Matrix Element Regression with Deep Neural Networks - breaking the CPU barrier

Florian Bury

EOS PhD days 2020

ArXiv ePrint: 2008.10949

Institut de recherche en mathématique et physique

November 27, 2020

Matrix Element Method (MEM)

$Matrix \ Element \ Method \ integral$

$$P(x|\alpha) = \frac{1}{\sigma_{\alpha}^{_{V\!S}}} \int_{y} d\phi(y) \int_{q_{1},q_{2}} dq_{1} dq_{2} \sum_{a_{1},a_{2}} f_{a_{1}}(q_{1}) f_{a_{2}}(q_{2}) |M_{\alpha}(q_{1},q_{2},y)|^{2} W(x|y)$$

Phase space parameterization

$$d\phi(y) = \left(\prod_{i=3}^{N} \frac{d^{3}P_{i}}{2E_{i}(2\pi)^{3}}\right) (2\pi)^{4} \delta^{4} (P_{1} + P_{2} - \sum_{j=3}^{N} P_{j})$$

Matrix Element Method (MEM)

$Matrix \ Element \ Method \ integral$

$$P(x|\alpha) = \frac{1}{\sigma_{\alpha}^{_{Vis}}} \int_{y} d\phi(y) \int_{q_{1},q_{2}} dq_{1} dq_{2} \sum_{a_{1},a_{2}} f_{a_{1}}(q_{1}) f_{a_{2}}(q_{2}) |M_{\alpha}(q_{1},q_{2},y)|^{2} W(x|y)$$

Phase space parameterization

$$d\phi(y) = \left(\prod_{i=3}^{N} \frac{d^{3}P_{i}}{2E_{i}(2\pi)^{3}}\right) (2\pi)^{4} \delta^{4} (P_{1} + P_{2} - \sum_{j=3}^{N} P_{j})$$

Advantages

- Exploits directly our knowledge of the SM
- Includes all detector effects (parametric way)
- No need for training (>< multivariate methods)

Drawbacks

- Computation time \rightarrow DNN

Florian Bury (UCL-CP3)

EOS PhD days 2020

November 27, 2020 3 / 16

Numerical integration in a nutshell

Classic MC integration

$$I = \int_{\Omega} f(x) dx \simeq \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

Very slow convergence in high-dimension phase-space

Adaptive MC integration

Trick : introduce a sampling function g such that

$$I = \int_{\Omega} \frac{f(x)}{g(x)} g(x) dx \simeq \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{g(x_i)} \quad \text{where } x_i \sim g$$

Goal : variance will be reduced if $g \simeq f$ Most used algorithm in the market : Vegas

 $g(\vec{x}) = g_1(x_1) imes g_2(x_2) imes ... imes g_N(x_N)$ where g_i are step functions

But the factorization approximation on which the algorithm is based on can impede the integration convergence

Numerical integration : a dummy example

Function to integrate : Disc $R = 0.5 \rightarrow \text{Integral} = \frac{\pi}{4}$

Cartesian coordinates

Polar coordinates

Conclusion : variance decreased if peak mapped onto a single variable of integration !

Numerical integration

Back to the MEM

$Matrix \ Element \ Method \ integral$

$$P(x|\alpha) = \frac{1}{\sigma_{\alpha}^{vis}} \int_{y} d\phi(y) \int_{q_{1},q_{2}} dq_{1} dq_{2} \sum_{a_{1},a_{2}} f_{a_{1}}(q_{1}) f_{a_{2}}(q_{2}) |M_{\alpha}(q_{1},q_{2},y)|^{2} W(x|y)$$

Phase space parameterization

$$d\phi(y) = \left(\prod_{i=3}^{N} \frac{d^{3}P_{i}}{2E_{i}(2\pi)^{3}}\right) (2\pi)^{4} \delta^{4} (P_{1} + P_{2} - \sum_{j=3}^{N} P_{j})$$

Integration rule : Map every shark peak to one variable of integration Peaks origins :

- Transfer function resolution : \checkmark $W(x|y) = \prod_{i=1}^{n} W^{E}(x^{i}|y^{i}) W^{\eta}(x^{i}|y^{i}) W^{\phi}(x^{i}|y^{i})$
- Propagator enhancements |M_α(q₁, q₂, y)|² : X Example : Breit-Wigner resonances

In addition, need to integrate out the $\boldsymbol{\delta}$ of the momentum conservation

MoMEMta CLink

A modular toolkit for the Matrix Element Method at the LHC

MoMEMta can perform the MEM integration almost out of the box

- Matrix element provided by MadGraph (with exporter <a>Link)
- PDF from LHAPDF
 Link
- Transfer function : parameterized or in 2D histograms
- Integration with Cuba Link
- Modular : blocks that encompass the changes of variables Link
 - Delta integration
 - Change of variables
 - Associated Jacobians

Remaining obstacle

Gain from MoMEMta

- Complexity : Solved
- Computation time : Still expensive (LHC data analysis sizes, parameter scans, up and down fluctuations ...)

ldea

$$P(x|\alpha) = \frac{1}{\sigma_{\alpha}^{vis}} \int_{y} d\phi(y) \int_{q_{1},q_{2}} dq_{1} dq_{2} \sum_{a_{1},a_{2}} f_{a_{1}}(q_{1}) f_{a_{2}}(q_{2}) |M_{\alpha}(q_{1},q_{2},y)|^{2} W(x|y)$$

Is a function of $x = P_1, P_2, P_3, ...$ that can be learnt by a DNN

Case study : CMS 2HDM $l^+l^-b\bar{b}$ final-state analysis, **Link**

Training specifications

Inputs :

Same as MoMEMta \rightarrow 4-momentas of visible particles (here : 2 leptons + 2 jets) In addition, several improvements :

- $(E, P_x, P_y, P_z) \rightarrow (P_T, \eta, \phi)$: not having to learn about the boost in Z direction yields better performances
- ϕ angle is relative (here : compared to leading lepton) : cylindrical symmetry

• Preprocessing :
$$x \to \frac{x-\mu}{\sigma}$$

Target : -log₁₀(MEM weight)

DNN architecture : results of an hyperparameter scan

- Fully-connected DNN
 - Drell-Yan process : 6 × 200 neurons
 - $t\bar{t}$ (fully leptonic) process : 8 × 500 neurons
 - $H \rightarrow ZA \rightarrow IIbb$ process : 8 x 300 neurons Note : Parametric DNN in M_H and M_A
- Adam optimizer : LR = 0.001
- Activation functions : ReLU (hidden) + SeLU (output)
- Very small L2, dropout was not necessary
- Typical training time : < 8 hours on CPU

Florian Bury (UCL-CP3)

DNN regression results

Application : analytic discriminant

$$\mathcal{D}(x) = \frac{P(x|\alpha)}{P(x|\alpha) + P(x|\beta)} = \frac{W(x|\alpha)}{W(x|\alpha) + \gamma W(x|\beta)} \text{ where } \gamma = \frac{\sigma_{\beta}^{\text{vis}}}{\sigma_{\alpha}^{\text{vis}}}$$

Analysis specific example : discrimination between $\alpha = t\bar{t}$ and $\beta =$ Drell-Yan processes

MEM weights from the DNN are as good as the ones from MoMEMta

Florian Bury (UCL-CP3)

Application : likelihood scan

$$-\log(\mathcal{L}(x|\alpha)) = \frac{1}{n}\sum_{i=1}^{n} -\log(\mathcal{P}(x_{i}|\alpha)) = \frac{1}{n}\sum_{i=1}^{n} -\log(\mathcal{W}(x_{i}|\alpha)) + \log(\sigma_{\alpha}^{vis})$$

Analysis specific example : H o ZA o IIbb scan in M_A and M_H

Method : Use the parametric DNN to produce MEM weights as a function of (M_A, M_H)

Calls to the MEM : $N_{events} \times (N_{params})^{dimension} \rightarrow$ cannot be done with MoMEMta Parametric DNN : only trained on few $N_{params} \rightarrow$ can be evaluated for any value

Application : multi-classification

Analysis specific example : use the MEM weights in a classifier (DNN)

Global classifier 1.0 MoMEMta P(Drell-Yan) AUC = 0.88242MoMEMta P(Signal $H \rightarrow ZA$) 0.8 = 0.9237Misidentification rate $MOMEMta P(t\bar{t})$ AUC = 0.96936 0.6 DNN P(Drell-Yan) AUC = 0.87786 DNN P(Signal $H \rightarrow ZA$) AUC = 0.918410.4 DNN P(tt) AUC = 0.968400.2 0.0 ⊬ 0.0 0.8 1.0 0.4 0.6 Correct identification rate Inputs (25) :

- Drell-Yan weight
- *tī* weight
- $H \rightarrow ZA$ (x23 parameters) weights

Purpose : search for an excess on the whole mass plane (M_{bb}, M_{llbb})

Parametric classifier

- Drell-Yan weight
- *t*t̄ weight
- $H \rightarrow \bar{Z}A$ weight $+ M_A + M_H$

Purpose : search for an excess at specific mass points (\rightarrow look-elsewhere effect)

Same classifier performances when using MEM weights from MoMEMta or the DNNs

Additional studies

Systematic uncertainties

Case study : Jet Energy Scale (JES) \rightarrow Apply a 10% increase in bjets P_{T} Observations :

- DNN is able to reproduces the MEM weight of JES shifted events
- $\bullet\,$ Analytic discriminant ${\cal D}$ shows no loss of performance

Guaranteed convergence

Case study : numerical integration may not converge in $\mathsf{MoMEMta},$ not the case with the DNN

Observations :

- Not perfect agreement between recomputed weights and the DNN prediction
- $\bullet\,$ Analytic discriminant ${\cal D}$ shows better performances with weights from the DNN

Real-life analysis

Case study : Combination of method in CMS $H \rightarrow ZA$ analysis \bigcirc arXiv) and the classifiers Observations :

- No gain from using the global classifier
- Marginal gain when combining the method from CMS and the parametric classifier
- Time estimation to produce MEM weights needed by the classifiers
 - MoMEMta : \sim 3000 years
 - $\bullet \ \ {\rm DNN}: \sim 10 \ {\rm hours}$

Florian Bury (UCL-CP3)

Matrix element regression

Main caveat of the method : transfer functions cannot be changed after learning Idea : only learn $\sum_{a_1,a_2} f_{a_1}(q_1) f_{a_2}(q_2) |M_{\alpha}(q_1,q_2,y)|^2$ and integrate over the DNN output Case study : $t\bar{t}$ fully leptonic $\rightarrow 6$ generator level particles

DNN inputs :

- Particles $P_T + q_1$ and q_2 E
- 2- and 3-objects invariant mass
- 2-objects 4-momentas products

DNN architecture :

- 10 x 200 neurons
- ReLU + ELU activations
- Generator (80M events, 20min/epoch)

Florian Bury (UCL-CP3)

Conclusion

Matrix Element Method

- Powerful tool to combine knowledge of the SM and the detector
- Numerical integration suffers from complexity and expensive computation time

MoMEMta Link

- Includes all the necessary components of the integration
- Hides the complexity behind change of variable blocks
- \Rightarrow MEM is now within reach of any physicist

With Deep Neural Networks : arXiv:2008.10949 (submitted to JHEP)

- Computation time gains : 4 to 6 orders of magnitude
- Allows parameters scans or up-down fluctuations
- Always converges
- Can be used on large datasets

 \Rightarrow MEM is now within reach of any physicist for LHC-scale analyses

Thank you for your attention

Florian Bury (UCL-CP3)

DNN regression plots

Backup

DNN regression plots

Florian Bury (UCL-CP3)

Signal MEM weights

Likelihood scan profiles

Florian Bury (UCL-CP3)

EOS PhD days 2020

November 27, 2020 20 / 16

Systematic uncertainties : JES shifted events

Table: Regression bias and resolution in the event information when replacing the integration with MoMEMta by the DNN ansatz for the two SM weights with nominal and shifted JES events.

	Regression bias	Regression resolution
Nominal Drell-Yan	-0.1243	0.1383
Shifted JES Drell-Yan	0.0049	0.1351
Nominal <i>tī</i>	-0.2758	0.4439
Shifted JES <i>tt</i>	-0.1659	0.4137

Florian Bury (UCL-CP3)

Invalid weights (failed numerical convergence)

Analytic discriminant on invalid weights

Real-life analysis : CMS $H \rightarrow ZA \rightarrow I^+I^-b\bar{b}$

