From LHC to GWs: Heavy Scattering Amplitudes

Rafael Aoude UCLouvain

UCLouvain

After amazing discoveries...

... we need precise theoretical predictions.

After amazing discoveries...

1

Classical limit? $\searrow i\mathcal{M}(p_1,...,p_n)$ —

From the LHC side, future experimental analysis will require precise theoretical predictions

QFT: $iM(p_1, ..., p_n)$

From the LHC side, future experimental analysis will require precise theoretical predictions

From the GWs side, LIGO/Virgo require analytical predictions for the GW templates used.

Two-body problem in GR: Knowledge of the interaction Hamiltonian to high-accuracy.

QFT: $iM(p_1, ..., p_n)$

From the LHC side, future experimental analysis will require precise theoretical predictions

In order to improve precision, we need to sharpen our tools

Tradicional Feynman diagrammatic methods are still good and well-suited

But can be streamlined/helped with modern methods/on-shell methods

In order to improve precision, we need to sharpen our tools

Tradicional Feynman diagrammatic methods are still good and well-suited

Here, I will give some examples on how traditional and new methods could help for SM(EFT) and GW templates predictions

But can be streamlined/helped with modern methods/on-shell methods

Where can we use for GW? Improve PN theory

Small deviations accumulate over time

PN: double expansion in v and G PM: expansion in G: QFT methods

[Figure from Antelis and Moreno, 1610.03567]

From Amplitudes to Hamiltonians (or potentials)

(LIGO/Virgo is interested in potentials)

Two-body bounded problem

Effective theory

V(p,q)

 $A_{\rm EFT}(p,q)$

[Cheung, Rothstein, Solon, 19']

Scattering problem

Full theory

 A_{full} $\hbar \to 0$

A(p,q)

Matching

Restoring \hbar to obtain classical physics

We are used to set $\hbar = c = 1$ hiding the classical limit: $\hbar \to 0$

Rule of thumb to restore \hbar

[Kosower, Maybee, O'Connal, 19']

gravity, QED/QCD couplings : $\hbar^{-1/2}$

massless momenta : $p^{\mu} = \hbar \bar{p}^{\mu}$

wavenumber

Restoring \hbar to obtain classical physics

We are used to set $\hbar = c = 1$ hiding the classical limit: $\hbar \to 0$

Rule of thumb to restore \hbar

[Kosower, Maybee, O'Connal, 19']

gravity, QED/QCD couplings : $\hbar^{-1/2}$

Loops can have classical information!

massless momenta : $p^{\mu} = \hbar \bar{p}^{\mu}$

wavenumber

Newtonian Potential from scalar scattering

At tree-level (1PM) $i\mathcal{M}(p_1, p_2 \rightarrow p_1 - \hbar \bar{q}, p_2 + \hbar \bar{q}).$

 $V = -\int \frac{d^3 q}{(2\pi)^3} e^{-\frac{i}{\hbar}\vec{q}\cdot\vec{r}} \mathcal{M} = -\hbar^3 \int \frac{d^3 \bar{q}}{(2\pi)^3} e^{-i\vec{\bar{q}}\cdot\vec{r}} \mathcal{M},$

Newtonian Potential

$$V(r) = -\frac{Gm_1m_2}{r}$$

Newtonian Potential from scalar scattering

At tree-level (1PM) $i\mathcal{M}(p_1, p_2 \rightarrow p_1 - \hbar \bar{q}, p_2 + \hbar \bar{q}).$

 $\mathcal{M} \sim \hbar^{-3}$

Newtonian Potential

classical contributions

Scalar scattering with loops

At one-loop level (2PM) : box, triangles and bubbles

 $i\mathcal{M}_{\text{bubble}} \sim \mathcal{O}(\hbar^{-2})$

 $i\mathcal{M}_{\text{box, crossed-box}} \sim \mathcal{O}(\hbar^{-4})$

Scalar scattering with loops

At one-loop level (2PM) : box, triangles and bubbles

 $i\mathcal{M}_{\text{bubble}} \sim \mathcal{O}(\hbar^{-2})$

quantum

Do not contribute at classical level

classical

 $i\mathcal{M}_{\mathrm{triangle}} \sim \frac{G^2}{\hbar^3}$

Corrections to the Newtonian Potential

 $V(r) \sim G^2$

$$\sim \mathcal{O}(\hbar^{-3})$$

$$\frac{2}{|q|} \frac{\pi^2}{|q|} m_1 m_2 (5\omega^2 - 1)$$

$$\int^2 (5\omega^2 - 1) \frac{1}{r^2}$$

 $i\mathcal{M}_{\text{box, crossed-box}} \sim \mathcal{O}(\hbar^{-4})$

super-classical !

Box and crossed-box cancel + Born subtractions

[Kosower, Maybee, O'Connal, 19']

[Damgaard, Haddad, Helset, 19']

Classical observables

Linear and angular impulse, radiation, scattering angle

 $\Delta S_1^{\mu} \qquad R^{\mu} \equiv \langle k^{\mu} \rangle$ $\langle \Delta p_1^{\mu} \rangle$

(Scattering observables)

Some problems:

- Higher orders in perturbation theory
- Spin
- Finite-size/tidal effects
- Radiation

V(p,q)**Corrections to the Potential**

State of the art from amplitudes = 3PM 0-spin

Classical observables

Linear and angular impulse, radiation, scattering angle

 $\Delta S_1^\mu \qquad R^\mu \equiv \langle k^\mu \rangle$ $\langle \Delta p_1^{\mu} \rangle$

(Scattering observables)

Some problems:

- Higher orders in perturbation theory
- Spin —
- Finite-size/tidal effects —
- Radiation

How can we describe such effects?

Can we use EFT methods to separate classical/quantum loop contributions?

V(p,q)**Corrections to the Potential**

State of the art from amplitudes = 3PM 0-spin

Introduce On-shell Heavy Particle Effective Theory (HPET)

[Damgaard, Haddad, Helset, 19'] [Aoude, Haddad, Helset, Jan 20']

Take a Heavy meson decay at quark-level ...

Description of B-decays Spin-flavour symmetry

Interaction $\overline{\psi}(i\not\!\!D-m$

 $p^{\mu} = mv^{\mu} + k^{\mu}$

$|k^{\mu}| \sim \mathcal{O}(\Lambda_{\text{QCD}})$ where $\Lambda_{\text{QCD}} \ll m_Q$.

$$i_Q)\psi \to i\bar{Q}_v v \cdot D \frac{1+\psi}{2} Q_v$$

Take a Heavy meson decay at quark-level ...

Propagator
$$D_v^{s=\frac{1}{2}}(k) = \frac{i}{\hbar v \cdot k} \frac{1+\psi}{2}.$$

Explicit \hbar power-counting

[Damgaard, Haddad, Helset, 19']

$$p^{\mu} = m_Q v^{\mu} + \hbar \bar{k}^{\mu}$$

Makes explicit the hbar dependence

$$\begin{split} i\mathcal{M}_{\text{bubble}}^{(2)} &\sim \frac{G^2}{\hbar^2} \hbar^4 \int d^4 \bar{l} \frac{1}{\hbar^2 \bar{l}^2} \frac{1}{\hbar^2 (\bar{l} + \bar{q})^2} + \mathcal{O}(\hbar^{-1}) \\ &= \mathcal{O}(\hbar^{-2}). \end{split}$$

$$\begin{split} i\mathcal{M}_{\text{triangle}}^{(2)} &\sim \frac{G^2}{\hbar^2} \hbar^4 \int d^4 \bar{l} \frac{1}{\hbar^2 \bar{l}^2} \frac{1}{\hbar^2 (\bar{l} + \bar{q})^2} \frac{1}{\hbar v \cdot (\bar{l} + \bar{k})} + \mathcal{O}(\hbar^{-2}) \\ &= \mathcal{O}(\hbar^{-3}). \end{split}$$

$$\begin{split} i\mathcal{M}_{(\text{crossed}-)\text{box}}^{(2)} &\sim \frac{G^2}{\hbar^2} \hbar^4 \int d^4 \bar{l} \frac{1}{\hbar^2 \bar{l}^2} \frac{1}{\hbar^2 (\bar{l} + \bar{q})^2} \frac{1}{\hbar v \cdot (\bar{l} + \bar{k}_1)} \frac{1}{\hbar v \cdot (\bar{l} + \bar{k}_2)} + \mathcal{O}(\hbar^{-3}) \\ &= \mathcal{O}(\hbar^{-4}). \end{split}$$

Heavy Black-Hole Effective Theory (HBET)

scalar-graviton

 \bigcirc $h_{\mu
u}$

$$D_v^{s=0}(k) = \frac{i}{\hbar v \cdot k} \qquad \qquad D_v^{s=\frac{1}{2}}(k)$$

In order to describe a classical spinning particle...

Upgrading the interaction for any spin ... need better tools!

[Damgaard, Haddad, Helset, 19']

$$p^{\mu}=m_{Q}v^{\mu}+\hbarar{k}^{\mu}$$
 .

fermion-graviton

$$=\frac{i}{\hbar v\cdot k}\frac{1+\not\!\!\!/}{2}$$

Lagrangian description for scalars and fermions coupled to gravity

Hard for higher-spins

Modern Methods for scattering amplitudes

(gauge invariant building blocks, bypass Lagrangians)

Spinor-helicity formalism

(instead of momenta/pol. vectors)

$$\langle ij \rangle = \lambda_{i\alpha} \lambda_{j\beta} \epsilon^{\alpha\beta}$$
$$[ij] = \tilde{\lambda}_{i\dot{\alpha}} \tilde{\lambda}_{j\dot{\beta}} \epsilon^{\dot{\alpha}\dot{\beta}}$$

- Massless
- Massive
- Heavy

Recursion relations

(higher-points from lower-points)

$$\mathcal{M} = -\sum_{K} \frac{\hat{\mathcal{M}}_L(z_K)\hat{\mathcal{M}}_R(z_K)}{p_K^2 - m^2} + B_{\infty}$$

Unitarity methods

(loops from trees)

Double-copy

(uses YM to calculate GR)

 $\mathrm{GR} \sim (\mathrm{YM})^2$

and more...

Sharping our calculation tools: mass/ess on-shell methods

$$p_{\alpha\dot{\alpha}} = p_{\mu}\sigma^{\mu}_{\alpha\dot{\alpha}}$$

$$\det(p) = 0 \to p_{\alpha\dot{\alpha}} = \lambda_{\alpha}\tilde{\lambda}_{\dot{\alpha}}$$

Rank 1 matrix !

polarization vectors are represented by the same obj.

 $\epsilon^{\mu}_{+} = \frac{\langle \zeta | \sigma^{\mu} | \lambda]}{\sqrt{2} \langle \lambda \zeta \rangle} \,,$

Special kinematics and little-group uniquely ...

$$\mathcal{M}_{3}(1^{h_{1}}2^{h_{2}}3^{h_{3}}) = g \begin{cases} \langle 12 \rangle^{-h_{1}-h_{2}+h_{3}} \langle 23 \rangle^{h_{1}-h_{2}-h_{3}} \langle 31 \rangle^{-h_{1}+h_{2}-h_{3}}, & h < 0 \ (\mathrm{H}), \\ [12]^{h_{1}+h_{2}-h_{3}} \ [23]^{-h_{1}+h_{2}+h_{3}} \ [31]^{h_{1}-h_{2}+h_{3}}, & h > 0 \ (\mathrm{AH}), \end{cases}$$

Spinor-helicity building blocks

$$\langle ij \rangle = \lambda_{i\alpha} \lambda_{j\beta} \epsilon^{\alpha\beta}$$

 $[ij] = \tilde{\lambda}_{i\dot{\alpha}} \tilde{\lambda}_{j\dot{\beta}} \epsilon^{\dot{\alpha}\dot{\beta}}$

A photon has 2 polarizations, why using polarization tensor with 4 entries?

$$\epsilon_{-}^{\mu} = \frac{\langle \lambda | \sigma_{\mu} | \zeta]}{\sqrt{2} [\lambda \zeta]} \,,$$

Sharping our calculation tools: massive on-shell methods

$$\det(p_{\alpha\dot{\beta}}) = m^2 \to p_{\alpha\beta} = \lambda^a_{\alpha}\tilde{\lambda}_{\beta a} = \lambda^a_{\alpha}\epsilon_{ab}\tilde{\lambda}^b_{\beta}$$

Rank 2 matrix

Similar variables, extra index

Dirac spinors and polarization tensors

$$u_{p}^{Aa} = \begin{pmatrix} \lambda_{p\alpha} \\ \tilde{\lambda}_{p\alpha}^{\dot{\alpha}a} \\ \tilde{\lambda}_{p\alpha}^{\dot{\alpha}a} \end{pmatrix}, \qquad \bar{u}_{pA}^{a} = \begin{pmatrix} -\lambda_{p\alpha}^{\alpha a} \\ \tilde{\lambda}_{p\alpha}^{a} \end{pmatrix} \qquad \varepsilon_{\mu}^{ab}(p) =$$

e.g: 1 scalar + 2 vectors, all massive (bold notation, a,b symmetrized)

$$\mathcal{M}(\mathbf{1}_{h} \, \mathbf{2}_{V}^{a_{1}, a_{2}} \, \mathbf{3}_{\bar{V}}^{b_{1}b_{2}}) = g_{0} \langle \mathbf{23} \rangle [\mathbf{23}] + g_{1} \langle \mathbf{23} \rangle^{2} + g_{2} [\mathbf{23}]^{2}$$

[Arkani-Hamed, Huang, Huang. 17'] $\lambda^a_{\alpha} \leftrightarrow |p^a\rangle_{\alpha}$ $\tilde{\lambda}_{\dot{\beta}a} \leftrightarrow [p_a|_{\dot{\beta}}]$

$$\frac{i\langle p^{(a}|\sigma_{\mu}|p^{b)}]}{\sqrt{2}m}$$

Recover the massless one in the high-energy limit

$$\lambda_{p\alpha} \xrightarrow[m \to 0]{a} \lambda_{p\alpha} \zeta_{-}^{a}, \qquad \qquad \tilde{\lambda}_{p}^{\dot{\alpha}a} \xrightarrow[m \to 0]{a}$$

Sharping our calculation tools: massive on-shell methods

General 3-point amplitudes (any spin-s, helicity-h):

$$\mathcal{M}^{+|h|,s} = (-1)^{2s+h} \frac{x^{|h|}}{m^{2s}} \left[g_0 \langle \mathbf{21} \rangle^{2s} + g_1 \langle \mathbf{21} \rangle^{2s-1} \frac{x \langle \mathbf{2q} \rangle \langle q\mathbf{1} \rangle}{m} + \dots + g_{2s} \frac{(x \langle \mathbf{2q} \rangle \langle q\mathbf{1} \rangle)^{2s}}{m^{2s}} \right]$$

[Arkani-Hamed, Huang, Huang. 17']

(similar for negative helicity)

Sharping our calculation tools: massive on-shell methods

General 3-point amplitudes (any spin-s, helicity-h):

$$\mathcal{M}^{+|h|,s} = (-1)^{2s+h} \frac{x^{|h|}}{m^{2s}} \left[g_0 \langle \mathbf{21} \rangle^{2s} + g_1 \langle \mathbf{21} \rangle^{2s-1} \frac{x \langle \mathbf{2q} \rangle \langle q\mathbf{1} \rangle}{m} + \dots + g_{2s} \frac{(x \langle \mathbf{2q} \rangle \langle q\mathbf{1} \rangle)^{2s}}{m^{2s}} \right]$$

Minimal coupling:

$$\mathcal{M}_{\min}^{+|h|,s} = (-1)^{2s+h} \frac{g_0 x^{+|h|}}{m^{2s}} \langle \mathbf{21} \rangle^{2s},$$

(similar for negative helicity)

[Arkani-Hamed, Huang, Huang. 17']

(similar for negative helicity)

SMEFT applications

[Aoude, Machado 19'] [Duriex, Kitahara Shadmi, Weiss 19']

 $\tilde{g}_{k\geq 0}$ **Non-minimal coupling** Mapping to the SMEFT Wilson coefficients $g_{k\geq 0}$

> Lessons from the high-energy (massless) limit of the amplitudes

Sharping our calculation tools: heavy spinors

$$egin{aligned} p^{\mu}&=mv^{\mu}+k^{\mu},\ u^{I}_{v}(p)&=\left(rac{\mathbb{I}+v}{2}
ight)u^{I}(p)=\left(\mathbb{I}-rac{k}{2m}
ight)u^{I}(p), \end{aligned} egin{aligned} &\left(|\mathbf{p}_{v}
ight)\ |\mathbf{p}_{v}] \end{pmatrix}&=\left(\mathbb{I}-rac{k}{2m}
ight)\left(|\mathbf{p}_{v}
ight)u^{I}(p), \end{aligned}$$

$$egin{aligned} p^{\mu}&=mv^{\mu}+k^{\mu},\ u^{I}_{v}(p)&=\left(rac{\mathbb{I}+
otive}{2}
ight)u^{I}(p)=\left(\mathbb{I}-rac{
otive{k}}{2m}
ight)u^{I}(p), \end{aligned} egin{aligned} ig|\mathbf{p}_{v}
ight
angle &=\left(\mathbb{I}-rac{
otive{k}}{2m}
ight)\left(ig|\mathbf{p}_{v}
ight
angle &=\left(\mathbb{I}-rac{
otive{k}}{2m}
ight)u^{I}(p), \end{aligned}$$

Sharping our calculation tools: heavy spinors

Same amp with heavy spinors

$$\mathcal{M}_{3}^{+|h|,s} = (-1)^{2s+h} \frac{x^{|h|}}{m^{2s}} \sum_{k=0}^{2s} g_{s,k}^{\mathrm{H}} \langle \mathbf{2}_{v} \mathbf{1}_{v} \rangle^{2s-k} \left(\frac{x}{2m} \langle \mathbf{2}_{v} q \rangle \langle q \mathbf{1}_{v} \rangle \right)^{k}$$

Minimal coupling:

$$\mathcal{M}^{+|h|,s} = (-1)^{2s+h} \frac{g_0 x^{|h|}}{m^{2s}} \langle \mathbf{2}_v |^{2s} \sum_{k=0}^{2s} \frac{\left(\frac{q \cdot S}{m}\right)^k}{k!} |\mathbf{1}_v \rangle^{2s}.$$

$$\begin{pmatrix} k \\ - \end{pmatrix} u^{I}(p) = \left(\mathbb{I} - \frac{k}{2m}\right) u^{I}(p), \qquad \begin{pmatrix} |\mathbf{p}_{v}\rangle \\ |\mathbf{p}_{v}| \end{pmatrix} = \left(\mathbb{I} - \frac{k}{2m}\right) \left(\begin{vmatrix} |\mathbf{p}_{v}\rangle \\ |\mathbf{p}_{v}| \end{pmatrix} = \left(\mathbb{I} - \frac{k}{2m}\right) \left(\begin{vmatrix} |\mathbf{p}_{v}\rangle \\ |\mathbf{p}_{v}| \end{vmatrix}\right)$$

Relation between coefficients

$$g_{s,k}^{\mathrm{H}} = \sum_{i=0}^{k} g_i igg(egin{matrix} 2s-i \ 2s-k \end{pmatrix}$$

Infinity spin-limit (classical)

$$\lim_{s \to \infty} \mathcal{M}^{+|h|,s} = (-1)^h g_0 x^{|h|} e^{q \cdot S/m}.$$
 Same expon
[Vines]

Why is that important? Any-spin generalization; and facilitates higher-PM orders

"Kerr Black Holes"

One particle effective action

[Goldberger Rothstein, 06'] Porto 06', Levi Steinhoff 15']

$$S = \int d\sigma \left\{ -m\sqrt{u^2} - \frac{1}{2}S_{\mu\nu}\Omega^{\mu\nu} + L_{\rm SI}[u^{\mu}, S_{\mu\nu}, g_{\mu\nu}(x^{\mu})] \right\}$$

Non-minimal Spin-multipole expansion

$$L_{\rm SI} = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} \frac{C_{S^{2n}}}{m^{2n-1}} D_{\mu_{2n}} \dots D_{\mu_3} \frac{E_{\mu_1\mu_2}}{\sqrt{u^2}} S^{\mu_1} S^{\mu_2} \dots S^{\mu_{2n}}$$
$$+ \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{C_{S^{2n+1}}}{m^{2n}} D_{\mu_{2n+1}} \dots D_{\mu_3} \frac{B_{\mu_1\mu_2}}{\sqrt{u^2}} S^{\mu_1} S^{\mu_2} \dots S^{\mu_3}$$

 $^{l_{2n+1}}.$

"Kerr Black Holes"

One particle effective action

[Goldberger Rothstein, 06'] Porto 06', Levi Steinhoff 15']

$$S = \int d\sigma \left\{ -m\sqrt{u^2} - \frac{1}{2}S_{\mu\nu}\Omega^{\mu\nu} + L_{\rm SI}[u^{\mu}, S_{\mu\nu}, g_{\mu\nu}(x^{\mu})] \right\}$$

 $C_{S^k}^{\text{Kerr}} = 1 \text{ for all } k$

Non-minimal Spin-multipole expansion

$$L_{\rm SI} = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} \underbrace{C_{S^{2n}}}_{m^{2n-1}} D_{\mu_{2n}} \dots D_{\mu_3} \frac{E_{\mu_1\mu_2}}{\sqrt{u^2}} S^{\mu_1} S^{\mu_2} \dots S^{\mu_{2n}}$$
$$+ \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} \underbrace{C_{S^{2n+1}}}_{m^{2n}} D_{\mu_{2n+1}} \dots D_{\mu_3} \frac{B_{\mu_1\mu_2}}{\sqrt{u^2}} S^{\mu_1} S^{\mu_2} \dots S^{\mu_2}$$

Wilson Coefficients

 $^{2n+1}$.

"Kerr Black Holes"

One particle effective action

[Goldberger Rothstein, 06'] Porto 06', Levi Steinhoff 15']

$$S = \int d\sigma \left\{ -m\sqrt{u^2} - \frac{1}{2}S_{\mu\nu}\Omega^{\mu\nu} + L_{\rm SI}[u^{\mu}, S_{\mu\nu}, g_{\mu\nu}(x^{\mu})] \right\}$$

 $C_{\mathbf{S}^k}^{\mathrm{Kerr}} = 1 \text{ for all } k$

Direct matching to the HPET amplitudes

Heavy spin-s particle (minimally coupled to gravity) has same spin-multipole expansion

Non-minimal Spin-multipole expansion

$$L_{\rm SI} = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} \frac{C_{S^{2n}}}{m^{2n-1}} D_{\mu_{2n}} \dots D_{\mu_3} \frac{E_{\mu_1\mu_2}}{\sqrt{u^2}} S^{\mu_1} S^{\mu_2} \dots S^{\mu_{2n}}$$
$$+ \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{C_{S^{2n+1}}}{m^{2n}} D_{\mu_{2n+1}} \dots D_{\mu_3} \frac{B_{\mu_1\mu_2}}{\sqrt{u^2}} S^{\mu_1} S^{\mu_2} \dots S^{\mu_{2n+1}}$$

Wilson Coefficients

$$\lim_{s \to \infty} \mathcal{M}^{+|h|,s} = (-1)^h g_0 x^{|h|} e^{q \cdot S/m}$$

HPET facilitates the matching No need for any boost

Boson exchange

Relevant amplitude for classical potential.

Infinity spin case

$$\lim_{s_a, s_b \to \infty} \mathcal{A}_{\text{tree}}^{s_a, s_b} = -\frac{2e^2}{q^2} \sum_{\pm} (\omega \pm \sqrt{\omega^2 - 1}) \exp\left[\pm q \cdot \left(\frac{S_a}{m_a} + \frac{S_b}{m_b}\right)\right],$$
$$\lim_{s_a, s_b \to \infty} \mathcal{M}_{\text{tree}}^{s_a, s_b} = -\frac{\kappa^2 m_a m_b}{4q^2} \sum_{\pm} (\omega \pm \sqrt{\omega^2 - 1})^2 \exp\left[\pm q \cdot \left(\frac{S_a}{m_a} + \frac{S_b}{m_b}\right)\right].$$

$$\left(-\mathbf{1}_{a}^{rac{1}{2}},\mathbf{2}_{a}^{rac{1}{2}},-\mathbf{3}_{b}^{rac{1}{2}},\mathbf{4}_{b}^{rac{1}{2}}
ight)=\sum_{h}\mathcal{A}_{ ext{tree}}\left(-\mathbf{1}^{rac{1}{2}},\mathbf{2}^{rac{1}{2}},-q^{h}
ight)rac{i}{q^{2}}\mathcal{A}_{ ext{tree}}\left(q^{-h},-\mathbf{3}^{rac{1}{2}},\mathbf{2}^{rac{1}{2}}
ight)$$

... agrees with known results

Other processes

- Compton scattering
- n-boson emission

All contact interaction

[Aoude, Haddad, Helset, Dez 20']

The higher-dimension are tidal/finite-size effects.

The WCs are tidal love numbers

All contact interaction

[Aoude, Haddad, Helset, Dez 20']

The higher-dimension are tidal/finite-size effects.

The WCs are tidal love numbers

At 2PM $p_2 + q_2$ $\mathbf{A}p_2 - l$ min' p_1 p_2

All contact interaction

[Aoude, Haddad, Helset, Dez 20']

The higher-dimension are tidal/finite-size effects.

The WCs are tidal love numbers

Schwarzschild BHs do not tidally deform!

Still debate for Kerr BHs

All contact interaction

[Aoude, Haddad, Helset, Dez 20']

The higher-dimension are tidal/finite-size effects.

The WCs are tidal love numbers

Schwarzschild BHs do not tidally deform!

Still debate for Kerr BHs

Are the WCs = 0?

Conclusion

Similar questions from different problems

Efficient loop evaluation allows precise theoretical predictions for the amplitudes

Conclusion

Similar questions from different problems

Amplitudes methods (and Feynman diagrammatic) are well-suited for LHC and GWs

Efficient loop evaluation allows precise theoretical predictions for the amplitudes

At LHC, SM and SMEFT high-accuracy cross-section required for next years.

For GWs, precise description on the two-body hamiltonian. **Description of BHs and NS. Tidal effects.**

New insights from looking at the same problem from a different perspective: Double copy, soft-theorems, ...

A lot to learn! (and to calculate)

UCLouvain

Thank you!

Obtaining the Potential from Scattering Amplitudes

Matching

=

[slide based on Cheung

PM vs. PN

Viral theorem $v^2 \sim \frac{GM}{M} \ll 1$ PN double expansion

Kerr Black Holes as heavy particles

Effective action for spinning gravitating bodies

$$S = \int d\sigma \left\{ -m\sqrt{u^2} - \frac{1}{2}S_{\mu\nu}\Omega^{\mu\nu} + L_{\rm SI}[u^{\mu}, S_{\mu\nu}, g_{\mu\nu}(u^{\mu\nu})] \right\}$$
worldline of the particle spin monopole and spin-dipole $C_{\rm CO}$

(universal for any spinning body)

higher spin multipoles

$$L_{\rm SI} = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} \frac{C_{S^{2n}}}{m^{2n-1}} D_{\mu_{2n}} \dots D_{\mu_3} \frac{E_{\mu_1\mu_2}}{\sqrt{u^2}} S^{\mu_1} S^{\mu_2} \dots S^{\mu_{2n}}$$
$$+ \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{C_{S^{2n+1}}}{m^{2n}} D_{\mu_{2n+1}} \dots D_{\mu_3} \frac{B_{\mu_1\mu_2}}{\sqrt{u^2}} S^{\mu_1} S^{\mu_2} \dots S^{\mu_{2n}}$$

for Kerr BHs

The WCs contain info about the internal structure of the body

 $C_{S^k}^{\text{Kerr}} = 1 \text{ for all } k.$

 μ_{2n+1}

Kerr Black Holes as heavy particles

The 3-point amplitude can be derived from this action.

In the HPET variables (all incoming) ...

$$\mathcal{M}^{+2,s} = \sum_{a+b \le s} \frac{\kappa m x^2}{2m^{2s}} C_{S^{a+b}} n^s_{a,b} \langle \mathbf{2}_{-v} \mathbf{1}_v \rangle^{s-a} \left(-x \frac{\langle \mathbf{2}_{-v} q \rangle \langle q \mathbf{1}_v \rangle}{2m} \right)^a [\mathbf{2}_{-v} \mathbf{1}_v]^{s-b} \left(x^{-1} \frac{[\mathbf{2}_{-v} q][q \mathbf{1}_v]}{2m} \right)^b, \qquad n^s_{a,b} \equiv \begin{pmatrix} s \\ a \end{pmatrix}^{s-b} \left(x^{-1} \frac{[\mathbf{2}_{-v} q][q \mathbf{1}_v]}{2m} \right)^b, \qquad n^s_{a,b} = \begin{pmatrix} s \\ a \end{pmatrix}^{s-b} \left(x^{-1} \frac{[\mathbf{2}_{-v} q][q \mathbf{1}_v]}{2m} \right)^b, \qquad n^s_{a,b} = \begin{pmatrix} s \\ a \end{pmatrix}^{s-b} \left(x^{-1} \frac{[\mathbf{2}_{-v} q][q \mathbf{1}_v]}{2m} \right)^b, \qquad n^s_{a,b} = \begin{pmatrix} s \\ a \end{pmatrix}^{s-b} \left(x^{-1} \frac{[\mathbf{2}_{-v} q][q \mathbf{1}_v]}{2m} \right)^b, \qquad n^s_{a,b} = \begin{pmatrix} s \\ a \end{pmatrix}^{s-b} \left(x^{-1} \frac{[\mathbf{2}_{-v} q][q \mathbf{1}_v]}{2m} \right)^b, \qquad n^s_{a,b} = \begin{pmatrix} s \\ a \end{pmatrix}^{s-b} \left(x^{-1} \frac{[\mathbf{2}_{-v} q][q \mathbf{1}_v]}{2m} \right)^b, \qquad n^s_{a,b} = \begin{pmatrix} s \\ a \end{pmatrix}^{s-b} \left(x^{-1} \frac{[\mathbf{2}_{-v} q][q \mathbf{1}_v]}{2m} \right)^b, \qquad n^s_{a,b} = \begin{pmatrix} s \\ a \end{pmatrix}^{s-b} \left(x^{-1} \frac{[\mathbf{2}_{-v} q][q \mathbf{1}_v]}{2m} \right)^b, \qquad n^s_{a,b} = \begin{pmatrix} s \\ a \end{pmatrix}^{s-b} \left(x^{-1} \frac{[\mathbf{2}_{-v} q][q \mathbf{1}_v]}{2m} \right)^b$$

converting to the chiral basis

$$\mathcal{M}^{+2,s} = \frac{x^2}{m^{2s}} (-1)^{2s} \sum_{a+b \le 2s} \frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{2}_v \mathbf{1}_v \rangle^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{2}_v \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{2}_v \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{2}_v \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{2}_v \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{2}_v \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{1}_v \rangle^{2s-a-b} \right)^{2s-a-b} \left(\frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \rangle$$

Comparing with the general 3-pt HPET

$$\mathcal{M}_{3}^{+|h|,s} = (-1)^{2s+h} \frac{x^{|h|}}{m^{2s}} \sum_{k=0}^{2s} g_{s,k}^{\mathrm{H}} \langle \mathbf{2}_{v} \mathbf{1}_{v} \rangle^{2s-k} \left(\frac{x}{2m} \langle \mathbf{2}_{v} \mathbf{1}_{v} \rangle^{2s-k} \right)^{2s-k} \left(\frac{x}{2m} \langle \mathbf{2}_{v} \mathbf{1}_{v} \rangle^{2s-k} \right)^{2s-k} \left(\frac{x}{2m} \langle \mathbf{2}_{v} \mathbf{1}_{v} \rangle^{2s-k} \left(\frac{x}{2m} \langle \mathbf{2}_{v} \mathbf{1}_{v} \rangle^{2s-k} \right)^{2s-k} \left(\frac{x}{2m} \langle \mathbf{2}_{v} \rangle^{2s-k} \right)^{2s-k} \left(\frac{x}{2m} \langle \mathbf{2}_{$$

Focusing on the minimal coupling, and normalizing

$$g^{
m H}_{s,k} = g_0 {2s \choose k} \qquad g_0 = \kappa m/2, \qquad \longrightarrow \quad C^{
m min}_{S^k} = {2s \choose k}$$

[Chung, Huang, Kim, Lee, 19']

[Chung, Huang, Kim, 19']

Minimal coupling in HPET Precisely the multipoles of a Kerr BH

$$\left[\sum_{j=0}^{k} \binom{s}{k-j} \binom{s}{j}\right]^{-1} = 1.$$

(way simpler, no need for boost)

Spin-1/2 coupled to a photon

$$\mathcal{A}\left(-\mathbf{1}^{\frac{1}{2}},\mathbf{2}^{\frac{1}{2}},q^{h}\right) = f(m,v,q)ev_{\mu}\epsilon_{q}^{h,\mu}\bar{u}_{v}(p_{2})u_{v}(p_{1}) + g(m,v,q)eq^{\mu}\epsilon_{q}^{h,\nu}\bar{u}_{v}(p_{2})\sigma_{\mu\nu}u_{v}(p_{1}).$$

In the HPET variables (all incoming) ...

$$v_{\mu}\epsilon_{q}^{+,\mu}\bar{u}_{v}(p_{2})u_{v}(p_{1}) = -\sqrt{2}x\langle\mathbf{2}_{v}\mathbf{1}_{v}\rangle = -\frac{x}{\sqrt{2}}\left(-\frac{x}{m}\langle\mathbf{2}q\rangle\langle q\mathbf{1}\rangle + 2\langle\mathbf{2}\mathbf{1}\rangle\right),$$
$$\bar{u}_{v}(p_{2})\sigma_{\mu\nu}u_{v}(p_{1})q^{\mu}\epsilon_{q}^{+,\nu} = \sqrt{2}ix^{2}\langle\mathbf{2}_{v}q\rangle\langle q\mathbf{1}_{v}\rangle = \sqrt{2}ix^{2}\langle\mathbf{2}q\rangle\langle q\mathbf{1}\rangle.$$

plugging back...

$$\mathcal{A}\left(-\mathbf{1}^{\frac{1}{2}},\mathbf{2}^{\frac{1}{2}},q^{+}\right) = \sqrt{2}xe\left(-f(m,v,q)\langle\mathbf{2}_{v}\mathbf{1}_{v}\rangle + g(m,v,q)ix\langle\mathbf{2}_{v}q\rangle\langle q\mathbf{1}_{v}\rangle\right).$$

from QED, we have

$$egin{aligned} \mathcal{A}_{ ext{QED}}\left(-\mathbf{1}^{rac{1}{2}},\mathbf{2}^{rac{1}{2}},q^{+}
ight) &= ear{u}(p_{2})\gamma_{\mu}u(p_{1})\epsilon_{q}^{+,\mu} \ &= \sqrt{2}ex\langle\mathbf{21}
angle, \end{aligned}$$

fixes f and g f(m, v, q) = -1, $g(m,v,q) = rac{i}{2m}.$

due to on-shellness $v\cdot q\sim q^2=0$

