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Program for today

Machine Learning
Lesson 5
Object ID
Signal extraction
What if you don’t know your signal?
What about the uncertainties?
Which data should we take?
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General outline of the lectures

Lesson 1 - Fundaments
Bayesian and frequentist probability, theory of measure, correlation and causality, distributions

Lesson 2 - Point and Interval estimation
Maximum likelihood methods, confidence intervals, most probable values, credible intervals

Lesson 3 - Advanced interval estimation, test of hypotheses
Interval estimation near the physical boundary of a parameter
Frequentist and Bayesian tests, CLs, significance, look-elsewhere effect, reproducibility crysis

Lesson 4 - Commonly-used methods in particle physics
Unfolding, ABCD, ABC, MCMC, estimating efficiencies

Lesson 5 - Machine Learning
Overview and mathematical foundations, generalities most used algorithms, automatic Differentiation
and Deep Learning
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What if we don’t have a likelihood?
Likelihood p(x|θ) =

∫
dzp(x, z|θ) =

∫
dzpx(x|θ, z)

∏
i pi(zi|θ, z<i)

Latent states sampled from zi ∼ pi(zi|θ, z<i)
Final output sampled from x ∼ px(x|θ, z)
Observables x from particle generator; dependency on latent zs (matrix element, parton shower,
detector...)

Want to do inference in θ given a p(x|θ) which is intractable; likelihood trick;
Train a classifier (NN) to separate samples from p(x|θ0) and p(x|θ1)
Likelihood ratio between θ0 and θ1 by inverting the minimization of the binary cross-entropy loss

Joint score t(x, z|θ0) and likelihood ratio r(x, z|θ0, θ1) computable from simulated samples
Train parameterized estimators, then likelihood ratio is the minimum of loss function
Or local approximation, then the score is a sufficient statistic for inference

Rewrite the EFT likelihood in a basis in which it is a mixture model
Calculate the full true parton-level likelihood starting from N simulated events

Obtain a sufficient statistic for inference; exploit all available information!
Inference not limited anymore by the size of the generated samples

Images from arXiv:1805.12244 and arXiv:1805.00020

https://arxiv.org/abs/1805.12244
https://arxiv.org/abs/1805.00020


Machine learning
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Statistical Learning

Vast amounts of data are being generated in many fields, and the statistician’s job is to make
sense of it all: to extract important patterns and trends, and understand “what the data says.” We
call this learning from data.

Hastie, Tibshirani, Friedman (Springer 2017)
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We must efficiently collect and well reconstruct data

∼ 40 MHz (millions per second) collision photos
Can store and reconstruct only a few of them
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We must efficiently sample from our models

Costly MonteCarlo simulations, sampling from these high-dimensional probability density
functions
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We must improve the tools for detailed studies (e.g. EFT, differential)

The Standard Model leaves some questions open
What is the origin of the Higgs mechanism? The Higgs field vacuum expectation (246 GeV) very far
from Planck scale (quantum gravity): hierarchy problem
Origin of the observed neutrino masses? Most explanations of neutrino non-zero masses and mixing
are beyond the SM
Dark Matter: a new, hidden sector of particles and forces?
Is the Higgs boson discovered in 2012 the Standard Model one?

The study of Higgs boson physics is crucial for many of these topics
New scalar bosons (e.g. charged Higgs bosons) by simple extensions of the Higgs sector of the SM
Slight deviations from the expected properties of the observed Higgs boson could reveal signs for
new physics

Image by the EOS be.h network
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Ultimately, we must improve our inference: the end goal!

Statistical inference to make statements about
parameters of our models
New physics?

Probability of extreme fluctuation under the null
measures significance of excess
Function of other parameters under investigation
(e.g. Higgs boson mass in 2012)

Systematic uncertainties induce variations in the
number of events in the search region

We account for them in our statistical procedures at the
hypothesis testing stage

Often machine learning techniques are employed to
optimize the analysis at early stages: systematic
uncertainties not accounted for in the
optimization
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Images from Phys. Lett. B 716 (2012) 30 and P. Vischia, ***** (textbook to be published by Springer in 2021)
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14 years ago...

I was told “this is a black box, we cannot trust it for physics”
Comment by one of the researchers assisting to my final summer-student internship seminar

There was still some diffidence towards machine learning algorithms
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...and today

I co-organized the CERN IML workshop (October 19th–23rd, 2020)
951 registered participants
71 contributions
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Mathematical formalism

Let’s formalize the concept of learning from data

We’ll look into the formalism mostly for supervised learning

Fore more mathematical details, see arXiv:1712.04741 and Joan Bruna’s lectures online
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The elements of supervised learning: input space

X : a high-dimensional input space
The challenges come from the high dimensionality!

If all dimensions are real-valued, Rd

For square images of side
√

d, X =Rd , d ∼ O(106)

Figure frm scientiamobile.com
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The elements of supervised learning: data probability distribution

ν: unknown data probability distribution
We can sample from it to obtain an arbitrary amount of data points
We are not allowed to use any analytic information about it in our computations
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The elements of supervised learning: the target function

f ∗:X →R, unknown target function
In case of multidimensional output to a vector of dimension k, f∗:X →Rk

Some loose assumptions (e.g. square-integrable with respect to the ν measure, i.e. finite moments,
bounded...)
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How do we learn? The loss functional

L[f ] = Eν
[

l
(

f (x), f ∗(x)
)]

The metric that tells us how good our predictions are

The function l(·, ·) is a given expression, e.g. regression loss, logistic loss, etc
In this lecture, typically it is the L2 norm: ‖f − f∗‖L2(X ,ν)
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Learning goal

Goal: predict f ∗ from a finite i.i.d. sample of points sampled from ν

Sample:
{

xi, f ∗(xi)
}

i=1,...,n
, xi ∼ ν

For each of the points xi, we know the value of the unknown function (our true labels)
We want to interpolate for any arbitrary x inbetween the labelled xi...
...in million of dimensions!

Images by Victor Lavrenko
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The space of possible solutions
The space of functionals that can potentially solve the problem is vast: F ⊆

{
f : X → R

}
(hypothesis class)
We need a notion of complexity to “organize” the space
γ(f ), f ∈ F : complexity of f

It can for example be the norm, i.e. we can augment the space F with the norm
When the complexity is defined via the norm, F is highly organized: Banach space!

The simplest function according to the norm criterion is the 0 function
If we increase the complexity by increasing the norm, we obtain convex balls{

f ∈ F ; γ(f ) ≤ δ
}

=: Fδ

Convex minimization is considerably easier than non-convex minimization
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Empirical Risk Minimization

For each element of F , a measure of how well it’s interpolating the data

Empirical risk: L̂(f ) = 1
n

∑n
i=1 |f (xi)− f ∗(xi)|2

| · | is the empirical loss. If it’s the norm, then L̂(f ) is the empirical Mean Square Error
If you find an analogy with least squares method, it’s because for one variable it’s exactly that!
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Formalizing the minimization of a functional in a given space

Constraint form: min
f∈Fδ

L̂(f ).

Not trivial

Penalized form: min
f∈F

L̂(f ) + λγ(f ).

More typical
λ is the price to pay for more complex solutions. Depends on the complexity measure

Interpolant form: min
f∈F

γ(f ) s.t. L̂(f ) = 0 ⇐⇒ f (xi) = f ∗(xi) ∀i

In ML, most of the times there is no noise, so f (xi) is exactly the value we expect there (i.e. we really
know that xi is of a given class, without any uncertainty)
The interpolant form exploits this (“give me the least complex elements in F that interpolates” )

These forms are not completely equivalent. The penalized form to be solved requires
averaging a full set of penalized forms, so it’s not completely equivalent

There is certainly an implicit correspondence between δ and λ (the larger λ, the smaller δ and
viceversa)
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The Fundamental Theorem of Machine Learning

We want to relate the result of the empirical risk minimization (ERM) with the prediction
Let’s use the constraint form

Let’s assume we have solved the ERM at a precision ε (we are ε-away from...)
we then have f̂ ∈ Fδ such that L̂(f̂ ) ≤ ε+ minf∈Fδ L̂(f )

How good is f̂ at predicting f ∗? In other words, what’s the true loss?
Can use the triangular inequality

L(f̂ )− inf
f∈F

L(f ) ≤ inf
f∈Fδ

L(f )− inf
f∈F

L(f ) Approximation error

(how appropriate is my measure of complexity)

+2 sup
f∈Fδ

∣∣∣L(f )− L̂(f )
∣∣∣ Statistical error

(impact of having the empirical loss instead of the true loss)

+ε Optimization error
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The Error Market

The minimization is regulated by the parameter δ (the size of the ball in the space of functions)
Changing δ results in a tradeoff between the different errors

Very small δ makes the statistical error blow up

We are better at doing convex optimization (easier to find minimum), but even then the
optimization error ε will not be negligible

ε: how much are ou willing to spend in resources to minimize L̂(f )
We kind of control it!
If the other errors are smaller than ε, then it makes sense to spend resources to decrease it
Otherwise, don’t bother

Bottou and Bousquet, 2008, Shalev-Shwartz, Ben-David
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The big questions

Approximation: we want to design “good” spaces F to approximate f ∗ in high-dimension
Rather profound problem, on which we still struggle

Optimization: how to design algorithms to solve the ERM in general
We essentally have ONE answer: Question Time: The Optimization Problem

Gradient Descent!
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The Curse of Dimensionality

How many samples do we need to estimate f ∗ depending on assumptions on its regularity?

Question time: Curse of Dimensionality

f ∗ constant→ 1 sample
f ∗ linear→ d samples

Space of functionals is F =
{

f : Rd → R; f (x) =< x, θ >
}
' Rd (isomorphic)

It’s essentially like solving a system of linear equations for the linear form < xi, θ
∗ >

d equations, d degrees of freedom

The reason why it’s so easy is that linear functions are regular at a global level
Knowing the function locally tells us automatically the properties everywhere
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Locally linear functions

f ∗ locally linear, i.e. f ∗ is Lipschitz
|f∗(x)− f∗(y)| ≤ β‖x− y‖
Lip(f∗) = inf

{
β; |f∗(x)− f∗(y)| ≤ β‖x− y‖ is true

}
Lip(f∗) is a measure of smoothness

Space of functionals that are Lipschitz: F =
{

f : Rd → R; f is Lipschitz
}

We want a normed space to parameterize complexity, so we convert to a Banach space
γ(f ) := max(Lip(f ), |f |∞)
The parameterization of complexity is the Lipschitz constant
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Formalization of the prediction problem

∀ε > 0, find f ∈ F such that ‖f − f ∗‖ ≤ ε from n i.i.d. samples
n: sample complexity, “how many more samples to I need to make the error a given amount of times
smaller”

If f ∗ is Lipschitz, it can be demonstrated that n ∼ ε−d

Upper bound: approximate f with its value in the closest of the sampled data points, find out expected
error ∼ ε2, upper bound is exponential
Lower bound: maximum discrepancy (the worst case scenario): unless you sample exponential
number of data points, knowing f (xi) for all of them doesn’t let youwell approximate outside
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Enough of the math?
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What’s the best function

To describe the data points?
(regression)

To separate into two classes?
(classification)

Images by Victor Lavrenko
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Images by Victor Lavrenko

Vischia Statistics for HEP December 07th–11th, 2020 32 / 159



Avoid overtraining

From can’t remember where
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Simplest methods: Decision trees

Rather simple technique inspired by the standard approach of classifying events by selecting
thresholds on several variables

From http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Vischia Statistics for HEP December 07th–11th, 2020 34 / 159



Boosted decision trees)
Ada(ptive)Boost: increase at each iteration the importance of events incorrectly classified in
the previous iteration

GradientBoost: fit the new predictor to the residual errors of the previous one
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Neurons

Perceptron: simplest mathematical model of a neuron
Activation function provides nonlinearity in the response
A network of these can demonstrably approximate any (insert loose conditions here) function

From http://homepages.gold.ac.uk/nikolaev/perceptr.gif and https://i.pinimg.com/originals/e3/fa/f5/e3faf5e2a977f98db1aa0b191fc1030f.jpg
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Neural networks...

Connecting neurons into a network

Fully-connected networks: the most common a few decades ago

Each weight is a free parameter that must be determined during the “training”

Image https://www.cs.utexas.edu/ teammco/misc/mlp/mlp.png
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... and how to train them

Dataset

Training
sample

Test
sample

Application
sample

Parameterization

True label

Estimated
label

Use the
training
network
(e.g. for

inference)

Validation
and

sometimes
optimization

of the
trained
network

Loss function

Image copyright Vischia, 2019
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Loss function and backpropagation

Adjust the parameters of each neuron and connection by backpropagating the difference
between the estimated and the true output

Differentiation and matrix (tensor) operations; dedicated software, automatic differentiation
frameworks (e.g. tensorflow)

Minimization of a cost (loss) function; the loss function can be tweaked to optimize w.r.t.
several different objectives

Images from Güneş Baydin et al, JMLR 18 (2018) 1–43 and http://www.adeveloperdiary.com
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Make the training (mostly) possible

In real problems, it’s not guaranteed that a simple gradient descent can find argmin(Loss)

Several techniques to help the process to happen
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Choose sampling scheme for loss and backpropagation

Batch: compute on the whole training set (for large sets becomes too costly)

Stochastic: compute on one sample (large noise, difficult to converge)

Mini-batch: use a relatively small sample of data (tradeoff)

Image from a talk by W. Verbeke
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Choose your activation function wisely
tanh and sigmoid used a lot in the past

Seemed desirable to constrain neuron output to [0, 1]
For deep networks, vanishing gradients
sigmoid still used for output of the networks (outputs interpretable as probability)

ReLU: a generally good choice for modern problems
Tricky cases may require variants

Images from a talk by W. Verbeke (likely original source wikipedia or something)
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Improve algorithm to follow the gradient

Mostly nonconvex optimization: very complicated problem, convergence in general not
guaranteed

Nesterov momentum: big jumps followed by correction seem to help!

Adaptive moments: gradient steps decrease when getting closer to the minimum (avoids
overshooting)

Nesterov Video
Diagram by Geoffrey Hinton, animation by Alec Radford
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Regularization
Batch normalization

Normalize (transform by (x− x̄)/var(x)) each input coming from previous layer over the (mini-)batch
Stabilizes response and reduces dependence among layers

Dropoup: randomly shut down nodes in training
Avoids a weight to acquire too much importance
Inspired in genetics

Images from a talk by W. Verbeke (likely originally #theInternet) and from Goodfellow-Bengio-Courville book
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Computing derivatives in computer programs

1 Manual calculation, followed by explicit coding
2 Symbolic differentiation with expression manipulation (e.g. Mathematica)
3 Numerical differentiation with finite-difference approximations
4 Automatic (algorithmic) differentiation (AD): autodiff

Question Time: Best Differentiation
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Manual differentiation
Manual calculation, followed by explicit coding

Time consuming and prone to error, require a closed-form model

Image from Güneş Baydin et al, JMLR 18 (2018) 1–43
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Symbolic differentiation
Symbolic differentiation with expression manipulation (e.g. Mathematica, Theano)

Complex expressions, require a closed-form model
Sometimes can just minimize the problem without requiring derivative calculation
Nested duplications produce exponentially large symbolic expressions (expression swell, slow to
evaluate)

Image from Güneş Baydin et al, JMLR 18 (2018) 1–43
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Standard numerical differentiation
Numerical differentiation with finite-difference approximations

Rounding errors and truncation errors can make it very inaccurate
Mitigation techniques that cancel first-order errors are computationally costly
Accuracy must be traded off for performance for high dimensionalities

Image from Güneş Baydin et al, JMLR 18 (2018) 1–43
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Automatic differentiation
Automatic (algorithmic) differentiation (AD): autodiff

Class of techniques to generate numerical derivative evaluations during code execution rather than
derivative expressions
Accurate at machine precision with small constant overhead and asymptotic efficiency
No need to rearrange the code in a closed-form expression
Reverse AD generalizes the common chain-rule-based neural network backpropagation

Image from Güneş Baydin et al, JMLR 18 (2018) 1–43
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The power of autodifferentiation

Image from Güneş Baydin et al, JMLR 18 (2018) 1–43
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The two modes of autodiff

Forward mode
Associate with each intermediate vi a
derivative
v̇ = ∂vi

∂x1

Apply the chain rule

Single pass for f : R→ Rn

n passes for f : Rn → R

Reverse mode
Associate with each intermediate vi an
adjoint
v̄ =

∂yj
∂vi

Run forwards and backwards as in
backpropagation

Single pass for f : Rn → R
(functions with many inputs)

Must store several values
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Applications of autodiff computation

Generative
Models

Statistical
Inference

Experiment
Design

Automatic
Differentiation

Vischia Statistics for HEP December 07th–11th, 2020 52 / 159



Using deep neural networks is not always necessary

Each realization of a machine learning algorithm has a certain complexity
Capacity can be defined as the upper bound to the number of bits that can be stored in the
network during learning

Transfer of (Fisher or Shannon) information from the training data to the weights of the synapses

Sometimes the problem does not need the capacity of a neural network, and simpler
algorithms are enough

Identifying true leptons from leptons produced in b hadron decays is an example

Plot from Baldi and Vershynin, arXiv:1901.00434
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Separate prompt from fake leptons...

Image edited from David Curtin’s talk at MC4BSM-2014
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...is not very difficult

Baseline algorithms: select particular ranges of
discriminant observables

BDT-based MVA ID improves substantially w.r.t
baseline algorithms

Plots by S.S. Cruz

Table by Víctor Rodríguez Bouza

Deep neural network (DNN) does
not help much w.r.t. BDT

Plots by Antonio Márquez García



Sometimes complexity is not the main point

Neural networks can approximate any continuous real-valued function

A feed-forward network with sigmoid activation functions can approximate any continuos
real-valued function. Cybenko, G. (1989)

Any failure in mapping a function comes from inadequate choice of weights or insufficient
number of neurons. Hornik et al (1989), Funahashi (1989)

Derivatives can be approximated as well as the functions, even in case of non-differentiability
(e.g. piecewise differentiable functions). Hornik et al (1990)

These results are valid even with other classes of activation functions. Light (1992),
Stinchcombe and White (1989), Baldi (1991), Ito (1991), etc

Neural networks can be used to build fully invertible models

The backpropagation algorithm is a special case of automatic differentiation

A fully invertible model is a powerful tool that can be used for many frontier applications in
particle physics
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Difficult tasks for humans may be easy for artificial networks

Image by Pietro Vischia
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Easy tasks for humans may be very difficult for artificial networks

Image from indiatimes.com
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Sparse connectivity and receptive fields

Images from https://www.deeplearningbook.org/
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Parameter sharing and equivariance to translations

Images from https://www.deeplearningbook.org/
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The first pillar

Aggregation
Information

Likelihood

Intercomparison

Regression

Design

Residual
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Pooling and invariance for generic transformations

Images from https://www.deeplearningbook.org/
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Convolution makes it easier to learn transformations

Standard fully connected network: 8 billion matrix entries, 16 billion floating-point operations
Convolutional network: 2 matrix entries, 267960 floating-point operations

4 billion times more efficient in representing the transformation
60000 times more efficient computationally

Edge detection

Images from https://www.deeplearningbook.org/
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LeNet

LeNet (Yann LeCun 1998, http://yann.lecun.com/exdb/lenet/)

LeNet
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LeNet

LeNet (Yann LeCun 1998, http://yann.lecun.com/exdb/lenet/)

LeNet
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Learning in stages

From http://parse.ele.tue.nl/education/cluster0
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Segmentating objects
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Reconstructing jets
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End-to-end jet reconstruction

Build images by projecting different layers into a single one

Treat the result as an image with Res(idual)Net(works)

Role of tracks in jet reco from network matches physics we know

arXiv:1902.08276, S. Gleyzer’s talk at 3rd IML workshop, Priya Dwivedi
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Unsupervised learning (no data label is given)

Train two networks

Green network: tries to capture the shape of the data

Blue network: estimates the probability that an event comes from data rather than the green
network

Strategy: Green tries to fool Blue
(Javier C. says: Green is Barcelona FC, Blue is Real Madrid)

x

z

X

Z

X

Z

X

Z

From https://arxiv.org/abs/1406.2661
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Can pick elements and combine them into new images
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If you can write a loss function for it, you can learn it

C = mathematical representation
of content
S = mathematical representation
of style
Loss = distance[ S(reference) -
S(generated image)
+ distance[ C(original image) -
C(generated image)

From https://arxiv.org/abs/1508.06576
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This person does not exist!

From https://thispersondoesnotexist.com/: try it out!
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Reduce the impact of systematic uncertainties on our results

Adversarial networks used to build pivot quantities
Quantities that are invariant in some parameter (typically a nuisance parameter representing a source
of uncertainty)

Best Approximate Mean Significance as tradeoff optimal/pivotal
Eλ(θf , θr) =Lf (θf )−λLr(θf , θr)
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From Louppe-Kagan-Cranmer, arXiv:1611.01046
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Autoencoders...

Learn how to transform an object into almost itself

From Chollet and Allaire, Deep Learning With R
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...in physics

Use it to spot objects that are different from those you
have trained on
CMS Muon Chamber detectors modelled as
geographic layered maps

Map is an image: use convolutional autoencoders
Local approach (independent layers): spot anomalies in
a layer
Regional approach (simultaneusly across the layers):
spot intra-chamber issues

From arXiv:1808.00911
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...and Variational autoencoders

Learn a space of continous representations of the inputs

From Chollet and Allaire, Deep Learning With R
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...and Variational autoencoders
“How do I transform a 1 into a 0?”
Space directions have a meaning! “four-ness”, “one-ness”

From Chollet and Allaire, Deep Learning With R
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...also in physics

Fast generation of collision events in a
multidimensional phase space
Balancing goodness-of-reconstruction and overlap in
latent space

B-VAE Loss = 1
M

∑M
i=1(1− B) · MSE + B · DKL.

Works better than a GAN!

Plots from arXiv:1804.03599 and arXiv:1901.00875
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We figure out images

What about adding a time component?

A single network is not complex enough for driving a car

What if we permit a network to modify itself?
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Deep Q Learning...

Reinforcement Learning

“Q” is the letter denoting the reward function for an action

By Megajuice - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=57895741
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...is what you do to train your pets

Q

From The Auckland Dog Coach

https://www.theaucklanddogcoach.co.nz/positive-reinforcement/


From videogames...

ATARI Blackout (Google Deep Mind)

https://deepmind.com/research/dqn/
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...to self driving cars...

https://www.youtube.com/watch?v=MqUbdd7ae54

Build your own simulated driver: http://selfdrivingcars.mit.edu/deeptraffic/
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...to physics
Boosted objects decay to collimated jets reconstructed as single fat jet
Fat jet grooming: remove soft wide-angle radiation not associated with the underlying hard
substructure

Images from arXiv:1903.09644Vischia Statistics for HEP December 07th–11th, 2020 85 / 159
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Learn sequences

Recurrent architectures insert a “time” component: learn sequences!
In general a dimension that is supposed to be ordered (time, position of words in a sentence, etc)

Can even learn how to generate Shakespearian text
With Markov Chains, the results are rather worse:
https://amva4newphysics.wordpress.com/2016/09/20/hermione-had-become-a-bit-pink/

From https://www.deeplearningbook.org/ and https://www.tensorflow.org/tutorials/text/text_generation
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Identifying jets from b quarks...

Quarks produced in proton-proton collisions give rise
to collimated “jets” of particles

Bottom quarks travel for a while before fragmenting
into jets

Plot from D0
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...requires combining image and sequential processing!

b tagging at CMS
CSV (Run I and early Run II): BDT sensitive to secondary
vertexes

DeepCSV: similar inputs, generic DNN
Domain knowledge can inform the representation used!

Leading criterion for choice of technique for the classifier

What is the best representation for jets?
Convolutional networks for images
Particle-based structure

CMS DeepJet, plot from Emil Bols’ talk at IML workshop
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Learn graph of the underlying structure...

From Peter Battaglia’s talk at the IML2020 Workshop
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...until the structure is learned

Water
Video from https://sites.google.com/view/learning-to-simulate
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Tracking

Graph networks to literally connect the dots

The HEP.TrkX project, S. Gleyzer’s talk at 3rd IML workshop
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High-granularity calorimeter
600m2 of sensors, 50 layers: 6 million cells with ∼3mm spatial resolution

Some square cells, some exagonal cells
Non-projective geometry

Image from a talk by André David and the HGCAL team
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GPT3

GPT3: autoregressive model with 175 billion parameters
Non-recurrent, attention-based (non-fixed-length sequences)
Standard RNN-based autoencoders have problems due to fixed-length (different languages have
different information density)

From https://arxiv.org/abs/2005.14165
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HUGE potential for misuse

Is an image real or fake?

Is a video real or fake?

Is a text real or fake?

If a self-driving car kills someone, who’s fault is that?

You can be tracked anywhere

Your behaviour can be modelled and exploited
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HUGE potential for misuse
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The Problem of Intelligence
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Unconscious processing

C0
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Information selection for a purpose

C1
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Information about self

C2
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We thought we knew how convolutional networks learn images...

Images from https://www.deeplearningbook.org/
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...turns out we don’t...

Images from https://www.deeplearningbook.org/
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...not even in text generation

From https://medium.com/@melaniemitchell.me/follow-up-to-can-gpt-3-make-analogies-b202204bd292
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The Importance of Interpretability

A few resources
Intepretability: Christoph Molnar, Interpretable Machine Learning
Artificial “intelligence”: Melanie Mitchell, Artificial Intelligence: A Guide for Thinking Humans
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Likelihood-free inference
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Statistical Framing

From Kyle Cranmer’s PhyStat seminar
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The likelihood is a landmark for most statistical inference methods

(Profile) maximum likelihood fits
Point estimate by maximizing the likelihood function
Interval estimate by intersection with likelihood function
Feldman-Cousins (build intervals using the likelihood ratio for proper ordering of probability elements)
Test of hypothesis using ratios of the likelihood of the two hypotheses

Bayesian methods rely on computing posterior distribution p(θ|~x) ∝ p(~x|θ)π(θ)
Need the likelihood to build the posterior: usually resample posterior (Markov Chain MonteCarlo)
Point and interval estimates from posterior shape
Test of hypotheses from ratio of marginal likelihoods (Bayes Factor)
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Likelihood intractability in HEP

In HEP we often don’t have access to the likelihood

Monte Carlo generators are used to generate samples distributed according to a given
likelihood function x ∼ p(x|θ)
The likelihood sometimes is intractable

p(x|θ) =

∫
dzp(x, z|θ) =

∫
dzpx(x|θ, z)

∏
i

pi(zi|θ, z<i)

Latent variables
Matrix element
Parton shower
Detector...
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How to deal with intractable likelihoods

Sample from the density, build an histogram representation, do inference from histogram
The product of Poisson likelihoods we have seen on Wednesday

Sample from the density using accessory variables→ Approximate Bayesian Computation
Yesterday

Smart ways of integrating the generating function→ Matrix Element Method
Yesterday

Bypass the integration by learning the generating function→ Surrogate models by learning
the likelihood (ratio)

Today!

Active learning: learn surrogates by alternating simulation and inference stages (not treated
today)

Train autoregressive flows on simulated data in order to learn a model of the likelihood in the region of
high posterior density

Learn the structure of the data, together with the density, for intractable likelihoods→
manifold learning

Today

Do inference by finding a “smart”, optimal summary statistic→ INFERNO

Many more (not discussed today)
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Likelihood-free inference with differentiable models

Monte Carlo generators are used to generate samples distributed according to a given
likelihood function x ∼ p(x|θ)

Sometimes likelihood intractable because it depends on latent variables
p(x|θ) =

∫
dzp(x, z|θ) =

∫
dzpx(x|θ, z)

∏
i pi(zi|θ, z<i)

(matrix element, parton shower, detector...)

When the likelihood is intractable, inverting the problem to obtain p(θ|x) is impossible or
requires huge amount of generated events or observations

Approximate Bayesian Computation (ABC): generate events by sampling from a prior π(θ),
accept/reject algorithm to build the posterior
Probabilistic programming systems: use samples from generative model to train a tractable surrogate
model

Galton Board example. Images from istockphoto and arXiv:1805.12244
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Under the hood: the likelihood ratio trick

Our target is the likelihood ratio r̂(x|θ0, θ1)

Define a surrogate model by training a classifier to discriminate between equally-sized
samples

{xi} ∼ p(x|θ0)
{xi} ∼ p(x|θ1)

Use the standard binary cross-entropy loss

LXE = −E[1(θ = θ1) log ŝ(x|θ0, θ1) + 1(θ = θ0) log(1− ŝ(x|θ0, θ1))]

This is minimized by the optimal decision function

s(x|θ0, θ1) = p(x|θ1)/(p(x|θ0) + p(x|θ1))

Invert the expression, to estimate the LR as

r̂(x|θ0, θ1) = (1− ŝ(x|θ0, θ1))/ŝ(x|θ0, θ1)

In real cases, will not in general learn exactly the optimal decision function
As long as the function is monotonic, can recalibrate

arXiv:1805.12244
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Likelihood-free inference with differentiable models

Likelihood is intractable p(x|θ) =
∫

dz p(x, z|θ) =
∫

dz px(x|θ, z)
∏

i pi(zi|θ, z<i)

But the joint score can be computed by accumulating ∇θ log p(zi|θ, z:i) while simulating
conditioned on random trajectory z

t(x, z|θ0) ≡ ∇θ log p(x, z|θ)
∣∣∣∣
θ0

=
∑

i

∇θ log pi(zi|θ, z<i)

∣∣∣∣
θ0

+∇θ log px(x|θ, z)
∣∣∣∣
θ0

(1)

The joint score can be seen as a reward function to optimize θ

Can compute also the joint likelihood ratio

r(x, z|θ0, θ1) ≡
p(x, z|θ0)

p(x, z|θ1)
=

px(x|θ0, z)
px(x|θ1, z)

∏
i

pi(zi|θ0, z<i)

pi(zi|θ1, z<i)
. (2)

Joint score + likelihood ratio quantify how likely a particular simulated trajectory through the
simulator is if you change θ

Augmented data (I prefer to use the term armored, to avoid confusion with resampling techniques)



Learning from these augmented data

Ingredients (the “augmented” data)
Simulated observations xi
Joint likelihood ratio r(xi, zi|θ0, θ1)
Joint score t(xi, zi|θ0)

Goal: estimate likelihood p(x|θ) or likelihood ratio r(x|θ0, θ1)
Estimate r(x|θ0, θ1) from r(x, z|θ0, θ1): non-trivial (

∫
ratio 6= ratio

∫
)

Estimate t(x|θ0) ≡ ∇θ log p(x|θ)
∣∣∣∣
θ0

t(xi, zi|θ0) from t(xi, zi|θ0): non-trivial (
∫

log 6= log
∫

)

For the joint likelihood ratio
Define mean-square-error loss :

Lr = Ep(x,z|θ1)

[
(r(x, z|θ0, θ1)− r̂(x))2

]
This is minimized by

r∗(x) = arg min
r̂

Lr = Ep(z|x,θ1) [ r(x, z|θ0, θ1) ] = r(x|θ0, θ1)

For the joint score (setting θ = θ0)
Define mean-square-error loss:

Lt = Ep(x,z|θ0)

[
(t(x, z|θ0)− t̂(x|θ0))

2
]
,

This is minimized by
t∗(x) = Ep(z|x,θ0) [ t(x, z|θ0) ] = t(x|θ0)

Vischia Statistics for HEP December 07th–11th, 2020 112 / 159



We have learned from these augmented data to regress on the two intractable quantities, i.e.
to transform:

t(x, z|θ0) into t(x|θ0)
r(x, z|θ0, θ1) into r(x|θ0, θ1)

Image from K. Cranmer’s PhyStat seminar
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Machine learning for Likelihood-free inference

Calculate the full true parton-level likelihood starting from N simulated events
Obtain a sufficient statistic for inference; exploit all available information!

Images from arXiv:1805.00020
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Machine learning for Likelihood-free inference

Calculate the full true parton-level likelihood starting from N simulated events
Inference not limited anymore by the size of the generated samples

Image from K. Cranmer’s PhyStat seminar and arXiv:1805.00020
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EFT studies: from “basis” points to a full likelihood!

Effective field theories and similar parametrizations contribute a finite number of amplitudes
to a given process

Each amplitude is multiplied by a function of the Wilson coefficients

Can write the likelihood in terms of the different amplitude components c′

fc′ (z) are not necessarily properly positive definite or normalized

p(z|θ) =
∑

c′
w̃c′ (θ) fc′ (z)

Example: SM amplitudeM0(z) interferes with one new physics amplitude
MBSM(z|θ) = θM1(z), which scales linearly with a new physics parameter θ.

Differential cross section: dσ(z) ∝ |M0(z)|2 + 2θ ReM0(z)†M1(z) + θ2 |M1(z)|2
Each component (SM, interference, BSM) has its own parameter dependence w̃c′ (z) and momentum
dependence fc′ (z)

Pick a number of basis parameter points, one θc for each c′

Not related to the choice of EFT operator basis

If the choice makes the matrix Wcc′ = w̃c′ (θc) invertible, then the likelihood is a mixture model

p(z|θ) =
∑

c

wc(θ) pc(z)

Weights wc(θ) =
∑

c′ w̃c(θ) W−1
cc′

Properly normalized basis densities pc(z) = p(z|θc)
Weights wc(θ) depend on the choice of basis points and are analytically known.
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EFT studies: learn the parameterized likelihood when intractable
From the morphing we obtain the full likelihood function p(z|θ) from a finite set of evaluations
of basis densities pc(z).
We still need p(z|θ) to be tractable

p(x|θ) =

∫
dz p(x, z|θ) =

∫
dz p(x|z) p(z|θ) .

Although it’s true that even if it is intractable the following is true:

p(x|θ) =
∑

c

wc(θ) pc(x)

With this, impose the morphing parametrization to the likelihood ratio estimators
Finally, learn the LR estimators as we did before

Uncertainty small near the basis points

Use a composite reference hypothesis (fixed
denominator) (the basis estimators
r̂c(x) = r̂(x|θc, θ1) only depend on x)

r̂(x|θ0, θ1) =
∑

c

wc(θ0) r̂c(x)

Decompose both the numerator and denominator
distributions with pairwise estimators
r̂c′,c(x) = r̂(x|θc′ , θc).

r̂(x|θ0, θ1) =
∑

c

∑
c′

wc′ (θ1)

wc′ (θ0)
r̂c′,c(x)

−1
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Resources

Resources to start playing with this
https://github.com/diana-hep/madminer (in particular examples/tutorial_particle_physics)
Also look at https://github.com/johannbrehmer/goldmine and
https://github.com/johannbrehmer/goldmine
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INFERNO: inference-aware neural optimization in one slide
Build a nonparametric likelihood function based on the simulation, and use it as summary
statistic
Minimize the expected variance of the parameter of interest

Obtain the Fisher information matrix via automatic differentiation, and use it as loss function!
For (asymptotically) unbiased estimators, Rao-Cramér-Frechet (RCF) bound V[θ̂] ∼ 1

θ̂
Constraints from auxiliary measurements (i.e. systematic uncertainties) included out of the box in the
covariance matrix!

From De Castro-Dorigo, arXiv:1806.04743, and AMVA4NewPhysics deliverable 1.4 public report
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Setting of the problem (if time allows)

Apply a NN classifier to each event in a dataset, obtaining a lower-dimensional summary
statistic
f(x;φ) : X ⊆ Rd → Y ⊆ Rb

φ are the neural network parameters learned via stochastic gradient descent
dim(Y) is the number of output neurons (might be one, might be more)

Now need to map this into a summary statistic, to be calibrated and optimized via a
non-parameteric likelihood
L(D;θ,φ)

Gs = {x0, ..., xg} simulated observations conditional on values of θs
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From NN output to binned summary statistic (if time allows)

In HEP we tend to use histograms and express likelihoods as product of Poisson factors per
each bin

Consider the NN output f(x;φ), and assign each observation x to a bin defined as:

si(D;φ) =
∑
x∈D

{
1 i = argmaxj={0,...,b}(fj(x;φ))

0 i 6= argmaxj={0,...,b}(fj(x;φ))

From this one can take the per-bin expectation

L(D;θ,φ) =
b∏

i=0

Pois
(

si(D;φ) |
(

n
g

)
si(Gs;φ)

)

n/g accounts for the different number of obs in the samples
Can extend to cases where Nobs is a random variable (typical HEP case) etc
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The differentiable surrogate likelihood (if time allows)

This likelihood is not differentiable (because of argmax), so use surrogate (softmax operator)

ŝi(D;φ) =
∑
x∈D

efi(x;φ)/τ∑b
j=0 efj(x;φ)/τ

τ regulates how soft is softmax: ŝ(D;φ) limτ→0+ s(D;φ)

End up with L̂(D;θ,φ). In the Asimov dataset,

L̂A(θ;φ) =

b∏
i=0

Pois
((

n
g

)
ŝi(Gs;φ) |

(
n
g

)
ŝi(Gs;φ)

)

MLE is the original generator parameters argmaxθ∈θ(L̂A(θ;φ)) = θs
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Information matrix computable by autodiff (if time allows)

Fully differentiable Fisher information:

I(θ)ij =
∂2

∂θi∂θj

(
− log L̂A(θ;φ)

)
If the simulation is itself differentiable or if one can approximate variations of θ over Gs

For an unbiased MLE estimate θ̂ of θ, Cramŕ-Rao bound (equality in high-stat limit) satisfied

covθ(θ̂) ≥ I(θ)−1

Can use inverse of the Fisher information as approximate estimator of the expected variance!

Immediate extension to nuisance parameters constrained by auxiliary measurements
{L0

C(θ), ...,Lc
C(θ)}

L̂′A(θ;φ) = L̂A(θ;φ)
c∏

i=0

Li
C(θ).

Loss function: an function of the inverse of Fisher Information matrix at θs

Diagonal elements of I−1
ii (θs): expected variance of each of the φi under the normal approximation

Inference about ω0 = θk : use loss function U = I−1
kk (θs) (expected width of the confidence interval

for ω0 accounting also for the nuisance parameters

Also immediate extension to many parameters of interest
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Algorithm in a nutshell (if time allows)
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Promising results (if time allows)

From De Castro-Dorigo, arXiv:1806.04743, and AMVA4NewPhysics deliverable 1.4 public report
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Resources and CMS integration

Resources
Tensorflow 1 implementation: https://github.com/pablodecm/paper-inferno (Pablo De Castro
Manzano)
Tensorflow 2 implementation is under validation (Lukas Layer)
PyTorch implementation is under validation (Giles Strong)
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Normalizing flows
Variational inference (Rezende and Mohamed, 1505.05770)

Start from a simple density
Apply a sequence of invertible transformations until the desired complexity is reached

Combination of inference and generative model
Inference network maps observations to the parameters of the model
Generative model receives the posterior samples from the inference network at training time
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Gaussian autoregressive models

Decompose a joint density into a product of conditional densities
Condition on previous variables (time series, or lower-index coordinates for some ordering
Predicted value of features depend on past values of the same feature, rather than on other predictors

Used for density estimation
Take some variable with some implicit ordering (e.g. tensor)
Output a mean and standard deviation for each element of the input, conditioned on previous
elements

In a sense, a Bayesian network

Image from https://deepgenerativemodels.github.io
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Autoregressive models are normalizing flows (if invertible)!

Kingma and colleagues 1606.04934
Autoregressive models result in tranformations that by construction have a tractable Jacobian
If the transformation is also invertible, then the model is equivalent to a normalizing flow

Can therefore be used for density estimation, e.g. Inverse Autoregressive Flow
Decompose the operation of sampling from a posterior (typical Bayesian operation, e.g. in
MCMC or ABC)

Sample from a very simple gaussian distribution
Apply chain of nonlinear invertible transformations
Obtain posterior sample
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MADE and MAF
MADE Germain and colleagues, 1502.03509

Masked Autoencoders for Distribution Estimation
Vectorized architecture for density estimation based on autoencoders
Fast and reliable
Masked : deactivate inputs to enforce autoregressive model!

Masked Autoregressive Flows (MAF), Papamakarios and colleagues, 1705.07057
If you stack several autoregressive models that each learn a conditional density, you obtain a
normalizing flow!
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Can use inverted MAF transformation as inverse of response matrix
Generation of events: how are generator-level events x transformed into reconstructed events
y by passing through the detector?

Model the detector response as a matrix, y = Rx
Given observed data y, inverting the matrix R permits to “undo” the smearing induced by the detector
Nontrivial inverse problem! Many algorithms available, mostly based on regularizing an explicitly
inverted matrix

Vischia (2020b) arXiv:2009:02913 uses resampling to avoid matrix inversion
Unfolding w/ normalizing flows described here scooped last week on the arxiv:
https://arxiv.org/abs/2011.05836 (unfolding with normalizing flows using Empirical Bayes
techniques). Check the paper out, it’s very nice!
Unfolding by learning the response matrix as an invertible trasformation with MAF
More studies ongoing with more complex models (gaussian-to-gaussian might be too simple)
and using manifold learning
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Truth bins
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Comparison unfolded-true with normalizing flows

True spectrum
Unfolded flow-based spectrum
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Manifold learning https://arxiv.org/abs/2003.13913
Regular GAN/autoencoder applications: efficient sampling but describe lower-dim data
manifold embedded in the data space
Normalizing flows: obtain a density in the full data space (but if data points don’t populate full
space, will learn smeared-out version)
Manifold-modelling flows: learn the shape of the manifold and a p.d.f. over the manifold

But cannot just maximize likelihood, as MFMF provides likelihood’s projection on the manifold→
additional training objective minimize ‖ x− x′ ‖
Separate parameters describing manifold from those describing the density
Useful for: use lower-dimensional latent spaces while retaining info on manifold; denoising; anomaly
detection
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Manifold learning when likelihood is intractable

Particle physics example: 40 features, manifold structure (quadrimomenta, etc)
Use domain knowledge: data populate some 14D manifold within a 40D data space

Shape of the manifold independent of the model parameters θ
Probability density on the manifold is conditional on the model parameters θ

Either learn regular likelihood ratio...
...or a score-augmented likelihood

Use differentiability of the parametrized neural density estimation w.r.t. θ
Add to the loss the MSE b/ween the model score and the joint score

Compare with a “true posterior” (since likelihood is intractable, approximate it with kernel
density estimation)

Learning the likelihood ratio provides better modelling but poorer inference
Learning the score-augmented likelihood provides poorer modelling but better inference
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INFERNO: inference-aware neural optimization
Build a nonparametric likelihood function based on the simulation, and use it as summary
statistic
Minimize the expected variance of the parameter of interest

Obtain the Fisher information matrix via automatic differentiation, and use it as loss function!
For (asymptotically) unbiased estimators, Rao-Cramér-Frechet (RCF) bound V[θ̂] ∼ 1

θ̂
Constraints from auxiliary measurements (i.e. systematic uncertainties) included out of the box in the
covariance matrix!

From De Castro-Dorigo, arXiv:1806.04743, and AMVA4NewPhysics deliverable 1.4 public report
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ARE YOU READY TO INCLUDE MACHINE
LEARNING IN YOUR RESEARCH?

Not before having coded a neural network from scratch!!!
This afternoon’s session!

Now, if time allows: overview of the use of neural networks in physics

I am a big fan of feedback: you’ll receive in the next couple days a questionnaire
You’ll receive it at the email address you used for registering
I’d be grateful if you could answer to the questions
There are also free fields for more articulated suggestions

I will update the list of references of the last slide later today and reupload
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Object ID
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BDTs for object identification: the case of H→ γγ

Object identification done with ML techniques since the Higgs discovery

Classification problem (e.g. real photons vs objects misidentified as photons)
γ identification score for the lowest-score

photons

BDT score of the photon ID
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Object ID enters the era of mathematical representations — 1

Identification of jets from bquarks (b tagging) at CMS
CSV (Run I and first part of Run II): BDT sensitive to the
presence of secondary vertices

DeepCSV: similar inputs, generic DNN
Domain knowledge informs the choice of the better
mathematical representation

Main criterion to choose the classification technique

What’s the best representation for jets?
Convolutional networks for images
Structure based on individual particles

CMS DeepJet, plot from Emil Bols’ talk at IML workshop
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Object ID enters the era of mathematical representations — 2

Clear gain even with respect to using a generic DNN (DeepCSV)

CMS DeepJet
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Combining MVA ID for object identification

Dedicated BDT, one score for each event, representing the mass resolution of the diphoton
system

The photon ID BDT output is used as an input
High score for diphoton pairs with kinematic properties similar to signal, good mass resolution, and
high individual γ ID score

Validated in Z→ ee events where electrons are reconstructed as photons

Transformed score of the diphoton BDT
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End-to-end reconstruction of jets

Project detector layers in a single map

Treat as an image: Res(idual)Net(works)

Role of tracks in the reconstruction by the network is the same as
we expect from the physics we know

arXiv:1902.08276, S. Gleyzer’s talk at 3rd IML workshop, Priya DwivediVischia Statistics for HEP December 07th–11th, 2020 141 / 159
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Signal extraction

Vischia Statistics for HEP December 07th–11th, 2020 142 / 159



Separate signal from background using selection cuts
High fraction of correct events in ttH categories by removing events from the dataset
Delicate: removing events based on MVA output introduces tricky dependency on simulation

Dangerous, e.g. prevents from using unfolding results in comparisons with non-SM processes
In both channels, remove events with low diphoton-BDT score

Threshold optimized simultaneously with γγ-ID score, maximizing expected precision on signal
strength

ttH leptonic

≥ 1 e/µ

≥ 2 jets

≥ 1 btagged jet

ttH hadronic

≥ 3 jets

≥ 1 btagged jet

0 e/µ

BDT classifier (inputs: Njets, pleadjet
T , lead and

sublead btag scores)
BDT score of the ttH Hadronic MVA
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Separate signal from background using all events
Increase sensitivity by keeping the full MVA score distribution, possibly separating it into
regions

Different fraction of signal/background
Constrain normalization or uncertainties in background-dominated regions

From ttH (bb), CMS-PAS-HIG-16-004Vischia Statistics for HEP December 07th–11th, 2020 144 / 159



Unknown parameters? Parameterized Machine Learning can help you!

Classifier sensitive to the value of the
parameter

Train using as an input the true value of the
parameter (signal) or a random value
(background)
Evaluate in slices at fixed values of the
parameter

Equal or better than training for individual
values, and permits interpolation!
We already use it!!

First application in: CMS-HIG-17-006
Recent application:
CMS-HIG-18-004, arXiv:1908.09206 ,
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From Baldi et al. arXiv:1601.07913
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Different techniques are “better” for different situations

Each classification or regression problem is a distinct problem
Choice of the algorithm dictated e.g. by the structure of data and the complexity of the problem
(network capacity)

Sometimes not trivial: CMS-HIG-18-004, arXiv:1908.09206 ,
20–40% improvement w.r.t. single-variable result (HT ) usando BDT (single lepton) and parameterized
DNN (dilepton)
DNN: more sensitive at low mass, where the BDT has not enough capacity to discriminate similar
topologies (tt vs H±)
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Reduce complexity: how many BDTs do you have?

ttH multilepton: two different classifiers
BDT1: ttH vs tt
BDT2: ttH vs ttV

Finely partition the 2D plane (BDT1, BDT2)
Use a training sample to calculate binning
Apply to the application sample used for
inference

Define the target Nbins with clustering
techniques (k-means)
Finally separate regions based on empirical
likelihood

Likelihood ratio approximated by S
B

Ordering from the Neyman-Pearson lemma
Quantile-based binning

BDT classifier output (2LSS)

Final 1D discriminator (2LSS)

BDT (ttH,tt/ttV) bin
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CMS-PAS-HIG-17-004, part of CMS-HIG-17-018: evidence for ttH production in multilepton final states
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End-to-end event classification

Low-level data representation
Tracker, electromagnetic calorimeter,
hadronic calorimeter
Various possible geometries

Mass decorrelation to avoid structure
sculpting

Transform Eγγ in units of Mγγ
Extension of pivoting technique

Training with a 3-classes ResNet
(H→ γγ, γγ, γ+jet)

Statistically-limited technique

From arXiv:1807.11916Vischia Statistics for HEP December 07th–11th, 2020 148 / 159
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What if you don’t know your signal?
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Gaussian processes)
Multivariate gaussian associated to a set of
random variables (Ndim = Nrandom variables)

Kernel as a similarity measure between bin
centers (counts) and a averaging function

Signal is not parameterized
Hyperparameters fixed by the B-only fit

S: residual of B-subtraction

AMVA4NewPhysics deliverable 2.5 public report

Inverse Bagging

Data: mixture model with small S
Classification based on sample properties

Compare bootstrapped samples with
reference (pure B)
Use Metodiev theorem to translate inference
into signal fraction

Validate with LR y LDA
Promising results
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Vischia-Dorigo arXiv:1611.08256, doi:10.1051/epjconf/201713711009, and P.

Vischia’s talk at EMS2019
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What about the uncertainties?
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Can we reduce the impact of uncertainties on our results?

Adversarial networks used to build pivot quantities
Quantities invariant in some parameter (typically nuisance parameter representing an uncertainty)

Best Approximate Mean Significance as tradeoff optimal/pivotal
Eλ(θf , θr) =Lf (θf )−λLr(θf , θr)
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From Louppe-Kagan-Cranmer, arXiv:1611.01046
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Reminder: likelihood function and Fisher information
The (second) derivative of the likelihood function is connected to the quantity of information
you can extract from data

I(θ) = −E

[
∂2lnL
∂θ2

]
= E

[(
∂lnL
∂θ

)2]
The likelihood function contains all the information that you can extract from data on the
parameter θ
A narrow likelihood function carries more information than a broader one
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From Vischia, book in preparation
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INFERNO: inference-aware neural optimization
Build non-parametric likelihood function based on simulation, use it as summary statistic
Minimize the expected variance of the parameter of interest

Obtain the Fisher information matrix with automatic differentiation, and use it as loss function
For (asymptotically) unbiased estimators, Rao-Cramér-Frechet (RCF) bound V[θ̂] ∼ 1

θ̂
(see my Monday lesson)
Constraints via auxiliary measurements (typically on nuisance parameters) included in covariance
matrix out of the box

From De Castro-Dorigo, arXiv:1806.04743, and AMVA4NewPhysics deliverable 1.4 public report
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Which data should we take?
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What if we don’t know which data to take?
Represent data as geographically-organized images

Local focus: detector layers treated independently
Regional focus: detector layers treated independently
but simultaneously (spot problems between layers)

Autoencoders (noise detection, dimensionality
reduction)

Encode the inputs to the hidden layer
Decode the hidden layer to an approximate
representation of the inputs

From arXiv:1808.00911
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Tracking

Graph networks to literally connet the dots

The HEP.TrkX project, S. Gleyzer’s talk at 3rd IML workshop
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What if you need to do it quickly?

Real-time event processing requires
low-latency and low-power-consumption
hardware: FPGAs

Case study: classify structures inside jets
(jet substructure)

Compression, quantization, parallelization
digital signal processing (arithmetic) blocks
(DSPs),

From arXiv:1804.06913
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