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Program for today

Why statistics?
Fundaments

Set theory and measure theory
Frequentist probability
Bayesian probability

Random variables and their properties
Causality

The three levels of causal hierarchy
Distributions
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Practicalities

Schedule: five days (Monday to Friday)
2h morning lecture, virtual coffee break midway (09:30–11:45)
2h (probably less) afternoon exercise session, virtual coffee break midway (13:30–15:45)

Many interesting references, nice reading list for your career
Papers mostly cited in the topical slides
Some cool books cited here and there and in the appendix

Unless stated otherwise, figures belong to P. Vischia for inclusion in my upcoming textbook on
Statistics for HEP
(textbook to be published by Springer in 2021)

Or I forgot to put the reference, let me know if you spot any figure obviously lacking reference, so that
I can fix it
I cannot put the recordings publicly online as “massive online course”, so I will distribute them only to
registered participants, and have to ask you to not record yourself. I hope you understand.

Your feedback is crucial for improving these lectures (a feedback form will be provided at the
end of the lectures)!

You can also send me an email during the lectures: if it is something I can fix for the next day, I’ll
gladly do so!
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The Bureaucracy

This course provides 3 credits for the UCLouvain doctoral school (CDD Sciences)
If you need it recognized by another doctoral school, you have to ask to your school
Besides the certificate, I am available at supplying additional information (e.g. detailed schedule) or
activity (exam? LoL)

Online only: certificates will be provided by checking connection logs
The only way I have to check if you connected to most lectures is to check the Zoom logs
Make sure you connect with a recognizable email address (or let me know which unrecognizable
address belongs to you)

This course contributes to the activities of the Excellence of Science (EOS) Be.h network,
https://be-h.be/
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The Interactive Element

I will pop up every now and then some questions

I will open a link, and you’ll be able to answer by going to www.menti.com and inserting a code
Totally anonymous (no access even for me to any ID information, not even the country): don’t
be afraid to give a wrong answer!

The purpose is making you think, not having 100% correct answers!

First question of the day is purely a logistics matter
Question time: ROOT

The direct links are accessible to me only: you’ll see in your screens the code in a second :)

The slides of each lecture will be available one minute after the end of the lecture
To encourage you to really try answering without looking at the answers
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General outline of the lectures

Lesson 1 - Fundaments
Bayesian and frequentist probability, theory of measure, correlation and causality, distributions

Lesson 2 - Point and Interval estimation
Maximum likelihood methods, confidence intervals, most probable values, credible intervals

Lesson 3 - Advanced interval estimation, test of hypotheses
Interval estimation near the physical boundary of a parameter
Frequentist and Bayesian tests, CLs, significance, look-elsewhere effect, reproducibility crysis

Lesson 4 - Commonly-used methods in particle physics
Unfolding, ABCD, ABC, MCMC, estimating efficiencies

Lesson 5 - Machine Learning
Overview and mathematical foundations, generalities most used algorithms, automatic Differentiation
and Deep Learning
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Why statistics?

Vischia Statistics for HEP December 07th–11th, 2020 7 / 72



Statistics is all about answering questions...

What is the chance of obtaining a 1 when throwing a six-faced die?

We can throw a dice 100 times, and count how many times we obtain 1

What is the chance of tomorrow being rainy?

We can try to give an answer based on the recent past weather, but we cannot – in general – repeat
tomorrow and count
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...and about making sure to be posing them in a meaningful way

Image from “The Tiger Lillies” Facebook page
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Where does statistics live

Theory
Approximations
Free parameters
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Statistics!

Estimate parameters
Quantify uncertainty in the
parameters estimate
Test the theory!

Experiment

Random fluctuations
Mismeasurements
(detector effects, etc)
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Fundaments
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What is a “probability”? — Kolmogorov and set theory

Ω: set of all possible elementary (exclusive) events Xi

Exclusivity: the occurrence of one event implies that
none of the others occur
Probability then is any function that satisfies the
Kolmogorov axioms:

P(Xi) ≥ 0, ∀i
P(Xi or Xj) = P(Xi) + P(Xj)∑

Ω P(Xi) = 1

Andrey Kolmogorov.
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What is a “probability”? — Cox and Jaynes

Cox postulates: formalize a set of axioms starting from reasonable premises
doi:10.1119/1.1990764

Notation
A|B the plausibility of the proposition A given a related proposition B
∼ A the proposition “not-A”, i.e. answering “no” to “is A wholly true?”
F(x, y) a function of two variables
S(x) a function of one variable

The two postulates are
C · B|A = F(C|B · A, B|A)
∼ V|A = S(B|A), i.e. (B|A)m + (∼ B|A)m = 1

Cox theorem acts on propositions, Kolmogorov axioms on sets
Jaynes adheres to Cox’ exposition and shows that formally this is equivalent to Kolmogorov
theory

Kolmogorov axioms somehow arbitrary
A proposition referring to the real world cannot always be viewed as disjunction of propositions from
any meaningful set
Continuity as infinite states of knowledge rather than infinite subsets
Conditional probability not originally defined
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Probability in the Theory of Measure — What’s a length?

Theory of probability originated in the context of games of chance

Mathematical roots in the theory of Lebesgue measure and set functions in Rn

Measure is something we want to define for an interval in Rn

1D: the usual notion of length
2D: the usual notion of area
3D: the usual notion of volume

Interval i = aν ≤ xν ≤ aν

L(i) =
n∏
ν=1

(bν − aν).

The length of degenerate intervals aν = bν is L(i) = 0; it does therefore not matter the interval is
closed, open, or half-open;
We set to +∞ the length of any infinite non-degenerate interval such as ]25,+∞] or [−∞, 2].

But do we connect different intervals?
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The Borel lemma and the additivity of length

In R1, an interval [a, b] has length:

L(i) = b− a

L(a, a) = 0

L(∞) =∞.

Disjoint intervals (no common point with any other)

i = i1 + ...+ in, (iµiν = 0 for µ 6= ν);

Define the sum as L(i) := L(i1) + ...+ L(in)
Extendable to an enumerable sequence of intervals (crucial for defining continuous density functions)

Borel lemma: we consider a finite closed interval [a, b] and a set of Z intervals such that
every point of [a, b] is an inner point of at least one interval belonging to Z.

Then there is a subset Z′ of Z containing only a finite number of intervals, such that every point of
[a, b] is an inner point of at least one interval belonging to Z′.

Generalizable to N dimensions, with L(i) additive function of i: i =
∑

in ⇒ L(i) =
∑

L(in)
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Measure and Length

L(i) is a non-negative additive function (finite- or infinite-valued): a measure
Definition extendable from intervals to complex sets:

L(S) ≥ 0
If S = S1 + ...+ Sn, where SµSν = 0 for µ 6= ν then L(S) = L(S1) + ...+ L(Sn)
If S is an interval i, then the set function L(S) reduces itself to the interval function L(i), L(S) = L(i)

True only for Borel sets
In layman’s terms, sets that can be constructed by taking countable unions or intersections (and their
respective complements) of open sets

L(S) is a measure and it’s called Lebesgue measure
The extension from L(i) to L(S) is unique (the only set function defined on the whole B1 satisfying the
properties above)
Extension to Rn is immediate: Ln(S)
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Set Fuctions and Point Functions

Generalization of Ln(S): the P-measure
1 P(S) is non-negative, P(S) ≥ 0;
2 P(S) is additive, P(S1 + ...+ Sn) = P(S1) + ...+ P(Sn) where SµSν = 0 for µ 6= ν;
3 P(S) is finite for any bounded set (crucial to define the usual probability in the domain [0, 1]

Associate to any P(S) a point function F(x) = F(x1, ..., xn)

F(x) = F(x1, ..., x : n) := P(ξ1 ≤ x1, ..., ξn ≤ xn).

Trivial in one dimension. P(S) must have an upper bound!
Map F(a) = F(b) to set of null P-measure, P(a < x ≤ b) = 0

F(x) is in each point a non-decreasing function everywhere-continuous to the right

P(a < x ≤ a + h) = ∆F(a) = F(a + h)− F(a),
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Distributions, finally!

Consider a class of non-negative additive set functions P(S) such that P(Rn) = 1; then

F(x) = F(x1, ..., xn) = P(ξ ≤ x1, ..., ξn ≤ xn)

0 ≤ F(x) ≤ 1

∆nF ≥ 0

F(−∞, x2, ..., xn) = ... = F(x1, ..., xn − 1,−∞) = 0

F(+∞, ...,+∞) = 1.

We interpret P(S) and F(x) as distribution of a unit of mass over Rn

Each Borel set carries the mass P(S)
Interpret (x as the quantity of mass allotted to the infinite interval (ξ1 ≤ x1, ..., ξn ≤ xν).
Defining the measure in terms of P(S) or F(x) is equivalent

Usually P(S) is called probability function, and F(x) is called distribution function
σ-field: a space Ω equipped with a collection of subsets containing Ω, closed by complement
and by under countable union

The original Kolmogorov approach is expressed via a σ-field built on the space of elementary
propositions (sets)
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What about individual points?

Discrete mass point a; a point such that the set {x = a} carries a positive quantity of mass.

P(S) = c1P1(S) + c2P2(S)

or

F(x) = c1F1(x) + c2F2(x)

where

cν ≥ 0, c1 + c2 = 1,

c1: component with whole mass concentrated in discrete mass points. c2: component with no
discrete mass points

c1 = 1, c2 = 0: F(x) is a step function, where the whole mass is concentrated in the
discontinuity points

c1 = 0, c2 = 1, then if n = 1 then F(x) is everywhere continuous, and in any dimension no
single mass point carries a positive quantity of mass.
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Probability density

Consider the n-dimensional interval i = {xν − hν < ξν ≤ xν + hν ; ν = 1, ..., n}
Average density of mass: the ratio of the P-measure of the interval—expressed in terms of
the increments of the point function—to the L-measure of the interval itself

P(i)
L(i)

=
∆nF

2nh1h2...hn
.

If partial derivatives f (x1, ..., xn) = ∂nF
∂x1...∂xn

exist, then P(i)
L(i) → f (x1, ..., xn) for hν → 0

Density of mass at the point x
f is referred to as probability density or frequency function
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Marginal distributions

Take a distribution function F(x1, ..., xn)

Let xµ →∞, µ 6= ν

It can be shown that F → Fν(xν), and that itself is a distribution function in the variable xν
e.g. F1(x1) = F(x1,+∞, ...,+∞).

Fν(xν) is one-dimensional, and is called the marginal distribution of xν .
It can be obtained by projection starting from the n−dimensional distribution
Shift each “mass particle” along the perpendicular direction to xν until collapsing into the xν axis
This results in a one-dimensional distribution which is the marginal distribution of xν .
There are infinite ways of arriving to the same xν starting from a generic n-dimensional distribution
function

Marginal distributions can be also built with respect to subsets of variables.
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Random experiment
Repeat a random experiment ξ (e.g. toss of a die) many times under uniform conditions

As uniform as possible
~S: set of all a priori possible different results of an individual measurement
S: a fixes subset of~S

If in an experiment we obtain ξ ∈ S, we will say the event defined by ξ ∈ S has occurred
We assume that S is simple enough that we can tell whether ξ is in it or not

Throw a die: ~S = {1, 2, 3, 4, 5, 6}
If S = {2, 4, 6}, then ξ ∈ S corresponds to the event in which you obtain an even number of points

Repeat the experiment: among n repetitions the event has occurred ν times
Then ν

n is the frequency ratio of the event in the sequence of n experiments

Question time: Frequency Ratio

This afternoon: obtain the answer by simulation!
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Frequentist probability - 1

The most familiar one: based on the possibility of repeating an experiment many times

Consider one experiment in which a series of N events is observed.

n of those N events are of type X

Frequentist probability for any single event to be of type X is the empirical limit of the
frequency ratio:

P(X) = limN→∞
n
N
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Frequentist probability - 2

The experiment must be repeatable in the same conditions
The job of the physicist is making sure that all the relevant conditions in the experiments are
the same, and to correct for the unavoidable changes.

Yes, relevant can be a somehow fuzzy concept

In some cases, you can directly build the full table of frequencies (e.g. dice throws, poker)

What if the experiment cannot be repeated, making the concept of frequency ill-defined?
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Subjective (Bayesian) probability

Based on the concept of degree of belief
P(X) is the subjective degree of belief on X being true

De Finetti: operative definition of subjective probability, based on the concept of coherent bet
We want to determine P(X); we assume that if you bet on X, you win a fixed amount of money if X
happens, and nothing (0) if X does not happen
In such conditions, it is possible to define the probability of X happening as

P(X) :=
The largest amount you are willing to bet

The amount you stand to win
(1)

Coherence is a crucial concept
You can leverage your bets in order to try and not loose too much money in case you are wrong
Your bookie is doing a Dutch book on you if the set of bets guarantees a profit to him
You are doing a Dutch book on your bookie if the set of bets guarantees a profit to you
A bet is coherent if a Dutch book is impossible

This expression is mathematically a Kolmogorov probability!
Subjective probability is a property of the observer as much as of the observed system

It depends on the knowledge of the observer prior to the experiment, and is supposed to change
when the observer gains more knowledge (normally thanks to the result of an experiment)

Book Odds Probability Bet Payout
Trump elected Even (1 to 1) 1/(1 + 1) = 0.5 20 20 + 20 = 40
Clinton elected 3 to 1 1/(1 + 3) = 0.25 10 10 + 30 = 40

0.5 + 0.25 = 0.75 30 40
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Conditional probabilities: Bayes theorem

Interestingly, Venn diagrams were the basis of Kolmogorov approach (Jaynes, 2003)
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A word of advice about conditional probabilities

Conditional probabilities are not commutative! P(A|B) 6= P(B|A)

Example:
speak English: the person speaks English
have TOEFL: the person has a TOEFL certificate

The probability for an English speaker to have a TOEFL certificate,
P(have TOEFL|speak English), is very small (<< 1%)

The probability for a TOEFL certificate holder to speak English,
P(speak English|have TOEFL), is (hopefully) >>>>> 1% ,
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Understanding conditioning can help even in marketing campaigns

From https://www.reddit.com/r/dataisugly/comments/boo6ld/when_venn_diagram_goes_wrong/
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A trickier example of conditional probability: the Monty Hall problem

Suppose you’re on a game show, and you’re given the choice of three doors
Behind one door is a car;
behind the others, goats.

You pick a door, say No. 1, and the host, who knows what is behind the doors, opens another
door, say No. 3, which has a goat.

He then says to you, “Do you want to pick door No. 2?”

Is it to your advantage to switch your choice?
Question time: Monty Hall

The best strategy is to always switch!
The key is the presenter knows where the car is→ he opens different doors

The picture would be different if the presenter opened the door at random

For the unconvinced: this afternoon we’ll build a small simulation to check your answer!

Behind 1 Behind 2 Behind 3 If you keep 1 If you switch Presenter opens
Car Goat Goat Win car Win goat 2 or 3

Goat Car Goat Win goat Win car 3
Goat Goat Car Win goat Win car 2
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Bayes Theorem and the Law of Total Probability

Bayes Theorem (1763)1:

P(A|B) :=
P(B|A)P(A)

P(B)
(2)

Valid for any Kolmogorov probability

The theorem can be expressed also by first starting from a subset B of the space

Decomposing the space S in disjoint sets Ai (i.e. ∩AiAj = 0∀i, j), ∪iAi = S an expression can
be given for B as a function of the Ais, the Law of Total Probability:

P(B) =
∑

i

P(B ∩ Ai) =
∑

i

P(B|Ai)P(Ai) (3)

where the second equality holds only for if the Ais are disjoint

Finally, the Bayes Theorem can be rewritten using the decomposition of S as:

P(A|B) :=
P(B|A)P(A)∑
i P(B|Ai)P(Ai)

(4)

1Actually the Bayesian approach has been mainly developed and popularized by Pierre Simon de Laplace
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A Diagnosis problem

The Bayes theorem permits to “invert” conditional probabilities, and can be applied to any
Kolmogorov probability, therefore in particular to both frequentist and Bayesian defintions
Let’s consider a mortal disease, and label the possible states of the patients

D: the patient is diseased (sick)
H: the patient is healthy

Let’s imagine we have devised a diagnostic test, characterized by the possible results
+: the test is positive to the disease
-: the test is negative to the disease

Imagine the test is very good in identifying sick people: P(+|D) = 0.99, and that the false
positives percentage is very low: P(+|H) = 0.01

You take the test, and the test is positive. Do you have the disease? Question time: Testing a
Disease

By the Bayes Theorem:

P(D|+) =
P(+|D)P(D)

P(+)
=

P(+|D)P(D)

P(+|D)P(D) + P(+|H)P(H)
(5)

We need the incidence of the disease in the population, P(D)! Back to question time: Testing
a Disease

It turns out P(D) is a very important to get our answer
P(D) = 0.001 (very rare disease): then P(D|+) = 0.0902, which is fairly small
P(D) = 0.01 (only a factor 10 more likely): then P(D|+) = 0.50, which is pretty high
P(D) = 0.1: then P(D|+) = 0.92, almost certainty!
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-: the test is negative to the disease

Imagine the test is very good in identifying sick people: P(+|D) = 0.99, and that the false
positives percentage is very low: P(+|H) = 0.01

You take the test, and the test is positive. Do you have the disease? Question time: Testing a
Disease

By the Bayes Theorem:

P(D|+) =
P(+|D)P(D)

P(+)
=

P(+|D)P(D)

P(+|D)P(D) + P(+|H)P(H)
(5)

We need the incidence of the disease in the population, P(D)! Back to question time: Testing
a Disease

It turns out P(D) is a very important to get our answer
P(D) = 0.001 (very rare disease): then P(D|+) = 0.0902, which is fairly small
P(D) = 0.01 (only a factor 10 more likely): then P(D|+) = 0.50, which is pretty high
P(D) = 0.1: then P(D|+) = 0.92, almost certainty!
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Bayes Theorem and Subjective Probability

Frequentist and Subjective probabilities differ in the way of interpreting the probabilities that
are written within the Bayes Theorem
Frequentist: probability is associated to sets of data (i.e. to results of repeatable experiments)

Probability is defined as a limit of frequencies
Data are considered random, and each point in the space of theories is treated independently
An hypothesis is either true or false; improperly, its probability can only be either 0 or 1. In general,
P(hypothesis) is not even defined
“This model is preferred” must be read as “I claim that there is a large probability that the data that I
would obtain when sampling from the model are similar to the data I already observed”2

We can only write about P(data|model)

Bayesian statistics: the definition of probability is extended to the subjective probabilty of
models or hypotheses:

P(H|~X) :=
P(~X|H)π(H)

P(~X)
(6)

2Typically it’s difficult to estimate this probability, so one reduces the data to a summary statistic S(data) with known distribution,
and computes how likely is to see S(datasampled) = S(dataobs) when sampling from the model
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The elements of the Bayes Theorem, in Bayesian Statistics

P(H|~X) :=
P(~X|H)π(H)

P(~X)
(7)

~X, the vector of observed data
P(~X|H), the likelihood function, which fully summarizes the result of the experiment
(experimental resolution)
π(H), the probability of the hypothesis H. It represents the probability we associate to H
before we perform the experiment
P(~X), the probability of the data.

Since we already observed them, it is essentially regarded as a normalization factor
Summing the probability of the data for all exclusive hypotheses (by the Law of Total Probability),∑

i P(~X|Hi) = 1 (assuming that at least one Hi is true).
Usually, the denominator is omitted and the equality sign is replaced by a proportionality sign

P(H|~X) ∝ P(~X|H)π(H) (8)

P(H|~X), the posterior probability; it is obtained as a result of an experiment
If we parameterize H with a (continuous or discrete) parameter, we can use the parameter as
a proxy for H, and instead of writing P(H(θ)) we write P(θ) and

P(θ|~X) ∝ P(~X|θ)π(θ) (9)

The simplified expression is usually used, unless when the normalization is necessary
“Where is the value of θ such that θtrue < θc with 95% probability?”; integration is needed and the
normalization is necessary
“Which is the mode of the distribution?”; this is independent of the normalization, and it is therefore
not necessary to use the normalized expression
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Choosing a prior in Bayesian statistics; in theory... 1/

There is no golden rule for choosing a prior
Objective Bayesian school: it is necessary to write a golden rule to choose a prior

Usually based on an invariance principle

Consider a theory parameterized with a parameter, e.g. an angle β
Before any experiment, we are Jon Snow about the parameter β: we know nothing

We have to choose a very broad prior, or better uniform, in β

Now we interact with a theoretical physicist, who might have built her theory by using as a
parameter of the model the cosine of the angle, cos(β)

In a natural way, she will express her pre-experiment ignorance using an uniform prior in cos(β).
This prior is not constant in β!!!
In general, there is no uniquely-defined prior expressing complete ignorance or ambivalence in both
parameters (β and cos(β))

We can build a prior invariant for transformations of the parameter, but this means we have to
postulate an invariance principle

The prior already deviates from our degree of belief about the parameter (“I know nothing”)
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Choosing a prior in Bayesian statistics; in theory... 2/

Two ways of solving the situation
Objective Bayes: use a formal rule dictated by an invariance principle
Subjective Bayes: use something like elicitation of expert opinion

Ask an expert her opinion about each value of θ, and express the answer as a curve
Repeat this with many experts
100 years later check the result of the experiments, thus verifying how many experts were right, and re-calibrate
your prior
This corresponds to a IF-THEN proposition: “IF the prior is π(H), THEN you have to update it afterwards, taking
into account the result of the experiment”

Central concept: update your priors after each experimient
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Choosing a prior in Bayesian statistics; in practice... 1/

In particle physics, the typical application of Bayesian statistics is to put an upper limit on a
parameter θ

Find a value θc such that P(θtrue < θc) = 95%

Typically θ represents the cross section of a physics process, and is proportional to a variable
with a Poisson p.d.f.

An uniform prior can be chosen, eventually restricted to θ ≥ 0 to account for the physical
range of θ
We can write priors as a function of other variables, but in general those variables will be
linked to the cross section by some analytic transformation

A prior that is uniforme in a variable is not in general uniform in a transformed variable; a uniform prior
in the cross section implies a non-uniform prior (not even linear) on the mass of the sought particle

In HEP, usually the prior is chosen uniform in the variable with the variable which is
proportional to the cross section of the process sought
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Choosing a prior in Bayesian statistics; in practice... 2/

Uniform priors must make sense
Uniform prior across its entire dominion: not very realistic
It corresponds to claimng that P(1 < θ ≤ 2) is the same as P(1041 < θ ≤ 1041 + 1)
It’s irrational to claim that a prior can cover uniformly forty orders of magnitude
We must have a general idea of “meaningful” values for θ, and must not accept results forty orders of
magnitude above such meaningful values

A uniform prior often implies that its integral is infinity (e.g. for a cross section, the dominion
being [0,∞]

Achieving a proper normalization of the posterior probability would be a nightmare

In practice, use a very broad prior that falls to zero very slowly but that is practically zero
where the parameter cannot meaningfully lie

This does not guarantee that it integrates to 1—it depends on the speed of convergence to zero
Improper prior
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Choosing a prior in Bayesian statistics; in practice... 3/
Associating parametric priors to intervals in the parameter space corresponds to considering
sets of theories

This is because to each value of a parameter corresponds a different theory
In practical situations, note (Eq. 9) posterior probability is always proportional to the product
of the prior and the likelihood

The prior must not necessarily be uniform across the whole dominion
It should be uniform only in the region in which the likelihood is different from zero

If the prior π(θ) is very broad, the product can sometimes be approximated with the
likelihood, P(~X|θ)π(H) ∼ P(~X|θ)

The likelihood function is narrower when the data are more precise, which in HEP often translates to
the limit N →∞
In this limit, the likelihood is always dominant in the product
The posterior is indipendent of the prior!
The posteriors corresponding to different priors must coincide, in this limit
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Flat prior
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Broad vs narrow non-flat priors
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Broad prior and narrow-vs-peaked likelihood
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Literature on priors

The authors of STAN maintain a nice set of recommendations for choosing a prior distribution
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

It is supposed to present a balance between strongly informative priors (judged often unrealistic) and
noninformative priors

Deeply empirical recommendations
Give attention to computational constraints
A-priori dislike for invariance-principles based priors and Jeffreys priors

Not necessarily applicable to HEP without debate, but many rather reasonable perspectives
Weakly/Strongly informative depends not only on the prior but also on the question you are asking
“The prior can often only be understood in the context of the likelihood”
Weak == for a reasonably large amount of data, the likelihood will dominate
(a “weak” prior might still influence the posterior, if the data are weak)
Hard constraints should be reserved to true constraints (e.g. positive-definite parameters)
(otherwise, choose weakly informative prior on a larger range)
Check the posterior dependence on your prior, and perform prior predictive checks
doi:10.1111/rssa.12378
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Short summary on bayesian vs. frequentist

Frequentists are restricted to statements related to
P(data|theory) (kind of deductive reasoning)
The data is considered random
Each point in the “theory” phase space is treated independently (no notion of probability in the
“theory” space)
Repeatable experiments

Bayesians can address questions in the form
P(theory|data) ∝ P(data|theory)× P(theory) (it is intuitively what we normally would like to know)
It requires a prior on the theory
Huge battle on subjectiveness in the choice of the prior goes here - see §7.5 of James’ book
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Drawing some histograms
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Random Variables

Random variable: a numeric label for each element in the space of data (in frequentist
statistics) or in the space of the hypotheses (in Bayesian statistics)
In Physics, usually we assume that Nature can be described by continuous variables

The discreteness of our distributions would arise from scanning the variable in a discrete way
Experimental limitations in the act of measuring an intrinsically continuous variable)

Instead of point probabilities we’ll work with probabilities defined in intervals, normalized w.r.t.
the interval:

f (X) := lim
∆X→0

P(X)

∆X
(10)

Dimensionally, they are densities and they are called probability density functions (p.d.f. s)

Inverting the expression, P(X) =
∫

f (X)dX and we can compute the probability of an interval
as a definite interval

P(a < X < b) :=

∫ b

a
f (X)dX (11)
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p.d.f. for many variables

Extend the concept of p.d.f. to an arbitrary number of variables; the joint p.d.f. f (X, Y, ...)

If we are interested in the p.d.f. of just one of the variables the joint p.d.f. depends upon, we
can compute by integration the marginal p.d.f.

fX(X) :=

∫
f (X, Y)dY (12)

Sometimes it’s interesting to express the joint p.d.f. as a function of one variable, for a
particular fixed value of the others: this is the conditional p.d.f. :

f (X|Y) :=
f (X, Y)

fY(Y)
(13)

Vischia Statistics for HEP December 07th–11th, 2020 46 / 72



Dispersion and distributions

Repeated experiments usually don’t yield the exact same result even if the physical quantity
is expected to be exactly the same

Random changes occur because of the imperfect experimental conditions and techniques
They are connected to the concept of dispersion around a central value

When repeating an experiment, we can count how many times we obtain a result contained in
various intervals (e.g. how often 1.0 ≤ L < 1.1, how often 1.1 ≤ L < 1.2, etc)

An histogram can be a natural way of recording these frequencies
The concept of dispersion of measurements is therefore related to that of dispersion of a distribution

In a distribution we are usually interested in finding a “central” value and how much the
various results are dispersed around it
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Distributions... or not?

HEP uses histograms mostly historically: counting experiments
Statistics and Machine Learning communities typically use densities

Intuitive relationship with the underlying p.d.f.
Kernel density estimates: binning assumption→ bandwidth assumption
Less focused on individual bin content, more focused on the overall shape
More general notion (no stress about the limited bin content in tails)

In HEP, if your events are then used “as counting experiment” it’s more useful the histogram
But for some applications (e.g. Machine Learning) even in HEP please consider using density
estimates

Plots from TheGlowingPython and TowardsDataScience
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Sources of uncertainty (errors?)

Two fundamentally different kinds of uncertainties
Error: the deviation of a measured quantity from the true value (bias)
Uncertainty: the spread of the sampling distribution of the measurements

Random (statistical) uncertainties
Inability of any measuring device (and scientist) to give infinitely accurate answers
Even for integral quantities (e.g. counting experiments), fluctuations occur in observations on a small
sample drawn from a large population
They manifest as spread of answers scattered around the true value

Systematic uncertainties
They result in measurements that are simply wrong, for some reason
They manifest usually as offset from the true value, even if all the individual results can be consistent
with each other

4 2 0 2 4
x

0

2000

4000

6000

8000

10000

12000

14000

4 2 0 2 4
x

0

2000

4000

6000

8000

10000

12000

14000

4 2 0 2 4
x

0

2000

4000

6000

8000

10000

12000

14000

Vischia Statistics for HEP December 07th–11th, 2020 49 / 72



Expected values of a random variable

We define the expected value and mathematical expectation

E[X] :=

∫
Ω

Xf (X)dX (14)

In general, for each of the following formulas (reported for continuous variables) there is a
corresponding one for discrete variables, e.g.

E[X] :=
∑

i

XiP(Xi) (15)
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Generalizing expected values to functions of random variables

Extend the concept of expected value to a generic function g(X) of a random variable

E[g] :=

∫
Ω

g(X)f (X)dX (16)

The previous expression Eq. 14 is a special case of Eq. 16 when g(X) = X

The mean of X is:
µ := E[X] (17)

The variance of X is:

V(X) := E[(X − µ)2] = E[X2]− (E[X])2 = E[X2]− µ2 (18)

Mean and variance will be our way of estimating a “central” value of a distribution and of the
dispersion of the values around it
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Let’s make it funnier: more variables!
Let our function g(X) be a function of more variables, ~X = (X1,X2, ...,Xn) (with p.d.f. f (~X))

Expected value: E(g(~X)) =
∫

g(~X)f (~X)dX1dX2...dXn = µg

Variance: V[g] = E
[
(g− µg)

2] =
∫

(g(~X)− µg)
2f (~X)dX1dX2...dXn = σ2

g

Covariance: of two variables X, Y:
VXY = E

[
(X − µX)(Y − µY)

]
= E[XY]− µXµY =

∫
XYf (X, Y)dXdY − µXµY

It is also called “error matrix”, and sometimes denoted cov[X, Y]

It is symmetric by construction: VXY = VYX , and VXX = σ2
X

To have a dimensionless parameter: correlation coefficient ρXY =
VXY

σXσY

VXY is the expectation for the product of
deviations of X and Y from their means

If having X > µX enhances P(Y > µY), and
having X < µX enhances P(Y < µY), then
VXY > 0: positive correlation!
ρXY is related to the angle in a linear
regression of X on Y (or viceversa)

It does not capture non-linear correlations
Question time: CorrCoeff
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What can you get from ρXY

Informs on the direction (co-increase, increase-decrease, none) of a linear correlation

Does NOT inform on the slope of the correlation

Several non-linear correlations yield ρXY

Figure from BND2010
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Take it to the next level: the Mutual Information
Covariance and correlation coefficients act taking into account only linear dependences
Mutual Information is a general notion of correlation, measuring the information that two
variables X and Y share

I(X; Y) =
∑
y∈Y

∑
x∈X

p(x, y)log

(
p(x, y)

p1(x)p2(y)

)
Symmetric: I(X; Y) = I(Y; X)
I(X; Y) = 0 if and only if X and Y are totally independent

X and Y can be uncorrelated but not independent; mutual information captures this!
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X = N(0,1); Y = WX; W is the Rademacher distribution Related to entropy

I(X; Y) = H(X)− H(X|Y)

= H(Y)− H(Y|X)

= H(X) + H(Y)− H(X, Y)
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Does cholesterol increase with exercise?

Question time: Cholesterol
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Does it, though?
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Should we prescribe the drug?

If we know the biological sex3, then prescribe the drug

If we don’t know the biological sex, then don’t prescribe the drug

Drug No drug
Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)

Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined 273 out of 350 recovered (78%) 289 out of 250 recovered (83%)

Question time: DrugEffectiveness

Imagine we know that estrogen has a negative effect on recovery

Then women less likely to recovery than men
Table shows women are significantly more likely to take the drug
Consult the separate data to decide on the drug, in order not to mix effects

3Biological sex: anatomy of an individual’s reproductive system, and secondary sex characteristics. Gender: either social roles
based on the sex of the person (gender role) or personal identification of one’s own gender based on an internal awareness
(https://en.wikipedia.org/wiki/Sex_and_gender_distinction)
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Should we prescribe the drug?

BP = Blood Pressure
No drug Drug

Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)

Combined 273 out of 350 recovered (78%) 289 out of 250 recovered (83%)

Question time: DrugEffectiveness

Same table, different labels; here we must consider the combined data

Lowering blood pressure is actually part of the mechanism of the drug effect
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The Simpson paradox: correlation is not causation

Correlation alone can lead to nonsense conclusions
If we know the biol.sex, then prescribe the drug
If we don’t know the biol.sex, then don’t prescribe the
drug

Imagine we know that estrogen has a negative effect
on recovery

Then women less likely to recovery than men
Table shows women are significantly more likely to take
the drug

Here we should consult the separate data, in order
not to mix effects
Same table, different labels; must consider the
combined data

Lowering blood pressure is actually part of the
mechanism of the drug effect

Same effect in continuous data (cholesterol vs age)
The best solution so far are Bayesian causal networks

Graph theory to describe relationship between variables

Figures from Pearl, 2016
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First level of causal hierarchy: seeing
X and Y are marginally dependent, but conditionally independent given Z

Same concept we have seen (with a more dramatic effect) in the cholesterol example
Conditioning on Z blocks the path

Figures from Dablander, 2019
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First level of causal hierarchy: seeing
X and Y are marginally independent, but conditionally dependent given Z

Z is called a collider (not the particle physics one ,)

Conditioning on Z induces collider bias

Figures from Dablander, 2019
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Second level of causal hierarchy: doing
Interventionist approach (Pearl, 2016) (not everyone agrees with this formal approach)

X has a causal influence on Y if changing X leads to changes in (the distribution of) Y
Setting (by intervention) X = x cuts all incoming causual arrows

The value of X is determined only by the intervention
Must be able to do intervention: not mere conditioning (seeing): from P(Y|X = x) to P(Y|do(X = x))
Difficult in social sciences

Intervention discriminates between causal structure of different diagrams
Assuming that there is no unobserved confounding (i.e. all causal relationships are represented in the
DAG)

Figures from Dablander, 2019
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“Doing” applied to Simpson’s paradox

Drug No drug
Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)

Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined 273 out of 350 recovered (78%) 289 out of 250 recovered (83%)

No drug Drug
Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)

Combined 273 out of 350 recovered (78%) 289 out of 250 recovered (83%)

Figures from Dablander, 2019
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“Doing” is for populations
Good predictors can be causally disconnected from the effect!
The do operator operates on distributions defined on populations

Figures from Dablander, 2019
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Third level of causal hierarchy: imagining
The strongest level of causality acts on the individual

“As a matter of fact, humans constantly evaluate mutually exclusive options, only one of which ever
comes true; that is, humans reason counterfactually.”

Structural Causal Models relate causal and probabilistic statements
Treatment := εT ∼ N(0, σ)
Response := µ+ βTreatment + ε
Measure µ = 5, β = −2, σ = 2

Causal effect obscured by individual error term εi for each patient: if determined, model fully
determined
Can determine response for individual treatment!

Figures and quote from from Dablander, 2019
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The Binomial distribution

Binomial
Discrete variable: r, positive integer ≤ N
Parameters:

N, positive integer
p, 0 ≤ p ≤ 1

Probability function:
P(r) =

(N
r

)
pr(1− p)N−r , r = 0, 1, ...,N

E(r) = Np, V(r) = Np(1− p)
Usage: probability of finding exactly r
successes in N trials. The distribution of the
number of events in a single bin of a
histogram is binomial (if the bin contents are
independent)
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p=0.3, N=20
p=0.7, N=20
p=0.5, N=40

Example: which is the probability of obtaining 3 times the number 6 when throwing a 6-faces
die 12 times?

N = 12, r = 3, p = 1
6

P(3) =
(12

3

)( 1
6

)3
(1− 1

6 )12−3 = 12!
3!9!

1
63

(
5
6

)9
= 0.1974
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The Poisson distribution

Poisson
Discrete variable: r, positive integer
Parameter: µ, positive real number

Probability function: P(r) = µre−µ

r!
E(r) = µ, V(r) = µ
Usage: probability of finding exactly r events
in a given amount of time, if events occur at a
constant rate.

Example: is it convenient to put an
advertising panel along a road?

● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

Poisson p.d.f.

x
P

ro
ba

bi
lit

y 
de

ns
ity

●

●

●

●

● ●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ●

µ=1
µ=5
µ=15

Probability that at least one car passes through the road on each day, knowing on average 3
cars pass each day

P(X > 0) = 1− P(0), and use Poisson p.d.f.

P(0) =
30e−3

0!
= 0.049787

P(X > 0) = 1− 0.049787 = 0.95021.

Now suppose the road serves only an industry, so it is unused during the weekend; Which is
the probability that in any given day exactly one car passes by the road?

Navg per dia =
3
5

= 0.6

P(X) =
0.61e−0.6

1!
= 0.32929
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The Gaussian distribution

Gaussian or Normal distribution
Variable: X, real number
Parameters:

µ, real number
σ, positive real number

Probability function:

f (X) = N(µ, σ2) = 1
σ
√

2π
exp
[
− 1

2
(X−µ)2

σ2

]
E(X) = µ, V(X) = σ2

Usage: describes the distribution of
independent random variables. It is also the
high-something limit for many other
distributions
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The χ2 distribution

Parameter: integer N > 0 degrees of
freedom

Continuous variable X ∈ R
p.d.f., expected value, variance

f (X) =
1
2

( X
2

) N
2 −1e−

X
2

Γ
(N

2

)
E[r] = N

V(r) = 2N

It describes the distribution of the sum of the
squares of a random variable,

∑N
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Reminder: Γ() := N!
r!(N−r)!
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Some relationships among distributions

It is often convenient to know the asymptotic properties of the various distributions

Normal Student's tMultinomial

F distributionChi square

Binomial Poisson

p→0
Np=μ

N→∞

i=2

N→∞

ν2→∞

ν1→∞
ν1→∞ν2→∞

N→∞

μ→∞N→∞
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Exercises session!

Minimal packages needed besides standard ones: numpy, matplotlib

Optional (for fancy table): pandas

random should be a base package

Code available at: https://github.com/vischia/intensiveCourse_public
You can either download the raw version of the scripts
or better do git clone https://github.com/vischia/intensiveCourse_public.git in
your shell

Once you have the code in a directory, go to that directory and run, depending on your
system,

ipython notebook or ipython3 notebook
or jupyter notebook or jupyter3 notebook
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End of Lesson 1

Why statistics?

Fundaments
Set theory and measure theory
Frequentist probability
Bayesian probability

Random variables and their properties

Causality
The three levels of causal hierarchy

Distributions
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THANKS FOR THE ATTENTION!
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Backup
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