

SB, Goertz, PRL 123 no.22, arXiv:1903.06146

SB, Csaki, Goertz, arXiv:2004.06120

SIMONE BLASI

LITTLE HIERARCHY AND COMPOSITENESS

EOS be.h Winter Solstice Meeting, 16th December 2020

THE HIERARCHY PROBLEM

New heavy thresholds introduce quadratic corrections to the BEH mass: $~\delta m_h^2 \sim \Lambda^2$

In the absence of an underlying mechanism the electroweak scale is unnatural.

two possible approaches to BSM:

- Leave the HP aside and focus on more concrete issues of the SM.
- The HP may not be a problem at all, or solved in a way that can't be captured by EFT.
- Search for a structural solution to the HP based on QFT arguments.
- Uncovering the mechanism underlying EWSB will provide new insights for the other open questions.

A COMPOSITE BEH BOSON?

Kaplan, Georgi, Dimopoulos...

 $G \to H \supset SU(2) \times U(1)$

BEH

The BEH boson is no longer an elementary scalar but rather a bound state of a new strong dynamics which condenses not too far from the electroweak scale.

The HP is solved because the finite size of the BEH boson itself represents a cutoff for the corrections to the scalar potential.

Strong dynamics features a global symmetry G broken to H at the condensation scale: h boson as a pseudo Nambu-Goldstone boson.

The electroweak symmetry is broken via vacuum misalignment:

$$\xi \equiv \frac{v^2}{f^2} = \sin^2(\langle h \rangle / f)$$

The presence of a light SM-like h boson helps with electroweak precision tests (as opposed to technicolor).

Graphics from Azatov et al.'12

THE MINIMAL COMPOSITE HIGGS MODEL

Agashe, Contino, Pomarol 2005

- G = SO(5) and H = SO(4): G/H contains 4 dofs + custodial protection, best realization by means of holography.
 - Slice of AdS delimited by UV brane and IR brane.
 - SO(5) gauge symmetry in the bulk reduced to $SU(2) \times U(1)$ on the UV brane, SO(4) on the IR brane via dedicated boundary conditions + brane-localized terms.
- ▶ Gauge-Higgs unification: h doublet as scalar component of SO(5)/SO(4) broken gauge fields.
- SM fermions embedded in 5D fields, flavor puzzle addressed by partial compositeness + explicit breaking.

^{*}One also needs an extra U(1) factor to reproduce fermion hypercharges.

PARTIAL COMPOSITENESS

 $\begin{array}{ll} \text{DIRICHLET TYPE} & [+]: \ \psi = 0 \\ [-]: \ \chi = 0 \end{array}$

give mass to SM fermions

- SM fermions as zero-modes.
- Specific boundary conditions break SO(5).
- 5D bulk masses impact localization of the zero-modes and hence their masses after EWSB.

$$R \sim M_{\rm Pl}^{-1}$$

 $R' \sim {\rm TeV}^{-1}$

PARTIAL COMPOSITENESS

DeCurtis et al.'11, Panico et al.11..

4D effective theory below the condensation scale describes a mixing between SM fermions and composite resonances:

$$\mathcal{L}_{\text{mixing}} = \lambda_L \bar{q}_L \Delta_L U \Psi_R + \lambda_R \bar{t}_R \Delta_R U \Psi_L + \text{h.c.}, \quad U = \exp\left(-i\frac{\sqrt{2}}{f}T^{\hat{a}}h_a\right)$$

Spurions signal explicit breaking due to SM fermions being incomplete SO(5) irreps (specific boundary conditions in 5D): largest contribution from the top quark.

$$\Delta_R = (0, 0, 0, 0, 1) \Leftrightarrow \begin{pmatrix} [-, +] & [-, +] \\ [-, +] & [-, +] \end{pmatrix} \oplus [-, -]$$

LIGHT TOP PARTNERS

$m_h \sim \frac{m_T}{f} m_t$

4D effective theory

Matsedonskyi, Panico, Wulzer 2012

5D holographic

Carmona, Goertz 2015

- Minimal realizations such as the MCHM5 and MCHM10 predict light top partners in order to be compatible with a light h boson (anomalously light KK in 5D).
- Strong correlation between top yukawa and explicit breaking requires light states to cure it.

EXPERIMENTAL CONSTRAINTS

- Direct searches can constrain top partners as heavy as 1.4 TeV.
- The only way minimal models can comply with this is by making the h boson more elementary, namely increasing the condensation scale.

THE TUNING INCREASES AND SURPASSES THE 10% IMPLIED BY LEP

$$\Delta \propto \frac{1}{\xi} = \frac{f^2}{v^2}$$

POSSIBLE SOLUTIONS

- ▶ Raise the scale f as much as necessary to comply with current constraints
- Move to non-minimal models
- Keep the MCHM but change representations (14) Panico et al.'12
- Inclusion of a realistic **lepton** sector Carmona, Goertz'15
- Enhance the (maximal) symmetry Csaki et al.'17
- New physics as a continuum rather than particle excitation Georgi'05, Csaki et al.'18
- Make partners uncolored (twin-Higgs) Chacko et al.'05, Barbieri et al.'05...

THIS TALK

Soften the explicit breaking & maximal symmetry SB, Goertz '19, SB, Goertz, Csaki '20

A SOFT COMPOSITE BEH

SB, Goertz 2019

We want to construct a model that:

- keeps minimality and the nice features of partial compositeness
- gets rid of the correlation between h boson mass and top partners

*SM gauge bosons still couple directly to strong sector

A SOFT COMPOSITE BEH

SB, Goertz 2019

TWO RELEVANT LIMITS:

 Vector-like masses >> compositeness scale: no effect (decoupling).

- Vector-like masses << compositeness scale: light top partners "by hand".
 - h boson generically **lighter** wrt standard partial compositeness
- Heavy top partners are now compatible without raising f

• Intermediate case: correlation between h mass and top partner masses is broken!

MAXIMAL SYMMETRY

Csaki et al.'17,'18

$$V^{\dagger}T^{a}V = T^{a}, \quad V^{\dagger}T^{\hat{a}}V = -T^{\hat{a}}$$

It is a symmetry of the strong sector that can emerge under certain assumptions.

Composite fermions as **full SO(5) irreps**:

$$\Psi = \begin{pmatrix} Q \\ \tilde{T} \end{pmatrix}$$

Symmetric coset: existence of a **Higgs parity V**.

 Largest symmetry group with non-zero masses for composite fermions still generating a potential for h:

$$\mathcal{L}_{\text{mass}} = \bar{\Psi}_L \left[(m_Q + \tilde{m}_T) + (m_Q - \tilde{m}_T) V \right] \Psi_R + \text{h.c.}$$

MAXIMAL SYMMETRY

Csaki et al.'17,'18

$$V^{\dagger}T^{a}V = T^{a}, \quad V^{\dagger}T^{\hat{a}}V = -T^{\hat{a}}$$

Imposing maximal symmetry further constrains the structure of the generated h potential ensuring structural cancellations.

In particular, there is unbroken **Higgs parity** as long as fermions are concerned:

$$\sin^2(h/f) \leftrightarrow -\cos^2(h/f) \Rightarrow \xi \equiv \frac{v^2}{f^2} = 0.5$$

Gauge contribution can however be important as well, and helps misalign the vacuum in the right way.

$$\Delta_{\text{max sym}} \simeq \frac{f^2}{v^2} = 9 \left(\frac{m_T}{1 \text{ TeV}}\right)^2$$

$$\Delta_5 \simeq \frac{f^2}{v^2} \left(\frac{g_*}{\lambda}\right)^2 \sim 90 \left(\frac{m_T}{1 \text{ TeV}}\right)^2$$

DOUBLE TUNING IS REMOVED!

(Standard MCHM5 Panico, Redi, Tesi 2012)

SMALL SUMMARY

Minimal models with partial compositeness predict light top partners: their non-observation at the LHC cuts in parameter space previously unconstrained by LEP and worsens the fine-tuning.

FULL SO(5) MULTIPLETS

MAXIMAL SYMMETRY

- Solves double tuning, but still quadratic growth with top partner masses.
- Trigonometric parity unbroken, needs cancellation against gauge contribution.

SOFT BREAKING

- Breaks correlation between h mass and top partner mass.
- Overall tuning still rather large as soft breaking does not solve double tuning.

SOFT BREAKING & MAXIMAL SYMMETRY

SB, Csaki, Goertz 2020

The idea is to enhance the symmetry both on the elementary and composite side to obtain a fully natural spectrum of resonances that is compatible with LHC.

$$\mathcal{L}_{\rm el} = \bar{\eta}_R M_R \psi_L + \bar{\xi}_L M_L \psi_R$$

$$\mathcal{L}_{linear} = \lambda_L \bar{\psi}_L U \Psi_R + \lambda_R \bar{\psi}_R U \Psi_L \quad \mathcal{L}_{mass} = M \bar{\Psi}_L V \Psi_R$$

UV-BRANE LOCALIZED SPINORS

SO(5)-SYMMETRIC PARTIAL COMP.

SO(5)' MAXIMAL SYMMETRY

$$\eta_R = (w_R, s_R) \quad \xi_L = (w_L', v_L)$$

*Successful combination requires simple modification of the minimal embedding for the VL fermions

SOFT BREAKING & MAXIMAL SYMMETRY

Natural spectrum above the LHC bounds compatible with a light h boson.

- Trigonometric parity broken in a controlled way: right misalignment no longer requires cancellation against gauge sector.
- Fine-tuning at the 10% already implied by LEP and almost flat along mT.
- Soft breaking makes the h boson mass compatible with heavy partners by reducing β instead of raising f.
- Maximal symmetry provides the connection $\alpha \leftrightarrow \beta$ due to trig. parity and removes double tuning.

All the features that we have employed have a simple interpretation in the holographic 5D setup.

$$S_{\rm UV} = \int \mathrm{d}^4x \left\{ -i\eta_R \sigma^\mu \partial_\mu \bar{\eta}_R - i\bar{\xi}_L \bar{\sigma}^\mu \partial_\mu \xi_L + \frac{1}{\sqrt{R}} \chi_l(R) M_R^\dagger \eta_R + \frac{1}{\sqrt{R}} \psi_r(R) M_L^\dagger \xi_L + \text{h.c.} \right\}$$

- Complete SO(5) multiplets are the fundamental objects one starts with in 5D.
- The spectrum of zero-modes (SM fermions) looks in fact incomplete because of static and specific boundary conditions.
- Soft breaking means universal boundary conditions made dynamical by UVlocalized action.

$$\Psi_{l,r} = \begin{pmatrix} \chi \\ \bar{\psi} \end{pmatrix}$$

$$\begin{pmatrix}
[-,+] & [+,+] \\
[-,+] & [+,+]
\end{pmatrix} \oplus [-,+]$$

$$\begin{bmatrix}
+,+\end{bmatrix}$$

All the features that we have employed have a simple interpretation in the holographic 5D setup.

$$S_{\rm UV} = \int \mathrm{d}^4 x \left\{ -i \eta_R \sigma^\mu \partial_\mu \bar{\eta}_R - i \bar{\xi}_L \bar{\sigma}^\mu \partial_\mu \xi_L + \frac{1}{\sqrt{R}} \chi_l(R) M_R^\dagger \eta_R + \frac{1}{\sqrt{R}} \psi_r(R) M_L^\dagger \xi_L + \text{h.c.} \right\}$$

- 2. Maximal symmetry is implemented by requiring the IR-localized action to respect SO(5)'.
- 3. Similarly, the discrete symmetry is imposed on the UV brane and only broken in the IR.
- 4. The mass of the 4D vector-like fermions can be TeV-scale due to wave-function suppression: automatically at work for third generation quarks.

IR-localized terms are **SO(5)'** invariant

$$\eta_R = (w_R s_R) \quad \xi_L = (w_L', v_L)$$

 If the brane-masses on the UV are too large, boundary conditions are no longer dynamical (decoupling): brane-localized spinors as Lagrange multipliers. Contino et al.'04

$$S_{\text{UV}} = \int d^4x \left\{ -is_R \sigma^{\mu}(x) \partial_{\mu} \bar{s}_R(x) + \frac{1}{\sqrt{R}} s_L(x, R) \,\mu_s \, s_R(x) + \text{h.c.} \right\} \qquad \mu_s \sim \mathcal{O}(1)$$

• We can investigate the dynamical-to-static transition as a function of brane mass for the simplest case in which only the singlet state is active.

UV brane:
$$\bar{s}_R(x)$$
 Bulk: $\Psi_l^1[+,+] = \begin{pmatrix} s_L(x,z) \\ \bar{\sigma}_R(x,z) \end{pmatrix}$ IR brane: empty

Kaluza-Klein decomposition & normalization of the profiles:

$$\bar{s}_{R}(x) = \sum_{n} e_{n} \bar{\psi}_{n}(x) \quad s_{L}(x, z) = \sum_{n} g_{n}(z) \chi_{n}(x) \quad \bar{\sigma}_{R}(x, z) = \sum_{n} f_{n}(z) \bar{\psi}_{n}(x)$$

$$e_{n}^{2} + \int_{R}^{R'} dz a(z)^{4} g_{n}(z)^{2} = 1 \quad \int_{R}^{R'} dz a(z)^{4} f_{n}(z)^{2} = 1$$

$$\eta_R = (w_R s_R) \quad \xi_L = (w_L', v_L)$$

• The [+,+] boundary condition is perturbed by the presence of the UV action:

Csaki'03..
$$f_n(R') = 0, \quad f_n(R) = 0$$
 $f_n(R) - \frac{\mu_s^2}{m_n R} g_n(R) = 0$

Mass of the first Kaluza-Klein excitation:

$$m_1^2 \sim \begin{cases} (2c_l - 1)\mu_s^2 R^{-2} \\ (1 - 4c_l^2)\mu_s^2 R'^{-2} \left(\frac{R}{R'}\right)^{-1 - 2c_l} \end{cases}$$

- Would-be zero mode UV localized: light partially-elementary KK is unnatural.
- Deep IR localization: TeV-scale KK with large overlap with UV-localized spinors.

Still too large brane masses: would-be zero mode migrates towards higher KK states and [-,+] is effectively recovered (light custodian).

$$\eta_R = (w_R s_R) \quad \xi_L = (w_L', v_L)$$

- Wave-function suppression can produce partially-elementary KK states in case of deep IR localization: third generation quarks!
- The **top mass** can be reproduced in presence of partially-elementary KK states confirming the results of the 4D effective theory.
- The actual 5D calculation of the h potential is ongoing.

CONCLUSION

- we have presented a new realization of composite h boson in which partial compositeness respects the global symmetry
- this removes the correlation between the h mass and the top partner masses, allowing for a light h boson with heavy top partners without raising the compositeness scale
- main source of tuning is not irreducible and can be largely cut down whenever other ingredients are added
- we have presented the combination of soft breaking with maximal symmetry which turns out to be a perfect match (double tuning, misalignment, fully softened potential)
- enhancing the symmetry on both the elementary and composite sides allows for a natural model to emerge: spectrum of resonances above 2 TeV is now compatible with minimal 10% tuning already implied by LEP

CONCLUSION

- all the ingredients of the 4D effective theory can be naturally realized in the 5D picture corroborating our results
- soft breaking corresponds to universal and dynamical boundary conditions that replace the static and specific ones in the original realization
- a partially-elementary KK state appears at low-energy in case of deep IR localization: automatic for third generation quarks (which in fact create the issue of top partners in the first place...)

THANK YOU!

PARTIAL COMPOSITENESS

• Linear couplings between SM quarks and composite operators:

$$\mathcal{L} = \lambda_L \, \bar{q}_L^i \, \mathcal{O}_R^i + \lambda_R \, \bar{q}_R^i \, \mathcal{O}_L^i + \text{ h.c.}$$

Large hierarchies in the masses from RG-evolution with strong dynamics:

$$m_q \sim v \left(\frac{\Lambda}{\Lambda_{\rm UV}}\right)^{\gamma_L + \gamma_R} > \text{Linear couplings allow large masses}$$
 without reintroducing the HP

 Anomalous dimensions have simple interpretation in terms of bulk masses of the 5D field in which the chirality q is embedded:

$$\gamma = [\mathcal{O}] - 5/2 = c - 1/2$$

*Purely 4D models generically predict additional pNGBs, partial compositeness only works for top quark (the strong dynamics has to condense). Ferretti, Karateev'13

A SOFT COMPOSITE BEH

SB, Goertz 2019

MINIMAL EMBEDDING: s,v,w

The SM fermions are completed to full SO(5) irreps:

$$\Delta_L^{\dagger} q_L = \begin{pmatrix} q_L \\ 0 \\ 0 \end{pmatrix} \to \psi_L = \begin{pmatrix} q_L \\ \mathbf{w}_L \\ \mathbf{s}_L \end{pmatrix} \quad \Delta_R^{\dagger} t_R = \begin{pmatrix} 0 \\ 0 \\ t_R \end{pmatrix} \to \psi_R = \begin{pmatrix} \mathbf{v}_R \\ \mathbf{w}_R \\ t_R \end{pmatrix}$$

$$\mathcal{L}_{\text{linear}} = \lambda_L \bar{\psi}_L U \Psi_R + \lambda_R \bar{\psi}_R U \Psi_L + \text{h.c.}$$

 Explicit breaking moved from partial compositeness to elementary sector:

$$\mathcal{L}_{el} = m_{v}\bar{v}v + m_{w}\bar{w}w + m_{s}\bar{s}s$$

$$= m_{v}\bar{v}_{L}\Delta_{L}\psi_{R} + m_{w}\bar{\psi}_{L}\Gamma_{w}\psi_{R} + m_{s}\bar{s}_{R}\Delta_{R}\psi_{L}$$

 Soft breaking changes the UV sensitivity: max divergence is log.

Note: the potential (especially in 5D) is anyways finite

TUNING

STANDARD MCHM5

 The LO potential contains only one trigonometric function: trivial extrema (no ewsb, or technicolor):

$$V_{\rm LO} \simeq \frac{3}{16\pi^2} (g_* f)^2 f^2 \lambda_{L,R}^2 \operatorname{Tr} \left(\sum \Gamma_{L,R} \right) \propto \sin^2(h/f) \quad \Sigma = U^2 V$$

Extra (double) tuning in order to balance LO and NLO potential:

$$|V_{
m NLO}|\simeq rac{\lambda_{L,R}^2}{g_*^2}\cdot |V_{
m LO}|$$
 $\Delta_5\simeq rac{f^2}{v^2}\left(rac{g_*}{\lambda}
ight)^2\sim 90\left(rac{m_T}{1\,{
m TeV}}
ight)^2$ Panico, Redi,Tesi 2012

TUNING

$$V^{\dagger}T^{a}V = T^{a}, \quad V^{\dagger}T^{\hat{a}}V = -T^{\hat{a}}$$

MAXIMAL SYMMETRY is a symmetry of the strong sector that can emerge under certain assumptions.

Csaki et al. '17, '18

• Imposing maximal symmetry further constrains the structure of the LO potential, in particular **forbidding linear terms** in Σ :

$$V_{\rm LO} \simeq \frac{3}{16\pi^2} f^4 \lambda_L^2 \lambda_R^2 \operatorname{Tr} \left(\sum \Gamma_L \sum \Gamma_R \right) \propto \sin^2(h/f) \cos^2(h/f)$$

There is unbroken Higgs parity as long as fermions are concerned:

$$\sin^2(h/f) \leftrightarrow -\cos^2(h/f) \Rightarrow \xi \equiv \frac{v^2}{f^2} = 0.5$$

 Gauge contribution can however be important as well, and helps misalign the vacuum in the right way:

$$\Delta_{
m max~sym} \simeq rac{f^2}{v^2} = 9 \left(rac{m_T}{1\,{
m TeV}}
ight)^2 \quad rac{
m DOUBLE~TUNING~IS}{
m REMOVED!}$$

SOFT BREAKING AND MAXIMAL SYMMETRY

 The idea is to enhance the symmetry both on the elementary and composite side to obtain a fully natural spectrum of resonances that is compatible with LHC.

FIRST ATTEMPT

Take simplest embedding (s,v,w) + SO(5)' on the composite sector:

$$V_{\rm LO} \simeq \frac{3}{16\pi^2} f^2 \lambda_L \lambda_R m_w M \operatorname{Tr}(\Sigma \Gamma_w) \propto \sin^2(h/f)$$

$$egin{aligned} \mathcal{L}_{
m elem} = \cdots + m_{m{w}} ar{\psi}_L \Gamma_{m{w}} \psi_R \ \psi_L = egin{pmatrix} q_L \ w_L \ s_L \end{pmatrix} & \psi_R = egin{pmatrix} v_R \ w_R \ t_R \end{pmatrix} \end{aligned}$$

Linear term allowed by all the symmetries: trigonometric parity is badly broken and double tuning is reintroduced.

SOFT BREAKING AND MAXIMAL SYMMETRY

SUCCESSFUL COMBINATION

SB, Csaki, Goertz 2020

It requires a simple modification of the minimal embedding: "splitting" w

$$\psi_L = \begin{pmatrix} q_L \\ \mathbf{w_L} \\ s_L \end{pmatrix} \qquad \psi_R = \begin{pmatrix} \mathbf{v_R} \\ \mathbf{w_R'} \\ t_R \end{pmatrix}$$

• In general, the multiplets in which the different SM chiralities are embedded should not couple directly (trivially true without soft breaking):

$$\mathcal{L}_{el} = m_w \bar{w}_R \Delta_w \psi_L + m'_w \bar{w}'_L \Delta_w \psi_R + m_v \bar{v}_L \Delta_v \psi_R + m_s \bar{s}_R \Delta_s \psi_L + \text{h.c.}$$

• The chiralities that enter neither of the SO(5) multiplets can be grouped:

$$Z_2$$
 $\mathcal{L}_{\rm el} = \bar{\eta}_R M_R \psi_L + \bar{\xi}_L M_L \psi_R + {\rm h.c.}$ $\eta_R = (w_R, s_R)$ $\xi_L = (w'_L, v_L)$

SOFT BREAKING AND MAXIMAL SYMMETRY

SUCCESSFUL COMBINATION

$$\Gamma_L = M_L^{\dagger} M_L$$

$$\Gamma_R = M_R^{\dagger} M_R$$

• We can again estimate the LO order potential by means of spurion analysis:

$$V_{\rm LO} \simeq \frac{3}{16\pi^2} \lambda_L^2 \lambda_R^2 f^4 \sum_{i,j=1}^{\infty} \text{Tr}(\Sigma \Gamma_L^i \Sigma \Gamma_R^j) \propto c_2 \sin^2(h/f) + c_4 \sin^4(h/f)$$

the sum just reconstructs massive VL propagators

- **Double tuning** is solved.
- Trigonometric parity broken in a controlled way:

$$\xi = 0.5 \Leftrightarrow (m_v^2 - m_w'^2) m_w^2 = 0$$

The vacuum can be misaligned already within the fermion sector.

SMALL SUMMARY II

Soft breaking and maximal symmetry turn out to be a perfect match pushing the tuning back to the 10% of the pre-LHC.

ESSENTIALS OF THE SETUP

- 1. Soft breaking: SO(5)-symmetric partial compositeness requires the elementary fermions to appear as complete SO(5) multiplets.
- 2. Maximal symmetry: the composite resonances come as complete SO(5) multiplets as well and the symmetry is enlarged to SO(5)'.
- 3. Discrete parity in the elementary sector.
- 4. The vector-like masses of BSM fermions are at the TeV scale to avoid decoupling ("coincidence problem"?).