
Statistics
or “How to find answers to your questions”

Pietro Vischia1

1CP3 — IRMP, Université catholique de Louvain

CP3—IRMP, Intensive Course on Statistics for HEP, 07–11 December 2020

Vischia Statistics for HEP December 07th–11th, 2020 1 / 90



Program for today

Measuring differential distributions
Unfolding
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General outline of the lectures

Lesson 1 - Fundaments
Bayesian and frequentist probability, theory of measure, correlation and causality, distributions

Lesson 2 - Point and Interval estimation
Maximum likelihood methods, confidence intervals, most probable values, credible intervals

Lesson 3 - Advanced interval estimation, test of hypotheses
Interval estimation near the physical boundary of a parameter
Frequentist and Bayesian tests, CLs, significance, look-elsewhere effect, reproducibility crysis

Lesson 4 - Commonly-used methods in particle physics
Unfolding, ABCD, ABC, MCMC, estimating efficiencies

Lesson 5 - Machine Learning
Overview and mathematical foundations, generalities most used algorithms, automatic Differentiation
and Deep Learning
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Lesson 4

Commonly-used methods in particle physics
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The Hidden Bayes

Question Time!
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Hidden Bayes: The Kalman Filter!
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The Kalman Filter

You have an unknown true trajectory whole evolution is governed by discrete stochastic time
steps

You want to predict the next state x ∈ Rn given the previous one
xk = Axk−1 + Buk−1 + wk−1

You want to use measurements z ∈ Rn to inform your decision zk = Hxk + νk

Terms
wk ∼ Gaus(0,Q) and νk ∼ Gaus(0, R) represent the noise (eventually time dependent) on the
process and on the measurement
A controls the evolution of x in absence of noise or of driving function B
B models an optional control input u
H relates the state to the measurement zk
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The Bayes Within

Define a priori and a posteriori estimate errors (minus sign in apex = a priori) and cov
matrices

e−k = xk − x̂−k P−k = E[e−k e−T
k

ek = xk − x̂k Pk = E[ek − eT
k

Compute an a posteriori state estimate x̂k as a linear combination
An a priori estimate x̂−k and
a weighted difference between zk (actual measurement) and a prediction Hx̂−k

Equation: x̂k = x̂−k + K(zk − Hx̂−k )

(zk − Hx̂−k ) is the innovation (or residual)
reflect discrepancy between the predicted and measured state
K gain, or blending factor minimizing the a posteriori covariance
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The Bayes Within

The minimization of K is done by inserting the ek into the equation, computing expectations,
deriving w.r.t. K in zero, etc.

The minimizing Kk is:

Kk =
P−k HT

HP−h HT − R

limRk→0 Kk = H−1, for smaller error covariances the gain K weights the residual more heavily

limPk→0 Kk = 0, for smaller a priori estimated covariances, the gain K weights the residual
less heavily
As the measurement error covariance (a priori estimate error covariance) approaches zero,
you trust

More and more (less and less) your measurement zk
Less and less (more and more) your prediction Hx−
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The Bayes Within

At each time step, time is updated by projecting the state and covariance estimates
x−k = Axk−1 + Buk−1

P−k = APk−1AT + Q

At each time step, measurement is updated
Compute Kalman gain: Kk = P−k HT (HP−k HT + R)−1

Measure process (obtain zk) and generate a posteriori estimate: x̂k = x̂−k + Kk(zk − Hx̂−k )

Update the a posteriori error matrix Pk = (I − KkH)P−k
When the noises Q and R are constant, both Pk and Kk will stabilize quickly and remain
constant

And in this case you can even pre-compute them offline

The Kalman filter uses only the last state of the system to predict the next one
Other algorithms such as Wiener one use all the previous estimates to compute the state,
computational burden
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The Bayes Within

Image from Welch and Bishop, 2006
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The Obligatory mention to non-linearity

If the time or measurement evolution equations are nonlinear, extended Kalman filter
Linearize around the current estimate using partial derivatives (similar to Taylor expansion)

This is the form in which it’s used for track or vertex reconstruction

Image from Welch and Bishop, 2006
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The Bayes Within in practice

This afternoon: code your own Kalman filter
If you want animations, make sure you can import threading
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Estimate your background with ABCD

A “simple” version of a background determination in sidebands used since decades: ABCD
Assume that the signal strength in B,C,D is so small as to be negligible

On Tuesday we have seen how to model background measurements in the likelihood function
Likelihood approach accounts for signal contamination where basic ABCD assumes zero signal
contamination

Image from Buttinger, 2018

Vischia Statistics for HEP December 07th–11th, 2020 14 / 90

https://twiki.cern.ch/twiki/pub/Main/ABCDMethod/ABCDGuide_draft18Oct18.pdf


The Arithmetic Approach

Assume that it’s true that

Nbkg
C

Nbkg
D

=
Nbkg

A

Nbkg
A

This may be approximately satisfied if the observables defining the regions are sufficiently
uncorrelated for background

Any correlation in the signal distribution is not relevant to the approach

If we knew the signal strength in a reliable way, can subtract it in each region to get

Nbkg
i = Ni − Nsig

i , i = B,C,D

But we don’t, and further assume Nbkg
i ' Ni, i = B,C,D

We can then estimate background in signal region A

Nbkg
A =

Nbkg
C

Nbkg
D

Nbkg
B =

NC

ND
NB

Uncertainties in Nbkg
A

Statistical: standard Poisson on the nominal prediction
Systematic: usual uncertainty propagation for the statistical uncertainties in NC , ND, NB
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Validate ABCD

To validate ABCD, you must have additional regions

Split B and D

Apply ABCD to A’ B’ C’ D’ to estimate Nbkg
A′ , compare with NA′

Image from Buttinger, 2018
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What if validation horribly fails?

Crude yet popular approach: take the relative difference between Nbkg
A′ and NA′ as an

uncertainty in the background estimate
BAD PRACTICE (see next-to-next slide) that we had already covered on Monday
Induces other issues: must validate the new closure (find new regions) until some closure closes

Image from Buttinger, 2018
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What if validation horribly fails?
Better: improve your estimate

Build sliding windows in an approximately continuous variable (here, v2)
If there is any, forget about it

Image from Buttinger, 2018
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What if validation horribly fails?

Better: improve your estimate
Build sliding windows in an approximately continuous variable (here, v2)
Calculate transfer factors NC/ND and N′C/N′D as a factor of an approximately continuous variable
(here, v2)
Correct estimates using the transfer factors (propagating uncertainty in the transfer factors)

Even better: implement ABCD in your likelihood function (equivalent but automatic
propagation of all uncertainties and their correlations)

Image from Buttinger, 2018
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Systematic uncertainties and closure tests

Closure tests are alternative procedures you can use to check if your measurement is robust
E.g. insensitive to systematic effects
Usually compare alternative result with nominal result (GoF test) to decide if closure test passed

Closure tests are PASS/FAIL tests
Correct course of action: if closure test fails, then there is a mistake in the tested procedure,
therefore modify/improve the procedre

If the alternative procedure highlights e.g. a recalibration to be done, then recalibrate (i.e. use the
better procedure)

Wrong course of action: if closure test fails, add discrepancy as uncertainty
The sentence “The closure test shows a 10% discrepancy, and we consequently assign it as
systematic uncertainty” is pure BS (although you’ll sadly find it in many published papers)

In general, if a closure test fails, always prioritize a mitigation or suppression of the effect by
improveming your analysis methods

A systematic should be added only as a very very last resort
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Generalities on sPlot

Overview of the method itself (Pivk, Le Diberder 2004: sPlot: a Statistical Tool to Unfold Data
Distributions)

https://doi.org/10.1016/j.nima.2005.08.106 (or https://sci-hub.tw/10.1016/j.nima.2005.08.106)
ROOT implementation at https://root.cern.ch/doc/master/classRooStats_1_1SPlot.html

Summary of recent discussions and criticism on the method itself and on its practical
application

Discussions in the Statistics Committee of various experiments
Also discussions among experiments
Main drawbacks identified by Igor Volobouev and Francisco Matorras

A simpler alternative formalized by Louis Lyons
Labelled AtoZ, but in use since a couple decades in various experiments
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sPlot in a nutshell

Explore a data sample constituted by two or several sources of events
Assume the events are characterized by two set of variables

Discriminating variables: the distribution of all the sources of events is known
Control variables: the distribution of some sources of events is either unknown or considered as such

“Reconstruct the distribution of the control variable, independently for each of the various
sources of events, without making use of any a priori knowledge on this variable”
“use the knowledge available for the discriminating variable to be able to infer the behavior of
the individual sources of events with respect to the control variable.”

Usually using a MLE estimate using the shape of the discriminating variable

“An essential assumption for the s Plot technique to apply is that the control variable is
uncorrelated with the discriminating variable.”

First problem: you should and substitute (in)dependent of rather than (un)correlated with

Literal quotes from https://doi.org/10.1016/j.nima.2005.08.106
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sPlot in a graphical nutshell

Two (independent?) variables, with different mixtures

Image by agorozhnikov
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sPlot in a graphical nutshell

Actually observe the mixture (unknown labels)

Image by agorozhnikov
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sPlot in a graphical nutshell

If you know the distribution of each class, can fit to obtain probabilistic estimate of the per-bin
fraction

Image by agorozhnikov
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sPlot in a graphical nutshell

Convert the probabilities (above) to weights to be applied to each event (below) to
compensate for the contribution of the other classes

Image by agorozhnikov
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sPlot in a graphical nutshell

Reconstruct control distribution both for signal and background based on the weights
computed from the discriminating distribution

Image by agorozhnikov
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sPlot in a graphical nutshell

This works if control and discriminating variables are independent within each class
If the variables are correlated (hence not independent) then bad things happen

Reminder: variables might be uncorrelated but still dependent (remember linear correlation
vs mutual information?)

Image by agorozhnikov
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Ingredient: the likelihood

Extended likelihood: lnL =
∑N

e=1 ln
{∑Ns

i=1 Nifi(y : e)
}
−
∑Ns

i=1 Ni

N number of events in the data sample
Ns number of species of events populating the data sample (e.g. Ns = 2 if one sig and one bkg)
Ni number of expected events for the i-th species
fi is the p.d.f. of the discriminating variables for the i-th species
fi(ye) value taken by the p.d.f. for the event e, associated with a set of ye for teh set of discriminating
variables)
x is the set of control variables (by definition, they don’t appear in the extended likelihood

lnL is a function of the Ns yields Ni and of eventual implicit parameters designed to tune the
fis on the data sample

Determine Ni and the implicit parameters by maximizing the likelihood

Vischia Statistics for HEP December 07th–11th, 2020 29 / 90



Validation of the method and role of the control variable

The target is reconstructing the distribution of the control variables

Validate by goodness-of-fit test of the MLE (not really convincing, it does not tell anything
about the result for the control variables)
If the distribution of the control variable is known for at least one source, then can compare
the expected distribution to the one extracted by the method

Hence the name of control variable
Can even use a discriminating variable yi which does not improve the fit as a control variable x
Can even go wild, taking out a discriminating variable, recomputing the MLE, and use the excluded
discriminating variable as control variable

Going in signal-enriched region and compare the distribution of x with a MonteCarlo
simulation is discouraged

Can be used only if signal and background have significantly different shapes
The cuts for the signal-enriched fraction results in a reduced subsample of the data distribution, with
larger statistical fluctuations

Reconstruct true distribution of x for the n-th species, Mn(x) from the sole knowledge of the
p.d.f. fi of the y variables
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x is part of the y set: the not-so-useful inPlot technique

x is fully determined, x = x(y), cannot be used as control variable
Authors say fully correlated, but what they should have writtens is dependent. The same mistake all
across the paper

Determine the yields Ni for all species

Reweight each event by a weight depending on fi and N̂i:
Pn(ye) =

Nnfn(ye)∑Ns
k=1 Nk fk(ye)

Build the x-distribution M̃n by histogramming weighted events (summing Nδx events lying
inside the bin with center x̄ and width δx)
NnM̃n(x̄)δx :=

∑
e∈δx Pn(ye)

On average, the sum over the events in the bin can be substituted by∫
dy
∑Ns

j=1 Njfj(y)δ(x(y)− x̄)δx

On average, substituting expected Ni with fitted Ni,
〈NnM̃n(x̄)〉 =

∫
dy
∑Ns

j=1 Njfj(y)δ(x(y)− x̄)δxPn(ye) = Nn
∫

dyδ(x(y)− x̄)fn(y) =: NnMn(x̄)

Sum over the events of the weights Pn provides estimate of the x distribution of events of n-th
species.
Drawback: because x = x(y), the p.d.f. of x enters the weights→ quality of fit cannot be
assessed easily (biases when fi(y) not accurate)

Events in the tail of the implicit Mn would enter M̃n with very small weight→ bias towards the
assumed Mn
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x is not part of the y set: the sPlot technique

“More precisely, the two sets of variables x and y are assumed to be uncorrelated: hence, the
total PDFs fi(x, y) all factorize into products Mi(x)fi(y)

This holds only when x and y are independent; if they are uncorrelated they are not necessarily
independent.
Mistake spread all across the paper; read the paper by substituting (in)dependent for (un)correlated

Using the naive weight from the previous slide,
〈NnM̃n(x̄)〉 =

∫ ∫
dydx

∑Ns
j=1 NjMj(x)fj(y)δ(x(y)− x̄)Pn = Nn

∑Ns
j=1 Mj(x̄)

(
Nj
∫

dy fn(y)fj(y)∑Ns
k=1 Nk fk(y)

)
This is different from NnMn(x̄) because the integral on dy does not equal δcronecker

jn

Unless y is totally discriminant, but this would make the whole point moot; you could just apply cuts to
select a pure sample of events of the n-th species

Correction term related to the inverse of the covariance matrix (and to the Fisher information)
which is minimized by the fit

V−1
nj =

∂2(−L)
∂Nn∂Nj

=
∑N

e=1
fn(ye)fj(ye)

(
∑Ns

k=1 Nk fk(ye))2

Again, can substitute on average the sum with an integral, 〈V−1
nj 〉 =

∫
dy fn(y)fj(y)∑Ns

k=1 Nk fk(y)

...and the variance can be used in the expression for M̃, yielding
〈M̃n(x̄)〉 =

∑Ns
j=1 Mj(x̄)Nj〈V−1

nj 〉

The distribution of interest can be recovered as: NnMn(x̄) =
∑Ns

j=1〈Vnj〉〈M̃j(x̄)〉
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One-slide summary of the technique
Assume the control variable x does not belong to y and is independent on y

Compute the covariance-weighted sWeight sPn(ye) :=

∑Ns
j=1 Vnjfj(ye)∑Ns

k=1
Nkfk(ye)

Obtain the distribution of the control variable x from the sPlot histogram
Nn sM̃n(x̄)δx :=

∑
e∈δx sPn(ye)

This reproduces on average the true distribution, 〈Nn sM̃n(x)〉 = NnMn(x)
If x and y are not independent, then this expression cannot be compared directly with the true
distribution of the n-th species
MonteCarlo simulation of the whole procedure to obtain the expected distribution to compare with

Plots from https://doi.org/10.1016/j.nima.2005.08.106
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Pitfall: independence of x and y

The factorization of fi(x, y) into Mi(x)fi(y) relies on independence of the variables.

If not satisfied, then must use fi(y|x) rather than the marginal fi(y), obtaining results biased in
an a-priori unknown manner

Independence is much stronger than lack of correlation: very restrictive condition

Checking for correlation is a first step, but should check for independence!
The solution is indeed to test for indepencence between the variables

Can be done only in sidebands (cannot use S + B events, because independence in S and B
separately does not imply independence in S + B)

Necessary-but-not-sufficient for independence: rank-correlation-coefficient based tests
(Kendall’s or Spearman’s)

Based on whether pairs of observations have the same rankings in the two variables
Spots only pairwise dependence

Empirical copula
Multivariate cdf with uniform marginals, useful to check for conditional independence
Used pairwise between x and y (not within y or x variables)
Ideally between one x and many y, but not yet available

I argue that mutual correlation can be used with profit in this case
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Pitfall: coverage of the uncertainties

The paper claims that asymptotically the statistical
uncertainty is σ[Nn sM̃n(x̄)δx] :=

√∑
e∈δx(sPn)2

Demonstration is provided based on the definition of

variance,
〈(∑

e∈δx sPn

)2〉
−
〈∑

e∈δx sPn

〉2

Equations are incorrect for finite samples: they ignore
the correlations between the weights introduced by
the covariance-weighted version of the weights

Vnj are random variables estimated in data, subject to
correlated statistical uncertainties

Confidence intervals from the second derivative of
MLE do not yield correct coverage in presence of
event weights

Noted by Langenbruch in
https://arxiv.org/abs/1911.01303, but his proposed
solutions (right) do not address the previous problem

Possible solutions
Rederive variance propagating uncertainties on the
weight corrections
Use resampling or toys

Example of acceptance effects

Example of background subtraction

Plots from arXiv:1911.01303
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Pitfall: inference

Correlated weights induce correlations in the sPlot bin contents
Any inference from these histograms should take those correlations into account

Not addressed in sPlot paper
Assumption of lack of correlation cannot be done

Can be avoided by proper calculation of the bin covariance matrix (either via proper
propagation from Vnj or toys/resampling)

Provided that this bin covariance matrix is then used for any subsequent inference
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Toy examples of issues

Some naive toy example by Francisco Matorras to illustrate the entity of the issues

Two samples (signal and background)

One control variable (“mass”, plotted) and one discriminant variable (“other mass” fitted and
which defines the weights)

Bivariate normal pdf, S ∼ Gaus(2, 1)× Gaus(2, 1), B ∼ Gaus(0, 1)× Gaus(0, 1), S
S+B = 0.1

Mimic sPlot analysis, repeating for many toys to check for bias and coverage
Calculate weights
Calculate yield / signal fraction as sum of weights
Plot the distribution for control variable using sWeights
Extract mass and fractions from fit of the sWeighted distributions

No pretense of generality (bias and coverage will in general exhibit different issues in other
scenarios), but indicative of the typical issues with bias and coverage
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No correlation for variables neither in signal nor in background

No bias (assumption of independence is satisfied)

Uncertainties don’t cover correctly (uncertainties don’t account for correlations between the
weights)

Plots by Francisco Matorras
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Small (±0.1) correlation for variables in background

Bias! (assumption of independence is not satisfied)
Uncertainties don’t cover correctly (uncertainties don’t account for correlations between the
weights, plus non-independence of variables)

Similar results for ρbkg = 0.1

Plots by Francisco Matorras
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Small (±0.1) correlation for variables in signal

Bias! (assumption of independence is not satisfied)
Uncertainties don’t cover correctly (uncertainties don’t account for correlations between the
weights, plus non-independence of variables)

Similar results for ρsig = −0.1

Plots by Francisco Matorras
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Louis Lyon’s AtoZ: a possible replacement of sPlot

Similar to ABCD method, but extended to many regions (bins)
Hence the name: A..Z

Already in use since decades
It’s a formalization with fancy name, documented in a recent talk

Solve the plugged-in equations ŝij + b̂ij = dij for the estimated number of signal and
background events (can extend to multiple backgrounds)

M: bins in x. N: bins in y
sij: observed number of sig events in bin (xi, yj). Corresponding estimated number: ŝij

bij: observed number of bkg events in bin (xi, yj). Corresponding estimated number: b̂ij
dij = sij + bij observed data yield in bin (xi, yj)
ps

j : probability for a sig event to fall into the j-th bin of y
pb

j : probability for a bkg event to fall into the j-th bin of y

Equation can be rewritten as ps
j n

s
i + pb

j nb
i = dij, where ns

i and nb
i are estimates of the total

yields for sig and bkg in the distribution of the parameter of interest
M × N equations, 2M unknown parameters
N = 2: analytical solution (as in ABCD)
N > 2: likelihood fit or χ2 fit: for each bin i of x, fit y for ns

i and nb
i

Covariance matrices calculated easily (parameters are linear combinations of dij
Must still check for independence of the variables in sidebands, but at least if they are independent
you should get correct coverage with simple formulas
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Summary — 1

sPlot is a method to reconstruct the distribution of a control variable of unknown p.d.f., using
only the knowledge of the p.d.f. s of a discriminating variable

Relies on the assumption of independence between the (set of) control variables and the (set of)
discriminating variables
Provides also an estimate of the statistical uncertainty on the estimated distributions

Three issues highlighted by the StatComm (details in https://indico.cern.ch/event/895770/

Assumption of independence
If not satisfied, leads to unpredictable biases
Many analyses don’t check the assumption
The remaining ones check that the variables are uncorrelated, but this is necessary but not sufficient
for independence!
Possible solution: check for independence! (rank correlation coefficient, or copulas) (can be done
only in sidebands)

Statistical uncertainties computed by the method are wrong
Vnj are random variables estimated in (the same) data→ correlated statistical uncertainties
Confidence intervals from second derivative of likelihood don’t yield correct coverage for weighted
events anyways
Possible solutions: rederive the expression for the uncertainty by propagating things correctly, or use
resampling/toys

Inference
Correlated weights induce correlations in sPlot bin contents
Inference based on those histograms should take these correlations into account
Possible solutions: proper calculation of bin covariance matrix (either by propagating things properly,
or using resampling/toys)
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Summary — 2

Toy examples show that significant issues can arise even in very simple cases
Bias can arise even for very small correlations between the variables
Significant (under)coverage can arise even when no correlations between the variables!

A simpler, template-based method (essentially a generalization of ABCD) formalized by Louis
but in use since decades

For each bin of x, likelihood (or χ2) fit to the discriminating variable y

A colleague’s dramatic conclusion
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Always check your assumptions

Image from the Statistical Statistics Memes Facebook Page
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Statistical Framing

From Kyle Cranmer’s PhyStat seminar
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The likelihood is a landmark for most statistical inference methods

(Profile) maximum likelihood fits
Point estimate by maximizing the likelihood function
Interval estimate by intersection with likelihood function
Feldman-Cousins (build intervals using the likelihood ratio for proper ordering of probability elements)
Test of hypothesis using ratios of the likelihood of the two hypotheses

Bayesian methods rely on computing posterior distribution p(θ|~x) ∝ p(~x|θ)π(θ)
Need the likelihood to build the posterior: usually resample posterior (Markov Chain MonteCarlo)
Point and interval estimates from posterior shape
Test of hypotheses from ratio of marginal likelihoods (Bayes Factor)
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Bayesian parameter estimation requires MonteCarlo integration

We want to obtain the posterior for λ given data X and model M you need to obtain the
evidence by integration

P(λ|X,M) =
P(X|λ,M)π(λ|H)

P(X|H)
=

P(X|λ,M)π(λ|H)∫
P(X|λ,M)π(λ|H)dλ

We could perform MonteCarlo integration to evaluate I = Ef [h(X)] =
∫
X h(h)f (x)dx

f must be a closed form (otherwise ABC, see later!)
Sample from f (x) to approximate I with empirical average

h̄m =
1
m

m∑
j=1

h(xj)

with variance

v̄m =
1

m− 1

m∑
j=1

[h(xj)− h̄m]
2

For large m
h̄m − Ef [h(X)]
√

vm
∼ Gaus(0, 1)
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Monte Carlo integration, when possible, will have a stable variance

Image from Christian P. Robert
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Improve efficiency

For integrating the tails, need to simulate huge amounts of events

Can mitigate by importance sampling: modify the probability of generating events in
problematic regions (e.g. tails)

Sample from g(x)

Estimate integral from modified empirical average

h̄m =
1
m

m∑
j=1

f (xj)

g(xj)
h(xj)

Convergence of the estimator still guaranteed
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High dimensions

Integration difficult/impossible in high dimension (~λ)

Replace integration with a path along the function
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Markov chains

Markov chain: a sequence of random variables whose distribution evolves over a “time”
variable as a function of the previous realization
Describe the chain via a transition kernel defining the migration probabilities from a state to
any other state

Discrete: stochastic matrix Kxy = P(xn = y|xn−1 = x)
Continue: conditional density K via an integral

Given K, a sequence Xn of random variables is a Markov Chain if for any t

P(xk+1 ∈ A|x0, x1, ..., xk) = P(xk+1 ∈ A|xk) =

∫
A
K(xk)dx
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Map posterior probability by sampling (Allen Caldwell’s seminar and 1808.08051)
Markov process (probability of transition depends on current state only) on a finite phase
space: Markov chain
For recurrent, irreducible, aperiodic chains, Basic Limit Theorem guarantees after many
iterations result independent on initial state
Metropolis-Hastings: accept/reject algorithm, accepting transition if it goes towards more
probable state

Burn-in: multiple chains to check for stationarity

Still computationally costly!
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Improving the sampling (Allen Caldwell’s seminar and 1808.08051)

Strategies to improve the sampling
Inspired by physics (not shown here): Hamiltonian MCMC!
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Accelerating MCMC computations 1808.08051

Improve sampling either via efficient sampling (e.g. Hamiltonian
MC, etc) or via massive parallelization: AHMI

Adaptive Harmonic Mean Integration (AHMI) good with multimodal
posteriors
Partition space to obtain regions with moderate spread of values,
can then integrate by using harmonic mean to reweight by volume
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Likelihood intractability in HEP

In HEP we often don’t have access to the likelihood

Monte Carlo generators are used to generate samples distributed according to a given
likelihood function x ∼ p(x|θ)
The likelihood sometimes is intractable

p(x|θ) =

∫
dzp(x, z|θ) =

∫
dzpx(x|θ, z)

∏
i

pi(zi|θ, z<i)

Latent variables
Matrix element
Parton shower
Detector...
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How to deal with intractable likelihoods

Sample from the density using accessory variables→ Approximate Bayesian Computation

Smart ways of integrating the generating function→ Matrix Element Method

Bypass the integration by learning the generating function→ Surrogate models by learning
the likelihood (ratio)
Active learning: learn surrogates by alternating simulation and inference stages (not treated
today)

Train autoregressive flows on simulated data in order to learn a model of the likelihood in the region of
high posterior density

Learn the structure of the data, together with the density, for intractable likelihoods→
manifold learning

Do inference by finding a “smart”, optimal summary statistic→ INFERNO

Many more (not discussed today)
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“Classical” likelihood-free inference: ABC

Approximate Bayesian Computation
Almost Bayes Can

“ABC is a recent computational technique that only requires a generative model, i.e., being
able to sample from the density f (·|θ)”

Developed originally (and still being developed) in population genetics (Griffith et al., 1997; Tavaré
et al., 1999)

Sometimes the likelihood function f (~x|θ) is not available, or
there are latent variables making its computation impossible or
very costly (high-dimensional~z)

f (~x|θ) =

∫
Z

f (~x,~z|θ)d~z
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When the likelihood is not in closed form

Want to compute the posterior: p(θ|~x) ∝ f (~x|θ)π(θ)

Use a likelihood-free rejection technique to obviate the lack of closed form for the likelihood

The ABC accept/reject algorithm (Tavaré et al., 1997)

Let~x ∼ f (~x|θ) be an observation, under the prior π(θ)

Keep jointly simulating
θ′ ∼ π(θ)
~z ∼ f (~z|θ′)

Until the auxiliary variable~z is equal to the observed value,~z = ~x

It works!

f (θi) ∝
∑
~z∈D

f (~z|θi)π(θi)1~x(~z)

∝ f (~x|θi)

= π(θi|~x)
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ABC is Approximative

If~x is a continous random variable, replace equality~z = ~x with a tolerance condition defined
via a distance metric ρ:

ρ(~x,~z) < ε

The output of the algorithm will be (Pritchard et al., 1999)

Pθ
{
ρ(~x,~z) < ε

}
∝ π

(
θ
∣∣∣ρ(~x,~z) < ε

)
Will converge to the posterior for ε→ 0

Distances in the space of a statistic η(·)
Faster
η(·) not necessarily a sufficient statistic

for i = 1 to N do
repeat

generate θ′ from the prior π(·)
generate~z from the likelihood f (·|θ′)

until ρ
{
η(~z), η(yvec)

}
≤ ε

set θi = θ′

end for
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Simulating from the prior

Poor efficiency in simulating from the prior
Various proposals to solve this

Modify proposal to sample more efficiently in
the vicinity of~x
View as conditional density estimate, allow
larger ε
Many many more... (ABC-NP, ABC-NCH,
ABC-kNN, ABC-MCMC, ABC-PMC,
ABC-SMC...)

ABCµ: Augment the likelihood by including
unknown term accounting for ε in the
inferential framework (Ratmann et al., 2009)
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Choice of summary statistic

Largely debated field
Sufficient/non sufficient
How to choose an optimal statistic
Won’t enter into detail

Highlight: use CNNs to learn the summary
statistic (Åkesson, 2020)

Mean posterior estimation error vastly
reduced
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How do we approach likelihood intractability in HEP?
We usually find “by instinct” powerful summary statistics
Select a few problem-driven observables (e.g. mass, decay angles, other kinematical
variables)
Try to lower the dimensionality of the summary statistic

At high dimensionality, need too many simulated events to populate phase space
Sample the summary statistic and estimate the likelihood via density estimation...
Or simply use histograms!

Given an histogram, write down the likelihood as product of the poisson likelihoods in each bin
Find MLE, construct confidence limits using likelihood ratio, etc
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Vischia Statistics for HEP December 07th–11th, 2020 62 / 90

https://arxiv.org/abs/2010.06439
http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-19-006/index.html


From histograms to likelihood

Count the amount of events in a search region
Usually assume they follow a Poisson distribution

Define a function of the data (test statistic)
Can be the counts themselves: look for excesses
May be the (profile) likelihood
L(n,α0|µ,α) =∏
i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(α
0
j |αj, δαj)

λ(µ) =
L(µ, ˆ̂αµ)

L(µ̂,α̂)

Draw the null hypothesis H0
Usually the physics we already accept as standard of the art

Draw the alternative hypothesis H1
Effect we hope to observe

Define a critical region for rejecting the null hypothesis

Look where does the observed value of the test statistic lie

Likelihood ratio between the two hypothesis as the most
powerful statistic (in 1D)
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Systematic uncertainties induce variations in the number of events in the search region
We account for them in our statistical procedures at the hypothesis testing stage

Often machine learning techniques are employed to optimize the analysis at early stages:
systematic uncertainties not accounted for in the optimization

Image from P. Vischia, XXX
(textbook to be published by Springer in 2021)
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The Matrix Element Method
Approximate the likelihood from the precise model that includes shower and detector effects
to a tractable transfer function p̂tf (x|zp)

Marginal distribution simplified (no need to integrate over many microscopic interactions)
Approximated to a conveniente Gaussian pdf
Integrand is tractable, integral is over a much lower-dimensional space

p̂MEM(x|θ) =

∫
dzp p̂tf (x|zp) p(zp|θ) ∼

1
σ(θ)

∫
dzp p̂(x|zp) |M(zp|θ)|2 ,

Feasible to compute, even though till sometimes expensive
Also, jets are not well modelled by simple transfer functions

Recent advancements (Florian Bury’s IML2020 Workshop talk)
Learn MEM weights (MoMEMta: 3000 years, DNN: ∼10 hours)
Learn Matrix Element itself (DNN time comparable with MadGraph, and some fluctuations in the
integrand)
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Likelihood-free inference with differentiable models

Monte Carlo generators are used to generate samples distributed according to a given
likelihood function x ∼ p(x|θ)

Sometimes likelihood intractable because it depends on latent variables
p(x|θ) =

∫
dzp(x, z|θ) =

∫
dzpx(x|θ, z)

∏
i pi(zi|θ, z<i)

(matrix element, parton shower, detector...)

When the likelihood is intractable, inverting the problem to obtain p(θ|x) is impossible or
requires huge amount of generated events or observations

Approximate Bayesian Computation (ABC): generate events by sampling from a prior π(θ),
accept/reject algorithm to build the posterior
Probabilistic programming systems: use samples from generative model to train a tractable surrogate
model
Tomorrow we will see advanced cases based on Machine Learning!
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Measuring differential distributions
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Data Combination

Combination of 2016, 2017, and 2018 results
Inclusive and differential measurement in reconstructed-level (folded) space
Differential measurement in generator-level (unfolded) space
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One-slide preview of combination of results

When possible, combine the data

When you cannot, then perform measurement simultaneously (e.g. combined likelihood fit)
If you don’t have access to all the data, then you have to combine results

Several variants of χ2, with some known pitfalls (e.g. for BLUE)
For all methods, combining highly correlated estimates require careful assessment of correlations

Assuming 100% is not always “conservative”
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1 parameter, N uncorrelated measurements

Measure N times the same quantity: estimates θi and uncertainties σi.

Maximum Likelihood Estimate and variance are:

θ̂ML =

∑N
i=1

θi
σ2

i∑N
i=1

1
σ2

i

1
σ2
θ̂ML

=
N∑

i=1

1
σ2

i

Variance linked to the amount of information about θ contained in the data set

Usually we have access to an estimate σ̂θ̂ML
of σθ̂ML

By construction, the best value lies inside the range of the estimates, min(θi) < θ̂ML < max(θi)

Works only with symmetric uncertainties
Typically assuming a Gaussian approximation of the likelihood)
Expression of the Central Limit Theorem

Intrinsic difference between averaging and most probable value
Averaging results in average value and variance that propagate linearly
Taking the mode (essentially what MLE does) does not add up linearly!

With asymmetric uncertainties, always combine the likelihoods (better if refitting all the data in
an individual simultaneous fit)
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1 parameter, N correlated measurements

BLUE (Best Linear Unbiased Estimator)1

θ̂ =
N∑

i=1

wiθi , σθ̂ = wT Vw , w =
V−111×N

1T
1×NV−111×N

,
N∑

i=1

wi = 1

Equivalent to a χ2 method, but also assigns a weight to each measurement

Correlation between measurements can be partial or full
Weight can be used to rank the contribution of each measurement: other options may be less
desirable (doi:10.1140/epjc/s10052-014-2717-6)

Don’t use Relative Importance RI (if doing partial combination first, wi invariant but RI not invariant)

Table by Luca Lista
1Aitken, Proc. Roy. Soc. Edinburgh 55(1935)42, Lyons et al. NIM A270(1988)110
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1 parameter, N correlated measurements: BLUE and correlations
For two measurements θ1 and θ2,

θ̂ =
θ1(σ2

2 − ρσ1σ2) + θ2(σ2
1 − ρσ1σ2)

σ2
1 − 2ρσ1σ2 + σ2

2
, σθ̂ =

σ2
1σ

2
2(1− ρ2)

σ2
1 − 2ρσ1σ2 + σ2

2

Common uncertainty σC = ρσ1σ2 highlights similarity to weighted average (if coefficients are
positive, otherwise difficult interpretation)

θ̂ =
θ1/σ

′2
1 +θ2/σ

′2
2

1/σ′21 +1/σ′22
Weighted average

σθ̂ = 1
1/σ′21 +1/σ′22

+ σ2
C

Sort of analysis of variance by extracting uncorrelated contribution to uncertainty as σ′2i = σ2
i − σ

2
C ,

and common correlated one as σ2
C

Negative coefficients are usually hint of high-correlation regime
If ρ > σ1/σ2, increasing ρ further decreases uncertainties and induces negative weights
Uncertainty strongly depends on ρ: estimating ρ becomes crucial (and delicate)
Assuming ρ = 1 is “conservative” only if the uncorrelated contributions to the total uncertainty
dominate: otherwise, it is actually aggressive

Different analyses of the same data are likely to result in highly-correlated results: don’t try to
combine them

θ1 = −1.0± 0.3

θ2 = +1.0± 0.4

θ̂ outside of range for large ρ

σθ̂ dramatically reduced for large ρ

Peelle’s Pertinent Problem (PPP)
https://indico.cern.ch/event/904488/contributions/3814643/

ρ θ̂ σ
θ̂

σ
θ̂
/θ̂

0.0 -0.280 0.058 -0.206
0.1 -0.310 0.063 -0.204
0.2 -0.347 0.068 -0.197
0.3 -0.393 0.074 -0.187
0.4 -0.455 0.079 -0.173
0.5 -0.538 0.083 -0.154
0.6 -0.660 0.087 -0.132
0.7 -0.854 0.090 -0.105
0.8 -1.207 0.089 -0.074
0.9 -2.059 0.080 -0.039
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1 parameter, N correlated measurements: pitfalls of BLUE

Absolute fixed gaussian uncertainties are assumed

Biased results in general when the estimated uncertainty depends on the numerical value of
the parameter (i.e. function of the sample size, typically ∝

√
N)

Biased results in particular for multiplicative factors (uncertainties relative to the assumed
central value) like luminosity
Mitigation via Iterative BLUE

Recompute uncertainties iteratively by rescaling them each time to the combined point estimate
Lyons et al, Phys Rev D41 982 (1990); Lista, NIM A764 82 (2014) and A773 87 (2015)

In these cases (e.g. for any Poisson counting experiment) it’s better to avoid the bias by
avoiding BLUE
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Whenever possible, perform some kind of combined analysis
Combine the data, if possible
Otherwise, combine the individual likelihoods

Should regard BLUE as a backup solution in case the analyses don’t provide the individual likelihood
functions

L(X1, ...,XN |θ) =
∏

i

Li(Xi|θi)

θi are vectors of a mix of experiment-specific and common parameters
Accomodates any correlation scheme, supports asymmetric uncertainties

In high-correlations regime, as with BLUE the combined estimate might not lie inside the range of the
individual ones

Once you have the combined likelihood, you can then use it to fit for θ simultaneously to all
the data
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Plots from Higgs coupling combination (HIG-17-031) and ttH observation (HIG-17-035)
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2 parameters, N independent measurements

E.g. straight line fit y = ax + b
Correlation within measurement (i.e. among paramers)
No correlation across different measurements

χ2 can be used to obtain the best combined value
Uncertainties on the best combined values abest and bbest can be much smaller than individual
uncertainties
The best combined values can lie outside of the range of the individual measurements
Can profile over a parameter considered a nuisance (e.g. b) to obtain profiled likelihood for the other
(e.g. Lprof (a))

Don’t combine the profile likelihoods!

Profile the combined likelihood!

k parameters, N measurements
Generalization for arbitrary number of parameters and arbitrary correlations within and across
measurements

Includes differential measurements

χ2 approach, with non-zero off-diagonal elements in the covariance matrix
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When neither BLUE nor likelihood are feasible

Combined likelihood cannot be performed if the individual likelihoods are not available
BLUE cannot be always safely used

Requires symmetric absolute uncertainties and yields a biased otherwise
Result and uncertainty strongly depend on accurate estimate of correlations (cannot assume 100%)

χ2 fits!

Convino (J. Kieseler,
10.1140/epjc/s10052-017-5345-0)

Equivalent to a direct likelihood combination
Assumes likelihood can be approximated as
sum of χ2 contributions
Need only public material (Hessian,
additional uncertainties, central values)

HAverager (from HERAAverager, now used
in ATLAS.
https://github.com/HAverager/HAverager)

Explicit χ2 minimization

Proper treatment of correlations

Iterative approach for relative uncertainties

Supports asymmetric uncertainties
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Combination tools

Combined likelihood
RooStats https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome and HistFactory
https://cds.cern.ch/record/1456844
Theta http://www-ekp.physik.uni-karlsruhe.de/ ott/theta/theta-auto/
Higgs Combination Tool http://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/

χ2-based tools (when full likelihood not available, but correlation scheme complicated /
asymmetric uncertainties

HAverager https://github.com/HAverager/HAverager (FORTRAN with Python interface)
Convino https://github.com/jkiesele/Convino/
Other tools accounting for constraints (also non-linear) linked at
https://twiki.cern.ch/twiki/bin/viewauth/CMS/StatComCombination

BLUE and Iterative BLUE
Python: http://agiamman.web.cern.ch/agiamman/blue/
C++: http://blue.hepforge.org/

Vischia Statistics for HEP December 07th–11th, 2020 76 / 90

https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome
https://cds.cern.ch/record/1456844
http://www-ekp.physik.uni-karlsruhe.de/~ott/theta/theta-auto/
http://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/
https://github.com/HAverager/HAverager
https://github.com/jkiesele/Convino/
https://twiki.cern.ch/twiki/bin/viewauth/CMS/StatComCombination
http://agiamman.web.cern.ch/agiamman/blue/
http://blue.hepforge.org/


One-slide preview of combining unfolded results

Do you need to combine?
If data quality (response matrix) is similar across the years, can add the data,
N = N2016 + N2017 + N2018 and unfold N

Result more stable (direct increase of statistics)
To be avoided if data quality is different

If not, then unfold simultaneously the predictions for the three years (combined likelihood)
If you don’t have access to data/likelihoods, combine the three unfolded estimates

Don’t combine regularized results (otherwise it’s like applying three times the regularization)
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Unfolding: the problem

Given the observations y, find a transformation to the corresponding vector θ in theory space
Model the detector response as a matrix of transition probabilities
Subtract the expected background counts: y = n− b
Invert the response to convert experimental data to distributions in the theory space
Inference: compare unfolded result with different models in the theory space

Best solution: fold any theory you want to test and make comparisons in the
experimental data space

Sometimes unpractical (data preservation: computing constraints or future format incompatibilities)
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Plots by Stefan Schmitt, ArXiv:1611.01927
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Unfolding: naïve solutions

Bin-by-bin correction factors θ̂i = (yi − bi)
Ngen

i
Nrec

i
; disfavoured

Heavy biases due to the underlying MC truth
Yields the wrong normalization for the unfolded distribution

Invert the response matrix θ̂ = A−1(y− b)
Only for square matrices, Nreco = Ngen, but always unbiased
Oscillation patterns (small determinants in matrix inversion)
Patterns also seen as large negative ρij ∼ −1 near diagonal
Result is correct within uncertainty envelope given by Vθθ
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Cartoon from https://www.mathsisfun.com/algebra/matrix-inverse.html, plots by Stefan Schmitt,
ArXiv:1611.01927

Vischia Statistics for HEP December 07th–11th, 2020 79 / 90

https://www.mathsisfun.com/algebra/matrix-inverse.html
https://arxiv.org/abs/1611.01927


χ2 fit with optional Tiknonov regularization (TUnfold)

L(x, λ) = L1 + L2 + L3,

L1 = (y− Ax)
T Vyy(y− Ax),

L2 = τ
2
(x− fbx0)

T
(LT L)(x− fbx0),

L3 = λ(Y − eT x),

Y =
∑

i

yi,

ej =
∑

i

Aij.

y: observed yields

A: response matrix

x: the unfolded result

L1: least-squares minimization
(Vij = eij/eiiejj correlation coefficients)

L2: regularization with strength τ (L:
suppress deviation or their derivatives)

Bias vector fbx0: reference with respect to
which large deviations are suppressed

L3; area constraint (bind unfolded
normalization to the total yields in folded
space, useful for Poisson counts deviating
from gaussian χ2

Neyman ansatz)
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TUnfold: choosing the best regularization

χ2
TUnfold =χ2

A + τ 2χ2
L

χ2
A = (Ax̂ + b− y)T(Vyy)

−1(Ax̂ + b− y)

χ2
L = (x̂− xB)TLTL(x̂− xB)

Compute condition number from SVD of the response matrix
If small, O(10), problem is well-conditioned→ no regularization
If large O(105), problem is ill-conditioned, and regularization will likely help

Choose regularization strength τ corresponding to maximum curvature of L-curve

Or minimize the global ρavg = 1
Mx

∑Mx
j=1 ρj

Often results in stronger regularization than L-curve
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Bottom Line test
Theory/data comparison should not be more discriminative in unfolded space than in folded
space

Bob Cousins https://arxiv.org/abs/1607.07038

Compare data-MC χ2
unfold and χ2

smeared

Compare ∆χ2
unfold and ∆χ2

smeared between models (should not invert hierarchy of “preferred”
model)
Strong regularization can bias too much to the bias vector (usually the MC prediction)

If e.g. χ2
unfold << χ2

smeared maybe regularization too strong
If χ2

unfold >> χ2
smeared , unfolding bias maybe underestimated
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Combining data taking eras for high-statistics, low background analyses

χ2 approximation of the likelihood
Nreco = Ngen: matrix inversion λ = A−1y
Nreco > Ngen: χ2 = [y− Aλ]T Vy

−1[y− Aλ]

χ2 minimization can also work for Nreco ≤ Ngen, but needs strong regularization or problematic
anyways (reguire reference non-regularized run which will not converge)

Systematic uncertainties: repeat full procedure with each varied response matrix A
Currently need to symmetrize uncertainties

Internally maps multidimensional variables to one-dimensional vectors (can therefore
regularize in multidimensional phase space)

Simultaneous unfolding: minimize a combined χ2 to unfold in a single step the
background-subtracted yield vectors for all three years

Caveat: don’t unfold separately with regularization and then combine the results, because
you would be counting the regularization term three times!

Image by Olaf
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D’Agostini (Iterative) Unfolding
Use Bayes theorem to invert the problem
Iterative improvement over the result of a previous iteration;
x(n+1)

j = x(n)
j
∑M

i=1
Aij
εj

yi∑N
k=1 Aikx(n)

k +bi

It converges (slowly, Niter ∼ N2
bins) to the MLE of the likelihood for independent Poisson-distributed yi

Not necessarily unbiased for correlated data (does not make use of covariance of input data Vyy)
Intrinsically frequentist method

for Niter →∞ converges to matrix inversion, if all x̂j from matrix inversion are positive
In HEP many people don’t iterate until convergence

Fixed Niter is often used; the dependence on starting values provides regularization
Don’t use software defaults!!! (e.g. some software has Niter = 4)

Minimizing the global ρ is a good objective criterion, but there are others (Akaike information, etc)
Positive
correlations
in 1st iteration
(smearing)

Negative
correlations
(limit of
matrix inversion)

Minimum
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starting values

TP

0 20 40

N
e
v
e
n
t 
/ 
G

e
V

0

200

400

Truth

O
v
e

rf
lo

w
 b

in

MC
data
iterative N=0
test wrt data:

/16=1.4 prob=0.1282χ

20 30 40 50
0

10

20

30

Truth

TP

0 20 40

N
e
v
e
n
t 
/ 
G

e
V

0

200

400

Truth

O
v
e

rf
lo

w
 b

in

MC
data
iterative N=20
test wrt data:

/16=1.4 prob=0.1282χ

20 30 40 50
0

10

20

30

Truth

TP

0 20 40

N
e
v
e
n
t 
/ 
G

e
V

0

200

400

Truth

O
v
e

rf
lo

w
 b

in

MC
data
iterative N=1000
test wrt data:

/16=1.4 prob=0.1282χ

20 30 40 50
0

10

20

30

Truth

(gen) [GeV]TP

0 20 40

(g
e
n
) 

[G
e
V

]
T

P

0

20

40

correlation coefficients

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

O
v
e

rf
lo

w
 b

in

Overflow bin

)=0.89
ij

ρmin(

)= 0.67
ij

ρmax(

_i)= 0.78ρavg(

correlation coefficients

(gen) [GeV]TP

0 20 40

(g
e
n
) 

[G
e
V

]
T

P

0

20

40

correlation coefficients

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

O
v
e

rf
lo

w
 b

in

Overflow bin

)=0.89
ij

ρmin(

)= 0.67
ij

ρmax(

_i)= 0.78ρavg(

correlation coefficients

(gen) [GeV]TP

0 20 40

(g
e
n
) 

[G
e
V

]
T

P

0

20

40

correlation coefficients

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

O
v
e

rf
lo

w
 b

in

Overflow bin

)=0.89
ij

ρmin(

)= 0.67
ij

ρmax(

_i)= 0.78ρavg(

correlation coefficients

Plots by Stefan Schmitt, ArXiv:1611.01927
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Other methods (in RooUnfold)
Bin-by-bin (severely discouraged)
Iterative (D’Agostini)
Singular Values Decomposition (similar to chi2 tunfold, but less flexible): regularization by
eigenvalues of the response matrix

Höcker, Kartvelishvili https://doi.org/10.1016/0168-9002(95)01478-0
Requires Nreco = Ngen
For smooth distributions, only the first few k SV are statistically significant
Use the last significant (pull incompatible with zero) SV to define regularization strength

RooUnfold (Adye, https://arxiv.org/abs/1105.1160) per-se discouraged (at the moment, it
does not support custom bias vector)

Plot from https://doi.org/10.1016/0168-9002(95)01478-0
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Combining data taking eras for background-dominated analyses

Estimate bin-wise signal yields yj in template fit to discriminator distribution

Usual maximum likelihood fit for signal fractions

L =
∏
j bins

∏
i bins

exp[−(yjsij + bij)] · (yjsij + bij)
nij ·
∏

Constraints

All yi fitted simultaneously, then TUnfold (general strategy for background-dominated
analyses)

bij depends on all background normalizations, fitted for each bin j
sij and bij depend also on nuisance parameters, that are also fitted

Combine eras of data taking: write combined likelihood as L = L2016 × L2017 × L2018, fit the
three yields simultaleously, and feed them to TUnfold
Fitting in reco space assumes the Standard Model!!!

Loose capability of comparing with BSM models in generator level space

Plots from Olaf and TOP-17-023 (t-channel single top production)
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Combining data taking eras when number of unfolded distributions is small

Maximum likelihood fit based on Higgs combination tool
https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part3/regularisation

Now also L2 (“Tikhonov”) regularization is included
Based on Higgs combination tool datacards, with some minor tweaks
Computationally slower due to numerical minimization (TUnfold much faster)
So far tried simultaneous unfolding of up to about 13 differential cross sections

Response matrix elements and background predictions can depend on nuisance parameters,
and all related tools of combine can be used out of the box

Also applicable in case of pre-unfolding template fit vs discriminator bins i

Combination across the years done by using combined likelihood L = L2016 × L2017 × L2018

L =
∏
j bins

exp
[
−
( ∑

m bins

Kjmλm + bj

)]
·
( ∑

m bins

Kjmλm + bj

)nj
·
∏

Constraints

Plots from HIG-19-002
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Combining unfolded results Unfolding and combination of data taking eras

If possible, combine the data
Only if data quality (response matrices) similar across the years

Combinations based on building the total χ2 or the total likelihood
Different strategies for different scenarios, all extensible to combination of data taking eras

High stat, low background: TUnfold after background subtraction
High background: TUnfold after template fit of detector-level signal yields yj

Small number of unfolded distributions: maximum likelihood fit for λ̂

If you have to combine unfolded result, make sure they are not individually regularized
Otherwise equivalent to applying regularization several times

Regardless of the scheme, be careful on how do you assess the correlations between
systematic uncertainties across the years

A few POGs implemented mixed correlated/decorrelated components
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Summary

Combining results in the reconstructed-level space: inclusive and differential
Maximum likelihood fits are best if likelihoods and data are available
χ2 between correlated results when likelihoods not available
Simplified combination with BLUE when uncertainties are gaussian and correlation not too large

Combining results in the generator-level space: differential
If data quality is constant, sum the data and unfold the sum
If using regularization, make sure you don’t combine regularized results (triple counting!): eventually
regularize the combined likelihood
Low background: simultaneous χ2 unfolding of the three years’ yields
High background: template fit, followed by simultaneous χ2 unfolding
Low number of differential distributions to combine: maximum likelihood fit

Take home messages
If possible, perform a combined measurement (either sum the data or build a combined likelihood)
χ2 valid substitute of likelihood when individual likelihoods not available or in case of computational
constraints
Simplified methods like BLUE require precise measurement of correlation coefficient when it’s close
to 0 or 1
Correlation between the uncertainties across the years important for unfolding
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What if we don’t have a likelihood?
Likelihood p(x|θ) =

∫
dzp(x, z|θ) =

∫
dzpx(x|θ, z)

∏
i pi(zi|θ, z<i)

Latent states sampled from zi ∼ pi(zi|θ, z<i)
Final output sampled from x ∼ px(x|θ, z)
Observables x from particle generator; dependency on latent zs (matrix element, parton shower,
detector...)

Want to do inference in θ given a p(x|θ) which is intractable; likelihood trick;
Train a classifier (NN) to separate samples from p(x|θ0) and p(x|θ1)
Likelihood ratio between θ0 and θ1 by inverting the minimization of the binary cross-entropy loss

Joint score t(x, z|θ0) and likelihood ratio r(x, z|θ0, θ1) computable from simulated samples
Train parameterized estimators, then likelihood ratio is the minimum of loss function
Or local approximation, then the score is a sufficient statistic for inference

Rewrite the EFT likelihood in a basis in which it is a mixture model
Calculate the full true parton-level likelihood starting from N simulated events

Obtain a sufficient statistic for inference; exploit all available information!
Inference not limited anymore by the size of the generated samples

Images from arXiv:1805.12244 and arXiv:1805.00020

https://arxiv.org/abs/1805.12244
https://arxiv.org/abs/1805.00020
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