UCLouvain

Continuous gravitational waves as probes of neutron stars and dark matter

Andrew Miller

Université catholique de Louvain

22 June 2020

Outline

1. [Overview](#page-4-0)

- 2. [Neutron stars](#page-7-0)
- 3. [Dark matter around black holes](#page-11-0)

Who makes up the Belgian Virgo group?

[Overview](#page-4-0)

[Neutron stars](#page-7-0)

Dark matter [around black](#page-11-0) holes

[References](#page-23-0)

Universiteit **UCLouvain** Antwerpen

- Joined Virgo in July 2018; group has grown to 16 members, many young people
- Weekly meetings, strong collaboration
- VUB has applied to join Virgo

- **[Overview](#page-4-0)**
- **[Neutron stars](#page-7-0)**
- **Dark matter [around black](#page-11-0) holes**
- **[References](#page-23-0)**

Ongoing activities

- Broadband isotropic and directional stochastic gravitational wave searches
- Searches for (subsolar) primordial black hole mergers with CW and matched filter methods, and from a stochastic GW background
- Analysis of Schumann resonances
- **Long gravitational wave transient (burst) searches**
- Detecting binary systems before merger with deep learning
- **Absolute calibration of the Virgo antenna**
- Computing CPUs and GPUs at UCLouvain center within the LIGO/Virgo computing infrastructure
- **Instrumentation: mirror coating research, optics** commissioning and development, Einstein Telescope preparation (mirror seismic isolation)
- Probing dark matter with gravitational wave detectors

Sources of gravitational waves

[Neutron stars](#page-7-0)

Dark matter [around black](#page-11-0) holes

[References](#page-23-0)

Four major sources that LIGO/Virgo search for

Focus here on continuous waves

[Neutron stars](#page-7-0)

Dark matter [around black](#page-11-0) holes

[References](#page-23-0)

Quasi-monochromatic, quasi-infinite duration

Searches are computationally demanding: template \mathbf{r} searches difficult

Deformed neutron stars

- **[Neutron stars](#page-7-0)**
- **Dark matter [around black](#page-11-0) holes**
- **[References](#page-23-0)**
- Small deformation and rotation \rightarrow gravitational waves (GWs)
- Rotate at $\sim 10 1000$ Hz [\[10\]](#page-23-1)
- Model: $f = f_0 + \dot{f}(t t_0)$ [\[4\]](#page-23-2)
- \dot{f} : [-1 $\times 10^{-8}$, 2 \times 10^{-9}] Hz/s
- Mechanisms of deformation
	- Crustal strain (starquake, formed at birth)
	- **Strong** *internal* magnetic field buried during accretion (MSPs) [\[8\]](#page-23-3)

Dark matter [around black](#page-11-0) holes

[References](#page-23-0)

α : right ascension

- δ : declination
- f_0 : pulsar rotation frequency at a reference time t_0
- f : spindown
- Targeted/directed searches can be fully coherent
- All-sky searches are semicoherent: the Doppler shift causes $O(10^{-4}f)$ Hz modulations and affects the Fast Fourier Transform time T_{FFT}

■ We "point" to specific locations when analyzing the data

UCLouvain [Overview](#page-4-0)

Existing constraints from an all-sky search

Dark matter [around black](#page-11-0) holes

[References](#page-23-0)

These are upper limits: the minimum deformation, or ellipticity ϵ , we can see at 95% confidence $I_{zz} = 10^{38}$ kg \cdot m², constraints possible on $\frac{I_{zz} \epsilon}{d}$ [\[2\]](#page-23-4) Deformations with smaller ϵ are easier to form $8/22$

Prospects for LIGO/Virgo's next run (O3)

[Neutron stars](#page-7-0)

Dark matter [around black](#page-11-0) holes

[References](#page-23-0)

- All-sky search for isolated sources and sources in binary systems
- Known pulsars search
- Search for GWs from young supernova remnants

[Neutron stars](#page-7-0) Dark matter [around black](#page-11-0) holes [References](#page-23-0)

The dark matter problem

New particles and modifications to gravity have been proposed

■ Dark matter can take many forms $(10^{-22} – 10^{50} eV)$

- GWs can probe nature of ultralight dark matter
	- A cloud of bosons can form around BHs and deplete its energy over time in the form of GWs

Dark matter [around black](#page-11-0) holes

[References](#page-23-0)

- Near a BH, quantum fluctuations \rightarrow bosons pop into existence
- **Many bosons fall in, but if** $\lambda_c \sim R_{BH}$, bosons can scatter off the BH
- **Greater effect for BHs with higher spins** χ

Black hole (BH) superradiance

- **Energy (mass/spin) extracted from the BH by scattering** bosons \rightarrow outgoing boson amplitude boosted
- Unlike photons, bosons are massive, so they tend to be bound to the $BH \rightarrow$ successive scatterings possible
- A boson "cloud" can form [\[7\]](#page-23-5)
- Focus here is on scalar bosons, but clouds composed of vector/tensor bosons are possible [\[3\]](#page-23-6)

Dark matter [around black](#page-11-0) holes

[References](#page-23-0)

Growth of boson clouds

- Clouds are formulated as solutions to Schrodinger-like equations for a scalar field in the Kerr metric: "gravitational Hydrogen atom"
- The lowest, fastest growing state is $l = 1, m = 1$

Superradiance (instability) condition: $\omega_{axion} < m\Omega_{BH}$ No limit on the number of bosons in each state [\[6\]](#page-23-7)

Depletion of boson clouds

[Neutron stars](#page-7-0)

Dark matter [around black](#page-11-0) holes

[References](#page-23-0)

- Assume bosons couple to gravity and annihilate into gravitons [\[5\]](#page-23-8)
- GWs are emitted from one energy level at a time \rightarrow monochromatic up to small spinup due to classical self-gravity
- \blacksquare Timescale of depletion \gt timescale of cloud growth
- Consider boson mass range $[10^{-14}, 10^{-11}]$ eV

We expect *continuous* gravitational waves!

Dark matter [around black](#page-11-0) holes

[References](#page-23-0)

Constraints from an all-sky search

 \blacksquare $h_0, f \rightarrow m_b$ and M_{BH} constraints with assumptions on BHs' spins χ , distances d, and ages t_{age}

- **UCLouvain**
- \blacksquare More combinations of m_b and M_{BH} excluded for younger systems (small t_{age}) than older ones Darker colors are constraints on older systems

14 / 22

Binary parameters and mass/spin known

15 / 22

Dark matter [around black](#page-11-0) holes

[References](#page-23-0)

■ All-sky search for scalar boson clouds

Prospects for the next observing run

- Directed search for vector boson clouds around binary systems
- **Future detectors most likely needed to probe merger** remnants
- Other probes of dark matter: dark photons directly interacting with the mirrors
	- Not GWs, but cause similar signatures
- \blacksquare This is new territory for CW analyses

[Overview](#page-4-0)

[Neutron stars](#page-7-0)

Dark matter [around black](#page-11-0) holes

[References](#page-23-0)

Backup slides

UCLouvain [Overview](#page-4-0)

Existing constraints, targeted searches

Dark matter [around black](#page-11-0) holes

[References](#page-23-0)

 $I_{zz} = 10^{38}$ kg \cdot m², constraints possible on $I_{zz} \epsilon$ [\[1\]](#page-23-11) The diagonal lines show the ϵ that would be required if a star had a particular characteristic age τ and was losing energy purely through GWs. 18/22

Vector bosons

[Neutron stars](#page-7-0)

Dark matter [around black](#page-11-0) holes

[References](#page-23-0)

- Emit GWs with higher amplitudes, but on shorter timescales, than those from scalar bosons
- For shorter signals, spinup becomes important
- Parameter space mostly composed of "transient" continuous wave signals
- **Possible targets: merger remnants, x-ray binaries**
- Interplay between instability and depletion timescales important

Distance reach

[Neutron stars](#page-7-0)

Dark matter [around black](#page-11-0) holes

[References](#page-23-0)

Assumes monochromatic signal

- BH mass chosen as a function of particle mass to give the strongest GW signal
- Dotted line: $M_{BH} = 64 M_{sun}$

equations

[Neutron stars](#page-7-0)

Dark matter [around black](#page-11-0) holes

[References](#page-23-0)

Ellipticity:

$$
\epsilon \equiv \frac{|I_{xx} - I_{yy}|}{I_{zz}}, \tag{3.1}
$$

Amplitude of CW:

$$
h_0 = \frac{16\pi^2 G}{c^4} \frac{I_{zz} \epsilon f_{\rm rot}^2}{d},
$$
 (3.2)

Spindown limit:

$$
h_{0,\rm sd} = \frac{1}{d} \left(\frac{5GI_{zz}}{2c^3} \frac{|\dot{f}_{\rm rot}|}{f_{\rm rot}} \right)^{1/2},
$$
 (3.3)

References I

UCLouvain

[Overview](#page-4-0)

[Neutron stars](#page-7-0)

Dark matter [around black](#page-11-0) holes

[References](#page-23-0)

- [2] Abbott, B. et al. (2019b). All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. *Physical Review D*, 100(2):024004.
- [3] Arvanitaki, A., Baryakhtar, M., and Huang, X. (2015). Discovering the qcd axion with black holes and gravitational waves. *Physical Review D*, 91(8):084011.
- [4] Astone, P., Colla, A., D'Antonio, S., Frasca, S., and Palomba, C. (2014). Method for all-sky searches of continuous gravitational wave signals using the Frequency-Hough transform. *Physical Review D*, 90(4):042002.
- [5] Baumann, D., Chia, H. S., and Porto, R. A. (2019). Probing ultralight bosons with binary black holes. *Physical Review D*, 99(4):044001.
- [6] Brito, R., Cardoso, V., and Pani, P. (2015). Black holes as particle detectors: evolution of superradiant instabilities. *Classical and Quantum Gravity*, 32(13):134001.
- [7] Isi, M., Sun, L., Brito, R., and Melatos, A. (2019). Directed searches for gravitational waves from ultralight bosons. *Physical Review D*, 99(8):084042.
- [8] Lasky, P. D. et al. (2017). The braking index of millisecond magnetars. *The Astrophysical Journal Letters*, 843(1):L1.
- [9] Palomba, C., D'Antonio, S., Astone, P., Frasca, S., Intini, G., La Rosa, I., Leaci, P., Mastrogiovanni, S., Miller, A. L., Muciaccia, F., et al. (2019). Direct constraints on the ultralight boson mass from searches of continuous gravitational waves. *Physical Review Letters*, 123(17):171101.
- [10] Prix, R. (2009). Gravitational Waves from Spinning Neutron Stars. In Becker, W., editor, *Neutron Stars and Pulsars*, volume 357 of *ASSL*, chapter 24, pages 651–685. Springer Berlin Heidelberg.
- [11] Sun, L., Brito, R., and Isi, M. (2019). Search for ultralight bosons in cygnus x-1 with advanced ligo. *arXiv preprint arXiv:1909.11267*.

