EoS PhD Day 2020

Constraints on the anomalous HVV couplings of the Higgs boson in pp collisions at 13TeV

Tomáš Kello

27th November 2020

Standard model

- as for now the best theory to describe the fundamental building blocks of our universe
- describes all known elementary particles building up matter
- describes 3 (out of 4) fundamental interactions (electromagnetic, weak and strong)
- introduces **Higgs boson** through the process of spontaneous symmetry breaking in $SU(2) \times U(1)$ gauge theory

Source: [1] Standard Model of Elementary Particles

Higgs boson

Free parameters of the Standard model

- VEV $oldsymbol{v}$ and Higgs mass $oldsymbol{m}_H$
- 9 Yukawa couplings (6 quarks and 3 charged leptons)
- Weinberg weak mixing angle $\boldsymbol{\theta}_{W}$
- fine structure constant *α*
- strong interaction coupling constant g_3
- three mixing angles $heta_{12}, heta_{23}, heta_{13}$ and one CPviolating phase δ_{13} of the CKM matrix
- neutrino masses, mixing angles, phases, etc.

Higgs boson properties

Or is this resonance really SM Higgs that we measure?

- Higgs boson mass $m_H = 125.10 \pm 0.14$ GeV [PDG] ٠
- CP-even spin-zero scalar particle $J^{CP} = \mathbf{0}^{++}$
 - > spin-one strongly disfavoured by Higgs observation in diphoton channel [4] (Landau-Yang theorem)
 - graviton-like spin-two model disfavoured in previous studies [5]
 - > possible anomalous contribution from **spin-zero** parity conserving CP-odd state $J^P = 0^-$ and CP-even states $J^P = 0^+$
- Higgs boson **couplings** to the other elemental particles are in general set by their masses

Higgs boson factory

1. ggF (gluon-gluon fusion)

2. VBF (vector-boson fusion)

3. Associated VH production

q

 \bar{q}

Higgs boson factory

Source: [9]

$H \rightarrow WW^*$ anomalous couplings

 $H \rightarrow VV$ scattering amplitude – minimum **0-spin expansion of SM** up to $\mathcal{O}(q^2)$:

$H \rightarrow WW^*$ analysis strategy

27th November 2020

EOS PhD Day 2020

$ggH \rightarrow WW^*$ analysis strategy

27th November 2020

EOS PhD Day 2020

$ggH \rightarrow WW^*$ Backgrounds

Incomplete list of background contributions

$ggH \rightarrow WW^*$ 0-jet signal region

$ggH \rightarrow WW^*$ 1-jet signal region

L = 36/fb (13 TeV)

٧γ

L = 36/fb (13 TeV)

Side note: $ggH^* \rightarrow WW$ off-shell

- off-shell HWW phase space needs to be defined in order to carry out orthogonal analysis
- off-shell HZZ requires $75 < m_{\rm ll} < 105$ to estimate its non-resonant background
- on-shell HWW $m_{\rm ll} < 75$
- dedicated study in plan (LS scan, error on free floating WW normalisation)

$ggH \rightarrow WW^*$ analysis strategy

probability in terms of effective on-shell XS ratios:

$$\mathcal{P} = \mu_F \left(\left(1 - f_{a_i} \right) * \mathbf{T}_{SM} + f_{a_i} * \mathbf{T}_{AC} * g^2 + \sqrt{f_{a_i}} \sqrt{1 - f_{a_i}} * \mathbf{T}_{int} * g \right)$$

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{|a_i|^2 \sigma_i + |a_1|^2 \sigma_1} \quad \phi_{ai} = \arg(a_i/a_1) \quad g = \sqrt{\frac{\sigma_1}{\sigma_i}} \quad f_{ai} \in \langle 0, 1 \rangle$$

27th November 2020

EOS PhD Day 2020

Signal parametrisation (ggH+VBF+VH)

$$\mathcal{P}_{ggH} = \mu_F \left(f_{a_1} * T_{SM} + \sqrt{f_{a_i}} \sqrt{f_{a_1}} * g * T_{int} + f_{a_i} * g^2 * T_{AC} \right)$$

$$\mathcal{P}_{VBF/VH} = \mu_F^2 \left(f_{a_1}^2 * \mathbf{T}_1 + \sqrt{f_{a_1}}^3 \sqrt{f_{a_i}} * g * \mathbf{T}_2 + f_{a_1} f_{a_i} * g^2 * \mathbf{T}_3 + \sqrt{f_{a_1}} \sqrt{f_{a_i}}^3 * g^3 * \mathbf{T}_4 + f_{a_i}^2 * g^4 * \mathbf{T}_5 \right)$$

EOS PhD Day 2020

 $f_{a1} = 1 - f_{ai}$

Signal templates $T_1 - T_5$

• 3 pure AC samples + 3 mixed SM-AC samples + 1 pure SM sample are

reweighted to considered AC hypothesis (ggF: $H_1 - H_3$, VBF/VH: $H_1 - H_5$)

 $ggH \rightarrow WW^*$ 0-jet (ggF templates)

Interference should be identical to zero due to parity flip

 $ggH \rightarrow WW^*$ O-jet (VBF templates)

 $ggH \rightarrow WW^*$ 0-jet (WH templates)

Nuisance parameters

• considering (almost) all statistic and systematic uncertainties

following main HWW analysis \circ lumi

- \circ fake
- o btag
- o trigg
- $\circ e/\mu$ eff and energy
- o MET
- o PU
- o PS
- o theory

0 ...

- JES/JER systematics not included (were not ready at that time)
- shape-type uncertainties undergo the same template machinery as mentioned above

Preliminary results MC 2016, ggH 0j

Run2 - 2016

No VBF/VH signal MC 2016, ggH Oj

Run2 – 2016 - simplified

Preliminary results MC 2016, ggH 1j

Run2 - 2016

TODO:

- merged 0j and 1j categories
- adding JES/JER
- repeating analysis for **2017** and **2018**
- dedicated study on off-shell region ($m_{\rm ll}$ cut)
- can **MVA study** improve 2D kinematic discriminant?

Future plans

- study of the N-jettiness
 subtraction method (possible improvement to the AC studies)
- ggH+2j category probing CPviolating scenario
- $H \rightarrow ZZ$ combination
- writing analysis note

Summary:

- likelihood scan performed for the 0^- , $0^+_{\Lambda_1}$ and 0^+_h models in ggF 0/1jet channel
- full signal+background parametrisation
- adding VBF/VH signal is shifting LS shape
- full nuisances applied but JES/JER
- improved sensitivity in 0-jet channel compared to 1-jet channel
- anticipated improvement after category merge (compared to Run1)
- interference templates with small, negative or oscillating yields can imply problems

Thank you for your attention

Reference

[1] Wikimedia Commons. File:Standard Model of Elementary Particles. [22-October-2020] URL: https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg

[2] ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Lett. B, 716(1):1 – 29, 2012. URL: http://www.sciencedirect.com/science/article/ pii/S037026931200857X, doi:https://doi.org/10.1016/j.physletb.2012.08.020.

[3] CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Physics Lett. B, 716(1):30 – 61, 2012. URL: http://www.sciencedirect.com/science/article/pii/S0370269312008581, doi:https://doi.org/10.1016/j.physletb.2012.08.021.

[4] CMS Collaboration. Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at $\sqrt{s} = 13$ TeV. J. High Energ. Phys. 2018, 185 (2018). DOI: https://doi.org/10.1007/JHEP11(2018)185

[5] CMS Collaboration. Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV. Phys. Rev. D 92, 012004. URL: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.012004

[6] CERN. A 2008 aerial image of the LHC site. [22-October-2020] URL: https://www.washington.edu/news/2019/03/05/faser-detector-lhc/

Reference

[7] CERN AC. Layout of CMS. CERN 390040, 1998. [22-October-2020] URL: https://cds.cern.ch/record/39040

[8] CERN AC. The accelerator complex. [22-October-2020] URL: https://public-archive.web.cern.ch/en/research/AccelComplex-en.html

[9] Grojean, C. Higgs Physics. Contribution to the CERN in the Proceedings of the 2015 CERN-Latin-American School of High-Energy Physics, Ibarra, Ecuador, 4 - 17 March 2015. DOI: 10.5170/CERN-2016-005.143. URL: <u>https://cds.cern.ch/record/2243593</u>

[10] CMS Collaboration. Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV. Phys. Rev. D 92, 012004. URL: <u>https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.012004</u>

[11] CMS Collaboration. Public CMS Luminosity Information. URL: https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults#Multi_year_plots

[12] CMS Collaboration. Sketches of the CMS Tracker Detector. URL: https://twiki.cern.ch/twiki/bin/view/CMSPublic/DPGResultsTRK

[13] CMS Collaboration. CMS Tracker Detector Performance Results 2015: Alignment. URL: https://twiki.cern.ch/twiki/bin/view/CMSPublic/TkAlignmentPerformance2015

Reference

[14] CMS Collaboration. The Phase-2 Upgrade of the CMS Tracker. *Inspire HEP*. URL: https://inspirehep.net/literature/1614103

Addendum 1

Jet studies

- jets are reconstructed from PF candidates using anti-kT algorithm within $\Delta R = 0.4$ or 0.8
- Jet $\vec{p} = \sum_{\Delta R} \vec{p}_{PF}$
- multiple corrections to jet momentum and energy are applied

Reco jets = PF reconstructed jets Gen jets = Monte Carlo generator particle-level jets

Jet studies

 137fb^{-1} of processed integrated luminosity over Run 2 (2016, 2017, 2018)

CMS Integrated Luminosity Delivered, pp

CMS Average Pileup, pp, 2018, $\sqrt{s} = 13$ TeV

Jet studies

Pile-up Jet Identification Discriminant (PU jet ID)

Hard scatter jets

Pile-Up jets

- tracks from *"leading vertex"*
- jet shape more **collimated and narrow** as originating from single gluon or quark
- tracks from multiple PU vertices
- jet shape is more broad due to multiple PU collisions

Jet studies - example

Pile-up Jet Identification Discriminant (PU jet ID)

Purity = $\frac{\#(\text{Reco \& Gen})}{\#\text{Reco}}(p_T^{Clean}, \eta^{Clean})$

FractionNjets =
$$\frac{\#(Njets)}{all}(\#vtx)$$
 $N = 0,1$

 Loose PU ID working point was selected (green line)

27th November 2020
2017 no JERs

JER17 on 2017

Output

Jet studies contribution to:

- CMS Collaboration, Measurements of differential Higgs boson production cross sections in the leptonic WW decay mode at $\sqrt{s} = 13$ TeV URL: <u>https://inspirehep.net/literature/1757146</u>
- CMS Collaboration, Measurement of the inclusive and differential Higgs boson production cross sections in the leptonic WW decay mode at $\sqrt{s} = 13$ TeV URL: <u>https://inspirehep.net/literature/1805274</u>
- CMS internal notes "Higgs to WW leptonic differential measurements using 2016, 2017, and 2018 data sets" and "Common analysis object definitions and trigger efficiencies for the H → WW analysis with full Run-II data "

Addendum 2

Tracker Alignment

What is it?

- 1856 silicon pixel modules (green)
- 15148 silicon strip modules (orange and blue)

 $\sigma_{\rm align} \sim \sigma_{\rm hit}$

Tracker Alignment

Why do we need it?

Main misalignment causes:

- magnet cycles
- temperature changes
- ageing (high radiation)
- systematic distortion

Misalignment treatment:

 $\chi^{2}(p,q) = \sum_{j}^{tracks \ hits} \left(\frac{m_{ij} - f_{ij}(p,q)}{\sigma_{ij}^{m}}\right)^{2}$ m = measurement f = prediction $\sigma = \text{uncertainties}$ 27th November 2p, q = alignment and track parameters²⁰

What is detector performance?

Distributions of median residuals (DMR)

What is detector performance?

Primary vertex validation

What is detector performance?

Luminosity trends

What is detector performance?

Di-muon mass validation ($Z\mu\mu$)

Output

Public:

 CMS Collaboration, CMS Tracker Performance results for full Run 2 Legacy reprocessing, URL: <u>http://cds.cern.ch/record/2713208?ln=en</u>

Prepared for publication:

 CMS Collaboration, Alignment Strategies and Performance of CMS silicon tracker during LHC Run-2

Software development

- multipurpose validation tool for luminosity-averaged distributions
- new submission scheduler system of validation code

CMS authorship

• 5+4 months of service work

Addendum 3

High Luminosity LHC Upgrade

Timeline

 expected ~300fb⁻¹ of processed luminosity per year

High Luminosity LHC Upgrade

Physics motivation

- improved sensitivity for SM Yukawa couplings measurements (H $\rightarrow \mu\mu$)
- BSM channels with small couplings will open up
- SM Higgs self-coupling measurement

CMS Tracker Phase 2 Upgrade

Belgium Assembly line

- CMS upgrade is necessary to cope with HL upgrade
- tracker is the innermost detector and will need to handle an increased interaction rate and high radiation level

IV curve testing station

EOS PhD Day 2020

IV curve testing station

Backup

Signal templates $T_1 - T_5$

- 3 pure AC samples + 3 mixed SM-AC samples + 1 pure SM sample are reweighted to considered AC hypothesis (ggF: H₁ - H₃, VBF/VH: H₁ - H₅)
- each hypothesis H_i is created as a weighted sum of predictions
- final templates are obtained after some algebraic manipulation

ggF:
$$T_2 = (H_2 - H_1 - H_3 * g^2)/g$$

VBF/VH:
$$T_i = G_{ji}H_j$$

 $ggH \rightarrow WW^*$ 0-jet (ggF templates)

 $ggH \rightarrow WW^*$ 0-jet (ggF templates)

$ggH \rightarrow WW^*$ O-jet (VBF templates)

58

 $ggH \rightarrow WW^*$ O-jet (VBF templates)

 $ggH \rightarrow WW^*$ 0-jet (WH templates)

 $ggH \rightarrow WW^*$ 0-jet (WH templates)

 $ggH \rightarrow WW^*$ 0-jet (ZH templates)

 $ggH \rightarrow WW^*$ 0-jet (ZH templates)

 $ggH \rightarrow WW^*$ O-jet (ZH templates)

Why missing puzzle piece?

- W^{\pm} and Z^{0} gauge bosons masses are generated via Brout-Englert-Higgs mechanism
- **lepton masses** can be generated through the Yukawa interaction with Higgs boson

$$\mathcal{L}_{Yukawa}^{(U)} = -\frac{1}{\sqrt{2}}k_l v \bar{l}l - \frac{1}{\sqrt{2}}k_l \bar{l}lH$$

$$m_l = \frac{1}{\sqrt{2}}k_l v$$

- one would get **quark masses** in a similar fashion
- interaction though Higgs boson saves tree unitarity requirement in electroweak processes such as $e^+e^- \rightarrow W^+W^-$

Higgs boson

The Nobel Prize in Physics 2013

Observation of the scalar boson particle of mass $m_H \doteq 125 \text{ GeV}$ by ATLAS [2] and CMS [3] Collaboration in 2012

"The decay to two photons indicates that the new particle is a boson with spin different from one." [3]

$2D - discriminant 0_h^+$

ggH templates

EOS PhD Day 2020

$2D - discriminant 0_h^+$

VBF templates

Fit model $f_{ai} \cos \theta_{ai} = \pm f_{ai} = f = |f| \operatorname{sign}(f)$ $f_1 = 1 - |f_{ai}|$ ggF: $\mathcal{P} = \mu_F \Big((1 - |f|) * T_1 + |f| * T_i * g^2 + \operatorname{sign}(f) \sqrt{|f|} \sqrt{1 - |f|} * T_{1i} * g \Big)$ VH, VBF: $\mathcal{P} = \mu_F^2 \Big(f_1^2 * T_1 + \operatorname{sign}(f) \sqrt{f_1^3} \sqrt{|f|} * T_{2i} * g + f_1 |f| * T_{3i} * g^2$

$$T_1 \propto SM$$

 $T_i \propto BSM$
 $T_{xi} \propto SM\&BSM$

 $\mu_{\rm F}$ – floating signal strength f – determines fraction of alternative signal compared to SM signal

Jet studies

Jet energy resolution smearing

70

CMS Phase-0 Tracker

EOS PhD Day 2020

CMS Phase-2 Tracker

Data&MC

Maximum Likelihood Method

Profile Likelihood Ratio

 $\lambda(\mu) = \frac{L(\mu, \hat{\hat{\theta}})}{L(\hat{\mu}, \hat{\theta})} \qquad \begin{array}{c} \theta \text{ are fitted to maximize } L \text{ for a given value of } \mu \end{array}$

define maximum of L

 $0 < \lambda(\mu) < 1\,$ Good agreement beween data and prediction

Likelihood function

$$L(\mu, \boldsymbol{\theta}) = \prod_{i=1}^{N} \frac{(\mu \nu_{S,i} + \nu_{B,i})^{n_i}}{n_i!} e^{-(\mu \nu_{S,i} + \nu_{B,i})} \prod_{j=1}^{M} \frac{u_j^{m_j}}{m_j!} e^{-u_j}$$

 $L(\mu, \theta) = \text{Poisson}(\mu \nu_{S,i}(\theta) + \nu_{B,i}(\theta)) \times \text{Poisson}(u_i(\theta)) \times \text{Gauss}(\theta, 0, 1)$

Profile Likelihood test statistics

$$q_{\mu} = -2\ln\lambda(\mu) \longrightarrow \chi^2$$

zero hypothesis \Leftrightarrow BKG only $\Leftrightarrow \mu =$ $0 \Leftrightarrow q_0$ test statistics

> p-value evaluated for q_0^{exp} instead of q_0^{obs} because of blinded regime

constrained by unitary Gauss distibution

Tracker Alignment Validation

What is detector performance?

Distributions of RMS normalized residuals (DRmsNR)

27th November 2020