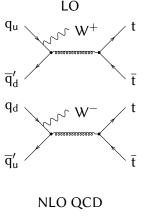
Measurement of $t\bar{t}W$ cross-section and charge asymmetry

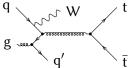
Tu Thong Tran 1,2

UCLouvain - CP3 (1) and Ghent University (2)

27 - 11 - 2020

1 Introduction


2 ttW Analysis


- Analysis strategy
- Trigger efficiency study
- Charge mis-identification background
- Non-prompt lepton background
- Signal Optimisation
- \bullet Next steps

3 Backup

Why $pp \to t\bar{t}W$??

- Associated W^{\pm} can only be radiated from an initial state quark
- Production at LHC: qq' (at LO) and qg (at NLO); QCD contribution from gg initial states only at NNLO
- Small cross-section (348 fb $(t\bar{t}W^+)$ and 198 fb $(t\bar{t}W^-) \pm 12\%$ at 13 TeV (NLO QCD + EWK, NNLO)
- Large $t\bar{t}$ charge asymmetry observed in $t\bar{t}W^{\pm}$ than in $t\bar{t}$ production at the LHC
- At 13 GeV, top quark charge asymmetry A_C^t is 2.24^{+0.43}_{-0.32} in $t\bar{t}W$ production compared to 0.45^{+0.09}_{-0.06} in $t\bar{t}$
- $t\bar{t}$ pair is highly polarised due to the production of W^{\pm} , large spin correlations between the decay products

[arXiv:1904.05637] [PhysLett**B736**(2014)252]

Tu Thong Tran¹,

Asymmetry variable

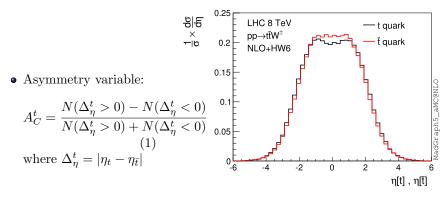
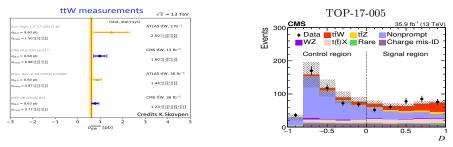
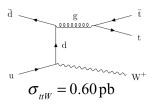
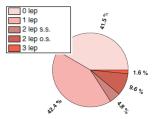




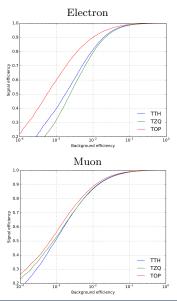
Figure 1: η distribution of t, \bar{t} at NLO [PhysLett**B736**(2014)252]



- Currently cross section is the only property of $t\bar{t}W$ that has been measured
- Both CMS and ATLAS observed slightly higher cross section than theory prediction.
- Observed [CMS TOP-17-005]: 0.77 pb (±15% stat, ±15% sys) at 5.3 σ
- $\bullet~{\rm Predicted}~0.628\pm0.082~{\rm pb}$ at NLO
- With full Run 2 data, reduce statistical uncertainties by half
- Aim to reduce systematic uncertainties by half (see <u>slides</u> from ttX roundtable)
- ttW asymmetry hasn't been measured at the LHC so this could be the first measurement of asymmetry variables

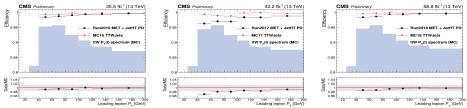
- First, measure ttW^{\pm} cross section with full run 2 data
- Measure ttW^+ and ttW^- separately
- Then measure asymmetric variables
- Signature: Same sign di-lepton, small yield but very clean

~100K ttW events @ 140 fb-1


• SS dilepton event selections:

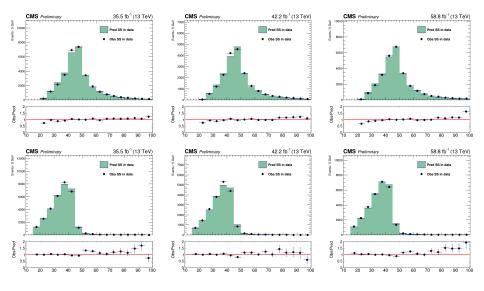
$$\begin{array}{l} m(ll) > 12 \ {\rm GeV} \\ |m(ee) - m(Z)| > 15 \ {\rm GeV} \\ E_T^{miss} > 30 \ {\rm GeV} \\ {\rm At \ least \ 2 \ jets \ and \ 1 \ b-jet} \\ P_T^{lead}(l) > 40/25 \ {\rm GeV} \ (e/\mu) \\ P_T^{trail} > 25 \ {\rm GeV} \ (e \ and \ \mu) \end{array}$$

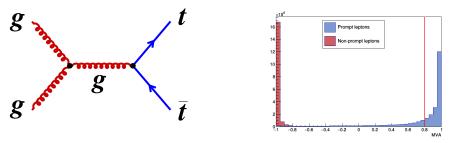
- Main backgrounds: Non-prompt leptons, irreducible ttH, charge mis-identification electrons and di-boson
- Use BDT to optimise signal


Tasks finished:

- Wrote my own analysis framework
- Measured trigger efficiencies and scale factor
- Estimated charge mis-identification background
- Studied non-prompt lepton background
- Developing multivariate discriminator

Trigger efficiency study

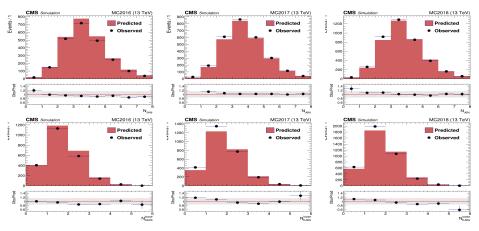

- Datasets: Full run-2 MET and JetHT datasets and TTWJetsToLNu MC
- Combine single lepton and di-lepton triggers [Slide 22] with logic "OR" in order to increase the efficiency
- Measured in di-leptons events that pass reference MET triggers [Slide. 23, 24]
- Measured in *ee*, $e\mu$ and $\mu\mu$ final states separately 2016 2017 2018


Data and MC agree within 1.5% in 2016 and 2018, while for 2017 the agreement is still within 2% A trigger systematic uncertainty of 1.5% is assigned to 2016 and 2018 and 2% to 2017

- Due to Bremsstrahlung effect as electrons traverse through the detector
- Dependent of lepton P_T and η
- $\bullet\,$ Measure in DY and $t\bar{t}\,\,{\rm MC}$ events by matching reconstructed charge and generated charge
- Muon charge flip rate is negligibly small
- Validated in $Z \rightarrow ee$ control region in data
- Apply charge flip rate to OS $Z \to ee$ events to get predicted SS events, then compare them with observed SS events

Charge mis-identification background - Closure test

Non-prompt lepton background


- Non-prompt leptons: non-isolated, coming from heavy flavour decays
- Main contribution: $t\bar{t}$
- Estimate non-prompt background contribution using fake-rate method
- Measured in QCD events with one lepton and at least 1 recoiling jet
- Fake rate: probability of a loose non-prompt lepton also pass tight selection
- Measured in lepton PT and eta bins
- Perform closure test on TTbar MC samples for validations

Non-prompt lepton background - Closure test in MC

2016

2017

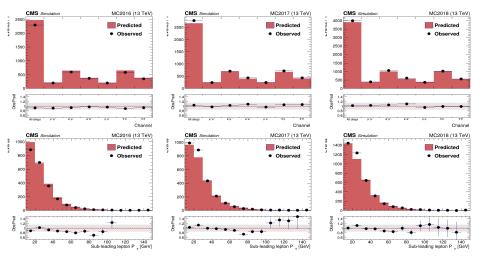
2018

Jet and b-jet multiplicities are important observables that distinguish signal and background events

Number of predicted and observed non-prompt background events agree with in 30% shows that fake-rate method works well for non-prompt lepton background prediction

Tu Thong Tran^{1,2}

 $pp \rightarrow t\bar{t}W$ Run2 legacy

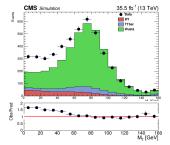

27-11-2020 13/31

Non-prompt lepton background - Closure test in MC

2016

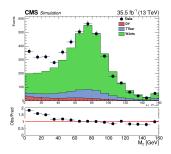
2017

2018

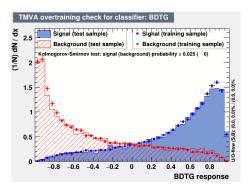

Good agreements in different lepton flavour compositions

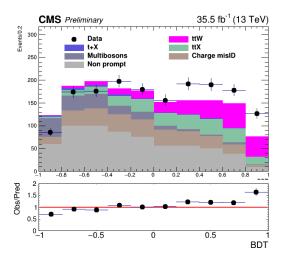
Tu Thong Tran^{1,2}

27-11-2020 14/31


Non-prompt lepton background - Data driven

- Fake rate is measured in QCD enriched region in data
- Events with exactly 1 lepton and at least 1 recoiling jet
- $\bullet\,$ Missing transverse energy and transverse mass $<20~{\rm GeV}$ to remove EW contribution


Electron


Multivariate background discrimination

- Discriminate between ttW signal and background events
- Backgrounds: Non-prompt lepton from TTbar and irreducible background from ttX, multiboson and charge misID
- Employed boosted decision tree algorithm
- With lepton and jet kinematic variables as input
- Response ranges from -1 to 1 with 1 being signal like

Multivariate background discrimination

- This the discriminator works quite well in discriminating ttW signal and the backgrounds
- However there are still some discrepancies between data and MC which can be improve by using the complete MC list

Immediate plans:

- Adding systematic uncertainties
- Measure inclusive cross section
- Finish AN and prepare for pre-approval

Medium-term plans (in the next 3 months):

- Write paper drafts
- Aim for Moriond 2021

Long-term plans:

• Then move on to asymmetry measurement

Backups

Lepton selection - Electron

Electrons					
Observable	Loose	Fakeable	Tight		
Cone- <i>p</i> _T	> 7 GeV	> 10 GeV	> 10 GeV		
$ \eta $	< 2.5	< 2.5	< 2.5		
$ d_{xy} $	< 0.05 cm	< 0.05 cm	< 0.05 cm		
$ d_z $	< 0.1 cm	< 0.1 cm	< 0.1 cm		
d/σ_d	< 8	< 8	< 8		
I _e	$< 0.4 imes p_{ m T}$	$< 0.4 imes p_{ m T}$	$< 0.4 imes p_{ m T}$		
$\sigma_{i\eta i\eta}$	—	$< \{ 0.011 \ / \ 0.030 \ \}^1$	$ $ < { 0.011 / 0.030 } ¹		
H/E	_	< 0.10	< 0.10		
1/E - 1/p	—	> -0.04	> -0.04		
Conversion rejection	_	\checkmark	\checkmark		
Missing hits	≤ 1	= 0	= 0		
EGamma POG MVA	>WP-loose ²	>WP-80 (>WP-loose) ² †	>WP-loose ²		
Deep Jet of nearby jet	_	<wp-medium<sup>3</wp-medium<sup>	<wp-medium<sup>3</wp-medium<sup>		
Jet relative isolation ⁴	_	< 0.7 (–) †	_		
Prompt-e MVA	—	$< 0.80 \ (> 0.80)$	> 0.80		

¹ Barrel / endcaps.

² WPs as defined by EGamma POG (see Section 3.1.1).

³ WPs as defined by JetMET POG (see Section 3.3).

⁴ Defined as $1/\rho_T^{ratio}$ 1 if the electron is matched to a jet within $\Delta R < 0.4$ or as the PF relative isolation with ΔR =0.4 otherwise.

+ Fails (passes) the requirement prompt-e MVA > 0.80.

Muons				
Observable	Loose	Fakeable	Tight	
p _T	> 5 GeV	> 10 GeV	> 10 GeV	
$ \eta $	< 2.4	< 2.4	< 2.4	
$ d_{xy} $	< 0.05 cm	< 0.05 cm	< 0.05 cm	
$ d_z $	< 0.1 cm	< 0.1 cm	< 0.1 cm	
d/σ_d	< 8	< 8	< 8	
I_{μ}	$< 0.4 imes p_{ m T}$	$< 0.4 imes p_{ m T}$	$< 0.4 imes p_{ m T}$	
PF muon	>WP-loose ¹	>WP-loose ¹	>WP-medium ¹	
Deep Jet of nearby jet	_	<wp-interp. (<wp-medium)<sup="">2</wp-interp.>	<wp-medium<sup>2</wp-medium<sup>	
Jet relative isolation ³	_	<0.5 (-) †	_	
Prompt- μ MVA	—	$< 0.85 \ (> 0.85)$	> 0.85	

¹ WPs as defined by Muon POG (see Section 3.1.2).

² Upper cut on the Deep Jet score defined with a linear interpolation from Deep Jet WP-medium at cone- p_T 20 GeV to Deep Jet WP-loose at cone- p_T 45 GeV, taking the Deep Jet WPs as defined by JetMET POG (see Section 3.3).

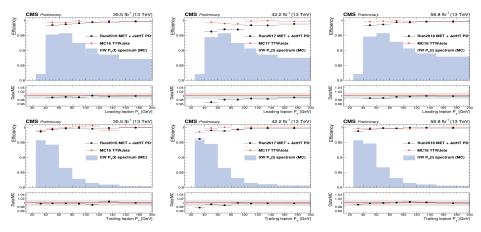
³ Defined as 1/jetPtRatio-1 if the muon is matched to a jet within $\Delta R < 0.4$ or as the PF relative isolation with ΔR =0.4 otherwise.

+ Fails (passes) the requirement prompt- μ MVA > 0.85.

Channel	Triggers
ee	HLT_Ele32_WPTight_Gsf
	HLT_Ele115_CaloIdVT_GsfTrkIdT
	HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL(_DZ)
$e\mu/\mu e$	HLT_IsoMu24
	HLT_Mu50
	HLT_Ele32_WPTight_Gsf
	HLT_Ele115_CaloIdVT_GsfTrkIdT
	HLT_Mu23(8)_TrkIsoVVL_Ele12(23)_CaloIdL_TrackIdL_IsoVL_DZ
$\mu\mu$	HLT_IsoMu24
	HLT_Mu50
	HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass8(3p8)

List of MET and HT triggers

2016	HLT_MET200
	HLT_PFMET300
	HLT_PFMET170_HBHECleaned
	HLT_PFMET120_PFMHT120_IDTight
	HLT_PFHT300_PFMET110
	HLT_PFHT350_DiPFJetAve90_PFAlphaT0p53
	HLT_PFHT400_DiPFJetAve90_PFAlphaT0p52
	HLT_PFHT400_SixJet30_DoubleBTagCSV_p056
	HLT_PFHT900
	HLT_PFHT650_WideJetMJJ900DEtaJJ1p5
	HLT_CaloJet500_NoJetID
2017	HLT_PFJet500
	HLT_PFMET140_PFMHT140_IDTight
	HLT_PFHT500_PFMET100_PFMHT100_IDTight
	HLT_PFHT700_PFMET85_PFMHT85_IDTight
	HLT_PFHT800_PFMET75_PFMHT75_IDTight
	HLT_CaloJet500_NoJetID
	HLT_AK8PFJet500

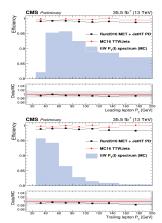

List of MET and HT triggers

2018 HLT CaloMET350 HBHECleaned HLT CaloJet500 NoJetID HLT AK8PFJet500 HLT AK8PFJet400 TrimMass30 HLT_DiJet110_35_Mjj650_PFMET110 HLT_PFHT800_PFMET75_PFMHT75_IDTight HLT_PFHT700_PFMET85_PFMHT85_IDTight HLT_PFHT500_PFMET100_PFMHT100_IDTight HLT_PFHT1050 HLT_PFJet500 HLT_PFMET120_PFMHT120_IDTight HLT PFMET250 HBHECleaned HLT PFMET200 HBHE BeamHaloCleaned HLT_PFMETTypeOne140_PFMHT140_IDTight HLT_PFMETTypeOne200_HBHE_BeamHaloCleaned HLT_TripleJet110_35_35_Mjj650_PFMET110

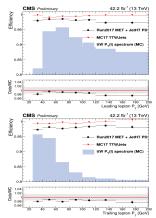
Trigger efficiency in ee events

2017

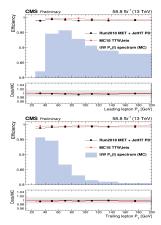
2016



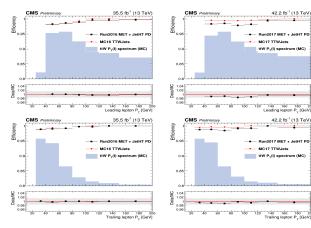
2018


Data and MC agree within 1.5% in 2016 and 2018, while for 2017 the agreement is still within 2% A trigger systematic uncertainty of 1.5% is assigned to 2016 and 2018 and 2% to 2017

Trigger efficiency in $\mu\mu$ events

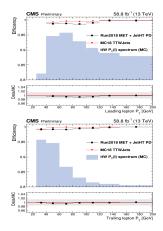


2017

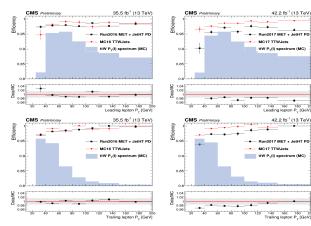


2018

Trigger efficiency in $e\mu$ events

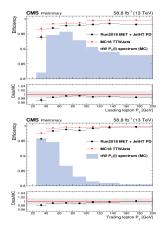

Leading electron and trailing muon 20162017

2018


180

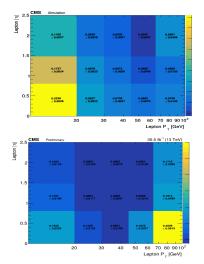
180

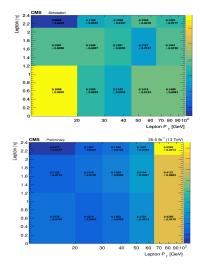
Trigger efficiency in μe events


Leading muon and trailing electron 20162017

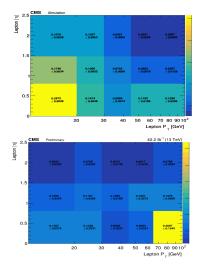
2018

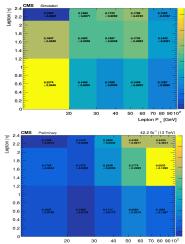
180

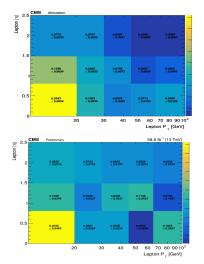

180

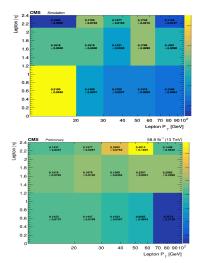


27 - 11 - 2020


Fake rate - 2016


Top: from QCD MC, bottom: data driven Electron Muon


Top: from QCD MC, bottom: data driven Electron Muon



Lepton P T [GeV]

Top: from QCD MC, bottom: data driven Electron Muon

