UCLouvain

Continuous gravitational waves as probes of neutron stars and dark matter

Andrew Miller

Université catholique de Louvain

22 June 2020

Outline

- 1. Overview
- 2. Neutron stars
- 3. Dark matter around black holes

Overview

Neutron stars

Dark matter around black holes

References

Universiteit Antwerpen UCLouvain

Who makes up the Belgian Virgo group?

- Joined Virgo in July 2018; group has grown to 16 members, many young people
 - Weekly meetings, strong collaboration
- VUB has applied to join Virgo

- Overview
- Neutron stars
- Dark matter around black holes
- References

Ongoing activities

- Broadband isotropic and directional stochastic gravitational wave searches
- Searches for (subsolar) primordial black hole mergers with CW and matched filter methods, and from a stochastic GW background
- Analysis of Schumann resonances
- Long gravitational wave transient (burst) searches
- Detecting binary systems before merger with deep learning
- Absolute calibration of the Virgo antenna
- Computing CPUs and GPUs at UCLouvain center within the LIGO/Virgo computing infrastructure
- Instrumentation: mirror coating research, optics commissioning and development, Einstein Telescope preparation (mirror seismic isolation)
- Probing dark matter with gravitational wave detectors

Sources of gravitational waves

Neutron stars

Dark matter around black holes

References

Four major sources that LIGO/Virgo search for

Focus here on continuous waves

Neutron stars

Dark matter around black holes

- Quasi-monochromatic, quasi-infinite duration
- Searches are computationally demanding: template searches difficult

Deformed neutron stars

- Neutron stars Dark matter around black
- holes
- References

- Small deformation and rotation \rightarrow gravitational waves (GWs)
- Rotate at ~ 10 1000 Hz [10]
- Model: $f = f_0 + \dot{f}(t t_0)$ [4]
- \dot{f} : [-1 ×10⁻⁸, 2 × 10⁻⁹] Hz/s
- Mechanisms of deformation
 - Crustal strain (starquake, formed at birth)
 - Strong *internal* magnetic field buried during accretion (MSPs) [8]

Dark matter around black holes

References

Search type	Description	Sources
targeted	known $\alpha, \delta, f_0, \dot{f}$	Crab, Vela, MSPs
directed	known α, δ	galactic center
all-sky	nothing known	any

α : right ascension

- δ : declination
- f_0 : pulsar rotation frequency at a reference time t_0
- \dot{f} : spindown
- Targeted/directed searches can be fully coherent
- All-sky searches are semicoherent: the Doppler shift causes *O*(10⁻⁴*f*) Hz modulations and affects the Fast Fourier Transform time *T*_{*FFT*}

We "point" to specific locations when analyzing the data

UCLouvain Overview

Existing constraints from an all-sky search

Neutron stars

Dark matter around black holes

References

These are upper limits: the minimum deformation, or ellipticity *ε*, we can see at 95% confidence
*I*_{zz} = 10³⁸ kg · m², constraints possible on *I*_{zz}*ε* [2]
Deformations with smaller *ε* are easier to form 8.

8/22

Prospects for LIGO/Virgo's next run (O3)

Neutron stars

Dark matter around black holes

- All-sky search for isolated sources and sources in binary systems
- Known pulsars search
- Search for GWs from young supernova remnants

Dark matter around black holes

- New particles and modifications to gravity have been proposed
- **Dark matter can take many forms** $(10^{-22} 10^{50} \text{ eV})$
 - GWs can probe nature of ultralight dark matter
 - A cloud of bosons can form around BHs and deplete its energy over time in the form of GWs

Dark matter around black holes

- Near a BH, quantum fluctuations → bosons pop into existence
- Many bosons fall in, but if $\lambda_c \sim R_{BH}$, bosons can scatter off the BH
- Greater effect for BHs with higher spins χ
- Energy (mass/spin) extracted from the BH by scattering bosons → outgoing boson amplitude boosted
- Unlike photons, bosons are massive, so they tend to be bound to the BH → successive scatterings possible
- A boson "cloud" can form [7]
- Focus here is on scalar bosons, but clouds composed of vector/tensor bosons are possible [3]

Dark matter around black holes

References

Growth of boson clouds

- Clouds are formulated as solutions to Schrodinger-like equations for a scalar field in the Kerr metric: "gravitational Hydrogen atom"
- The lowest, fastest growing state is l = 1, m = 1

Superradiance (instability) condition: ω_{axion} < mΩ_{BH}
No limit on the number of bosons in each state [6]

.....

Neutron stars

Dark matter around black holes

References

- Assume bosons couple to gravity and annihilate into gravitons [5]
- GWs are emitted from one energy level at a time → monochromatic up to small spinup due to classical self-gravity
- Timescale of depletion >> timescale of cloud growth
- Consider boson mass range $[10^{-14}, 10^{-11}] \text{ eV}$

We expect *continuous* gravitational waves!

Dark matter around black holes

References

Constraints from an all-sky search

• $h_0, f \rightarrow m_b$ and M_{BH} constraints with assumptions on BHs' spins χ , distances d, and ages t_{age}

More combinations of m_b and M_{BH} excluded for younger systems (small t_{age}) than older ones
Darker colors are constraints on older systems

14/22

Directed search for Cygnus X-1

References

Binary parameters and mass/spin known

Viterbi method used to find the optimal signal path [11]

15/22

Dark matter around black holes

References

All-sky search for scalar boson clouds

Prospects for the next observing run

- Directed search for vector boson clouds around binary systems
- Future detectors most likely needed to probe merger remnants
- Other probes of dark matter: dark photons directly interacting with the mirrors
 - Not GWs, but cause similar signatures
- This is new territory for CW analyses

Overview

Neutron stars

Dark matter around black holes

References

Backup slides

UCLouvain Overview

Neutron stars

Dark matter around black holes

References

Existing constraints, targeted searches

I_{zz} = 10³⁸ kg · m², constraints possible on I_{zz} ε [1]
The diagonal lines show the ε that would be required if a star had a particular characteristic age τ and was losing energy purely through GWs.

Vector bosons

Neutron stars

Dark matter around black holes

- Emit GWs with higher amplitudes, but on shorter timescales, than those from scalar bosons
- For shorter signals, spinup becomes important
- Parameter space mostly composed of "transient" continuous wave signals
- Possible targets: merger remnants, x-ray binaries
- Interplay between instability and depletion timescales important

Distance reach

0.101.11011

Neutron stars

Dark matter around black holes

References

Assumes monochromatic signal

- BH mass chosen as a function of particle mass to give the strongest GW signal
- **Dotted line:** $M_{BH} = 64M_{sun}$

equations

Neutron stars

Dark matter around black holes

References

Ellipticity:

$$\epsilon \equiv \frac{|I_{xx} - I_{yy}|}{I_{zz}},\tag{3.1}$$

Amplitude of CW:

$$h_0 = \frac{16\pi^2 G}{c^4} \frac{I_{zz} \epsilon f_{\rm rot}^2}{d},$$
 (3.2)

Spindown limit:

$$h_{0,\rm sd} = \frac{1}{d} \left(\frac{5GI_{zz}}{2c^3} \frac{|\dot{f}_{\rm rot}|}{f_{\rm rot}} \right)^{1/2}, \tag{3.3}$$

References I

UCLouvain

Overview

Neutron stars

Dark matter around black holes

- [1] Abbott, B., Abbott, R., Abbott, T., Abraham, S., Acernese, F., Acklev, K., Adams, C., Adhikari, R., Adva, V., Affeldt, C., et al. (2019a). Searches for gravitational waves from known pulsars at two harmonics in 2015-2017 ligo data. The Astrophysical Journal, 879(1):10.
- [2] Abbott, B. et al. (2019b). All-sky search for continuous gravitational waves from isolated neutron stars. using Advanced LIGO O2 data. Physical Review D, 100(2):024004.
- [3] Arvanitaki, A., Baryakhtar, M., and Huang, X. (2015). Discovering the gcd axion with black holes and gravitational waves. Physical Review D. 91(8):084011.
- [4] Astone, P., Colla, A., D'Antonio, S., Frasca, S., and Palomba, C. (2014). Method for all-sky searches of continuous gravitational wave signals using the Frequency-Hough transform. Physical Review D, 90(4):042002.
- [5] Baumann, D., Chia, H. S., and Porto, R. A. (2019). Probing ultralight bosons with binary black holes. Physical Review D, 99(4):044001.
- [6] Brito, R., Cardoso, V., and Pani, P. (2015). Black holes as particle detectors: evolution of superradiant instabilities. Classical and Quantum Gravity, 32(13):134001.
- [7] Isi, M., Sun, L., Brito, R., and Melatos, A. (2019). Directed searches for gravitational waves from ultralight bosons. Physical Review D. 99(8):084042.
- [8] Lasky, P. D. et al. (2017). The braking index of millisecond magnetars. The Astrophysical Journal Letters, 843(1):L1.
- [9] Palomba, C., D'Antonio, S., Astone, P., Frasca, S., Intini, G., La Rosa, I., Leaci, P., Mastrogiovanni, S., Miller, A. L., Muciaccia, F., et al. (2019). Direct constraints on the ultralight boson mass from searches of continuous gravitational waves. Physical Review Letters, 123(17):171101.
- [10] Prix, R. (2009), Gravitational Waves from Spinning Neutron Stars. In Becker, W., editor, Neutron Stars and Pulsars, volume 357 of ASSL, chapter 24, pages 651-685. Springer Berlin Heidelberg.
- [11] Sun, L., Brito, R., and Isi, M. (2019). Search for ultralight bosons in cygnus x-1 with advanced ligo. arXiv preprint arXiv:1909.11267.

