Statistics

or "How to find answers to your questions"

$$
\text { Pietro Vischia }{ }^{1}
$$

${ }^{1}$ CP3 - IRMP, Université catholique de Louvain

UCLouvain

Institut de recherche en mathématique et physique

CP3—IRMP, Intensive Course on Statistics for HEP, 07-11 December 2020

Program for today

Lesson 2

Estimating a physical quantity
Sufficiency principle
Likelihood Principle
Estimators and maximum likelihood
Profile likelihood ratio

Practicalities

- Today's exercises session: starting at 14:45?
- Lesson 1 - Fundaments
- Bayesian and frequentist probability, theory of measure, correlation and causality, distributions
- Lesson 2 - Point and Interval estimation
- Maximum likelihood methods, confidence intervals, most probable values, credible intervals
- Lesson 3-Advanced interval estimation, test of hypotheses
- Interval estimation near the physical boundary of a parameter
- Frequentist and Bayesian tests, CLs, significance, look-elsewhere effect, reproducibility crysis
- Lesson 4 - Commonly-used methods in particle physics
- Unfolding, ABCD, ABC, MCMC, estimating efficiencies
- Lesson 5 - Machine Learning
- Overview and mathematical foundations, generalities most used algorithms, automatic Differentiation and Deep Learning

Lesson 2
 Point and Interval estimation

Estimating a physical quantity

Estimators

- Set $\vec{x}=\left(x_{1}, \ldots, x_{N}\right)$ of N statistically independent observations x_{i}, sampled from a p.d.f. $f(x)$.
- Mean and width of $f(x)$ (or some parameter of it: $f(x ; \vec{\theta})$, with $\vec{\theta}=\left(\theta_{1}, \ldots, \theta_{M}\right)$ unknown)
- In case of a linear p.d.f., the vector of parameters would be $\vec{\theta}=$ (intercept, slope)
- We call estimator a function of the observed data \vec{x} which returns numerical values $\hat{\vec{\theta}}$ for the vector $\vec{\theta}$.
- $\hat{\vec{\theta}}$ is (asymptotically) consistent if it converges to $\vec{\theta}_{\text {true }}$ for large N :

$$
\lim _{N \rightarrow \infty} \hat{\vec{\theta}}=\vec{\theta}_{\text {true }}
$$

- $\hat{\vec{\theta}}$ is unbiased if its bias is zero, $\vec{b}=0$
- Bias of $\hat{\vec{\theta}}: \vec{b}:=E[\hat{\vec{\theta}}]-\vec{\theta}_{\text {true }}$
- If bias is known, can redefine $\hat{\vec{\theta}^{\prime}}=\hat{\vec{\theta}}-\vec{b}$, resulting in $\vec{b}^{\prime}=0$.
- $\hat{\vec{\theta}}$ is efficient if its variance $V[\hat{\vec{\theta}}]$ is the smallest possible

Plot from James, 2nd ed.

- An estimator is robust when it is insensitive to small deviations from the underlying distribution (p.d.f.) assumed (ideally, one would want distribution-free estimates, without assumptions on the underlying p.d.f.)

Sufficient statistic

- A test statistic is a function of the data (a quantity derived from the data sample)
- When $X \sim f(X \mid \theta)$, a statistic $T=T(\boldsymbol{X})$ is sufficient for θ if the density function $f(\boldsymbol{X} \mid T)$ is independent of θ
- If T is a sufficient statistic for θ, then also any strictly monotonic $g(T)$ is sufficient for θ
- Minimal sufficient statistic: a sufficient statistic that is a function of all other sufficient statistics for θ
- The statistic T carries as much information about θ as the original data \boldsymbol{X}
- No other function can give any further information about θ
- Same inference from data \boldsymbol{X} with model M and from sufficient statistic $T(\boldsymbol{X})$ with model M^{\prime}
- Rao-Blackwell theorem: if $g(X)$ is an estimator for θ and T is a sufficient statistic, then the conditional expectation of $g(X)$ given $T(X)$ is never a worse estimator of θ
- Practical procedure: build a ballpark estimator $g(X)$, then condition it on a $T(X)$ to obtain a better estimator
- The Sufficiency Principle: Two observations X and Y that factorize through the same value of $T(\cdot)$, i.e. s.t. $T(x)=T(y)$, must lead to the same inference about θ

Images from AmStat magazine and from Illinois.edu

Example of sufficient statistic

- Given some data $1,2,3,4,5$, you may want to estimate the population mean
- Consider the sample mean $\hat{x}=\frac{1+2+3+4+5}{5}=3$ as an estimator of the sample mean (3 is the estimate)
- Imagine we don't have the data; we only know that the sample mean is 3
- Is the sample mean a sufficient statistic? Question time: Sufficient statistic

Example of sufficient statistic

- Given some data $1,2,3,4,5$, you may want to estimate the population mean
- Consider the sample mean $\hat{x}=\frac{1+2+3+4+5}{5}=3$ as an estimator of the sample mean (3 is the estimate)
- Imagine we don't have the data; we only know that the sample mean is 3
- Is the sample mean a sufficient statistic? Question time: Sufficient statistic
- If you only knew the sample mean of 3 , you would estimate the population mean to be 3 anyway, regardless of having the data or not
- Knowing the data (the set $1,2,3,4,5$) or knowing only the sample mean does not improve our estimate for the population mean

Example of sufficient statistic

- Given some data $1,2,3,4,5$, you may want to estimate the population mean
- Consider the sample mean $\hat{x}=\frac{1+2+3+4+5}{5}=3$ as an estimator of the sample mean (3 is the estimate)
- Imagine we don't have the data; we only know that the sample mean is 3
- Is the sample mean a sufficient statistic? Question time: Sufficient statistic
- If you only knew the sample mean of 3 , you would estimate the population mean to be 3 anyway, regardless of having the data or not
- Knowing the data (the set $1,2,3,4,5$) or knowing only the sample mean does not improve our estimate for the population mean
- Estimate the binomial probability of obtaining r heads in N coin tosses
- Record heads and tails, with their order: HTTHHHTHHTTтнтнтн
- Can we somehow improve by identifying a sufficient statistic? Question time: Sufficient Statistic

Example of sufficient statistic

- Given some data $1,2,3,4,5$, you may want to estimate the population mean
- Consider the sample mean $\hat{x}=\frac{1+2+3+4+5}{5}=3$ as an estimator of the sample mean (3 is the estimate)
- Imagine we don't have the data; we only know that the sample mean is 3
- Is the sample mean a sufficient statistic? Question time: Sufficient statistic
- If you only knew the sample mean of 3 , you would estimate the population mean to be 3 anyway, regardless of having the data or not
- Knowing the data (the set $1,2,3,4,5$) or knowing only the sample mean does not improve our estimate for the population mean
- Estimate the binomial probability of obtaining r heads in N coin tosses
- Record heads and tails, with their order: нттнннтннтттнтнтн
- Can we somehow improve by identifying a sufficient statistic? Question time: Sufficient Statistic
- What happens if we record only the number of heads? (remember that the binomial p.d.f. is:
$\left.P(r)=\binom{N}{r} p^{r}(1-p)^{N-r}, r=0,1, \ldots, N\right)$

Example of sufficient statistic

- Given some data $1,2,3,4,5$, you may want to estimate the population mean
- Consider the sample mean $\hat{x}=\frac{1+2+3+4+5}{5}=3$ as an estimator of the sample mean (3 is the estimate)
- Imagine we don't have the data; we only know that the sample mean is 3
- Is the sample mean a sufficient statistic? Question time: Sufficient statistic
- If you only knew the sample mean of 3 , you would estimate the population mean to be 3 anyway, regardless of having the data or not
- Knowing the data (the set $1,2,3,4,5$) or knowing only the sample mean does not improve our estimate for the population mean
- Estimate the binomial probability of obtaining r heads in N coin tosses
- Record heads and tails, with their order: нттнннтннтттнтнтн
- Can we somehow improve by identifying a sufficient statistic? Question time: Sufficient Statistic
- What happens if we record only the number of heads? (remember that the binomial p.d.f. is: $\left.P(r)=\binom{N}{r} p^{r}(1-p)^{N-r}, r=0,1, \ldots, N\right)$
- Recording only the number of heads (no tails, no order) gives exactly the same information
- Data can be reduced; we only need to store a sufficient statistic (the distribution $f(\boldsymbol{X} \mid T)$ is independent of θ)
- Storage needs are reduced!!!

Ancillary statistic and pivotal quantities

- Pivotal quantity: its distribution does not depend on the parameters
- For a $\operatorname{Gaus}\left(\mu, \sigma^{2}\right)$ p.d.f., $\frac{\bar{X}-\mu}{S / \sqrt{N}} \sim t_{\text {student }}$ is a pivot
- See exercise this afternoon

- Ancillary statistic for a parameter θ : a statistic $f(X)$ which does not depend on θ
- Concept linked to that of (minimal) sufficient statistic; (maximal) data reduction while retaining all Fisher information about θ
- Can an ancillary statistic can give information about θ even if it does not depend on it? QT! Ancillary

Ancillary statistic and pivotal quantities

- Pivotal quantity: its distribution does not depend on the parameters
- For a $\operatorname{Gaus}\left(\mu, \sigma^{2}\right)$ p.d.f., $\frac{\bar{X}-\mu}{S / \sqrt{N}} \sim t_{\text {student }}$ is a pivot
- See exercise this afternoon

- Ancillary statistic for a parameter θ : a statistic $f(X)$ which does not depend on θ
- Concept linked to that of (minimal) sufficient statistic; (maximal) data reduction while retaining all Fisher information about θ
- Can an ancillary statistic can give information about θ even if it does not depend on it? QT! Ancillary
- Yes!
- Sample X_{1} and X_{2} from $P_{\theta}(X=\theta)=P_{\theta}(X=\theta+1)=P_{\theta}(X=\theta+2)=\frac{1}{3}$
- Ancillary statistic: $R:=X_{2}-X_{1}$ (no information about θ)
- Minimal sufficient statistic: $M:=\frac{X_{1}+X_{2}}{2}$
- Sample point $(M=m, R=r)$: either $\theta=m$, or $\theta=m-1$, or $\theta=m-2$
- If $R=2$, then necessarily $X_{1}=m-1$ and $X_{2}=m-2$; Therefore necessarily $\theta=m-1$
- Pivotal quantity: its distribution does not depend on the parameters
- For a $\operatorname{Gaus}\left(\mu, \sigma^{2}\right)$ p.d.f., $\frac{\bar{X}-\mu}{S / \sqrt{N}} \sim t_{\text {student }}$ is a pivot
- See exercise this afternoon

- Ancillary statistic for a parameter θ : a statistic $f(X)$ which does not depend on θ
- Concept linked to that of (minimal) sufficient statistic; (maximal) data reduction while retaining all Fisher information about θ
- Can an ancillary statistic can give information about θ even if it does not depend on it? QT! Ancillary
- Yes!
- Sample X_{1} and X_{2} from $P_{\theta}(X=\theta)=P_{\theta}(X=\theta+1)=P_{\theta}(X=\theta+2)=\frac{1}{3}$
- Ancillary statistic: $R:=X_{2}-X_{1}$ (no information about θ)
- Minimal sufficient statistic: $M:=\frac{X_{1}+X_{2}}{2}$
- Sample point $(M=m, R=r)$: either $\theta=m$, or $\theta=m-1$, or $\theta=m-2$
- If $R=2$, then necessarily $X_{1}=m-1$ and $X_{2}=m-2$; Therefore necessarily $\theta=m-1$
- Knowledge of R alone carries no information on θ, but increases the precision on an estimate of θ (Cox, Efron, Hinckley)!
- Powerful tool to improve data reduction capabilities (save money...)
- Also employed for asymptotic likelihood expressions
- Also impact on approximate expressions for significance
- The information of a set of observations should increase with the number of observations
- Double the data should result in double the information if the data are independent
- Information should be conditional on what we want to learn from the experiment
- Data which are irrelevant to our hypothesis should carry zero information relative to our hypothesis
- Information should be related to precision
- The greatest the information carried by the data, the better the precision of our result

The Likelihood Principle - Enunciation

- Common enunciation: given a set of observed data \vec{x}, the likelihood function $L(\vec{x} ; \theta)$ contains all the information that is relevant to the estimation of the parameter θ contained in the data sample
- The likelihood function is seen as a function of θ, for a fixed set (a particular realization) of observed data \vec{x}
- The likelihood is used to define the information contained in a sample

The Likelihood Principle - Bayesians and Frequentists

- Bayesian statistics automatically satisfies the likelihood principle
- $P(\theta \mid \vec{x}) \propto L(\vec{x} ; \theta) \times \pi(\theta)$: the only quantity depending on the data is the likelihood
- Information as a broad way of saying all the possible inferences about θ
- "Probably tomorrow will rain"
- Frequentist statistics: information more strictly as Fisher information (connection with curvature of $L(\vec{x} ; \theta)$)
- Usually does not comply (have to consider the hypothetical set of data that might have been obtained)
- Need to recast question in terms of hypotetical data
- Example: tail areas from sampling distributions obtained with toys
- Even in forecasts: computer simulations of the day of tomorrow, or counting the past frequency of correct forecasts by the grandpa feeling arthritis in the shoulder
- "The sentence -tomorrow it will rain- is probably true"
- The Likelihood Principle is quite vague: no practical prescription for drawing inference from the likelihood
- Bayesian Maximum a-posteriori (MAP) estimator automatically maximizes likelihood
- Maximum Likelihood estimator (MLE) maximizes likelihood automatically, but some foundational issues

The Likelihood Principle - is it profound?

- Two likelihoods differing by only a normalization factor are equivalent
- Implies that information resides in the shape of the likelihood
- George Bernard: replace a dataset D with a dataset $D+Z$, where Z is the result of tossing a coin
- Assume that the coin toss is independent on the parameter θ you seek to determine
- Sampling probability: $p(D Z \mid \theta)=p(D \mid \theta) p(Z)$
- The coin toss tells us nothing about the parameter θ beyond what we already learn by considering D only
- Any inference we do with D must therefore be the same as any inference we do with $D+Z$
- In particular, normalizations cancel out in ratio: $\frac{\mathcal{L}_{1}}{\mathcal{L}_{2}}=\frac{p\left(D Z \mid \theta_{1} I\right)}{p\left(D Z \mid \theta_{2} I\right)}=\frac{p\left(D \mid \theta_{1} I\right)}{p\left(D \mid \theta_{2} I\right)}$
- Do you believe probability comes from the imperfect knowledge of the observer?
- Then the likelihood principle does not seem too profound besides the mathematical simplifications it allows
- Do you believe that probability is a physical phaenomenon arising from randomness?
- Then the likelihood principle has for you a profound meaning of valid principle of inference

Likelihood and Fisher Information

- A very narrow likelihood will provide much information about $\theta_{\text {true }}$
- The posterior probability will be more localized than the prior in the regimen in which the likelihood function dominates the product $L(\vec{x} ; \vec{\theta}) \times \pi$
- Ideally we'd want to connect this with the Fisher Information, which therefore be large
- A very broad likelihood will not carry much information, and ideally the computed Fisher Information will be small
- What's a reasonable definition of Fisher Information based on the likelihood function? Question time: Likelihood and Information

- Score: $\frac{\partial}{\partial \theta} \ln L(X ; \theta)$
- Under broad regularity conditions, if $X \sim f\left(x \mid \theta_{\text {true }}\right)$ the expectation of the score calculated for $\theta=\theta_{\text {true }}$ is zero

$$
E\left[\left.\frac{\partial}{\partial \theta} \ln L(X ; \theta) \right\rvert\, \theta=\theta_{\text {true }}\right]=\frac{\partial}{\partial \theta} \int f\left(x \mid \theta_{\text {true }}\right) d x=\frac{\partial}{\partial \theta} 1=0
$$

- Fisher Information: the variance of the score

$$
I(\theta)=E\left[\left.\left(\frac{\partial}{\partial \theta} \ln L(X ; \theta)\right)^{2} \right\rvert\, \theta_{\text {true }}\right]=\int\left(\frac{\partial}{\partial \theta} \ln f(x \mid \theta)\right)^{2} f(x \mid \theta) d x \geq 0
$$

- Under some regularity conditions, and when the likelihood is twice differentiable, then you can "exchange" the exponent and the number of derivations

$$
I(\theta)=-E\left[\left.\left(\frac{\partial^{2}}{\partial \theta^{2}} \ln L(X ; \theta)\right)^{2} \right\rvert\, \theta_{\text {true }}\right]
$$

- The narrowness of the likelihood can be estimated by looking at its curvature
- The curvature is the second derivative with respect to the parameter of interest
- A very narrow (peaked) likelihood is characterized by a very large and positive curvature $-\frac{\partial^{2} \ln L}{\partial \theta^{2}}$
- The second derivative of the likelihood is linked to the Fisher Information

$$
I(\theta)=-E\left[\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right]=E\left[\left(\frac{\partial \ln L}{\partial \theta}\right)^{2}\right]
$$

Fisher Information and Jeffreys priors

- When changing variable, the change of parameterization must not result in a change of the information
- The information is a property of the data only, through the likelihood-that summarizes them completely (likelihood principle)
- Search for a parametrization $\theta^{\prime}(\theta)$ in which the Fisher Information is constant
- Compute the prior as a function of the new variable

$$
\begin{aligned}
\pi(\theta)=\pi\left(\theta^{\prime}\right)\left|\frac{d \theta^{\prime}}{d \theta}\right| & \propto \sqrt{E\left[\left(\frac{\partial \ln N}{\partial \theta^{\prime}}\right)^{2}\right]\left|\frac{\partial \theta^{\prime}}{\partial \theta}\right|} \\
& =\sqrt{E\left[\left(\frac{\partial \ln L}{\partial \theta^{\prime}} \frac{\partial \theta^{\prime}}{\partial \theta}\right)^{2}\right]} \\
& =\sqrt{E\left[\left(\frac{\partial \ln L}{\partial \theta}\right)^{2}\right]} \\
& =\sqrt{I(\theta)}
\end{aligned}
$$

- For any $\theta, \pi(\theta)=\sqrt{I(\theta)}$; with this choice, the information is constant under changes of variable
- Such priors are called Jeffreys priors, and assume different forms depending on the type of parametrization
- Location parameters: uniform prior
- Scale parameters: prior $\propto \frac{1}{\theta}$
- Poisson processes: prior $\propto \frac{1}{\sqrt{\theta}}$

The Maximum Likelihood Method 1/

- Let $\vec{x}=\left(x_{1}, \ldots, x_{N}\right)$ be a set of N statistically independent observations x_{i}, sampled from a p.d.f. $f(x ; \vec{\theta})$ depending on a vector of parameters
- Under independence of the observations, the likelihood function factorizes to the individual p.d.f. s

$$
L(\vec{x} ; \vec{\theta})=\prod_{i=1}^{N} f\left(x_{i}, \vec{\theta}\right)
$$

- The maximum-likelihood estimator is the $\vec{\theta}_{M L}$ which maximizes the joint likelihood

$$
\vec{\theta}_{M L}:=\operatorname{argmax}_{\theta}(L(\vec{x}, \vec{\theta}))
$$

- The maximum must be global
- Numerically, it's usually easier to minimize

$$
-\ln L(\vec{x} ; \vec{\theta})=-\sum_{i=1}^{N} \ln f\left(x_{i}, \vec{\theta}\right)
$$

- Easier working with sums than with products
- Easier minimizing than maximizing
- If the minimum is far from the range of permitted values for $\vec{\theta}$, then the minimization can be performed by finding solutions to

$$
-\frac{\ln L(\vec{x} ; \vec{\theta})}{\partial \theta_{j}}=0
$$

- It is assumed that the p.d.f. s are correctly normalized, i.e. that $\int f(\vec{x} ; \vec{\theta}) d x=1(\rightarrow$ integral does not depend on $\vec{\theta}$)
- Solutions to the likelihood minimization are found via numerical methods such as MINOS
- Fred James' Minuit: https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html
- $\vec{\theta}_{M L}$ is an estimator \rightarrow let's study its properties!
(1) Consistent: $\lim _{N \rightarrow \infty} \vec{\theta}_{M L}=\vec{\theta}_{\text {true }}$;
(2) Unbiased: only asymptotically. $\vec{b} \propto \frac{1}{N}$, so $\vec{b}=0$ only for $N \rightarrow \infty$;
(3) Efficient: $V\left[\vec{\theta}_{M L}\right]=\frac{1}{I(\theta)}$
(9) Invariant: for change of variables $\psi=g(\theta) ; \hat{\psi}_{M L}=g\left(\vec{\theta}_{M L}\right)$
- $\vec{\theta}_{M L}$ is only asymptotically unbiased, and therefore it does not always represent the best trade-off between bias and variance
- Remember that in frequentist statistics $L(\vec{x} ; \vec{\theta})$ is not a p.d.f. . In Bayesian statistics, the posterior probability is a p.d.f.:

$$
P(\vec{\theta} \mid \vec{x})=\frac{L(\vec{x} \mid \vec{\theta}) \pi(\vec{\theta})}{\int L(\vec{x} \mid \vec{\theta}) \pi(\vec{\theta}) d \vec{\theta}}
$$

- Note that if the prior is uniform, $\pi(\vec{\theta})=k$, then the MLE is also the maximum of the posterior probability, $\vec{\theta}_{M L}=\operatorname{maxP}(\vec{\theta} \mid \vec{x})$.
- A nuclear decay with half-life τ is described by the p.d.f., expected value, and variance

$$
\begin{aligned}
f(t ; \tau) & =\frac{1}{\tau} e^{-\frac{t}{\tau}} \\
E[f] & =\tau \\
V[f] & =\tau^{2}
\end{aligned}
$$

- Sampling N independent measurements t_{i} from the same p.d.f. results in a set of measurements identically distributed
- Exercise: compute the MLE for this p.d.f.
- A nuclear decay with half-life τ is described by the p.d.f., expected value, and variance

$$
\begin{aligned}
f(t ; \tau) & =\frac{1}{\tau} e^{-\frac{t}{\tau}} \\
E[f] & =\tau \\
V[f] & =\tau^{2}
\end{aligned}
$$

- Sampling N independent measurements t_{i} from the same p.d.f. results in a set of measurements identically distributed
- Exercise: compute the MLE for this p.d.f.
- The joint p.d.f. can be factorized

$$
f\left(t_{1}, \ldots t_{N} ; \tau\right)=\prod_{i} f\left(t_{i} ; \tau\right)
$$

- A nuclear decay with half-life τ is described by the p.d.f., expected value, and variance

$$
\begin{aligned}
f(t ; \tau) & =\frac{1}{\tau} e^{-\frac{t}{\tau}} \\
E[f] & =\tau \\
V[f] & =\tau^{2}
\end{aligned}
$$

- Sampling N independent measurements t_{i} from the same p.d.f. results in a set of measurements identically distributed
- Exercise: compute the MLE for this p.d.f.
- The joint p.d.f. can be factorized

$$
f\left(t_{1}, \ldots t_{N} ; \tau\right)=\prod_{i} f\left(t_{i} ; \tau\right)
$$

- For a particular set of N measurements t_{i}, the p.d.f. can be written as a function of τ only, $L(\tau):=f\left(t_{i} ; \tau\right)$
- A nuclear decay with half-life τ is described by the p.d.f., expected value, and variance

$$
\begin{aligned}
f(t ; \tau) & =\frac{1}{\tau} e^{-\frac{t}{\tau}} \\
E[f] & =\tau \\
V[f] & =\tau^{2}
\end{aligned}
$$

- Sampling N independent measurements t_{i} from the same p.d.f. results in a set of measurements identically distributed
- Exercise: compute the MLE for this p.d.f.
- The joint p.d.f. can be factorized

$$
f\left(t_{1}, \ldots t_{N} ; \tau\right)=\prod_{i} f\left(t_{i} ; \tau\right)
$$

- For a particular set of N measurements t_{i}, the p.d.f. can be written as a function of τ only, $L(\tau):=f\left(t_{i} ; \tau\right)$
- Now all you need to do is to maximize the likelihood
- A nuclear decay with half-life τ is described by the p.d.f., expected value, and variance

$$
\begin{aligned}
f(t ; \tau) & =\frac{1}{\tau} e^{-\frac{t}{\tau}} \\
E[f] & =\tau \\
V[f] & =\tau^{2}
\end{aligned}
$$

- Sampling N independent measurements t_{i} from the same p.d.f. results in a set of measurements identically distributed
- Exercise: compute the MLE for this p.d.f.
- The joint p.d.f. can be factorized

$$
f\left(t_{1}, \ldots t_{N} ; \tau\right)=\prod_{i} f\left(t_{i} ; \tau\right)
$$

- For a particular set of N measurements t_{i}, the p.d.f. can be written as a function of τ only, $L(\tau):=f\left(t_{i} ; \tau\right)$
- Now all you need to do is to maximize the likelihood
- The logarithm of the likelihood, $\ln L(\tau)=\sum\left(\ln \frac{1}{\tau}-\frac{t_{i}}{\tau}\right)$, can be maximized analytically

$$
\frac{\partial \ln L(\tau)}{\partial \tau}=\sum_{i}\left(-\frac{1}{\tau}+\frac{t_{i}}{\tau^{2}}\right) \equiv 0
$$

Nuclear Decay with Maximum Likelihood Method

- The maximum-likelihood estimator is

$$
\hat{\tau}\left(t_{1}, \ldots, t_{N}\right)=\frac{1}{N} \sum_{i} t_{i}
$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased? Question time: Nuclear Decay 1

Nuclear Decay with Maximum Likelihood Method

- The maximum-likelihood estimator is

$$
\hat{\tau}\left(t_{1}, \ldots, t_{N}\right)=\frac{1}{N} \sum_{i} t_{i}
$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased? Question time: Nuclear Decay 1
- The expected value is $E[\hat{\tau}]=\tau$, and the estimator is unbiased:

$$
b=E[\hat{\tau}]-E[f]=\tau-\tau=0
$$

Nuclear Decay with Maximum Likelihood Method

- The maximum-likelihood estimator is

$$
\hat{\tau}\left(t_{1}, \ldots, t_{N}\right)=\frac{1}{N} \sum_{i} t_{i}
$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased? Question time: Nuclear Decay 1
- The expected value is $E[\hat{\tau}]=\tau$, and the estimator is unbiased:

$$
b=E[\hat{\tau}]-E[f]=\tau-\tau=0
$$

- What is the variance? Which is its relationship to N ? Is the estimator efficient? QT: N D 1

Nuclear Decay with Maximum Likelihood Method

IUCLouvain

- The maximum-likelihood estimator is

$$
\hat{\tau}\left(t_{1}, \ldots, t_{N}\right)=\frac{1}{N} \sum_{i} t_{i}
$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased? Question time: Nuclear Decay 1
- The expected value is $E[\hat{\tau}]=\tau$, and the estimator is unbiased:

$$
b=E[\hat{\tau}]-E[f]=\tau-\tau=0
$$

- What is the variance? Which is its relationship to N ? Is the estimator efficient? QT: N D 1
- The variance interestingly decreases when N increases, and it is possible to demonstrate that the estimator is efficient

$$
V[\hat{\tau}]=V\left[\frac{1}{N} \sum_{i} t_{i}\right]=\frac{1}{N^{2}} \sum_{i} V\left[t_{i}\right]=\frac{\tau^{2}}{N}
$$

Nuclear Decay with Maximum Likelihood Method

- The maximum-likelihood estimator is

$$
\hat{\tau}\left(t_{1}, \ldots, t_{N}\right)=\frac{1}{N} \sum_{i} t_{i}
$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased? Question time: Nuclear Decay 1
- The expected value is $E[\hat{\tau}]=\tau$, and the estimator is unbiased:

$$
b=E[\hat{\tau}]-E[f]=\tau-\tau=0
$$

- What is the variance? Which is its relationship to N ? Is the estimator efficient? QT: N D 1
- The variance interestingly decreases when N increases, and it is possible to demonstrate that the estimator is efficient

$$
V[\hat{\tau}]=V\left[\frac{1}{N} \sum_{i} t_{i}\right]=\frac{1}{N^{2}} \sum_{i} V\left[t_{i}\right]=\frac{\tau^{2}}{N}
$$

- The MLE is not the only estimator we can think of. Fill the table!

	Consistent	Unbiased	Efficient
$\hat{\tau}=\hat{\tau}_{M L}=\frac{t_{1}+\ldots+t_{N}}{N}$			
$\hat{\tau}=\frac{t_{1}+\ldots+t_{N}}{N-1}$			
$\hat{\tau}=t_{i}$			

Table: Properties of different estimators of the half life for a nuclear decay.

- The maximum-likelihood estimator is

$$
\hat{\tau}\left(t_{1}, \ldots, t_{N}\right)=\frac{1}{N} \sum_{i} t_{i}
$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased? Question time: Nuclear Decay 1
- The expected value is $E[\hat{\tau}]=\tau$, and the estimator is unbiased:

$$
b=E[\hat{\tau}]-E[f]=\tau-\tau=0
$$

- What is the variance? Which is its relationship to N ? Is the estimator efficient? QT: N D 1
- The variance interestingly decreases when N increases, and it is possible to demonstrate that the estimator is efficient

$$
V[\hat{\tau}]=V\left[\frac{1}{N} \sum_{i} t_{i}\right]=\frac{1}{N^{2}} \sum_{i} V\left[t_{i}\right]=\frac{\tau^{2}}{N}
$$

- The MLE is not the only estimator we can think of. Fill the table!

	Consistent	Unbiased	Efficient
$\hat{\tau}=\hat{\tau}_{M L}=\frac{t_{1}+\ldots+t_{N}}{N}$	\checkmark	\checkmark	\checkmark
$\hat{\tau}=\frac{t_{1}+\ldots+t_{N}}{N-1}$			
$\hat{\tau}=t_{i}$			

Table: Properties of different estimators of the half life for a nuclear decay.

- The maximum-likelihood estimator is

$$
\hat{\tau}\left(t_{1}, \ldots, t_{N}\right)=\frac{1}{N} \sum_{i} t_{i}
$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased? Question time: Nuclear Decay 1
- The expected value is $E[\hat{\tau}]=\tau$, and the estimator is unbiased:

$$
b=E[\hat{\tau}]-E[f]=\tau-\tau=0
$$

- What is the variance? Which is its relationship to N ? Is the estimator efficient? QT: N D 1
- The variance interestingly decreases when N increases, and it is possible to demonstrate that the estimator is efficient

$$
V[\hat{\tau}]=V\left[\frac{1}{N} \sum_{i} t_{i}\right]=\frac{1}{N^{2}} \sum_{i} V\left[t_{i}\right]=\frac{\tau^{2}}{N}
$$

- The MLE is not the only estimator we can think of. Fill the table! Question time: Nuclear Decay 2

	Consistent	Unbiased	Efficient
$\hat{\tau}=\hat{\tau}_{M L}=\frac{t_{1}+\ldots+t_{N}}{N}$	\checkmark	\checkmark	\checkmark
$\hat{\tau}=\frac{t_{1}+\ldots+t_{N}}{N-1}$	\checkmark	X	\times
$\hat{\tau}=t_{i}$			

Table: Properties of different estimators of the half life for a nuclear decay.

- The maximum-likelihood estimator is

$$
\hat{\tau}\left(t_{1}, \ldots, t_{N}\right)=\frac{1}{N} \sum_{i} t_{i}
$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased? Question time: Nuclear Decay 1
- The expected value is $E[\hat{\tau}]=\tau$, and the estimator is unbiased:

$$
b=E[\hat{\tau}]-E[f]=\tau-\tau=0
$$

- What is the variance? Which is its relationship to N ? Is the estimator efficient? QT: N D 1
- The variance interestingly decreases when N increases, and it is possible to demonstrate that the estimator is efficient

$$
V[\hat{\tau}]=V\left[\frac{1}{N} \sum_{i} t_{i}\right]=\frac{1}{N^{2}} \sum_{i} V\left[t_{i}\right]=\frac{\tau^{2}}{N}
$$

- The MLE is not the only estimator we can think of. Fill the table! Question time: Nuclear Decay 2

	Consistent	Unbiased	Efficient
$\hat{\tau}=\hat{\tau}_{M L}=t_{1}+\ldots+t_{N}$	\checkmark	\checkmark	\checkmark
$\hat{\tau}=\frac{t_{1}+\ldots+t_{N}}{N-1}$	\checkmark	x	x
$\hat{\tau}=t_{i}$	x	\checkmark	x

Table: Properties of different estimators of the half life for a nuclear decay.

- Bias: $b=E[\hat{\tau}]-\tau$
- Note: if you don't know the true value, you must simulate the bias of the method
- Generate toys with known parameters, and check what is the estimate of the parameter for the toy data
- If there is a bias, correct for it to obtain an unbiased estimator
- t_{i} is an individual observation, which is still sampled from the original factorized p.d.f.

$$
f\left(t_{i} ; \tau\right)=\frac{1}{\tau} e^{-\frac{t_{i}}{\tau}}
$$

- The expected value of t_{i} is therefore still $E[\hat{\tau}]=E\left[t_{i}\right]=\tau$
- $\hat{\tau}=t_{i}$ is therefore unbiased!

	Consistent	Unbiased	Efficient
$\hat{\tau}=t_{i}$	X	\checkmark	X

Table: Properties of different estimators of the half life for a nuclear decay.

- We usually want to optimize both bias \vec{b} and variance $V[\hat{\vec{\theta}}]$
- While we can optimize each one separately, optimizing them simultaneously leads to none being optimally optimized, in genreal
- Optimal solutions in two dimensions are often suboptimal with respect to the optimization of just one of the two properties
- The variance is linked to the width of the likelihood function, which naturally leads to linking it to the curvature of $L(\vec{x} ; \vec{\theta})$ near the maximum
- However, the curvature of $L(\vec{x} ; \vec{\theta})$ near the maximum is linked to the Fisher information, as we have seen
- Information is therefore a limiting factor for the variance (no data set contains infinite information, variance cannot collapse to zero)
- Variance of an estimator satisfies the Rao-Cramér-Frechet (RCF) bound

$$
V[\hat{\theta}] \geq \frac{1}{\hat{\theta}}
$$

- Rao-Cramer-Frechet (RCF) bound
$V[\hat{\theta}] \geq \frac{(1+\partial b / \partial \theta)^{2}}{-E\left[\partial^{2} \ln L / \partial \theta^{2}\right]}$
- In multiple dimensions, link with the information is maintaned via the full Fisher Information Matrix: $I_{i j}=E\left[\partial^{2} \ln L / \partial \theta_{i} \partial \theta_{j}\right]$
- Approximations
- Neglect the bias $(b=0)$
- Inequality is an approximate equality (true for large data samples)
- $V[\hat{\theta}] \simeq \frac{1}{-E\left[\partial^{2} \ln L / \partial \theta^{2}\right]}$
- Estimate of the variance of the estimate of the parameter!
- $\hat{V}[\hat{\theta}] \simeq \frac{1}{-\left.E\left[\partial^{2} \ln L / \partial \theta^{2}\right]\right|_{\theta=\text { theta }}}$
- For a generic unbiased estimator, can define efficiency of the estimator as

$$
e(\hat{\theta}):=\frac{I(\theta)^{-1}}{V[\hat{\theta}]}
$$

- The efficiency of a generic unbiased estimator, because of the RCF bound, is always $e(\hat{\theta}) \leq 1$
- For multidimensional parameters, we can build the information matrix with elements:

$$
\begin{aligned}
I_{j k}(\vec{\theta}) & =-E\left[\sum_{i}^{N} \frac{\partial^{2} \ln f\left(x_{i} ; \vec{\theta}\right)}{\partial \theta_{k} \partial \theta_{k}}\right] \\
& =N \int \frac{1}{f} \frac{\partial f}{\partial \theta_{j}} \frac{\partial f}{\partial \theta_{k}} d x
\end{aligned}
$$

- (the last equality is due to the integration interval not being dependent on $\vec{\theta}$)
- We have calculated the variance of the MLE in the simple case of the nuclear decay
- Analytic calculation of the variance is not always possible
- Write the variance approximately as:

$$
V[\hat{\theta}] \geq \frac{\left(1+\frac{\partial b}{\partial \theta}\right)^{2}}{-E\left[\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right]}
$$

- This expression is valid for any estimator, but if applied to the MLE then we can note $\vec{\theta}_{M L}$ is efficient and asymptotically unbiased
- Therefore, when $N \rightarrow \infty$ then $b=0$ and the variance approximate to the RCF bound, and \geq becomes \simeq :

$$
V\left[\vec{\theta}_{M L}\right] \simeq \frac{1}{-\left.E\left[\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right]\right|_{\theta=\vec{\theta}_{M L}}}
$$

- For a Gaussian p.d.f., $f(x ; \vec{\theta})=N(\mu, \sigma)$, the likelihood can be written as:

$$
L(\vec{x} ; \vec{\theta})=\ln \left[-\frac{(\vec{x}-\vec{\theta})^{2}}{2 \sigma^{2}}\right]
$$

- Moving away from the maximum of $L(\vec{x} ; \vec{\theta})$ by one unit of σ, the likelihood assumes the value $\frac{1}{2}$, and the area enclosed in $[\vec{\theta}-\sigma, \vec{\theta}+\sigma]$ will be-because of the properties of the Normal distribution-equal to 68.3\%.
- We can therefore write

$$
\begin{aligned}
\left.P\left((\vec{x}-\vec{\theta})^{2} \leq \sigma\right)\right) & =68.3 \% \\
P(-\sigma \leq \vec{x}-\vec{\theta} \leq \sigma) & =68.3 \% \\
P(\vec{x}-\sigma \leq \vec{\theta} \leq \vec{x}+\sigma) & =68.3 \%
\end{aligned}
$$

- Taking into account that it is important to keep in mind that probability is a property of sets, in frequentist statistics
- Confidence interval: interval with a fixed probability content
- This process for computing a confidence interval is exact for a Gaussian p.d.f.
- Pathological cases reviewed later on (confidence belts and Neyman construction)
- Practical prescription:
- Point estimate by computing the Maximum Likelihood Estimate
- Confidence interval by taking the range delimited by the crossings of the likelihood function with $\frac{1}{2}$ (for 68.3% probability content, or 2 for 95% probability content- 2σ, etc)

- MLE is invariant for monotonic transformations of θ
- This applies not only to the maximum of the likelihood, but to all relative values
- The likelihood ratio is therefore an invariant quantity (we'll use it for hypothesis testing)
- Can transform the likelihood such that $\log (L(\vec{x} ; \vec{\theta}))$ is parabolic, but not necessary (MINOS/Minuit)
- When the p.d.f. is not normal, either assume it is, and use symmetric intervals from Gaussian tails...
- This yields symmetric approximate intervals
- The approximation is often good even for small amounts of data
- ...or use asymmetric intervals by just looking at the crossing of the $\log (L(\vec{x} ; \vec{\theta}))$ values
- Naturally-arising asymmetrical intervals
- No gaussian approximation
- In any case (even asymmetric intervals) still based on asymptotic expansion
- Method is exact only to $\mathcal{O}\left(\frac{1}{N}\right)$

Plot from James, 2nd ed.

- Theorem: for any p.d.f. $f(x \mid \vec{\theta})$, in the large numbers limit $N \rightarrow \infty$, the likelihood can always be approximated with a gaussian:

$$
L(\vec{x} ; \vec{\theta}) \propto_{N \rightarrow \infty} e^{-\frac{1}{2}\left(\vec{\theta}-\vec{\theta}_{M L}\right)^{T} H\left(\vec{\theta}-\vec{\theta}_{M L}\right)}
$$

- where H is the information matrix $I(\vec{\theta})$.
- Under these conditions, $V\left[\vec{\theta}_{M L}\right] \rightarrow \frac{1}{I\left(\vec{\theta}_{M L}\right)}$, and the intervals can be computed as:

$$
\Delta \ln L:=\ln L\left(\theta^{\prime}\right)-\ln L_{\max }=-\frac{1}{2}
$$

- The resulting interval has in general a larger probability content than the one for a gaussian p.d.f., but the approximation grows better when N increases
- The interval overcovers the true value $\vec{\theta}_{\text {true }}$
- $\vec{\theta}_{\text {rrue }}$ is therefore stimated as $\hat{\theta}=\vec{\theta}_{M L} \pm \sigma$. This is another situation in which frequentist and Bayesian statistics differ in the interpretation of the numerical result
- Frequentist: $\vec{\theta}_{\text {rue }}$ is fixed
- "if I repeat the experiment many times, computing each time a confidence interval around $\vec{\theta}_{M L}$, on average 68.3% of those intervals will contain $\vec{\theta}_{\text {mue }}$ "
- Coverage: "the interval covers the true value with 68.3% probability"
- Direct consequence of the probability being a property of data sets
- Bayesian: $\vec{\theta}_{\text {true }}$ is not fixed
- "the true value $\vec{\theta}_{t r u e}$ will be in the range $\left[\vec{\theta}_{M L}-\sigma, \vec{\theta}_{M L}+\sigma\right]$ with a probabilty of 68.3% "
- This corresponds to giving a value for the posterior probability of the parameter $\vec{\theta}_{\text {true }}$
- How good is the approximation $L(\vec{x} ; \vec{\theta}) \propto \exp \left[-\frac{1}{2}\left(\vec{\theta}-\vec{\theta}_{M L E}\right)^{T} H\left(\vec{\theta}-\vec{\theta}_{M L}\right)\right]$?
- Here H is the information matrix $I(\vec{\theta})$
- True only to $\mathcal{O}\left(\frac{1}{N}\right)$
- In these conditions, $V\left[\vec{\theta}_{M L}\right] \rightarrow \frac{1}{I\left(\vec{\theta}_{M L}\right)}$
- Intervals can be derived by crossings: $\Delta \ln L=\ln L\left(\theta^{\prime}\right)-\ln L_{\text {max }}=k$
- This afternoon: we'll convince ourselves of how good is this approximation in case of the nuclear decay!

Nuclear decay at time $\mathrm{t}=1$

- The convergence of the likelihood $L(\vec{x} ; \vec{\theta})$ to a gaussian is a direct consequence of the central limit theorem
- Take a set of measurements $\vec{x}=\left(x_{i}, \ldots, x_{N}\right)$ affected by experimental errors that results in uncertainties $\sigma_{1}, \ldots, \sigma_{N}$ (not necessarily equal among each other)
- In the limit of a large number of events, $M \rightarrow \infty$, the random variable built summing M measurements is gaussian-distributed:

$$
Q:=\sum_{j=1}^{M} x_{j} \sim N\left(\sum_{j=1}^{M} x_{j}, \sum_{j=1}^{M} \sigma_{j}^{2}\right), \quad \forall f(x, \vec{\theta})
$$

- The demonstration runs by expanding in series the characteristic function $y_{i}=\frac{x_{j}-\mu_{j}}{\sqrt{\sigma_{j}}}$
- The theorem is valid for any p.d.f. $f(x, \vec{\theta})$ that is reasonably peaked around its expected value.
- If the p.d.f. has large tails, the bigger contributions from values sampled from the tails will have a large weight in the sum, and the distribution of Q will have non-gaussian tails
- The consequence is an alteration of the probability of having sums Q outside of the gaussian
- The condition $M \rightarrow \infty$ is reasonably valid if the sum is of many small contributions.
- How large does M need to be for the approximation to be reasonably good? Question time: Central Limit
- The condition $M \rightarrow \infty$ is reasonably valid if the sum is of many small contributions.
- How large does M need to be for the approximation to be reasonably good? Question time: Central Limit
- This afternoon we'll check!

And in many dimensions...

UCLouvain

- Construct $\log \mathcal{L}$ contours and determine confidence intervals by MINOS
- Elliptical contours correspond to gaussian Likelihoods
- The closer to MLE, the more elliptical the contours, even in non-linear problems
- All models are linear in a sufficiently small region
- Nonlinear regions not problematic (no parabolic transformation of $\log \mathcal{L}$ needed)
- MINOS accounts for non-linearities by following the likelihood contour
- Confidence intervals for each parameter

$$
\max _{\theta_{j}, j \neq i} \log \mathcal{L}(\theta)=\log \mathcal{L}(\hat{\theta})-\lambda
$$

- $\lambda=\frac{Z_{1-\beta}^{2}}{2}$
- $\lambda=1 / 2$ for $\beta=0.683$ (" 1σ ")
- $\lambda=2$ for $\beta=0.955$ (" 2σ ")

Plot from James, 2nd ed.

Profile likelinood ratio step by step for cross sections - Expected everffifl's

- We used to compute the total cross section of a given process by applying the naïve formula

$$
\sigma=\frac{N_{\text {data }}-N_{b k g}}{\epsilon L} .
$$

- $N_{\text {sig }}$ estimated from $N_{\text {data }}-N_{b k g}$ for the measured integrated luminosity L
- The acceptance ϵ accounts for th. branching fractions fiducial region for the measurement (fiducial region: generator-level selection which defines the phase space of the measurement)
- Nowadays we model everything into the likelihood function
- $p(x \mid \mu, \theta)$ pdf for the observable x to assume a certain value in a single event
- $\mu:=\frac{\sigma}{\sigma_{\text {pred }}}$ (single- or multi-dimensional) parameter of interest (POI). A multiplier of the predicted cross section: signal strength
- θ (generally multi-dimensional) nuisance parameter representing all the uncertainties affecting the measurement.
- Extend to a data set of many events $X=\left\{x_{1}, \ldots, x_{n}\right\}$ by taking the product of the single-event p.d.f.s.

$$
\prod_{e=1}^{n} p\left(x_{e} \mid \mu, \theta\right)
$$

Profile likelinood ratio step by step for cross sections - Expected everffil's

- We used to compute the total cross section of a given process by applying the naïve formula

$$
\sigma=\frac{N_{\text {data }}-N_{b k g}}{\epsilon L}
$$

- $N_{\text {sig }}$ estimated from $N_{\text {data }}-N_{\text {bkg }}$ for the measured integrated luminosity L
- The acceptance ϵ accounts for th. branching fractions fiducial region for the measurement (fiducial region: generator-level selection which defines the phase space of the measurement)
- Nowadays we model everything into the likelihood function
- $p(x \mid \mu, \theta)$ pdf for the observable x to assume a certain value in a single event
- $\mu:=\frac{\sigma}{\sigma_{\text {pred }}}$ (single- or multi-dimensional) parameter of interest (POI). A multiplier of the predicted cross section: signal strength
- θ (generally multi-dimensional) nuisance parameter representing all the uncertainties affecting the measurement.
- Extend to a data set of many events $X=\left\{x_{1}, \ldots, x_{n}\right\}$ by taking the product of the single-event p.d.f.s.

$$
\prod_{e=1}^{n} p\left(x_{e} \mid \mu, \theta\right)
$$

- The number of events in the data set is however a random variable itself!
- Poisson distribution with mean equal to the number of events ν we expect from theory
- Marked Poisson model

$$
f(X \mid \nu(\mu, \theta), \mu, \theta)=\operatorname{Pois}(n \mid \nu(\mu, \theta)) \prod_{e=1}^{n} p\left(x_{e} \mid \mu, \theta\right)
$$

Pleasant quality read: Vischia, 2019 doi:10.1016/j.revip.2020.100046 ©

- Both μ and θ act on the individual pdfs for the observable and on the expectation for the global amount of events
- Incorporate systematic uncertainties as nuisance parameter θ : Conway, 2011 in CERN-2011-006115
- Constrain the terms in the fit: constraint interpreted as prior coming from the auxiliary measurement
- θ estimated with uncertainty $\delta \theta$
- Often Gaussian pdf, unless θ has a physical bound at zero: then log-normal (rejects negative values)
- Likelihood $\mathcal{L}(\mu, \theta ; X)$: take the marked Poisson model $f(X \mid \nu(\mu, \theta), \mu, \theta)$ and condition on the observed value of X
- MLE: $\hat{\mu}:=\operatorname{argmax}_{\mu} \mathcal{L}(\mu, \theta ; X)$ still depends on the nuisance parameters θ

$$
\begin{aligned}
\mathcal{L}\left(\boldsymbol{n}, \boldsymbol{\alpha}^{0} \mid \mu, \boldsymbol{\alpha}\right) & =\prod_{i \in \text { bins }} \mathcal{P}\left(n_{i} \mid \mu S_{i}(\boldsymbol{\alpha})+B_{i}(\boldsymbol{\alpha})\right) \times \prod_{j \in \text { syst }} \mathcal{G}\left(\alpha_{j}^{0} \mid \alpha_{j}, \delta \alpha_{j}\right) \\
\mathcal{L}(\boldsymbol{n}, 0 \mid \mu, \boldsymbol{\alpha}) & =\prod_{i \in \text { bins }} \mathcal{P}\left(n_{i} \mid \mu S_{i}(\boldsymbol{\alpha})+B_{i}(\boldsymbol{\alpha})\right) \times \prod_{j \in \text { syst }} \mathcal{G}\left(0 \mid \alpha_{j}, 1\right)
\end{aligned}
$$

Pleasant quality read: Vischia, 2019 doi:10.1016/j.revip.2020.100046 ©

Eliminate dependence on the nuisance parameters

UCLouvain

- Likelihood ratio!

$$
\lambda(\mu):=\frac{\mathcal{L}(\mu, \hat{\hat{\theta}})}{\mathcal{L}(\hat{\mu}, \hat{\theta})} .
$$

- Denominator $\mathcal{L}(\hat{\mu}, \hat{\theta})$ is computed for the values of μ and θ which jointly maximize the likelihood function.
- Profiling: eliminating the dependence on the nuisance parameters by taking their conditional maximum likelihood estimate
- Bayesians normally marginalize (integrate) rather than profiling (see Demortier, 2002)
- The maximum of the likelihood ratio yields the point estimate for μ
- The second derivative of the maximum likelihood ratio yields intervals on the parameter μ
- Tomorrow: the tricky cases (e.g. point estimate near the physical range allowed for the parameter)

Pleasant quality read: Vischia, 2019 doi:10.1016/j.revip.2020.100046 ©

- The likelihood ratio $\lambda(\mu)=\frac{L(\mu, \hat{\hat{\theta}}(\mu))}{L(\hat{\mu}, \hat{\theta})}$
- Conceptually, you can run the experiment many times (e.g. toys) and record the value of the test statistic
- The test statistic can therefore be seen as a distribution
- Asymptotically, $\lambda(\mu) \sim \exp \left[-\frac{1}{2} \chi^{2}\right]\left(1+\mathcal{O}\left(\frac{1}{\sqrt{N}}\right)\right)$ (Wilks Theorem, under some regularity conditions-continuity of the likelihood and up to 2nd derivatives, existence of a maximum, etc)
- The χ^{2} distribution depends only on a single parameter, the number of degrees of freedom
- It follows that the test statistic is independent of the values of the nuisance parameters
- Useful: you don't need to make toys in order to find out how is $\lambda(\mu)$ distributed!
- Sometimes the classification into POI and nuisance parameter washes out
- Maybe you data and your method can provide information on a systematic uncertainty

Plot from doi:10.1007/JHEP12(2012)105

- More often, the analysis is not sensitive enough to treat an uncertainty as POI and measure it
- The fit can still constrain the nuisance parameter that is profiled
- Indirectly provides information about your estimate of that parameter before the fit
- Over- or under-estimate θ before the fit
- See a best fit value for θ that doesn't match very well with the prefit value
- Quote, for each nuisance parameter, two important quantities
- Pull: the difference of the post-fit and pre-fit values of the parameter, normalized to the pre-fit uncertainty: pull $:=\frac{\hat{\theta}-\theta}{\delta \theta}$
- Constraint: the ratio between the post-fit and the pre-fit uncertainty in the nuisance parameter.

Pulls and Constraints

WUCLOUVain

- Pull: the difference of the post-fit and pre-fit values of the parameter, normalized to the pre-fit uncertainty: pull $:=\frac{\hat{\theta}-\theta}{\delta \theta}$
- Constraint: the ratio between the post-fit and the pre-fit uncertainty in the nuisance parameter.
- Spot easily possible issues in the fit
- θ pulled too much may be a hint that our estimate of the pre-fit value was not reasonable
- θ constrained too much indicates that the data contain enough information to improve the precision in the nuisance parameter with respect to our original estimate, which may or may not make sense.

Image collected and cited in doi:10.1016/j.revip.2020.100046, references therein)

Question time, pulls and constraints

- What is more worrying, a small pull with a small constraint, or a large pull with a strong constraint? Question time: Pulls and Constraints
- A pull with very small constraint: $\theta_{\text {prefit }}=0 \pm 1, \theta_{\text {postfit }}=1 \pm 0.9$
- The same pull with a strong constraint: $\theta_{\text {prefit }}=0 \pm 1, \theta_{\text {postfit }}=1 \pm 0.2$

Question time, pulls and constraints

- What is more worrying, a small pull with a small constraint, or a large pull with a strong constraint? Question time: Pulls and Constraints
- A pull with very small constraint: $\theta_{\text {prefit }}=0 \pm 1, \theta_{\text {postfit }}=1 \pm 0.9$
- The same pull with a strong constraint: $\theta_{\text {prefit }}=0 \pm 1, \theta_{\text {postit }}=1 \pm 0.2$
- A way of estimating if a shift is significant is to compare the shift with its uncertainty
- For independent measurements, the compatibility C is

$$
C=\Delta \theta / \sigma_{\Delta \theta}=\frac{\theta_{2}-\theta_{1}}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}}
$$

- We would conclude that the first case $C=0.74$, for the second one $C=0.98$ (larger, still within uncertainty)
- What is more worrying, a small pull with a small constraint, or a large pull with a strong constraint? Question time: Pulls and Constraints
- A pull with very small constraint: $\theta_{\text {prefit }}=0 \pm 1, \theta_{\text {postfit }}=1 \pm 0.9$
- The same pull with a strong constraint: $\theta_{\text {prefit }}=0 \pm 1, \theta_{\text {postfit }}=1 \pm 0.2$
- A way of estimating if a shift is significant is to compare the shift with its uncertainty
- For independent measurements, the compatibility C is

$$
C=\Delta \theta / \sigma_{\Delta \theta}=\frac{\theta_{2}-\theta_{1}}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}}
$$

- We would conclude that the first case $C=0.74$, for the second one $C=0.98$ (larger, still within uncertainty)
- However, these are not independent measurements!
- The formula is therefore

$$
C=\Delta \theta / \sigma_{\Delta \theta}=\frac{\theta_{2}-\theta_{1}}{\sqrt{\sigma_{1}^{2}-\sigma_{2}^{2}}}
$$

- For the first case, $C=2.29$, for the second case $C=1.02$
- The same pull is more significant if there is (almost no) constraint!!!

Impacts

- Impact of θ on the post-fit signal strength permits to obtain a ranking of the nuisance parameters in terms of their effect on the signal strength
- Fix each nuisance parameter to its post-fit value $\hat{\theta}$ plus/minus its pre-fit (post-fit) uncertainty $\delta \theta$ ($\delta \hat{\theta}$)
- Reperform the fit for μ
- Compute the impact as the difference between the original fitted signal strength and the refitted signal strength.
- Results on Asimov dataset (replacing the data with the expectations from simulated events) is expected to give "perfect" results

Image collected and cited in doi:10.1016/f.revip.2020.100046, references therein)

Breakdown of systematic uncertainties

- What's the amount of uncertainty that is impotable to a given set of systemattic effects?
- The modern expression of Fisher's formalization of the ANOVA concept
- "the constituent causes fractions or percentages of the total variance which they together produce" (Fisher, 1919)
- "the variance contributed by each term, and by which the residual variance is reduced when that term is removed" (Fisher, 1921)
- Breakdown the contributions
- Freeze a set of uncertainties θ_{i} to their post-fit value
- Repeat the fit to extract a new (smaller) uncertainty on μ
- Obtain the contribution of θ_{i} to the overall uncertainty as squared difference betwee the full and reduced uncertainties
- Statistical uncertainty obtained by freezing all nuisance parameters

From sidebands to systematic uncertainties

- Measure a background rate in a sideband, use the estimate in the signal region
- As described, let's model our estimation problem using profile likelihoods

$$
\begin{aligned}
& \mathcal{L}\left(\boldsymbol{n}, \boldsymbol{\alpha}^{\mathbf{0}} \mid \mu, \boldsymbol{\alpha}\right)=\prod_{i \in \text { bins }} \mathcal{P}\left(n_{i} \mid \mu S_{i}(\boldsymbol{\alpha})+B_{i}(\boldsymbol{\alpha})\right) \times \prod_{j \in \text { syst }} \mathcal{G}\left(\alpha_{j}^{0} \mid \alpha_{j}, \delta \alpha_{j}\right) \\
& \lambda(\mu)=\frac{\mathcal{L}\left(\mu, \hat{\boldsymbol{\alpha}}_{\mu}\right)}{\mathcal{L}(\hat{\mu}, \hat{\boldsymbol{\alpha}})}
\end{aligned}
$$

- Sideband measurement

$$
\begin{gathered}
L_{S R}(s, b)=\operatorname{Poisson}\left(N_{S R} \mid s+b\right) \\
L_{C R}(b)=\operatorname{Poisson}\left(N_{C R} \mid \tilde{\tau} \cdot b\right) \\
\mathcal{L}_{\text {full }}(s, b)=\mathcal{P}\left(N_{S R} \mid s+b\right) \times \mathcal{P}\left(N_{C R} \mid \tilde{\tau} \cdot b\right)
\end{gathered}
$$

- Subsidiary measurement of the background rate:
- 8% systematic uncertainty on the MC rates
- b : measured background rate by MC simulation
- $\mathcal{G}(\tilde{b} \mid b, 0.08)$: our

$$
\mathcal{L}_{\text {full }}(s, b)=\mathcal{P}\left(N_{S R} \mid s+b\right) \times \mathcal{G}(\tilde{b} \mid b, 0.08)
$$

$$
\begin{aligned}
\mathcal{L}\left(\boldsymbol{n}, \boldsymbol{\alpha}^{\mathbf{0}} \mid \mu, \boldsymbol{\alpha}\right) & =\prod_{i \in \text { bins }} \mathcal{P}\left(n_{i} \mid \mu S_{i}(\boldsymbol{\alpha})+B_{i}(\boldsymbol{\alpha})\right) \times \prod_{j \in s y s t} \mathcal{G}\left(\alpha_{j}^{0} \mid \alpha_{j}, \delta \alpha_{j}\right) \\
\mathcal{L}(\boldsymbol{n}, 0 \mid \mu, \boldsymbol{\alpha}) & =\prod_{i \in \text { bins }} \mathcal{P}\left(n_{i} \mid \mu S_{i}(\boldsymbol{\alpha})+B_{i}(\boldsymbol{\alpha})\right) \times \prod_{j \in s y s t} \mathcal{G}\left(0 \mid \alpha_{j}, 1\right)
\end{aligned}
$$

- Subsidiary measurement often labelled constraint term
- It is not a PDF in α : $\mathcal{G}\left(\alpha_{j} \mid 0,1\right) \neq \mathcal{G}\left(0 \mid \alpha_{j}, 1\right)$
- Response function: $\tilde{B}_{i}(1+0.1 \alpha)$ (a unit change in $\alpha-$ e.g. 5% JES- changes the acceptance by 10%)

Graphics from W. Verkerke

Interpolation needed between template models

- Conditional density $f(x \mid \alpha)$ constructed by some means for a discrete set of values $\alpha_{1}, \ldots \alpha_{N}$
- The exact dependence of $f(x \mid \alpha)$ on α is unknown
- In practice $f\left(x \mid \alpha_{i}\right)$ often nonparametric density estimates in the x space (e.g. histograms)
- Problem: determine $f(x \mid \alpha)$ for arbitrary α_{i}
- Typically α_{i} within the cloud of $\alpha_{1}, \ldots \alpha_{N}$, and direct calculation too expensive
- Need to keep the densities normalized: $\int f(x \mid \alpha) d x=1, \forall \alpha$
- Need to define 'morphing' algorithm to define distribution $\mathrm{s}(\mathrm{x})$ for each value of α
$\left.s(x)\right|_{a=+1}$

Graphics from W. Verkerke

- Vertical interpolation is often not what you want
- Except some cases, e.g. interpolation of detector efficiency curves
- Vertical interpolation of single-parameter 1D densities:
$f(x \mid \alpha)=w_{1} f\left(x \mid \alpha_{1}\right)+\left(1-w_{1}\right) f\left(x \mid \alpha_{2}\right)$, $w_{1}=\frac{\alpha_{2}-\alpha}{\alpha_{2}-\alpha_{1}}, \alpha \in\left[\alpha_{1}, \alpha_{2}\right]$
- Horizontal interpolation: identical parameter dependence, but interpolate quantile function
$q(y \mid \alpha)=w_{1} q\left(y \mid \alpha_{1}\right)+\left(1-w_{1}\right) q\left(y \mid \alpha_{2}\right)$, $q(y \mid \alpha):=F^{-1}(y \mid \alpha)$
- Have to solve $q(y \mid \alpha)=x$ numerically
- Difficult to evaluate numerically around $y=0$ and $y=1$

Horizontal interpolation/morphing in one dimension

- For HEP application and univariate densities, reasonable solution is linear interpolation
- A.L. Read, Linear interpolation of histograms, NIM A 425, 357 (1999)
- Can fail dramatically if the change in shape is comparable with or smaller than MC statistical fluctuations
- Sometimes we may want to avoid adding this new degree of freedom in the model
- Decoupling rate and shape effects is always possible, even when not neglecting the shape ones)

Piecewise linear interpolation response model for a one bin

Visualization of 2D interpolation

Graphics from W. Verkerke

- The cases $f(\vec{x} \mid \alpha)$ and $f(\vec{x} \mid \vec{\alpha})$ remain delicate
- Multivariate parameters: $g(\cdot \mid \vec{\alpha})=\sum_{i=1}^{N} w_{i}\left(\vec{\alpha}, \overrightarrow{\alpha_{1}}, \ldots, \overrightarrow{\alpha_{N}}\right) g(\cdot) \overrightarrow{\alpha_{i}}$
- $g(\cdot \mid \vec{\alpha})$ either density function (x) or quantile function (y)
- Non-negative weights summing up to 1 ; many techniques (polinomial, local poly, spline best used in 1D)
- Lack of generality because assumes Euclidean space

What if our metric is not Euclidean?

- Given two distributions P_{0} and P_{1}, define an optimal map T transforming $X \sim P_{0}$ into $T(X) \sim P_{1}$ (Monge, 1781)
- Define a geodesic path between P_{0} and P_{1} in the space of the distributions, according to a given metric
- Shape-preserving notion of averages of distributions
- Distance based on transport along geodesic paths
- Let $X \sim P_{0}$, and find T by minimizing $\mathbb{E}\left[\|X-T(X)\|^{p}\right]=\int\|x-T(x)\|^{p} d P_{0}(x)$
- Minimization over all T s.t. $T(X) \sim P_{1}$. Can replace Euclidean distance with any distance
- The minimizer is called optimal transport map

Generalize to arbitrary metric

IUCLouvain

- Formally a minimization of the weighted average distance:

$$
S\left(f, \vec{\alpha}, \overrightarrow{\alpha_{1}}, \overrightarrow{\alpha_{N}}\right)=\sum_{i=1}^{N} w_{i}\left(\vec{\alpha}, \overrightarrow{\alpha_{1}}, \overrightarrow{\alpha_{N}}\right)\left[D\left(f(x \mid \vec{\alpha}), f\left(x \mid \overrightarrow{\alpha_{i}}\right)\right]^{p}\right.
$$

- $D(f(x), g(x))$ is a distance (metric functional in the space of distributions)
- Every metric generates an interpolation method (see Chap. 14 of Encyclopedia of Distances, Deza and Deza, 4ed., Springer, 2016)
- L^{2} distance generates vertical morphing (with $p=2,[D(\cdot)]^{p}$ is the integrated squared error)
- Wasserstein distance generates horizontal morphing ($\mathrm{p}=1$ Earth Mover distance)
- $W_{p}(X, Y):=W_{p}\left(P_{0}, P_{1}\right)=\left(\int\left\|x-T^{*}(x)\right\|^{p} d P_{0}(x)\right)^{1 / p}, T^{*}$ optimal transport map
- Works well in defining a metric in the space of almost all distributions
- The set of distributions equipped with Wasserstein distance is a geodesic space (Riemaniann if $p=2$)
- Given P_{0} and P_{1} there is always a shortest path (geodesic) between them, and its length is the Wasserstein distance $W\left(P_{0}, P_{1}\right)$

ℓ_{2} interpolation

Wasserstein interpolation

Graphics from Bonneel, Peyre, Cuturi, 2016

Graphics from Peyre, Cuturi, 2019

What if a transport map from P_{0} to P_{1} does not exist?

- Example: $P=\delta_{0}$ (point mass at 0), $Q=$ Gaussian
- Kantorovich relaxation: take the mass at x and split it into small components
- \mathcal{J} set of all joint distributions J for (X, Y) with marginals P and Q (coupling between P and Q)
- Find J to minimize $\mathbb{E}_{J}[\|X-Y\|]=\left(\int\|x-y\|^{p} d J(x, y)\right)^{\frac{1}{p}}$
- Wasserstein distance: $W(P, Q)=W(X, Y)=\left(i n f_{J} \int\|x-y\|^{2} d J(x, y)\right)^{\frac{1}{2}}$
- If an optimal transport T exists, then the optimal J is degenerate and supported on the curve $(x, T(x))$
- Regularization possible by adding term:
$\mathbb{E}_{J}[\|X-Y\|]=\left(\int\|x-y\|^{p} d J(x, y)\right)^{\frac{1}{p}}+\lambda f(J)$
- $f(J)$ e.g. entropy
- Fast, and easier inference
- How to choose λ ? Not clear effect of regularization

Graphics from Wikipedia

Uncertainty quantification

- These methods introduce an uncertainty in the morphed shape determination
- \hat{T} estimate of T based on samples $X_{1}, \ldots, X_{N} \sim P_{0}, Y_{1}, \ldots, Y_{N} \sim P_{1}$
- Closeness of \hat{T} to T ($\hat{W}\left(P_{0}, P_{1}\right)$ to $W\left(P_{0}, P_{1}\right)$ depends on number of dimensions $\mathbb{E} \int\|\hat{T}(x)-T(x)\|^{2} d P_{0}(x) \approx\left(\frac{1}{N}\right)^{\frac{1}{d}}$ (curse of dimensionality)
- Getting confidence intervals very hard, solved only for special cases
- 1D (Munck, Czado, Sommerfeld)
- MultiD: sliced Wassserstein distance (average W between 1D projections of P_{0} and P_{1})
- Under this approximation (weaker metric), can derive confidence regions by a minimax game on the L^{r} norm of quantile functions of P_{0} and P_{1} for a fixed confidence level
- Coverage guaranteed by construction

Graphics from arXiv:1909.07862. Here P_{0} is P and P_{1} is Q, indices refer to two example cases, $n=100$

Moment morphing

- Moment morphing: morph standardized densities instead of densities
- Useful for models with well-behaved first moments (mean and variance)
- Not as good as horizontal morphing in 1D (inefficient version of it), good approximation in N
- How to morph the covariance matrix? Many choices available
morphing parameter 1

The Inverse Rosenblatt Transformation

UCLouvain

- Devise a multi-D equivalent of quantile function: the Inverse Rosenblatt transformation (Ann. Math. Statist. 23, 470 (1952).
- The inverse Rosenblatt transformation $x_{1}=F_{1}^{-1}\left(z_{1}\right), x_{2}=F_{2}^{-1}\left(z_{2} \mid z_{1}\right)$ uses conditional quantile functions: we know how to interpolate them!
- Computationally intensive (k non-linear equations to be solved numerically, N calls to root-finding, etc)

```
Let X=( (X, , 柆) be a random vector with distribution function
F(\mp@subsup{x}{1}{},\cdots,\mp@subsup{x}{k}{}). Let z=(\mp@subsup{z}{1}{},\cdots,\mp@subsup{z}{k}{})=Tx=T(\mp@subsup{x}{1}{},\cdots,\mp@subsup{x}{k}{})\mathrm{ , where }T\mathrm{ is the}\\mp@code{*}
transformation considered. Then T}\mathrm{ is given by
    z
    z2}=P{\mp@subsup{X}{2}{}\leqq\mp@subsup{x}{2}{}|\mp@subsup{X}{1}{}=\mp@subsup{x}{1}{}}=\mp@subsup{F}{2}{}(\mp@subsup{x}{2}{}|\mp@subsup{x}{1}{})
    zk}=P{\mp@subsup{X}{k}{}\leqq\mp@subsup{x}{k}{}|\mp@subsup{x}{k-1}{= = xk-1}\mp@code{,\cdots,}\mp@subsup{X}{1}{}=\mp@subsup{x}{1}{}}=\mp@subsup{F}{k}{}(\mp@subsup{x}{k}{}|\mp@subsup{x}{k-1}{},\cdots,\mp@subsup{x}{1}{})
```

One can readily show that the random vector $Z=T X$ is uniformly distributed over the k-dimensional unit cube

Graphics by Igor Volobouev

Copula morphing

- Probability integral transforms of marginals of $f(\vec{x}): z_{1}=F_{1}\left(x_{1}\right), \ldots z_{k}=F_{k}\left(x_{k}\right)$
- Copula density $c(\vec{z})$ is density of the vector of z_{k}, captures mutual information (and $c(\vec{z})$ uniform if and only if all X_{i} independent)
- Given the marginal densities $f_{i}(x)=\frac{d F_{i}(x)}{d x}$, then $f\left(\vec{x}=c\left(F_{1}\left(x_{1}\right), \ldots, F_{k}\left(x_{k}\right)\right) \prod_{i=1}^{k} f_{i}\left(x_{i}\right)\right.$
- Now do horizontal morphing on the marginals separately in each variable, then interpolate vertically the copula density
- Much faster than Inverse Rosenblatt transformation
- Results intuitively more "reasonable"

Copula-Based Interpolation Example

Graphics by Igor Volobouev

How we tend to call things in CMS

Statistical fluctuations

Statistical uncertainty of nominal templates taken into account in

Poisson based template fits to data

- 'Barlow Beeston': one additional nuisance par per contributing template J. Barlow, C. Beeston, CPC 77 (1993) 219-228
- 'Barlow Beeston lite': one additional nuisance parameter for templates sum \rightarrow Standard Procedure in CMS
John Conway, arXiv1103.0354

Statistical uncertainty of \pm 1sigma Templates usually neglected \rightarrow can lead to fake constraints for λ, see hntps:/l indico.cern.ch/event/761804/contributions/3160985/attachments/1733339/2802398/ Defranchis_template_constraints.pdf

Slide by Olaf Behnke

Cubic spline interpolation + straight line extrapolation

Used in Θ thetal Tool

\square
Alternative: overall straight line \rightarrow need to symmetrise uncertainties
Could be tested with additional templates for $\lambda=-3,2,2,3$ etc.

- Horizontal smoothing with well-established methods in literature
- Kernel-based methods depend on choice of bandwith
- Discussed in detail last week (Nick McColl)
- Local linear regression depends on locality window
- Sample n independent points X_{i} from unknown distribution f
- KDE estimate:
$\widehat{f}(x)=\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x-X_{i}}{h}\right)$
- Example: Gaussian Kernel

$$
K(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

- Places a smoothed-out lump over each data - Shape of 'lumps' is controlled by $\mathrm{K}($.$) ; their$ width controlled by h

Local Linear Regression (LOWESS) CMS HIG-17-027

Kernel Density Estimation (KDE)

Material (C) Chad Shafer:
Bilndico dey veind

See talk A. PopoV hittos://indicoin203.frlevent/19290/contributions/75880

- Use points in sliding window
- Give points near centre larger weights
- Fit straight line
- Move window \rightarrow
- Connect fitted window centre points

Optimise hyper-pars with cross-validation

Smoothing and Goodness-of-Fit tests

- To compare the smoothed and unsmoothed templates it's tempting to use χ^{2}
- However, χ^{2} not well defined; by construction, smoothing alters number of degrees of freedom
- You have first to treat your smoothing method as a linear filter, and calculate NDoF (in KDE, related to autocorrelation of the kernels used)
- Somehow related to time series analysis: reduction of NDoF
- There is literature on this, we can put it in twiki; in the meantime, ask Igor Volobouev ©

Local Linear Regression (LOWESS)

16
Slidestavstees aff Behnke

- Cross section uncertainty: easy, assuming a gaussian for the constraint term $\mathcal{L}_{\text {full }}(s, b)=\mathcal{P}\left(N_{S R} \mid s+b\right) \times \mathcal{G}(\tilde{b} \mid b, 0.08)$
- Factorization scale: what distribution \mathcal{F} is meant to model the constraint??? $\mathcal{L}_{\text {full }}(s, b)=\mathcal{P}\left(N_{S R} \mid s+b\left(\alpha_{F S}\right) \times \mathcal{F}\left(\tilde{\alpha_{F S}} \mid \alpha_{F S}\right)\right.$
- "Easy" case, there is a single parameter $\alpha_{F S}$, clearly connected to the underlying physics model
- Hadronization/fragmentation model: run different generators, observing different results
- Difficult! Not just one parameter, how do you model it in the likelihood?
- 2-point systematics: you can evaluate two (three, four...) configurations, but underlying reason for difference unclear
- Often define empirical response function
- Counting experiment: easy extend to other generators
- There must exist a value of α corresponding to SHERPA

Nuisance parameter $\alpha_{\text {gen }}$

- Shape experiment: ouch!
- SHERPA is in general not obtainable as an interpolation of PYTHIA and HERWIG

Graphics from W. Verkerke

- Attempting to quantify our knowledge of the models
- There is no single parameter, difficult to model the differences within a single underlying model
- Which of these is the "correct" one?
Box with
Gaussian wings
Prefers Herwig at 1σ All predictions 'between'

Herwig and Pythia equally
(robable
Graphics from W. Verkerke

Only 'pure' Herwig
and Pythia exist

- Label each shape with an integer, and use the integer as nuisance parameter
- Can obtain the original log-likelihood as an envelope of different fixed discrete nuisance parameter values
- How do you define the various shapes?
- Need many additional generators!
- Interpolation unlikely to work (SHERPA is not midway between PYTHIA and POWHEG)

From arXiv:1408.6865

The issue of over-constraining

\square UCLouvain
Institut de recherche en mathématique et physique

- How to interpret constraints?
- Not as measurements
- Correlations in the fit make interpretation complicated
- Avoid statements when profiling as a nuisance parameter

Graphics from ATLAS and W. Verkerke, as far as I remember

- Closure tests are alternative procedures you can use to check if your measurement is robust
- E.g. insensitive to systematic effects
- Usually compare alternative result with nominal result (GoF test) to decide if closure test passed
- Closure tests are PASS/FAIL tests
- Correct course of action: if closure test fails, then there is a mistake in the tested procedure, therefore modify/improve the procedre
- If the alternative procedure highlights e.g. a recalibration to be done, then recalibrate (i.e. use the better procedure)
- Wrong course of action: if closure test fails, add discrepancy as uncertainty
- The sentence "The closure test shows a 10% discrepancy, and we consequently assign it as systematic uncertainty" is pure BS (although you'll sadly find it in many published papers)
- In general, if a closure test fails, always prioritize a mitigation or suppression of the effect by improveming your analysis methods
- A systematic should be added only as a very very last resort

Packages

- numpy
- matplotlib
- mpl_toolkits
- inspect
- iminuit
- pyhf
- scipy
- statsmodels
- itertools
- pandas
- statistics

THANKS FOR THE ATTENTION!

Backup

