Statistics

or "How to find answers to your questions"

$$
\text { Pietro Vischia }{ }^{1}
$$

${ }^{1}$ CP3 - IRMP, Université catholique de Louvain

UCLouvain

Institut de recherche en mathématique et physique

CP3—IRMP, Intensive Course on Statistics for HEP, 07-11 December 2020

Program for today

Machine Learning

Lesson 5
Object ID
Signal extraction
What if you don't know your signal?
What about the uncertainties?
Which data should we take?

- Lesson 1 - Fundaments
- Bayesian and frequentist probability, theory of measure, correlation and causality, distributions
- Lesson 2 - Point and Interval estimation
- Maximum likelihood methods, confidence intervals, most probable values, credible intervals
- Lesson 3-Advanced interval estimation, test of hypotheses
- Interval estimation near the physical boundary of a parameter
- Frequentist and Bayesian tests, CLs, significance, look-elsewhere effect, reproducibility crysis
- Lesson 4 - Commonly-used methods in particle physics
- Unfolding, ABCD, ABC, MCMC, estimating efficiencies
- Lesson 5 - Machine Learning
- Overview and mathematical foundations, generalities most used algorithms, automatic Differentiation and Deep Learning

What if we don't have a likelihood?

- Likelihood $p(x \mid \theta)=\int d z p(x, z \mid \theta)=\int d z p_{x}(x \mid \theta, z) \prod_{i} p_{i}\left(z_{i} \mid \theta, z_{<i}\right)$
- Latent states sampled from $z_{i} \sim p_{i}\left(z_{i} \mid \theta, z_{<i}\right)$
- Final output sampled from $x \sim p_{x}(x \mid \theta, z)$
- Observables x from particle generator; dependency on latent $z \mathrm{~S}$ (matrix element, parton shower, detector...)
- Want to do inference in θ given a $p(x \mid \theta)$ which is intractable; likelihood trick;
- Train a classifier (NN) to separate samples from $p\left(x \mid \theta_{0}\right)$ and $p\left(x \mid \theta_{1}\right)$
- Likelihood ratio between θ_{0} and θ_{1} by inverting the minimization of the binary cross-entropy loss
- Joint score $t\left(x, z \mid \theta_{0}\right)$ and likelihood ratio $r\left(x, z \mid \theta_{0}, \theta_{1}\right)$ computable from simulated samples
- Train parameterized estimators, then likelihood ratio is the minimum of loss function
- Or local approximation, then the score is a sufficient statistic for inference
- Rewrite the EFT likelihood in a basis in which it is a mixture model
- Calculate the full true parton-level likelihood starting from N simulated events
- Obtain a sufficient statistic for inference; exploit all available information!
- Inference not limited anymore by the size of the generated samples

Images from arXiv:1805.12244 and arXiv:1805.00020

Machine learning

Vast amounts of data are being generated in many fields, and the statistician's job is to make sense of it all: to extract important patterns and trends, and understand "what the data says." We call this learning from data.

Hastie, Tibshirani, Friedman (Springer 2017)

We must efficiently collect and well reconstruct data

UCLouvain

- $\sim 40 \mathrm{MHz}$ (millions per second) collision photos
- Can store and reconstruct only a few of them

- Costly MonteCarlo simulations, sampling from these high-dimensional probability density functions

We must improve the tools for detailed studies (e.g. EFT, differential)

- The Standard Model leaves some questions open
- What is the origin of the Higgs mechanism? The Higgs field vacuum expectation (246 GeV) very far from Planck scale (quantum gravity): hierarchy problem
- Origin of the observed neutrino masses? Most explanations of neutrino non-zero masses and mixing are beyond the SM
- Dark Matter: a new, hidden sector of particles and forces?
- Is the Higgs boson discovered in 2012 the Standard Model one?
- The study of Higgs boson physics is crucial for many of these topics
- New scalar bosons (e.g. charged Higgs bosons) by simple extensions of the Higgs sector of the SM
- Slight deviations from the expected properties of the observed Higgs boson could reveal signs for new physics

Image by the EOS be.h network

- Statistical inference to make statements about parameters of our models
- New physics?
- Probability of extreme fluctuation under the null measures significance of excess
- Function of other parameters under investigation (e.g. Higgs boson mass in 2012)
- Systematic uncertainties induce variations in the number of events in the search region
- We account for them in our statistical procedures at the hypothesis testing stage
- Often machine learning techniques are employed to optimize the analysis at early stages: systematic uncertainties not accounted for in the optimization

Images from Phys. Lett. B 716 (2012) 30 and P. Vischia, ${ }^{* * * * * ~(t e x t b o o k ~ t o ~ b e ~ p u b l i s h e d ~ b y ~ S p r i n g e r ~ i n ~ 2021) ~}$

- I was told "this is a black box, we cannot trust it for physics"

Comment by one of the researchers assisting to my final summer-student internship seminar

- There was still some diffidence towards machine learning algorithms

Trainee: Pietro Vischia Year: 2006
Mentor: Stephan Lammel
A) What did you learn while at Fermilab?

In my period as a Trainee I worked on b-jet energy corrections, thus deepening my knowledge on b-physics and data analysis methods.
In particular, I gained knowledge about neural networks and their possible use in physics.
I indeed used a neural network in the attempt to improve the b-jet energy resolution: this type of improvement is important for obtaining a better measurement of top quark mass and for having more chances of eventually discovering the Higgs boson at CDF,
The work started with gaining familiarity with basics concepts about neural networks, in particular multilayer perceptrons. This was accomplished by studying the software documentation and the work of some physicists who already used neural networks for data analysis. A preliminary work has been done by using some material sent by Brandon Parks (University of Ohio).
I then developed a network and applied it to our $Z->b+a n t i-b$ and $Q C D b+a n t i-b$ signal. I obtained a substantial improvement of the resolution on b-jet energy by obtaining a scale factor which modifies the measured energy of the quark.

- I co-organized the CERN IML workshop (October 19th-23rd, 2020)
- 951 registered participants
- 71 contributions

[^0]- Let's formalize the concept of learning from data
- We'll look into the formalism mostly for supervised learning
- Fore more mathematical details, see arXiv:1712.04741 and Joan Bruna's lectures online

The elements of supervised learning: input space

- \mathcal{X} : a high-dimensional input space
- The challenges come from the high dimensionality!
- If all dimensions are real-valued, \mathbb{R}^{d}
- For square images of side $\sqrt{d}, \mathcal{X}=\mathbb{R}^{d}, d \sim \mathcal{O}\left(10^{6}\right)$

Figure frm scientiamobile.com

- ν : unknown data probability distribution
- We can sample from it to obtain an arbitrary amount of data points
- We are not allowed to use any analytic information about it in our computations
- $f^{*}: \mathcal{X} \rightarrow \mathbb{R}$, unknown target function
- In case of multidimensional output to a vector of dimension $k, f^{*}: \mathcal{X} \rightarrow \mathbb{R}^{k}$
- Some loose assumptions (e.g. square-integrable with respect to the ν measure, i.e. finite moments, bounded...)
- $L[f]=\mathbb{E}_{\nu}\left[l\left(f(x), f^{*}(x)\right)\right]$
- The metric that tells us how good our predictions are
- The function $l(\cdot, \cdot)$ is a given expression, e.g. regression loss, logistic loss, etc
- In this lecture, typically it is the L^{2} norm: $\left\|f-f^{*}\right\|_{L^{2}(\mathcal{X}, \nu)}$

Learning goal

UCLouvain

- Goal: predict f^{*} from a finite i.i.d. sample of points sampled from ν
- Sample: $\left\{x_{i}, f^{*}\left(x_{i}\right)\right\}_{i=1, \ldots, n}, x_{i} \sim \nu$
- For each of the points x_{i}, we know the value of the unknown function (our true labels)
- We want to interpolate for any arbitrary x inbetween the labelled $x_{i} .$. .
- ...in million of dimensions!

The space of possible solutions

- The space of functionals that can potentially solve the problem is vast: $\mathcal{F} \subseteq\{f: \mathcal{X} \rightarrow \mathbb{R}\}$ (hypothesis class)
- We need a notion of complexity to "organize" the space
- $\gamma(f), f \in \mathcal{F}$: complexity of f
- It can for example be the norm, i.e. we can augment the space \mathcal{F} with the norm
- When the complexity is defined via the norm, \mathcal{F} is highly organized: Banach space!
- The simplest function according to the norm criterion is the 0 function
- If we increase the complexity by increasing the norm, we obtain convex balls

$$
\{f \in \mathcal{F} ; \gamma(f) \leq \delta\}=: \mathcal{F}^{\delta}
$$

- Convex minimization is considerably easier than non-convex minimization

- For each element of \mathcal{F}, a measure of how well it's interpolating the data
- Empirical risk: $\hat{L}(f)=\frac{1}{n} \sum_{i=1}^{n}\left|f\left(x_{i}\right)-f^{*}\left(x_{i}\right)\right|^{2}$
- $|\cdot|$ is the empirical loss. If it's the norm, then $\hat{L}(f)$ is the empirical Mean Square Error
- If you find an analogy with least squares method, it's because for one variable it's exactly that!
- Constraint form: $\min _{f \in \mathcal{F}^{\delta}} \hat{L}(f)$.
- Not trivial
- Penalized form: $\min _{f \in \mathcal{F}} \hat{L}(f)+\lambda \gamma(f)$.
- More typical
- λ is the price to pay for more complex solutions. Depends on the complexity measure
- Interpolant form: $\min _{f \in \mathcal{F}} \gamma(f)$ s.t. $\hat{L}(f)=0 \Longleftrightarrow f\left(x_{i}\right)=f^{*}\left(x_{i}\right) \quad \forall i$
- In ML, most of the times there is no noise, so $f\left(x_{i}\right)$ is exactly the value we expect there (i.e. we really know that x_{i} is of a given class, without any uncertainty)
- The interpolant form exploits this ("give me the least complex elements in \mathcal{F} that interpolates")
- These forms are not completely equivalent. The penalized form to be solved requires averaging a full set of penalized forms, so it's not completely equivalent
- There is certainly an implicit correspondence between δ and λ (the larger λ, the smaller δ and viceversa)
- We want to relate the result of the empirical risk minimization (ERM) with the prediction
- Let's use the constraint form
- Let's assume we have solved the ERM at a precision ϵ (we are ϵ-away from...) we then have $\hat{f} \in \mathcal{F}^{\delta}$ such that $\hat{L}(\hat{f}) \leq \epsilon+\min _{f \in \mathcal{F}^{\delta}} \hat{L}(f)$
- How good is \hat{f} at predicting f^{*} ? In other words, what's the true loss?
- Can use the triangular inequality
$L(\hat{f})-\inf _{f \in \mathcal{F}} L(f) \leq \inf _{f \in \mathcal{F} \delta} L(f)-\inf _{f \in \mathcal{F}} L(f)$

$$
+2 \sup _{f \in \mathcal{F} \delta}|L(f)-\hat{L}(f)| \quad \text { Statistical error }
$$

(impact of having the empirical loss instead of the true loss)
$+\epsilon \quad$ Optimization error

- The minimization is regulated by the parameter δ (the size of the ball in the space of functions)
- Changing δ results in a tradeoff between the different errors
- Very small δ makes the statistical error blow up
- We are better at doing convex optimization (easier to find minimum), but even then the optimization error ϵ will not be negligible
- ϵ : how much are ou willing to spend in resources to minimize $\hat{L}(f)$
- We kind of control it!
- If the other errors are smaller than ϵ, then it makes sense to spend resources to decrease it
- Otherwise, don't bother

Bottou and Bousquet, 2008, Shalev-Shwartz, Ben-David

- Approximation: we want to design "good" spaces \mathcal{F} to approximate f^{*} in high-dimension
- Rather profound problem, on which we still struggle
- Optimization: how to design algorithms to solve the ERM in general
- We essentally have ONE answer: Question Time: The Optimization Problem
- Approximation: we want to design "good" spaces \mathcal{F} to approximate f^{*} in high-dimension
- Rather profound problem, on which we still struggle
- Optimization: how to design algorithms to solve the ERM in general
- We essentally have ONE answer: Question Time: The Optimization Problem
- Gradient Descent!

The Curse of Dimensionality

- How many samples do we need to estimate f^{*} depending on assumptions on its regularity?
- Question time: Curse of Dimensionality

The Curse of Dimensionality

- How many samples do we need to estimate f^{*} depending on assumptions on its regularity?
- Question time: Curse of Dimensionality
- f^{*} constant $\rightarrow 1$ sample
- f^{*} linear $\rightarrow d$ samples
- Space of functionals is $\mathcal{F}=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R} ; f(x)=\langle x, \theta\rangle\right\} \simeq \mathbb{R}^{d}$ (isomorphic)
- It's essentially like solving a system of linear equations for the linear form $\left\langle x_{i}, \theta^{*}\right\rangle$
- d equations, d degrees of freedom
- The reason why it's so easy is that linear functions are regular at a global level
- Knowing the function locally tells us automatically the properties everywhere
- f^{*} locally linear, i.e. f^{*} is Lipschitz
- $\left|f^{*}(x)-f^{*}(y)\right| \leq \beta\|x-y\|$
- $\operatorname{Lip}\left(f^{*}\right)=\inf \left\{\beta ;\left|f^{*}(x)-f^{*}(y)\right| \leq \beta\|x-y\|\right.$ is true $\}$
- Lip $\left(f^{*}\right)$ is a measure of smoothness
- Space of functionals that are Lipschitz: $\mathcal{F}=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R} ; f\right.$ is Lipschitz $\}$
- We want a normed space to parameterize complexity, so we convert to a Banach space
- $\gamma(f):=\max \left(\operatorname{Lip}(f),|f|_{\infty}\right)$
- The parameterization of complexity is the Lipschitz constant
- $\forall \epsilon>0$, find $f \in \mathcal{F}$ such that $\left\|f-f^{*}\right\| \leq \epsilon$ from n i.i.d. samples
- n : sample complexity, "how many more samples to I need to make the error a given amount of times smaller"
- If f^{*} is Lipschitz, it can be demonstrated that $n \sim \epsilon^{-d}$
- Upper bound: approximate f with its value in the closest of the sampled data points, find out expected error $\sim \epsilon^{2}$, upper bound is exponential
- Lower bound: maximum discrepancy (the worst case scenario): unless you sample exponential number of data points, knowing $f\left(x_{i}\right)$ for all of them doesn't let youwell approximate outside

Enough of the math?

UCLouvain
Institut de recherche en mathématique et physique

What's the best function

UCLouvain
UCLouvain

To describe the data points?
(regression)

To separate into two classes? (classification)

What's the best function

To describe the data points? (regression)

To separate into two classes? (classification)

Images by Victor Lavrenko

What's the best function

To describe the data points? (regression)

UCLouvain

To separate into two classes? (classification)

Images by Victor Lavrenko

To describe the data points? (regression)

To separate into two classes? (classification)

Images by Victor Lavrenko

Avoid overtraining

Simplest methods: Decision trees

IUCLouvain

- Rather simple technique inspired by the standard approach of classifying events by selecting thresholds on several variables

From http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Boosted decision trees)

 the previous iteration

- GradientBoost: fit the new predictor to the residual errors of the previous one

- Perceptron: simplest mathematical model of a neuron
- Activation function provides nonlinearity in the response
- A network of these can demonstrably approximate any (insert loose conditions here) function

From http://homepages.gold.ac.uk/nikolaev/perceptr.gif and https://i.pinimg.com/originals/e3/fa/f5/e3faf5e2a977f98db1aa0b191fc1030f.jpg

Neural networks...

UCLouvain

- Connecting neurons into a network
- Fully-connected networks: the most common a few decades ago
- Each weight is a free parameter that must be determined during the "training"

Image https://www.cs.utexas.edu/ teammco/misc/mlp/mlp.png

Image copyright Vischia, 2019

- Adjust the parameters of each neuron and connection by backpropagating the difference between the estimated and the true output
- Differentiation and matrix (tensor) operations; dedicated software, automatic differentiation frameworks (e.g. tensorflow)
- Minimization of a cost (loss) function; the loss function can be tweaked to optimize w.r.t. several different objectives

Images from Güneş Baydin et al, JMLR 18 (2018) 1-43 and http://www.adeveloperdiary.com

- In real problems, it's not guaranteed that a simple gradient descent can find argmin(Loss)
- Several techniques to help the process to happen
- Batch: compute on the whole training set (for large sets becomes too costly)
- Stochastic: compute on one sample (large noise, difficult to converge)
- Mini-batch: use a relatively small sample of data (tradeoff)

Image from a talk by W. Verbeke

Choose your activation function wisely

- tanh and sigmoid used a lot in the past
- Seemed desirable to constrain neuron output to $[0,1]$
- For deep networks, vanishing gradients
- sigmoid still used for output of the networks (outputs interpretable as probability)
- ReLU: a generally good choice for modern problems
- Tricky cases may require variants

Vischia

Improve algorithm to follow the gradient

- Mostly nonconvex optimization: very complicated problem, convergence in general not guaranteed
- Nesterov momentum: big jumps followed by correction seem to help!
- Adaptive moments: gradient steps decrease when getting closer to the minimum (avoids overshooting)

A picture of the Nesterov method

- First make a big jump in the direction of the previous accumulated gradient.
- Then measure the gradient where you end up and make a correction.

brown vector $=$ jump, \quad red vector $=$ correction, \quad green vector $=$ accumulated gradient
blue vectors $=$ standard momentum

Regularization

- Batch normalization

UCLouvain

- Normalize (transform by $(x-\bar{x}) / \operatorname{var}(x)$) each input coming from previous layer over the (mini-)batch
- Stabilizes response and reduces dependence among layers
- Dropoup: randomly shut down nodes in training
- Avoids a weight to acquire too much importance
- Inspired in genetics

Images from a talk by W. Verbeke (likely originally \#thelnternet) and from Goodfellow-Bengio-Courville book
(1) Manual calculation, followed by explicit coding
(2) Symbolic differentiation with expression manipulation (e.g. Mathematica)
(3) Numerical differentiation with finite-difference approximations
(9) Automatic (algorithmic) differentiation (AD): autodiff

- Question Time: Best Differentiation

Manual differentiation

- Manual calculation, followed by explicit coding
- Time consuming and prone to error, require a closed-form model

$$
\begin{aligned}
& f^{\prime}(x)=128 x(1-x)(-8+16 x)(1-2 x)^{2}(1- \\
& \left.8 x+8 x^{2}\right)+64(1-x)(1-2 x)^{2}\left(1-8 x+8 x^{2}\right)^{2}- \\
& 64 x(1-2 x)^{2}\left(1-8 x+8 x^{2}\right)^{2}-256 x(1-x)(1- \\
& 2 x)\left(1-8 x+8 x^{2}\right)^{2}
\end{aligned}
$$

Coding

```
f'(x):
    return 128*x*(1 - x)*(-8+16*x)
        *((1-2*x)^2)*(1-8*x + 8*x*x)
        +64*(1-x)*((1-2*x) ^2)*((1
        - 8*x + 8*x*x) -2) - (64*x*(1 -
        2*x) ^2)*(1-8*x + 8*x*x) ^2 -
        256*x*(1-x)*(1-2*x)*(1-8*x
    +8*x*x) ^2
```

 \(\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=f^{\prime}\left(x_{0}\right)\)
 Exact

Symbolic differentiation

- Symbolic differentiation with expression manipulation (e.g. Mathematica,,Theano)
- Complex expressions, require a closed-form model
- Sometimes can just minimize the problem without requiring derivative calculation
- Nested duplications produce exponentially large symbolic expressions (expression swell, slow to evaluate)

Standard numerical differentiation

UCLouvain

- Numerical differentiation with finite-difference approximations
- Rounding errors and truncation errors can make it very inaccurate
- Mitigation techniques that cancel first-order errors are computationally costly
- Accuracy must be traded off for performance for high dimensionalities


```
f(x):
    v = x
    for i=1 to 3
        v = 4*v*(1 - v)
    return v
or, in closed-form,
f(x):
```

```
    return 64*x*(1-x)*((1-2*x) - 2)
```

 return 64*x*(1-x)*((1-2*x) - 2)
 *(1-8*x+8*x*x) - 2
    ```
        *(1-8*x+8*x*x) - 2
```

$f^{\prime}(x)$:
$h=0.000001$
return $(f(x+h)-f(x)) / h$
$\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right) \approx f^{\prime}\left(x_{0}\right)$

Automatic differentiation

- Automatic (algorithmic) differentiation (AD): autodiff
- Class of techniques to generate numerical derivative evaluations during code execution rather than derivative expressions
- Accurate at machine precision with small constant overhead and asymptotic efficiency
- No need to rearrange the code in a closed-form expression
- Reverse AD generalizes the common chain-rule-based neural network backpropagation


```
f'(x):
    (v,dv) = (x,1)
    for i = 1 to 3
        (v,dv) = (4*v*(1-v), 4*dv-8*v*dv)
    return (v,dv)
```

$\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=f^{\prime}\left(x_{0}\right)$
Exact

The power of autodifferentiation

The two modes of autodiff

Forward mode

- Associate with each intermediate v_{i} a derivative

$$
\dot{v}=\frac{\partial v_{i}}{\partial x_{1}}
$$

- Apply the chain rule
- Single pass for $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$
- n passes for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

| Forward Primal Trace | | Forward Tangent (Derivative) Trace | |
| :---: | :---: | :---: | :---: |
| $v_{-1}=x_{1}$ | $=2$ | $\dot{v}_{-1}=\dot{x}_{1}$ | $=1$ |
| $v_{0}=x_{2}$ | $=5$ | $\dot{v}_{0}=\dot{x}_{2}$ | $=0$ |
| $v_{1}=\ln v_{-1}$ | $=\ln 2$ | $\dot{v}_{1}=\dot{v}_{-1} / v_{-1}$ | $=1 / 2$ |
| $v_{2}=v_{-1} \times v_{0}$ | $=2 \times 5$ | $\dot{v}_{2}=\dot{v}_{-1} \times v_{0}+\dot{v}_{0} \times v_{-1}$ | $=1 \times 5+0 \times 2$ |
| $v_{3}=\sin v_{0}$ | $=\sin 5$ | $\dot{v}_{3}=\dot{v}_{0} \times \cos v_{0}$ | $=0 \times \cos 5$ |
| $v_{4}=v_{1}+v_{2}$ | $=0.693+10$ | $\dot{v}_{4}=\dot{v}_{1}+\dot{v}_{2}$ | $=0.5+5$ |
| $v_{5}=v_{4}-v_{3}$ | $=10.693+0.959$ | $\dot{v}_{5}=\dot{v}_{4}-\dot{v}_{3}$ | $=5.5-0$ |
| | $=11.652$ | v $\dot{y}=\dot{v}_{5}$ | $=5.5$ |

Reverse mode

- Associate with each intermediate v_{i} an adjoint

$$
\bar{v}=\frac{\partial y_{j}}{\partial v_{i}}
$$

- Run forwards and backwards as in backpropagation
- Single pass for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (functions with many inputs)
- Must store several values

| Forward Primal Trace | | Reverse Adjoint (Derivative) Trace | | |
| :---: | :---: | :---: | :---: | :---: |
| $v_{-1}=x_{1}$ | $=2$ | 4 $\bar{x}_{1}=\bar{v}_{-1}$ | | $=5.5$ |
| $v_{0}=x_{2}$ | $=5$ | $\bar{x}_{2}=\bar{v}_{0}$ | | $=1.716$ |
| $v_{1}=\ln v_{-1}$ | $=\ln 2$ | $\bar{v}_{-1}=\bar{v}_{-1}+\bar{v}_{1} \frac{\partial v_{1}}{\partial v_{-1}}=\bar{v}_{-1}+\bar{v}_{1} / v_{-1}=5.5$ | | |
| $v_{2}=v_{-1} \times v_{0}$ | $=2 \times 5$ | $\bar{v}_{0}=\bar{v}_{0}+\bar{v}_{2} \frac{\partial v_{2}}{\partial v_{0}} \quad=\bar{v}_{0}+\bar{v}_{2} \times v_{-1}=1.716$ | | |
| | | $\begin{aligned} & \bar{v}_{-1}=\bar{v}_{2} \frac{v_{2}}{\partial_{0}} \\ & \bar{v}_{0}=\bar{v}_{3} \frac{\partial_{v}}{\partial v_{0}} \end{aligned}$ | $=\bar{v}_{2} \times v_{0}$ | $=5$ |
| $v_{3}=\sin v_{0}$ | $=\sin 5$ | | $=\bar{v}_{3} \times \cos v_{0}$ | $=-0.284$ |
| $v_{4}=v_{1}+v_{2}$ | $=0.693+10$ | $\bar{v}_{2}=\bar{v}_{4} \frac{\partial_{4}}{\partial r_{2}}$ | $=\bar{v}_{4} \times 1$ | $=1$ |
| | | $\bar{v}_{1}=\bar{v}_{4} \frac{\sigma_{0}^{2}}{\partial v_{1}}$ | $=\bar{v}_{4} \times 1$ | $=1$ |
| $v_{5}=v_{4}-v_{3}$ | $=10.693+0.959$ | $\bar{v}_{3}=\bar{v}_{5} \frac{\partial \tau_{5}}{\partial_{v_{5}}}$ | $=\bar{v}_{5} \times(-1)$ | $=-1$ |
| | | $\bar{v}_{4}=\bar{v}_{5} \frac{\partial_{5}}{\partial v_{4}}$ | $=\bar{v}_{5} \times 1$ | $=1$ |
| * $y=v_{5}$ | $=11.652$ | $\bar{v}_{5}=\bar{y}$ | $=1$ | |

Using deep neural networks is not always necessary

- Each realization of a machine learning algorithm has a certain complexity
- Capacity can be defined as the upper bound to the number of bits that can be stored in the network during learning
- Transfer of (Fisher or Shannon) information from the training data to the weights of the synapses
- Sometimes the problem does not need the capacity of a neural network, and simpler algorithms are enough
- Identifying true leptons from leptons produced in b hadron decays is an example

$$
C(A)=\log _{2}|A|
$$

Figure 1. Learning framework where h is the function to be learnt and A is the available class of hypothesis or approximating functions. The cardinal capacity is the logarithm base two of the number, or volume, of the functions contained in A.

...is not very difficult

- Baseline algorithms: select particular ranges of discriminant observables
- BDT-based MVA ID improves substantially w.r.t baseline algorithms

| Corte | Background
 Fondo
 Fakes | | | | | Signal Señal ($\mathbf{t} \overline{\mathrm{t}} \mathbf{H})$ | | Datos | | $\frac{\text { Predicción }}{\text { Datos }}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | Total | | | | $\frac{\mathrm{S}}{\sqrt{\mathrm{F}+(\Delta \mathrm{F})^{2}}}$ | |
| | Valor | Δ | $\frac{\text { Fakes }}{\text { Fakes }(t i H)}$ (\%) | Valor | Δ | Valor | Δ | | | Valor | Δ | |
| >0.97 | 14 | 7 | 5 | 246 | 22 | 46 | 5 | 363 | 19 | | 0.804 | 1.694 (|
| >0.95 | 177 | 71 | 60 | 471 | 75 | 62 | 7 | 524 | 23 | 1.017 | 0.788 |
| $t \bar{t} H$ | 295 | 103 | 100 | 658 | 109 | 79 | 9 | 752 | 27 | 0.981 | 0.731 |
| Extra tight | 517 | 168 | 175 | 938 | 173 | 96 | 10 | 1056 | 32 | 0.979 | 0.545 |
| Very tight | 751 | 238 | 255 | 1200 | 242 | 102 | 11 | 1338 | 37 | 0.973 | 0.417 |
| Tight | 1032 | 323 | 350 | 1500 | 326 | 107 | 12 | 1624 | 40 | 0.990 | 0.325 |
| Medium | 1498 | 466 | 508 | 1988 | 468 | 111 | 12 | 2074 | 46 | 1.012 | 0.235 |

Cuadro 5.7: Resultados en número de eventos del análisis del proceso $t \bar{t} H$ para todas las categorías según el corte realizado en la variable Lepton MVA.

- Deep neural network (DNN) does not help much w.r.t. BDT

Plots by Antonio Márquez García

Neural networks can approximate any continuous real-valued function

- A feed-forward network with sigmoid activation functions can approximate any continuos real-valued function. Cybenko, G. (1989)
- Any failure in mapping a function comes from inadequate choice of weights or insufficient number of neurons. Hornik et al (1989), Funahashi (1989)
- Derivatives can be approximated as well as the functions, even in case of non-differentiability (e.g. piecewise differentiable functions). Hornik et al (1990)
- These results are valid even with other classes of activation functions. Light (1992), Stinchcombe and White (1989), Baldi (1991), Ito (1991), etc

Neural networks can be used to build fully invertible models

- The backpropagation algorithm is a special case of automatic differentiation
- A fully invertible model is a powerful tool that can be used for many frontier applications in particle physics

Difficult tasks for humans may be easy for artificial networks

Image by Pietro Vischia

Easy tasks for humans may be very difficult for artificial networks fn'r

国 Panache
Image from indiatimes.com

Images from https://www.deeplearningbook.org/

Images from https://www.deeplearningbook.org/

- Aggregation
- Information
- Likelihood
- Intercomparison
- Regression
- Design
- Residual

The Seven Pillars of Statistical Wisdom

STEPHEN M. STIGLER

Images from https://www.deeplearningbook.org/

Convolution makes it easier to learn transformations

- Standard fully connected network: 8 billion matrix entries, 16 billion floating-point operations
- Convolutional network: 2 matrix entries, 267960 floating-point operations
- 4 billion times more efficient in representing the transformation
- 60000 times more efficient computationally

Edge detection

Images from https://www.deeplearningbook.org/

- LeNet (Yann LeCun 1998, http://yann.lecun.com/exdb/lenet/)

LeNet

LeNet

UCLouvain

- LeNet (Yann LeCun 1998, http://yann.lecun.com/exdb/lenet/)

LeNet

From http://parse.ele.tue.nl/education/cluster0

Image Recognition

Object Detection

Semantic Segmentation

Instance Segmentation

End-to-end jet reconstruction

- Build images by projecting different layers into a single one
- Treat the result as an image with Res(idual)Net(works)
- Role of tracks in jet reco from network matches physics we know

X_shortcut goes through convolution block
arXiv:1902.08276, S. Gleyzer's talk at 3rd IML workshop, Priya Dwivedi

UCLouvain

(a) ResNet-15

(b) The Residual block with skip connection.

- Train two networks
- Green network: tries to capture the shape of the data
- Blue network: estimates the probability that an event comes from data rather than the green network
- Strategy: Green tries to fool Blue (Javier C. says: Green is Barcelona FC, Blue is Real Madrid)

From https://arxiv.org/abs/1406.2661

Can pick elements and combine them into new images

for fic

neutral woman

man without glasses

neutral man

woman
without glasses
man with glasses

smiling woman

smiling man

woman with glasses

If you can write a loss function for it, you can learn it

- $\mathrm{C}=$ mathematical representation of content
- $\mathrm{S}=$ mathematical representation of style
- Loss = distance[S(reference) S(generated image) + distance[C(original image) C(generated image)

This person does not exist!

From https://thispersondoesnotexist.com/: try it out!

Reduce the impact of systematic uncertainties on our results

UCLouvain

- Adversarial networks used to build pivot quantities
- Quantities that are invariant in some parameter (typically a nuisance parameter representing a source of uncertainty)
- Best Approximate Mean Significance as tradeoff optimal/pivotal $E_{\lambda}\left(\theta_{f}, \theta_{r}\right)=\mathcal{L}_{f}\left(\theta_{f}\right)-\lambda \mathcal{L}_{r}\left(\theta_{f}, \theta_{r}\right)$

- Learn how to transform an object into almost itself

From Chollet and Allaire, Deep Learning With R

- Use it to spot objects that are different from those you have trained on
- CMS Muon Chamber detectors modelled as geographic layered maps
- Map is an image: use convolutional autoencoders
- Local approach (independent layers): spot anomalies in a layer
- Regional approach (simultaneusly across the layers): spot intra-chamber issues

B

From arXiv:1808.00911

- Learn a space of continous representations of the inputs

From Chollet and Allaire, Deep Learning With R

...and Variational autoencoders

- "How do I transform a 1 into a 0?"
- Space directions have a meaning! "four-ness", "one-ness"

| / | \boldsymbol{l} | ℓ | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| / | 1 | 1 | 8 | 5 | 5 | 5 | 5 | 6^{6} | 6 | 6 | 6 | 6 | 6 | 0 |
| 1 | 1 | 8 | 8 | 8 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 |
| 1 | 1 | 8 | 8 | 8 | 5 | 5 | 5 | 3 | 2 | ${ }^{8}$ | 6 | 6 | 6 | 6 |
| 1 | 1 | 8 | 8 | 8 | 5 | 5 | 5 | 3 | 2 | 2 | \& | 6 | 6 | 6 |
| 1 | 8 | 8 | 8 | 8 | 8 | 5 | 5 | 3 | 2 | 2 | 2 | 6 | 6 | 6 |
| t | 1 | 8 | 8 | 8 | 8 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 6 | 6 |
| 1 | 7 | 7 | 8 | 8 | 8 | 8 | 3 | 3 | 3 | 2 | 2 | 2 | 6 | 6 |
| 1 | 7 | 7 | 7 | 8 | 8 | 8 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 6 |
| 7 | 7 | 7 | 7 | 9 | g | 8 | 8 | 5 | 3 | 3 | 2 | 2 | 2 | 6 |
| 7 | 7 | 7 | 7 | 9 | 9 | 8 | 8 | 5 | 5 | 3 | 2 | 2. | 2 | 6 |
| 9 | 7 | 7 | 7 | 9 | 4 | 7 | 8 | \% | \% | \% | 2 | 2. | 2 | 0 |
| 9 | 7 | 7 | 7 | 9 | 4 | 4 | 4 | 7 | 9 | ¢ | व | a | 2 | e |
| 7 | 7 | 7 | 9 | 9 | 4 | 4 | 4 | 4 | 4 | 4 | 9 | 9 | a | 0 |
| 7 | 7 | 7 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |

- Fast generation of collision events in a multidimensional phase space
- Balancing goodness-of-reconstruction and overlap in latent space
- B-VAE Loss $=\frac{1}{M} \sum_{i=1}^{M}(1-B) \cdot M S E+B \cdot D_{K L}$.
- Works better than a GAN!

Plots from arXiv:1804.03599 and arXiv:1901.00875

- What about adding a time component?
- A single network is not complex enough for driving a car
- What if we permit a network to modify itself?

Deep Q Learning...

- Reinforcement Learning
- "Q" is the letter denoting the reward function for an action

Agent

By Megajuice - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=57895741

...is what you do to train your pets

From videogames...

- ATARI Blackout (Google Deep Mind)
- https://deepmind.com/research/dqn/
- https://www.youtube.com/watch?v=MqUbdd7ae54
- Build your own simulated driver: http://selfdrivingcars.mit.edu/deeptraffic/
- Boosted objects decay to collimated jets reconstructed as single fat jet
- Fat jet grooming: remove soft wide-angle radiation not associated with the underlying hard substructure

(a) Plain

(b) GroomRL-W

(c) GroomRL-Top

Learn sequences

UCLouvain

- Recurrent architectures insert a "time" component: learn sequences!
- In general a dimension that is supposed to be ordered (time, position of words in a sentence, etc)
- Can even learn how to generate Shakespearian text
- With Markov Chains, the results are rather worse: https://amva4newphysics.wordpress.com/2016/09/20/hermione-had-become-a-bit-pink/


```
QUEENE:
I had thought thou hadst a Roman; for the oracle,
Thus by All bids the man against the word,
Which are so weak of care, by old care done;
Your children were in your holy love,
And the precipitation through the bleeding throne.
BISHOP OF ELY:
Marry, and will, my lord, to weep in such a one were prettiest;
Yet now I was adopted heir
Of the world's lamentable day,
To watch the next way with his father with his face?
ESCALUS:
The cause why then we are all resolved more sons.
```

From https://www.deeplearningbook.org/ and https://www.tensorflow.org/tutorials/text/text_generation

- Quarks produced in proton-proton collisions give rise to collimated "jets" of particles
- Bottom quarks travel for a while before fragmenting into jets

Plot from DO

...requires combining image and sequential processing!

UCLouvain
Institut de recherche en mathématique et physique

- b tagging at CMS
- CSV (Run I and early Run II): BDT sensitive to secondary vertexes
- DeepCSV: similar inputs, generic DNN
- Domain knowledge can inform the representation used!
- Leading criterion for choice of technique for the classifier
- What is the best representation for jets?
- Convolutional networks for images
- Particle-based structure

Molecules

Sub-atomic particles

Biological species

Everyday scenes

Natural language

From Peter Battaglia's talk at the IML2020 Workshop

- Graph networks to literally connect the dots
 through the graph, strengthens important connections, and weakens useless ones.
> Unseeded hit-pair classification
- Model predicts the probability that a hit-pair is valid

The HEP.TrkX project, S. Gleyzer's talk at 3rd IML workshop

High-granularity calorimeter

- $600 \mathrm{~m}^{2}$ of sensors, 50 layers: 6 million cells with $\sim 3 \mathrm{~mm}$ spatial resolution
- Some square cells, some exagonal cells
- Non-projective geometry

Learning representations of irregular particle-detector geometry with distance-weighted graph networks

(a) Truth

UCLouvain
Institut de recherche

- GPT3: autoregressive model with 175 billion parameters
- Non-recurrent, attention-based (non-fixed-length sequences)
- Standard RNN-based autoencoders have problems due to fixed-length (different languages have different information density)

```
Title: United Methodists Agree to Historic Split
Subtitle: Those who oppose gay marriage will form their own denomination
Article: After two days of intense debate, the United Methodist Church
has agreed to a historic split - one that is expected to end in the
creation of a new denomination, one that will be "theologically and
socially conservative," according to The Washington Post. The majority of
delegates attending the church's annual General Conference in May voted to
strengthen a ban on the ordination of LGBTQ clergy and to write new rules
that will "discipline" clergy who officiate at same-sex weddings. But
those who opposed these measures have a new plan: They say they will form a
separate denomination by 2020, calling their church the Christian Methodist
denomination.
The Post notes that the denomination, which claims }12.5\mathrm{ million members, was
in the early 20th century the "largest Protestant denomination in the U.S.,"
but that it has been shrinking in recent decades. The new split will be the
second in the church's history. The first occurred in 1968, when roughly
10 percent of the denomination left to form the Evangelical United Brethren
Church. The Post notes that the proposed split "comes at a critical time
for the church, which has been losing members for years," which has been
"pushed toward the brink of a schism over the role of LGBTQ people in the
church." Gay marriage is not the only issue that has divided the church. In
2016, the denomination was split over ordination of transgender clergy, with
the North Pacific regional conference voting to ban them from serving as
clergy, and the South Pacific regional conference voting to allow them.
```

Figure 3.14: The GPT-3 generated news article that humans had the greatest difficulty distinguishing from a human written article (accuracy: 12%).

From https://arxiv.org/abs/2005.14165

- Is an image real or fake?
- Is a video real or fake?
- Is a text real or fake?
- If a self-driving car kills someone, who's fault is that?
- You can be tracked anywhere
- Your behaviour can be modelled and exploited

Mindf*ck

They steal your data. They hack your brain. They rule the world.

Christopher Wylie

Images from https://www.deeplearningbook.org/

\boldsymbol{x}

$$
y=\text { "panda" }
$$

$$
\mathrm{w} / 57.7 \%
$$

confidence

$$
\operatorname{sign}\left(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)\right) \underset{\boldsymbol{x}+}{\epsilon \operatorname{sign}\left(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)\right)}
$$

"nematode"
w/ 8.2%
confidence

"gibbon"
w/ 99.3 \%
confidence

Images from https://www.deeplearningbook.org/

Q: If $m \times q$ changes to $q \times m$, what does $p a b m$ change to? A: mbap

Q: If $m \times q$ changes to $q \times m$, what does $y r q l v$ change to?

GPT-3 never gave the "reversal" answer on any of the five trials. Here are its answers:

$$
\begin{aligned}
& \text { lqryv } \\
& \text { rlyqv } \\
& \text { lyrqv } \\
& \text { rylvq } \\
& \text { lyrqv }
\end{aligned}
$$

From https://medium.com/@melaniemitchell.me/follow-up-to-can-gpt-3-make-analogies-b202204bd292

- A few resources
- Intepretability: Christoph MoInar, Interpretable Machine Learning
- Artificial "intelligence": Melanie Mitchell, Artificial Intelligence: A Guide for Thinking Humans

Artificial Intelligence A Guide for Thinking Humans Melanie Mitchell

Likelihood-free inference

Statistical Framing

STATISTICAL FRAMING

| | forward modeling
 generation
 simulation | |
| :---: | :---: | :---: |
| parameters of interest | PREDICTION | |
| $\boldsymbol{\theta}$ | $\mathrm{p}(\mathbf{x}, \mathbf{z} \mid \boldsymbol{\theta}, \mathbf{v})$ | \mathbf{x}
 observed data
 simulated data |
| nuisance parameters | latent variables
 Monte Carlo truth | summary statistic |
| INFERENCE | | |

- (Profile) maximum likelihood fits
- Point estimate by maximizing the likelihood function
- Interval estimate by intersection with likelihood function
- Feldman-Cousins (build intervals using the likelihood ratio for proper ordering of probability elements)
- Test of hypothesis using ratios of the likelihood of the two hypotheses
- Bayesian methods rely on computing posterior distribution $p(\theta \mid \vec{x}) \propto p(\vec{x} \mid \theta) \pi(\theta)$
- Need the likelihood to build the posterior: usually resample posterior (Markov Chain MonteCarlo)
- Point and interval estimates from posterior shape
- Test of hypotheses from ratio of marginal likelihoods (Bayes Factor)
- In HEP we often don't have access to the likelihood
- Monte Carlo generators are used to generate samples distributed according to a given likelihood function $x \sim p(x \mid \theta)$
- The likelihood sometimes is intractable

$$
p(x \mid \theta)=\int d z p(x, z \mid \theta)=\int d z p_{x}(x \mid \theta, z) \prod_{i} p_{i}\left(z_{i} \mid \theta, z_{<i}\right)
$$

- Latent variables
- Matrix element
- Parton shower
- Detector...
- Sample from the density, build an histogram representation, do inference from histogram
- The product of Poisson likelihoods we have seen on Wednesday
- Sample from the density using accessory variables \rightarrow Approximate Bayesian Computation
- Yesterday
- Smart ways of integrating the generating function \rightarrow Matrix Element Method
- Yesterday
- Bypass the integration by learning the generating function \rightarrow Surrogate models by learning the likelihood (ratio)
- Today!
- Active learning: learn surrogates by alternating simulation and inference stages (not treated today)
- Train autoregressive flows on simulated data in order to learn a model of the likelihood in the region of high posterior density
- Learn the structure of the data, together with the density, for intractable likelihoods \rightarrow manifold learning
- Today
- Do inference by finding a "smart", optimal summary statistic \rightarrow INFERNO
- Many more (not discussed today)

Likelihood-free inference with differentiable models

- Monte Carlo generators are used to generate samples distributed according to a given likelihood function $x \sim p(x \mid \theta)$
- Sometimes likelihood intractable because it depends on latent variables

$$
\begin{aligned}
& p(x \mid \theta)=\int d z p(x, z \mid \theta)=\int d z p_{x}(x \mid \theta, z) \prod_{i} p_{i}\left(z_{i} \mid \theta, z_{<i}\right) \\
& \text { (matrix element, parton shower, detector...) }
\end{aligned}
$$

- When the likelihood is intractable, inverting the problem to obtain $p(\theta \mid x)$ is impossible or requires huge amount of generated events or observations
- Approximate Bayesian Computation (ABC): generate events by sampling from a prior $\pi(\theta)$, accept/reject algorithm to build the posterior
- Probabilistic programming systems: use samples from generative model to train a tractable surrogate model

Galton Board example. Images from istockphoto and arXiv:1805.12244

- Our target is the likelinood ratio $\hat{r}\left(x \mid \theta_{0}, \theta_{1}\right)$
- Define a surrogate model by training a classifier to discriminate between equally-sized samples
- $\left\{x_{i}\right\} \sim p\left(x \mid \theta_{0}\right)$
- $\left\{x_{i}\right\} \sim p\left(x \mid \theta_{1}\right)$
- Use the standard binary cross-entropy loss

$$
L_{\mathrm{XE}}=-\mathbb{E}\left[\nVdash\left(\theta=\theta_{1}\right) \log \hat{s}\left(x \mid \theta_{0}, \theta_{1}\right)+\nVdash\left(\theta=\theta_{0}\right) \log \left(1-\hat{s}\left(x \mid \theta_{0}, \theta_{1}\right)\right)\right]
$$

- This is minimized by the optimal decision function

$$
s\left(x \mid \theta_{0}, \theta_{1}\right)=p\left(x \mid \theta_{1}\right) /\left(p\left(x \mid \theta_{0}\right)+p\left(x \mid \theta_{1}\right)\right)
$$

- Invert the expression, to estimate the LR as

$$
\hat{r}\left(x \mid \theta_{0}, \theta_{1}\right)=\left(1-\hat{s}\left(x \mid \theta_{0}, \theta_{1}\right)\right) / \hat{s}\left(x \mid \theta_{0}, \theta_{1}\right)
$$

- In real cases, will not in general learn exactly the optimal decision function
- As long as the function is monotonic, can recalibrate

Likelihood-free inference with differentiable models

- Likelihood is intractable $p(x \mid \theta)=\int \mathrm{d} z p(x, z \mid \theta)=\int \mathrm{d} z p_{x}(x \mid \theta, z) \prod_{i} p_{i}\left(z_{i} \mid \theta, z_{<i}\right)$
- But the joint score can be computed by accumulating $\nabla_{\theta} \log p\left(z_{i} \mid \theta, z_{: i}\right)$ while simulating conditioned on random trajectory z

$$
\begin{equation*}
\left.t\left(x, z \mid \theta_{0}\right) \equiv \nabla_{\theta} \log p(x, z \mid \theta)\right|_{\theta_{0}}=\left.\sum_{i} \nabla_{\theta} \log p_{i}\left(z_{i} \mid \theta, z<i\right)\right|_{\theta_{0}}+\left.\nabla_{\theta} \log p_{x}(x \mid \theta, z)\right|_{\theta_{0}} \tag{1}
\end{equation*}
$$

- The joint score can be seen as a reward function to optimize θ
- Can compute also the joint likelihood ratio

$$
\begin{equation*}
r\left(x, z \mid \theta_{0}, \theta_{1}\right) \equiv \frac{p\left(x, z \mid \theta_{0}\right)}{p\left(x, z \mid \theta_{1}\right)}=\frac{p_{x}\left(x \mid \theta_{0}, z\right)}{p_{x}\left(x \mid \theta_{1}, z\right)} \prod_{i} \frac{p_{i}\left(z_{i} \mid \theta_{0}, z_{<i}\right)}{p_{i}\left(z_{i} \mid \theta_{1}, z_{<i}\right)} . \tag{2}
\end{equation*}
$$

- Joint score + likelihood ratio quantify how likely a particular simulated trajectory through the simulator is if you change θ
- Augmented data (I prefer to use the term armored, to avoid confusion with resampling techniques)
- Ingredients (the "augmented" data)
- Simulated observations x_{i}
- Joint likelihood ratio $r\left(x_{i}, z_{i} \mid \theta_{0}, \theta_{1}\right)$
- Joint score $t\left(x_{i}, z_{i} \mid \theta_{0}\right)$
- Goal: estimate likelihood $p(x \mid \theta)$ or likelihood ratio $r\left(x \mid \theta_{0}, \theta_{1}\right)$
- Estimate $r\left(x \mid \theta_{0}, \theta_{1}\right)$ from $r\left(x, z \mid \theta_{0}, \theta_{1}\right)$: non-trivial (\int ratio \neq ratio \int)
- Estimate $\left.t\left(x \mid \theta_{0}\right) \equiv \nabla_{\theta} \log p(x \mid \theta)\right|_{\theta_{0}} t\left(x_{i}, z_{i} \mid \theta_{0}\right)$ from $t\left(x_{i}, z_{i} \mid \theta_{0}\right)$: non-trivial $\left(\int \log \neq \log \int\right)$
- For the joint likelihood ratio
- Define mean-square-error loss :

$$
L_{r}=\mathbb{E}_{p\left(x, z \mid \theta_{1}\right)}\left[\left(r\left(x, z \mid \theta_{0}, \theta_{1}\right)-\hat{r}(x)\right)^{2}\right]
$$

- This is minimized by

$$
r^{*}(x)=\underset{\hat{r}}{\arg \min } L_{r}=\mathbb{E}_{p\left(z \mid x, \theta_{1}\right)}\left[r\left(x, z \mid \theta_{0}, \theta_{1}\right)\right]=r\left(x \mid \theta_{0}, \theta_{1}\right)
$$

- For the joint score (setting $\theta=\theta_{0}$)
- Define mean-square-error loss:

$$
L_{t}=\mathbb{E}_{p\left(x, z \mid \theta_{0}\right)}\left[\left(t\left(x, z \mid \theta_{0}\right)-\hat{t}\left(x \mid \theta_{0}\right)\right)^{2}\right],
$$

- This is minimized by

$$
t^{*}(x)=\mathbb{E}_{p\left(z \mid x, \theta_{0}\right)}\left[t\left(x, z \mid \theta_{0}\right)\right]=t\left(x \mid \theta_{0}\right)
$$

- We have learned from these augmented data to regress on the two intractable quantities, i.e. to transform:
- $t\left(x, z \mid \theta_{0}\right)$ into $t\left(x \mid \theta_{0}\right)$
- $r\left(x, z \mid \theta_{0}, \theta_{1}\right)$ into $r\left(x \mid \theta_{0}, \theta_{1}\right)$

Image from K. Cranmer's PhyStat seminar

- Calculate the full true parton-level likelihood starting from N simulated events
- Obtain a sufficient statistic for inference; exploit all available information!

Images from arXiv:1805.00020

- Calculate the full true parton-level likelihood starting from N simulated events
- Inference not limited anymore by the size of the generated samples

Image from K. Cranmer's PhyStat seminar and arXiv:1805.00020

- Effective field theories and similar parametrizations contribute a finite number of amplitudes to a given process
- Each amplitude is multiplied by a function of the Wilson coefficients
- Can write the likelihood in terms of the different amplitude components c^{\prime}
- $f_{c^{\prime}}(z)$ are not necessarily properly positive definite or normalized

$$
p(z \mid \theta)=\sum_{c^{\prime}} \tilde{w}_{c^{\prime}}(\theta) f_{c^{\prime}}(z)
$$

- Example: SM amplitude $\mathcal{M}_{0}(z)$ interferes with one new physics amplitude $\mathcal{M}_{\mathrm{BSM}}(z \mid \theta)=\theta \mathcal{M}_{1}(z)$, which scales linearly with a new physics parameter θ.
- Differential cross section: $\mathrm{d} \sigma(z) \propto\left|\mathcal{M}_{0}(z)\right|^{2}+2 \theta \operatorname{Re} \mathcal{M}_{0}(z)^{\dagger} \mathcal{M}_{1}(z)+\theta^{2}\left|\mathcal{M}_{1}(z)\right|^{2}$
- Each component (SM, interference, BSM) has its own parameter dependence $\tilde{w}_{c^{\prime}}(z)$ and momentum dependence $f_{c^{\prime}}(z)$
- Pick a number of basis parameter points, one θ_{c} for each c^{\prime}
- Not related to the choice of EFT operator basis
- If the choice makes the matrix $W_{c c^{\prime}}=\tilde{w}_{c^{\prime}}\left(\theta_{c}\right)$ invertible, then the likelihood is a mixture model

$$
p(z \mid \theta)=\sum_{c} w_{c}(\theta) p_{c}(z)
$$

- Weights $w_{c}(\theta)=\sum_{c^{\prime}} \tilde{w}_{c}(\theta) W_{c c^{\prime}}^{-1}$
- Properly normalized basis densities $p_{c}(z)=p\left(z \mid \theta_{c}\right)$
- Weights $w_{c}(\theta)$ depend on the choice of basis points and are analytically known.
- From the morphing we obtain the full likelihood function $p(z \mid \theta)$ from a finite set of evaluations of basis densities $p_{c}(z)$.
- We still need $p(z \mid \theta)$ to be tractable

$$
p(x \mid \theta)=\int \mathrm{d} z p(x, z \mid \theta)=\int \mathrm{d} z p(x \mid z) p(z \mid \theta) .
$$

- Although it's true that even if it is intractable the following is true:

$$
p(x \mid \theta)=\sum_{c} w_{c}(\theta) p_{c}(x)
$$

- With this, impose the morphing parametrization to the likelihood ratio estimators
- Finally, learn the LR estimators as we did before
- Uncertainty small near the basis points
- Use a composite reference hypothesis (fixed denominator) (the basis estimators $\hat{r}_{c}(x)=\hat{r}\left(x \mid \theta_{c}, \theta_{1}\right)$ only depend on $\left.x\right)$

$$
\hat{r}\left(x \mid \theta_{0}, \theta_{1}\right)=\sum_{c} w_{c}\left(\theta_{0}\right) \hat{r}_{c}(x)
$$

- Decompose both the numerator and denominator distributions with pairwise estimators $\hat{r}_{c^{\prime}, c}(x)=\hat{r}\left(x \mid \theta_{c^{\prime}}, \theta_{c}\right)$.

$$
\hat{r}\left(x \mid \theta_{0}, \theta_{1}\right)=\sum_{c}\left[\sum_{c^{\prime}} \frac{w_{c^{\prime}}\left(\theta_{1}\right)}{w_{c^{\prime}}\left(\theta_{0}\right)} \hat{r}_{c^{\prime}, c}(x)\right]^{-1}
$$

Resources

- Resources to start playing with this
- https://github.com/diana-hep/madminer (in particular examples/tutorial_particle_physics)
- Also look at https://github.com/johannbrehmer/goldmine and https://github.com/johannbrehmer/goldmine

INFERNO: inference-aware neural optimization in one slide

UCLouvain

- Build a nonparametric likelihood function based on the simulation, and use it as summary statistic
- Minimize the expected variance of the parameter of interest
- Obtain the Fisher information matrix via automatic differentiation, and use it as loss function!
- For (asymptotically) unbiased estimators, Rao-Cramér-Frechet (RCF) bound $V[\hat{\theta}] \sim \frac{1}{\theta}$
- Constraints from auxiliary measurements (i.e. systematic uncertainties) included out of the box in the covariance matrix!

- Apply a NN classifier to each event in a dataset, obtaining a lower-dimensional summary statistic
$\boldsymbol{f}(\boldsymbol{x} ; \boldsymbol{\phi}): \mathcal{X} \subseteq \mathbb{R}^{d} \rightarrow \mathcal{Y} \subseteq \mathbb{R}^{b}$
- ϕ are the neural network parameters learned via stochastic gradient descent
- $\operatorname{dim}(\mathcal{Y})$ is the number of output neurons (might be one, might be more)
- Now need to map this into a summary statistic, to be calibrated and optimized via a non-parameteric likelihood
$\mathcal{L}(D ; \boldsymbol{\theta}, \boldsymbol{\phi})$
- $G_{s}=\left\{\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{g}\right\}$ simulated observations conditional on values of $\boldsymbol{\theta}_{s}$
- In HEP we tend to use histograms and express likelihoods as product of Poisson factors per each bin
- Consider the NN output $\boldsymbol{f}(\boldsymbol{x} ; \boldsymbol{\phi})$, and assign each observation \boldsymbol{x} to a bin defined as:

$$
s_{i}(D ; \boldsymbol{\phi})=\sum_{\boldsymbol{x} \in D} \begin{cases}1 & i=\operatorname{argmax}_{j=\{0, \ldots, b\}}\left(f_{j}(\boldsymbol{x} ; \boldsymbol{\phi})\right) \\ 0 & i \neq \operatorname{argmax}_{j=\{0, \ldots, b\}}\left(f_{j}(\boldsymbol{x} ; \boldsymbol{\phi})\right)\end{cases}
$$

- From this one can take the per-bin expectation

$$
\mathcal{L}(D ; \boldsymbol{\theta}, \boldsymbol{\phi})=\prod_{i=0}^{b} \operatorname{Pois}\left(s_{i}(D ; \boldsymbol{\phi}) \left\lvert\,\left(\frac{n}{g}\right) s_{i}\left(G_{s} ; \boldsymbol{\phi}\right)\right.\right)
$$

- n / g accounts for the different number of obs in the samples
- Can extend to cases where $N_{\text {obs }}$ is a random variable (typical HEP case) etc
- This likelihood is not differentiable (because of argmax), so use surrogate (softmax operator)

$$
\hat{s}_{i}(D ; \phi)=\sum_{x \in D} \frac{e^{f_{i}(x ; \phi) / \tau}}{\sum_{j=0}^{b} e^{f_{j}(x ; \phi) / \tau}}
$$

- τ regulates how soft is softmax: $\hat{s}(D ; \phi) \lim _{\tau \rightarrow 0^{+}} \boldsymbol{s}(D ; \phi)$
- End up with $\hat{\mathcal{L}}(D ; \boldsymbol{\theta}, \phi)$. In the Asimov dataset,

$$
\hat{\mathcal{L}}_{A}(\boldsymbol{\theta} ; \boldsymbol{\phi})=\prod_{i=0}^{b} \operatorname{Pois}\left(\left.\left(\frac{n}{g}\right) \hat{s}_{i}\left(G_{s} ; \boldsymbol{\phi}\right) \right\rvert\,\left(\frac{n}{g}\right) \hat{s}_{i}\left(G_{s} ; \boldsymbol{\phi}\right)\right)
$$

- MLE is the original generator parameters $\operatorname{argmax}_{\boldsymbol{\theta} \in \theta}\left(\hat{\mathcal{L}}_{A}(\boldsymbol{\theta} ; \boldsymbol{\phi})\right)=\boldsymbol{\theta}_{s}$
- Fully differentiable Fisher information:

$$
\boldsymbol{I}(\boldsymbol{\theta})_{i j}=\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}}\left(-\log \hat{\mathcal{L}}_{A}(\boldsymbol{\theta} ; \boldsymbol{\phi})\right)
$$

- If the simulation is itself differentiable or if one can approximate variations of $\boldsymbol{\theta}$ over G_{s}
- For an unbiased MLE estimate $\hat{\boldsymbol{\theta}}$ of $\boldsymbol{\theta}$, Cramí-Rao bound (equality in high-stat limit) satisfied

$$
\operatorname{cov}_{\boldsymbol{\theta}}(\hat{\boldsymbol{\theta}}) \geq I(\boldsymbol{\theta})^{-1}
$$

- Can use inverse of the Fisher information as approximate estimator of the expected variance!
- Immediate extension to nuisance parameters constrained by auxiliary measurements $\left\{\mathcal{L}_{C}^{0}(\boldsymbol{\theta}), \ldots, \mathcal{L}_{C}^{c}(\boldsymbol{\theta})\right\}$

$$
\hat{\mathcal{L}}_{A}^{\prime}(\boldsymbol{\theta} ; \boldsymbol{\phi})=\hat{\mathcal{L}}_{A}(\boldsymbol{\theta} ; \boldsymbol{\phi}) \prod_{i=0}^{c} \mathcal{L}_{C}^{i}(\boldsymbol{\theta}) .
$$

- Loss function: an function of the inverse of Fisher Information matrix at $\boldsymbol{\theta}_{s}$
- Diagonal elements of $I_{i i}^{-1}\left(\boldsymbol{\theta}_{s}\right)$: expected variance of each of the ϕ_{i} under the normal approximation
- Inference about $\omega_{0}=\theta_{k}$: use loss function $U=I_{k k}^{-1}\left(\boldsymbol{\theta}_{s}\right)$ (expected width of the confidence interval for ω_{0} accounting also for the nuisance parameters
- Also immediate extension to many parameters of interest

```
Algorithm 1 Inference-Aware Neural Optimisation.
Input 1: differentiable simulator or variational approximation \(g(\boldsymbol{\theta})\).
Input 2: initial parameter values \(\boldsymbol{\theta}_{s}\).
Input 3: parameter of interest \(\omega_{0}=\theta_{k}\).
Output: learned summary statistic \(\boldsymbol{s}(D ; \boldsymbol{\phi})\).
    1: for \(i=1\) to \(N\) do
    2: \(\quad\) Sample a representative mini-batch \(G_{s}\) from \(g\left(\boldsymbol{\theta}_{s}\right)\).
    3: \(\quad\) Compute differentiable summary statistic \(\hat{\boldsymbol{s}}\left(G_{s} ; \phi\right)\).
    4: \(\quad\) Construct Asimov likelihood \(\mathcal{L}_{A}(\boldsymbol{\theta}, \boldsymbol{\phi})\).
    5: \(\quad\) Get information matrix inverse \(I(\boldsymbol{\theta})^{-1}=\boldsymbol{H}_{\boldsymbol{\theta}}^{-1}\left(\log \mathcal{L}_{A}(\boldsymbol{\theta}, \boldsymbol{\phi})\right)\).
    6: \(\quad\) Obtain loss \(U=I_{k k}^{-1}\left(\boldsymbol{\theta}_{s}\right)\).
    7: Update network parameters \(\phi \rightarrow \operatorname{SGD}\left(\nabla_{\phi} U\right)\).
    8: end for
```


Promising results (if time allows)

UCLouvain

compute via automatic differentiation

From De Castro-Dorigo, arXiv:1806.04743, and AMVA4NewPhysics deliverable 1.4 public report

Resources and CMS integration

- Resources
- Tensorflow 1 implementation: https://github.com/pablodecm/paper-inferno (Pablo De Castro Manzano)
- Tensorflow 2 implementation is under validation (Lukas Layer)
- PyTorch implementation is under validation (Giles Strong)

Normalizing flows

- Variational inference (Rezende and Mohamed, 1505.05770)
- Start from a simple density
- Apply a sequence of invertible transformations until the desired complexity is reached
- Combination of inference and generative model
- Inference network maps observations to the parameters of the model
- Generative model receives the posterior samples from the inference network at training time

- Decompose a joint density into a product of conditional densities
- Condition on previous variables (time series, or lower-index coordinates for some ordering
- Predicted value of features depend on past values of the same feature, rather than on other predictors
- Used for density estimation
- Take some variable with some implicit ordering (e.g. tensor)
- Output a mean and standard deviation for each element of the input, conditioned on previous elements
- In a sense, a Bayesian network

Image from https://deepgenerativemodels.github.io

- Kingma and colleagues 1606.04934
- Autoregressive models result in tranformations that by construction have a tractable Jacobian
- If the transformation is also invertible, then the model is equivalent to a normalizing flow
- Can therefore be used for density estimation, e.g. Inverse Autoregressive Flow
- Decompose the operation of sampling from a posterior (typical Bayesian operation, e.g. in MCMC or ABC)
- Sample from a very simple gaussian distribution
- Apply chain of nonlinear invertible transformations
- Obtain posterior sample

MADE and MAF

- MADE Germain and colleagues, 1502.03509
- Masked Autoencoders for Distribution Estimation
- Vectorized architecture for density estimation based on autoencoders
- Fast and reliable
- Masked: deactivate inputs to enforce autoregressive model!
- Masked Autoregressive Flows (MAF), Papamakarios and colleagues, 1705.07057
- If you stack several autoregressive models that each learn a conditional density, you obtain a normalizing flow!

- Generation of events: how are generator-level events x transformed into-reconstructed events y by passing through the detector?
- Model the detector response as a matrix, $y=R x$
- Given observed data y, inverting the matrix R permits to "undo" the smearing induced by the detector
- Nontrivial inverse problem! Many algorithms available, mostly based on regularizing an explicitly inverted matrix
- Vischia (2020b) arXiv:2009:02913 uses resampling to avoid matrix inversion
- Unfolding w/ normalizing flows described here scooped last week on the arxiv: https://arxiv.org/abs/2011.05836 (unfolding with normalizing flows using Empirical Bayes techniques). Check the paper out, it's very nice!
- Unfolding by learning the response matrix as an invertible trasformation with MAF
- More studies ongoing with more complex models (gaussian-to-gaussian might be too simple) and using manifold learning

Manifold learning https://arxiv.org/abs/2003.13913

- Regular GAN/autoencoder applications: efficient sampling but describe lower-dim data manifold embedded in the data space
- Normalizing flows: obtain a density in the full data space (but if data points don't populate full space, will learn smeared-out version)
- Manifold-modelling flows: learn the shape of the manifold and a p.d.f. over the manifold
- But cannot just maximize likelihood, as MFMF provides likelihood's projection on the manifold \rightarrow additional training objective minimize \|x- $x^{\prime} \|$
- Separate parameters describing manifold from those describing the density
- Useful for: use lower-dimensional latent spaces while retaining info on manifold; denoising; anomaly detection

Manifold learning when likelihood is intractable

- Particle physics example: 40 features, manifold structure (quadrimomenta, etc)
- Use domain knowledge: data populate some 14D manifold within a 40D data space
- Shape of the manifold independent of the model parameters θ
- Probability density on the manifold is conditional on the model parameters θ
- Either learn regular likelihood ratio...
- ...or a score-augmented likelihood
- Use differentiability of the parametrized neural density estimation w.r.t. θ
- Add to the loss the MSE b/ween the model score and the joint score
- Compare with a "true posterior" (since likelihood is intractable, approximate it with kernel density estimation)
- Learning the likelihood ratio provides better modelling but poorer inference
- Learning the score-augmented likelihood provides poorer modelling but better inference

| Model (algorithm) | Sample closure | Mean reconstruction error | Log posterior |
| :--- | ---: | ---: | ---: |
| AF | $\mathbf{0 . 0 0 1 9} \pm 0.0001$ | - | -3.94 ± 0.87 |
| PIE (original) | 0.0023 ± 0.0001 | 2.054 ± 0.076 | -4.68 ± 1.56 |
| PIE (unconditional manifold) | 0.0022 ± 0.0001 | 1.681 ± 0.136 | -1.82 ± 0.18 |
| \mathcal{M}-flow | 0.0045 ± 0.0004 | $\mathbf{0 . 0 1 2} \pm 0.001$ | -1.71 ± 0.30 |
| \mathcal{M}_{e}-flow | 0.0046 ± 0.0002 | 0.029 ± 0.001 | -1.44 ± 0.34 |
| AF (SCANDAL) | 0.0565 ± 0.0059 | 0.000 ± 0.000 | -0.40 ± 0.09 |
| PIE (original, SCANDAL) | 0.1293 ± 0.0218 | 3.090 ± 0.052 | 0.03 ± 0.17 |
| PIE (uncond. manifold, SCANDAL) | 0.1019 ± 0.0104 | 1.751 ± 0.064 | $\mathbf{0 . 2 3} \pm 0.05$ |
| $\mathcal{M}^{\text {-flow (SCANDAL) }}$ | 0.0371 ± 0.0030 | $\mathbf{0 . 0 1 1} \pm 0.001$ | $\mathbf{0 . 1 1} \pm 0.04$ |
| \mathcal{M}_{e}-flow (SCANDAL) | 0.0291 ± 0.0010 | 0.030 ± 0.002 | $\mathbf{0 . 1 4} \pm 0.09$ |
| Likelihood ratio estimator (ALICES) | - | - | $\mathbf{0 . 0 5} \pm 0.05$ |

INFERNO: inference-aware neural optimization

UCLouvain

- Build a nonparametric likelihood function based on the simulation, and use it as summary statistic
- Minimize the expected variance of the parameter of interest
- Obtain the Fisher information matrix via automatic differentiation, and use it as loss function!
- For (asymptotically) unbiased estimators, Rao-Cramér-Frechet (RCF) bound $V[\hat{\theta}] \sim \frac{1}{\theta}$
- Constraints from auxiliary measurements (i.e. systematic uncertainties) included out of the box in the covariance matrix!

ARE YOU READY TO INCLUDE MACHINE LEARNING IN YOUR RESEARCH?

Not before having coded a neural network from scratch!!!
This afternoon's session!
Now, if time allows: overview of the use of neural networks in physics

- I am a big fan of feedback: you'll receive in the next couple days a questionnaire
- You'll receive it at the email address you used for registering
- I'd be grateful if you could answer to the questions
- There are also free fields for more articulated suggestions
- I will update the list of references of the last slide later today and reupload

UCLouvain

Object ID

- Object identification done with ML techniques since the Higgs discovery
- Classification problem (e.g. real photons vs objects misidentified as photons)
γ identification score for the lowest-score photons

Validation in $\mathrm{Z} \rightarrow$ ee events

Plots from CMS-PAS-HIG-16-040

Object ID enters the era of mathematical representations - 1

UCLouvain

- Identification of jets from bquarks (b tagging) at CMS
- CSV (Run I and first part of Run II): BDT sensitive to the presence of secondary vertices
- DeepCSV: similar inputs, generic DNN
- Domain knowledge informs the choice of the better mathematical representation
- Main criterion to choose the classification technique
- What's the best representation for jets?
- Convolutional networks for images

CMS DeepJet, plot from Emil Bols' talk at IML workshop

- Clear gain even with respect to using a generic DNN (DeepCSV)

CMS DeepJet

Combining MVA ID for object identification

- Dedicated BDT, one score for each event, representing the mass resolution of the diphoton system
- The photon ID BDT output is used as an input
- High score for diphoton pairs with kinematic properties similar to signal, good mass resolution, and high individual γ ID score
- Validated in $\mathrm{Z} \rightarrow$ ee events where electrons are reconstructed as photons

Plots from CMS-PAS-HIG-16-040

End-to-end reconstruction of jets

- Project detector layers in a single map
- Treat as an image: Res(idual)Net(works)
- Role of tracks in the reconstruction by the network is the same as we expect from the physics we know

X_shortcut goes through convolution block

\square UCLouvain

(a) ResNet- 15

(b) The Residual block with skip connection.

Signal extraction

Separate signal from background using selection cuts

- High fraction of correct events in ttH categories by removing events from the dataset
- Delicate: removing events based on MVA output introduces tricky dependency on simulation
- Dangerous, e.g. prevents from using unfolding results in comparisons with non-SM processes
- In both channels, remove events with low diphoton-BDT score
- Threshold optimized simultaneously with $\gamma \gamma$-ID score, maximizing expected precision on signal strength
t $\overline{\mathrm{t}} \mathrm{H}$ leptonic
- $\geq 1 \mathrm{e} / \mu$
$-\geq 2$ jets
- ≥ 1 btagged jet
tith hadronic
- ≥ 3 jets
- ≥ 1 btagged jet
- $0 \mathrm{e} / \mu$
- BDT classifier (inputs: $N_{j e t s}, p_{\mathrm{T}}^{\text {leadjet }}$, lead and sublead btag scores)

| Evt Cat. | SM 125 GeV Higgs boson expected signal | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Total | ggH | VBF | ttH | bbH | thq | tHW | WH lep | ZH lep | WH had | ZH had |
| ttH Had. | 5.85 | 10.99 \% | 0.70 \% | 77.54 \% | 2.02 \% | 4.13 \% | 2.02 \% | 0.09 \% | 0.05 \% | 0.63 \% | 1.82 \% |
| ttH Lep. | 3.81 | 1.90 \% | 0.05 \% | 87.48 \% | 0.08 \% | 4.73 \% | 3.04 \% | 1.53 \% | 1.15 \% | 0.02 \% | 0.02 \% |

Separate signal from background using all events

 regions

- Different fraction of signal/background
- Constrain normalization or uncertainties in background-dominated regions

Unknown parameters? Parameterized Machine Learning can help you! fnl's

- Classifier sensitive to the value of the parameter
- Train using as an input the true value of the parameter (signal) or a random value (background)
- Evaluate in slices at fixed values of the parameter
- Equal or better than training for individual values, and permits interpolation!
- We already use it!!
- First application in: CMS-HIG-17-006

- Recent application:

CMS-HIG-18-004, arXiv:1908.09206 ${ }^{\text {© }}$

From Baldi et al. arXiv:1601.07913

- Each classification or regression problem is a distinct problem
- Choice of the algorithm dictated e.g. by the structure of data and the complexity of the problem (network capacity)
- Sometimes not trivial: CMS-HIG-18-004, arXiv:1908.09206 ©
- 20-40\% improvement w.r.t. single-variable result $\left(H_{T}\right)$ usando BDT (single lepton) and parameterized DNN (dilepton)
- DNN: more sensitive at low mass, where the BDT has not enough capacity to discriminate similar topologies ($\mathrm{t} \overline{\mathrm{t}}$ vs $\mathrm{H}^{ \pm}$)

- ttiH multilepton: two different classifiers
- BDT1: tit vs tit
- BDT2: ttiH vs tit
- Finely partition the 2D plane (BDT1, BDT2)
- Use a training sample to calculate binning
- Apply to the application sample used for inference
- Define the target $N_{\text {bins }}$ with clustering techniques (k-means)
- Finally separate regions based on empirical likelihood
- Likelihood ratio approximated by $\frac{S}{B}$
- Ordering from the Neyman-Pearson lemma
- Quantile-based binning

Final 1D discriminator (2LSS)

[^1]
End-to-end event classification

- Low-level data representation
- Tracker, electromagnetic calorimeter, hadronic calorimeter
- Various possible geometries
- Mass decorrelation to avoid structure sculpting
- Transform $E_{\gamma \gamma}$ in units of $M_{\gamma \gamma}$
- Extension of pivoting technique
- Training with a 3-classes ResNet ($\mathrm{H} \rightarrow \gamma \gamma, \gamma \gamma, \gamma+\mathrm{jet}$)

- Statistically-limited technique

What if you don't know your signal?

- Multivariate gaussian associated to a set of random variables ($N_{\text {dim }}=N_{\text {random variables }}$)
- Kernel as a similarity measure between bin centers (counts) and a averaging function

Inverse Brasics
UCLouvain
Institut de recherche en mathématique et physique

- Data: mixture model with small S
- Classification based on sample properties
- Compare bootstrapped samples with reference (pure B)
- Use Metodiev theorem to translate inference into signal fraction
- Validate with LR y LDA
- Promising results

Vischia-Dorigo arXiv:1611.08256, doi:10.1051/epjcont/201713711009, and P. Vischia's talk at EMS2019

AMVA4NewPhysics deliverable 2.5 public report

What about the uncertainties?

Can we reduce the impact of uncertainties on our results?

UCLouvain

- Adversarial networks used to build pivot quantities
- Quantities invariant in some parameter (typically nuisance parameter representing an uncertainty)
- Best Approximate Mean Significance as tradeoff optimal/pivotal

$$
E_{\lambda}\left(\theta_{f}, \theta_{r}\right)=\mathcal{L}_{f}\left(\theta_{f}\right)-\lambda \mathcal{L}_{r}\left(\theta_{f}, \theta_{r}\right)
$$

From Louppe-Kagan-Cranmer, arXiv:1611.01046

Reminder: likelihood function and Fisher information

- The (second) derivative of the likelihood function is connected to the quantity of information you can extract from data

$$
I(\theta)=-E\left[\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right]=E\left[\left(\frac{\partial \ln L}{\partial \theta}\right)^{2}\right]
$$

- The likelihood function contains all the information that you can extract from data on the parameter θ
- A narrow likelihood function carries more information than a broader one

INFERNO: inference-aware neural optimization

- Build non-parametric likelihood function based on simulation, use it as summary statistic
- Minimize the expected variance of the parameter of interest
- Obtain the Fisher information matrix with automatic differentiation, and use it as loss function
- For (asymptotically) unbiased estimators, Rao-Cramér-Frechet (RCF) bound $V[\hat{\theta}] \sim \frac{1}{\hat{\theta}}$ (see my Monday lesson)
- Constraints via auxiliary measurements (typically on nuisance parameters) included in covariance matrix out of the box
compute via automatic differentiation

(a) inference-aware training loss

(b) profile-likelihood comparison

From De Castro-Dorigo, arXiv:1806.04743, and AMVA4NewPhysics deliverable 1.4 public report

Which data should we take?

What if we don't know which data to take?

- Represent data as geographically-organized images
- Local focus: detector layers treated independently
- Regional focus: detector layers treated independently but simultaneously (spot problems between layers)
- Autoencoders (noise detection, dimensionality reduction)
- Encode the inputs to the hidden layer
- Decode the hidden layer to an approximate representation of the inputs

From arXiv:1808.00911

- Graph networks to literally connet the dots
 through the graph, strengthens important connections, and weakens useless ones.
> Unseeded hit-pair classification
- Model predicts the probability that a hit-pair is valid

The HEP.TrkX project, S. Gleyzer's talk at 3rd IML workshop

What if you need to do it quickly?

- Real-time event processing requires low-latency and low-power-consumption hardware: FPGAs
- Case study: classify structures inside jets (jet substructure)
- Compression, quantization, parallelization digital signal processing (arithmetic) blocks (DSPs),

- Frederick James: Statistical Methods in Experimental Physics - 2nd Edition, World Scientific
- Glen Cowan: Statistical Data Analysis - Oxford Science Publications
- Louis Lyons: Statistics for Nuclear And Particle Physicists - Cambridge University Press
- Louis Lyons: A Practical Guide to Data Analysis for Physical Science Students - Cambridge University Press
- E.T. Jaynes: Probability Theory - Cambridge University Press 2004
- Annis?, Stuard, Ord, Arnold: Kendall's Advanced Theory Of Statistics I and II
- Pearl, Judea: Causal inference in Statistics, a Primer - Wiley
- R.J.Barlow: A Guide to the Use of Statistical Methods in the Physical Sciences - Wiley
- Kyle Cranmer: Lessons at HCP Summer School 2015
- Kyle Cranmer: Practical Statistics for the LHC - http://arxiv.org/abs/1503.07622
- Roberto Trotta: Bayesian Methods in Cosmology - https://arxiv.org/abs/1701.01467
- Harrison Prosper: Practical Statistics for LHC Physicists - CERN Academic Training Lectures, 2015 https://indico.cern.ch/category/72/
- Christian P. Robert: The Bayesian Choice - Springer
- Sir Harold Jeffreys: Theory of Probability (3rd edition) - Clarendon Press
- Harald Crámer: Mathematical Methods of Statistics - Princeton University Press 1957 edition

Backup

[^0]: 1. ML for data reduction : Application of Machine Learning to data reduction, reconstruction, building/tagging of intermediate object
 2. ML for analysis : Application of Machine Learning to analysis, event classification and fundamental parameters inference
 3. ML for simulation and surrogate model : Application of Machine Learning to simulation or other cases where it is deemed to replace an existing complex model
 4. Fast ML: Application of Machine Learning to DAQ/Trigger/Real Time Analysis
 5. ML algorithms : Machine Learning development across applications
 6. ML infrastructure : Hardware and software for Machine Learning
 7. ML training, courses and tutorials
 8. ML open datasets and challenges
 9. ML for astroparticle
 10. ML for experimental particle physics
 11. ML for phenomenology and theory
 12. ML for particle accelerators
 13. Other
[^1]: CMS-PAS-HIG-17-004, part of CMS-HIG-17-018: evidence for ttH production in multilepton final states

