - Saves Raw waveform 0
- Threshold trigger
 - Reads triggering plane for 13.6 μ s 0
 - Suppresses signal below ~100 keV 0
- Neutron trigger
 - Reads triggering plane and 3 or 4 neighbouring planes
 - Reads 500 μ s before and 200 μ s after trigger 0

⁰ _{2 4}

6

X[cube]

Suppresses signal below ~100 keV 0

Simon Vercaemer - EOS winter solstice meeting 2020

Background description

Backgrounds: BiPo

Radioactive decay sequence in the Uranium series:

1. ${}^{214}\text{Bi} \rightarrow {}^{214}\text{Po} + e^-$ Q = 3.27 MeV

e⁻ mimics prompt signal

- 2. ${}^{214}\text{Po} \rightarrow {}^{210}\text{Pb} + \alpha$ $t_{1/2} = 168 \,\mu\text{s}$ α mimics delayed signal when in ZnS
- Internal constant contamination in ZnS layers
- External variable source: ²²²Rn release from concrete

Backgrounds: BiPo

- Exploit difference between IBD's α + ³H and BiPo's single α
 - Different energies (4.8 MeV vs 7.8 MeV)
 - 2 particles vs only 1
 - > Slightly different scintillation pattern: 'BiPonisher'
- Lack of annihilation gammas
- Limited energy range
- Differences in ΔT and topology

Backgrounds: cosmic neutrons

High energy neutrons created by cosmic rays:

- 1. Recoil on nuclei in the detector Recoil mimics prompt
- 2. Neutron thermalises and captures Identical to IBD neutron capture
- High rate due to low overburden
- Pressure dependent rate
- Main source of background
 - Low overburden
 - Exponentially decreasing energy spectrum over IBD energy range (and beyond)
 - High variety of topologies
 - \circ Virtually identical ΔT to IBD

(us)

Simon Vercaemer - EOS winter solstice meeting 2020

Signal selection

Basic sequential selections

- Prompt requirements
 - Energy
 - Energy balance
 - Spatial spread
- Delayed requirements
 - BiPonisher
- Coincidence requirements
 - **⊿**T
 - \circ ΔX , ΔY , ΔZ , ΔR
- → ~ 10% IBD efficiency, S/B ≅ 0.06

Neutrino signal in data

- BiPo varies with Rn releases
 - Can be determined in situ from high ΔT and low BiPonisher coincidence data

40

SoLid Preliminary

- Cosmic neutron rate varies with atmospheric pressure
 - Pressure dependence established during reactor off period
 - Extrapolated rate subtracted from reactor on period

Neutrino excess

- Observed excess consistent with IBD simulation
- We are sitting on a lot more data
- Improvements to the reconstruction in the pipeline (next slide)
- A major detector upgrade took place over summer (last slide)

Moving forwards

Annihilation gammas (Topology):

- Brings new variables
 - Number of gammas reconstructed 0
 - Energy
 - Opening angle
 - Distances 0
- Requires lower offline thresholds
 - Better understanding needed
 - Balancing efficiency and contamination from dark counts
- Improved background rejection \rightarrow

Machine learning:

- Improved background rejection dual approach (no cutting edge)
 - UBDT 0
 - TMVA Neural Network 0
- Improve BiPonisher to BiPonator
 - Simple ratio to CNN
 - Expected 2-3 x improvement in alpha tagging

Alternative analysis: Heavy Neutral Leptons

Heavy neutral leptons

- nuMSM introduces 3 right handed neutrinos
- Virtually no mass limit HNLs
- Resolves significant issues
 - Neutrino masses (seesaw)
 - Universe's baryon asymmetry
 - Dark matter candidates
- Sterile, only produced via mixing
- Small mixing angle, low production rate
- Unstable, detect decay products
 - $\circ \quad \text{Radiative} \quad \begin{array}{l} N_i \rightarrow \nu_j + \gamma \\ N_i \rightarrow \nu_j + \gamma + \gamma & \text{if } m(N_i) > m(\nu_j) \end{array}$

$$\circ$$
 Invisible $N_i \rightarrow \nu_j + \nu_k + \overline{\nu}$

 \circ e⁺e⁻ mode $N_i \rightarrow \nu_j + e^+ + e^-$ if $m(N) > 2m_e = 1.022$ MeV

SoLid as HNL detector

- BR2 as neutrino source
 - ~ 60 MW_{Th} → $12x10^{18} \nu/s$ (12 EBq)
 - 12 EBq is isotropic, need to apply geometric efficiency (~ 0.13 %) → 16 PBq
 - $\circ \qquad \text{Small mixing angle} \rightarrow \text{Less Bq}$
 - Long decay time \rightarrow O(10⁻⁴ Bq)
- Mass range limited by ²³⁵U v spectrum and e⁺e⁻ decay mode requirement
 - \circ 1.022 MeV < m(N) \lesssim 9 MeV
- No neutron in e⁺e⁻ decay
 - \rightarrow rely on threshold trigger
 - Minimum 2 MeV visible energy
 - Single plane only

Simulation work

- Background simulations from the IBD analysis can be recycled
 - Cosmic background most challenging
- Signal simulation using Pythia
 - Samples with several HNL masses have been created
 - Energy spectrum from reactor simulation
- Trigger studies have been performed
 - Near perfect trigger efficiency for higher masses, also lowest statistics
 - Reduces a bit when reconstruction is taken into account
 - \circ v energy more important than HNL mass

Simon Vercaemer - EOS winter solstice meeting 2020

Signal selection

• Preliminary list of variables composed

- Neutron/muon/alpha veto
- Fiducialization
- ES energy
- ES spatial spread
- Still being refined/expanded
- Manual and TMVA optimizations under way
- Hypothesis testing scripts are being set up

Upgrade to the Phase 2 detector

Detector upgrade

• July: brought Phase 1 to Antwerp

- Replaced all SiPMs by latest generation devices over summer, modified electronics
- October: commissioning of Phase 2 at BR2

• November: start of datataking

Simon Vercaemer - EOS winter solstice meeting 2020