

Vector Boson Scattering measurements at CMS

X. Janssen

Be.HEP Annual Meeting

22 June 2020

X. Janssen - 22/6/2020 VBS measurements at CMS

Vector Boson Scattering

Diboson production proceeding purely through EW interaction at tree level:

- □ Precision measurement in the electroweak sector with sensitivity to the new physics
 → EFT approach: Triple/Quartic Gauge Couplings
- Test of the Higgs boson nature: V_LV_L scattering unitarity relies on strong cancellations with Higgs diagrams

 \rightarrow LHC Run-2 data @ \sqrt{s} = 13 TeV allows to explore VBS with precision

VBS signature:

QCD ($\alpha_s^2 \alpha^2$) VV production threated mostly as background:

□ Two highly energetic (high p_T) forward jets → High di-jet invariant mass: m_{jj} → Large pseudo-rapidity jet separation: $\Delta \eta_{ii}$

□ Central rapidity region void except VV decays

Vector Boson Scattering

Diboson production proceeding purely through EW interaction at tree level:

QGC

- □ Precision measurement in the electroweak sector with sensitivity to the new physics
 → EFT approach: Triple/Quartic Gauge Couplings
- Test of the Higgs boson nature: V_LV_L scattering unitarity relies on strong cancellations with Higgs diagrams

T channel

S channel

W, Z masses arrises in the EWSB mechanism from longitudinal d.o.f. of the BEH boson

$$\sigma_{V_L V_L
ightarrow V_L V_L} \propto ig[-s-t-rac{s^2}{s-m_{
m H}^2}-rac{t^2}{t-m_{
m H}^2}ig]$$

→ VBS at the LHC is the key process to experimentally probe the SM nature of EWSB complementary to direct Higgs measurements

Unitary Violation in VBS

from arXiv:0806.4145

□ Without the SM Higgs boson VBS would violate unitarity □ Higgs boson contribution cancels the VBS cross section increase for large \sqrt{s}

→ One of the key measurements in VBS is precise determination of the V_LV_L component (but it require large statistic → HL-LHC)

$\sigma(V_L V_L)$ projections at HL-LHC

Anomalous Couplings / Effective Field Theory

Generalized language for new physics searches
 Add generic terms to the SM Lagrangian of O(6) and/or O(8). i.e. effectives vertices:

$$\mathcal{L}_{SM} \longrightarrow \mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{n=1}^{\infty} \sum_{i} \underbrace{\frac{c_i^{(n)}}{\Lambda^n}}_{i} \mathcal{O}_i^{(n+4)}$$

□ Limits on the Wilson coefficients of the extra terms □ Non-unitary as $\sqrt{\hat{S}} \rightarrow \Lambda$: Either ignore or add a form factor which decrease the limits □ Up to now, we looked mostly at O(8) in VBS (but O(6) also contributes)

Examples of O(8) operators:

$$\begin{split} & L_{S,0} = \left[(D_{\mu} \varphi)^{\dagger} D_{\nu} \varphi \right] \times \left[(D_{\mu} \varphi)^{\dagger} D_{\nu} \varphi \right] \\ & L_{S,1} = \left[(D_{\mu} \varphi)^{\dagger} D^{\mu} \varphi \right] \times \left[(D_{\nu} \varphi)^{\dagger} D_{\nu} \varphi \right] \\ & L_{M,0} = Tr[W_{\mu\nu} W^{\mu\nu}] \times \left[(D_{\beta} \varphi)^{\dagger} D^{\beta} \varphi \right] \\ & L_{M,1} = Tr[W_{\mu\nu} W^{\nu\beta}] \times \left[(D_{\beta} \varphi)^{\dagger} D^{\mu} \varphi \right] \\ & L_{T,0} = Tr[W_{\mu\nu} W^{\mu\nu}] \times Tr\left[W_{\alpha\beta} W^{\alpha\beta} \right] \\ & L_{T,1} = Tr\left[W_{\alpha\nu} W^{\mu\beta} \right] \times Tr\left[W_{\mu\beta} W^{\alpha\nu} \right] \end{split}$$

	WWWW	WWZZ	ZZZZ
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	Х	Х	X
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\!\mathcal{O}_{M,6},\!\mathcal{O}_{M,7}$	Х	Х	X
$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$		Х	X
$\mathcal{O}_{T,0}$, $\mathcal{O}_{T,1}$, $\mathcal{O}_{T,2}$	Х	Х	X
$\mathcal{O}_{T,5}$, $\mathcal{O}_{T,6}$, $\mathcal{O}_{T,7}$		Х	X
$\mathcal{O}_{T,8}\;, \mathcal{O}_{T,9}$			Х

EFT Validity and Unitarity constraints

$$\mathcal{L}_{SM} \longrightarrow \mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{n=1}^{\infty} \sum_{i} \underbrace{\frac{c_i^{(n)}}{\Lambda^n}}_{i} \mathcal{O}_i^{(n+4)}$$

- □ In practice too small effects, small f/∧, are not distinguishable from SM (depend of luminosity)
- \Box EFT validity stops at Λ , the scale of new physics
- □ When the coupling (f) is large, EFT description fails as well
 - \rightarrow EFT validity triangle is limited

Unitarity bound in practice:

- □ CMS: Mostly do not include unitarity bounds in EFT results extraction (or provide the unitarity bound separately from the limits)
 □ ATLAS: Cut-off the EFT effect for some value(s) of Λ
- → Ongoing discussion on how to present the results but this make comparison to theory and between experiments a bit difficult for now.

CMS-SMP-19-012

Full Run-II results with 137 fb⁻¹ from CMS:

8/26

Same-sign $W^{\pm}W^{\pm} \rightarrow 21^{\pm}2\nu$ and $WZ \rightarrow 31\nu$

Cross-sections extracted from simultaneous fit of:

- 3 CR: tZq, ZZ, non-ptompt m_{jj} distribution
- ❑ WW Signal Region: 2D fit of m_{ll} and m_{jj}

WZ Signal Region: BDT trained to separate EW and QCD

Variable	Definition
m _{ii}	Mass of the leading and trailing jets system
$ \Delta \eta_{ii} $	Absolute difference in rapidity of the leading and trailing jets
$\Delta \phi_{ m jj}$	Absolute difference in azimuthal angles of the leading and trailing jets
$p_{\mathrm{T}}^{\mathrm{j1}}$	$p_{\rm T}$ of the leading jet
$p_{\mathrm{T}}^{\mathrm{j2}}$	$p_{\rm T}$ of the trailing jet
η^{j1}	Pseudorapidity of the leading jet
W az	Absolute difference between the rapidities of the Z boson
$ \eta^{+} - \eta^{-} $	and the charged lepton from the decay of the W boson
$z_{\ell_i}^*(i=1-3)$	Zeppenfeld variable of the three selected leptons
$z_{3\ell}^{*}$	Zeppenfeld variable of the vector sum of the three leptons
$\Delta R_{j1,Z}$	ΔR between the leading jet and the Z boson
$ \vec{r} tot / \sum n^i$	Transverse component of the vector sum of the bosons
$ P_{\mathrm{T}} / \sum_{i} p_{\mathrm{T}}^{i}$	and tagging jets momenta, normalized to their scalar $p_{\rm T}$ sum

Same-sign $W^{\pm}W^{\pm} \rightarrow 2l^{\pm}2\nu$ and $WZ \rightarrow 3l\nu$

Inclusive cross-sections in fiducial volumes:

WW fiducial region: \Box_2 drossed leptons with $p_1 > 20$ GeV $ p < 2.5$	WZ fiducial region: $\square 2$ dragged lantang with $n \ge 20$ CoV $ n < 2.5$
$\square m_{ll} > 20 \text{ GeV}$	\Box 3 dressed leptons with $p_T > 20$ GeV, $ \eta < 2.5$ \Box Z pair: $ m_{ll} - m_Z < 15$ GeV
□ 2 jets with $p_T > 50$ GeV, $ \eta < 4.7$ □ $m_{jj} > 500$ GeV and $ \Delta \eta_{jj} > 2.5$	$\square 2 \text{ jets with } p_T > 50 \text{ GeV}, \eta < 4.7$ $\square m_{jj} > 500 \text{ GeV and } \Delta \eta_{jj} > 2.5$

□ Dressed leptons = e or μ dressed with photons in a ΔR =0.1 cone □ Exclude e or μ from τ decays

Process	$\sigma \mathcal{B}(\mathbf{fb})$	Theoretical prediction	Theoretical prediction	
TIOCESS	0 D (10)	without NLO corrections (fb)	with NLO corrections (fb)	
	3.98 ± 0.45	3.93 ± 0.57	3.31 ± 0.47	
	$0.37(\mathrm{stat})\pm0.25(\mathrm{syst})$	5.95 ± 0.57	5.51 ± 0.47	
EW+QCD $W^{\pm}W^{\pm}$	4.42 ± 0.47	434 ± 0.69	3.72 ± 0.59	
	$0.39(\mathrm{stat})\pm0.25(\mathrm{syst})$	H.34 ± 0.07		
	1.81 ± 0.41	1.41 ± 0.21	1.24 ± 0.18	
	$0.39(\mathrm{stat})\pm0.14(\mathrm{syst})$	1.41 ± 0.21	1.24 ± 0.10	
FW+OCD WZ	4.97 ± 0.46	454 ± 0.90	436 ± 0.88	
EM+QCD WZ	$0.40(\mathrm{stat})\pm0.23(\mathrm{syst})$	1.01 ± 0.00	4.00 ± 0.00	
QCD WZ	3.15 ± 0.49	3.12 ± 0.70	3.12 ± 0.70	
	$0.45(\mathrm{stat})\pm0.18(\mathrm{syst})$	3.12 ± 0.70	5.12 ± 0.70	

10/26

0.5

500

1000

1500

2000

2500

m [GeV]

3000

Same-sign $W^{\pm}W^{\pm} \rightarrow 2l^{\pm}2\nu$ and $WZ \rightarrow 3l\nu$

11/26

Same-sign $W^{\pm}W^{\pm} \rightarrow 2l^{\pm}2v$ and $WZ \rightarrow 3lv$

Quartic Gauge Couplings: Fit $m_{\rm T}({\rm VV}) = 4$

	Observed ($W^{\pm}W^{\pm}$)	Expected ($W^{\pm}W^{\pm}$)	Observed (WZ)	Expected (WZ)	Observed	Expected
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
$f_{\rm T0}/\Lambda^4$	[-0.28, 0.31]	[-0.36, 0.39]	[-0.62, 0.65]	[-0.82, 0.85]	[-0.25, 0.28]	[-0.35, 0.37]
$f_{\rm T1}/\Lambda^4$	[-0.12, 0.15]	[-0.16, 0.19]	[-0.37, 0.41]	[-0.49, 0.55]	[-0.12, 0.14]	[-0.16, 0.19]
$f_{\rm T2}/\Lambda^4$	[-0.38, 0.50]	[-0.50, 0.63]	[-1.0 , 1.3]	[-1.4, 1.7]	[-0.35, 0.48]	[-0.49, 0.63]
$f_{\rm M0}/\Lambda^4$	[-3.0, 3.2]	[-3.7, 3.8]	[-5.8, 5.8]	[-7.6, 7.6]	[-2.7, 2.9]	[-3.6, 3.7]
$f_{\rm M1}/\Lambda^4$	[-4.7, 4.7]	[-5.4, 5.8]	[-8.2, 8.3]	[-11, 11]	[-4.1, 4.2]	[-5.2, 5.5]
$f_{\rm M6}/\Lambda^4$	[-6.0, 6.5]	[-7.5, 7.6]	[-12, 12]	[-15, 15]	[-5.4, 5.8]	[-7.2, 7.3]
$f_{\rm M7}/\Lambda^4$	[-6.7, 7.0]	[-8.3, 8.1]	[-10, 10]	[-14, 14]	[-5.7, 6.0]	[-7.8, 7.6]
$f_{\rm S0}/\Lambda^4$	[-6.0, 6.4]	[-6.0, 6.2]	[-19, 19]	[-24, 24]	[-5.7, 6.1]	[-5.9, 6.2]
$f_{\rm S1}/\Lambda^4$	[-18, 19]	[-18, 19]	[-30, 30]	[-38, 39]	[-16, 17]	[-18, 18]

ZZjj→4ljj VBS @ 13 TeV

Full Run-II results with 137 fb⁻¹ from CMS:

Topology: 4 isolated leptons (ee or μμ pairs) + 2 "forward" jets → Very clean channel but low cross-section → Full kinematic available, access to boson polarization

Event selection:

□ >=2 Anti-k_T (ΔR=0.4) jets: p_T > 30 GeV and $|\eta| < 4.7$ → Inclusive ZZjj region: m_{jj} > 100 GeV → loose VBS region: m_{jj} > 400 GeV and $|\Delta \eta_{jj}|$ > 2.4 (signal purity ~15%) → tight VBS region: m_{jj} > 400 GeV and $|\Delta \eta_{jj}|$ > 5.0 (signal purity ~30%)

Backgrounds:

QCD ZZjj : Shape from MC, normalization from fit to data in sideband

- □ Non-prompt leptons measured from control region
- **Z**+jets: Charge flip probability measured in Z peak
- □ Others from MC: ttZ+jets, VVZ+jets, …

ZZjj→4ljj VBS: Cross section

For inclusive ZZjj, signal purity is ~6% but with 85% of QCD

→ Build a Matrix Element discriminator K_D to separate the EW ZZjj component based on the event kinematic:

	SM σ (fb)	Measured σ (fb)			
ZZjj inclusive					
EW	0.275 ± 0.021 (theo)	$0.33 {}^{+0.11}_{-0.10} ({ m stat}) {}^{+0.04}_{-0.03} ({ m syst})$			
EW+QCD	$5.35\pm0.51(\text{theo})$	$5.29 {}^{+0.31}_{-0.30} ({ m stat}) \pm 0.46 ({ m syst})$			
	VBS-enriched (loose)				
EW	0.186 ± 0.015 (theo)	$0.200 \stackrel{+0.078}{_{-0.067}} (\mathrm{stat}) \stackrel{+0.023}{_{-0.013}} (\mathrm{syst})$			
EW+QCD	$1.21\pm0.09(theo)$	$1.00 \stackrel{+0.12}{_{-0.11}} (\mathrm{stat}) \stackrel{+0.06}{_{-0.05}} (\mathrm{syst})$			
VBS-enriched (tight)					
EW	0.050 ± 0.005 (theo)	$0.06 {}^{+0.05}_{-0.04} ({ m stat}) \pm 0.01 ({ m syst})$			
EW+QCD	0.171 ± 0.012 (theo)	$0.17 \pm 0.04 ({\rm stat}) \pm 0.01 ({\rm syst})$			

→ 4σ observed significance for EW ZZjj (exp. signif. 3.5 σ)

ZZjj**→**4ljj VBS: anomalous QGC

Use the di-Z invariant mass to set limits on aQGC:

- T0, T1, T2: close to WW+WZ results (or sligthly worse)
- □ T8, T9: Only accessible in ZZ

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
$f_{\rm T0}/\Lambda^4$	-0.37	0.35	-0.24	0.22	2.9
$f_{\mathrm{T1}}/\Lambda^4$	-0.49	0.49	-0.31	0.31	2.7
$f_{\rm T2}/\Lambda^4$	-0.98	0.95	-0.63	0.59	2.8
$f_{\rm T8}/\Lambda^4$	-0.68	0.68	-0.43	0.43	3.3
$f_{\rm T9}/\Lambda^4$	-1.46	1.46	-0.92	0.92	3.3

 \rightarrow Most stringent limits on T8 & T9 up to now

CMS SMP-18-006

Semi-leptonic VV VBS @ 13 TeV

Study od WW, WZ and ZZ VBS in semi-leptonic decays: $V_1 \rightarrow qq$; $V_2 \rightarrow II$ or Iv

2016 data → 35.9 fb⁻¹

VBS jets: >= 2 Anti-K_T (ΔR=0.4) p_T > 30 GeV and |η| < 5. m_{ii} > 800 GeV and |Δη_{ii}| > 4.0

V₁→ **qq**: Boosted topology → 1 Anti-K_T (ΔR=0.8) $p_T > 200 \text{ GeV}, |\eta| < 2.4$ ΔR with leptons > 1.0 ΔR with VBS jets > 0.8 $\tau_2/\tau_1 < 0.55$ (N-subjettiness) 65 < m_V < 105 GeV (soft-drop mass)

V₂=Z→II: e⁺e⁻ or $\mu^+\mu^-$ pair with p_T > 50 and 30 GeV $|m_{\parallel} - m_Z| < 15$ GeV

V₂=W→Iv: e or µ with p_T > 50 GeV no extra e or µ with p_T > 20 GeV $p_T^{miss} > 50$ (80) GeV in the µ (e) case

Centrality cuts on V_{1,2}

Zeppenfeld variable > 0.3 for V_1 and V_2

16/26

Semi-leptonic VV VBS: Backgrounds

V+jets background: estimated in 40 < $m_{V,1}$ < 65 GeV + 105 < $m_{V,1}$ < 150 GeV sideband → Fit shape as $f(m) = \exp \left[-m/(c_0 + c_1 m)\right]$ + transfer functions from V+jet MC simulation

Other backgrounds: Top and QCD from MC simulations

17/26

Semi-leptonic VV VBS: QGC limits

SM signal yields are low (wrt Bkgd) \rightarrow use this analysis only to set limits on aQGC

	Observed (WW)	Expected (WV)	Observed (7V)	Expected (ZV)	Observed	Expected
				Expected (2.V)		Expected
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
$f_{\rm S0}/\Lambda^4$	[-2.7, 2.7]	[-4.2, 4.2]	[-40, 40]	[-31, 31]	[-2.7, 2.7]	[-4.2, 4.2]
$f_{ m S1}/\Lambda^4$	[-3.3, 3.4]	[-5.2, 5.2]	[-32, 32]	[-24, 24]	[-3.4, 3.4]	[-5.2, 5.2]
$f_{ m M0}/\Lambda^4$	[-0.69, 0.69]	[-1.0, 1.0]	[-7.5, 7.5]	[-5.3, 5.3]	[-0.69, 0.70]	[-1.0, 1.0]
$f_{ m M1}/\Lambda^4$	[-2.0, 2.0]	[-3.0, 3.0]	[-22, 23]	[-16, 16]	[-2, 0, 2.1]	[-3.0, 3.0]
$f_{ m M6}/\Lambda^4$	[-1.4, 1.4]	[-2.0, 2.0]	[-15, 15]	[-11, 11]	[-1.3, 1.3]	[-1.4, 1.4]
$f_{ m M7}/\Lambda^4$	[-3.4, 3.4]	[-5.1, 5.1]	[-35, 36]	[-25, 26]	[-3.4, 3.4]	[-5.1, 5.1]
$f_{ m T0}/\Lambda^4$	[-0.12, 0.11]	[-0.17, 0.16]	[-1.4, 1.4]	[-1.0, 1.0]	[-0.12, 0.11]	[-0.17, 0.16]
$f_{ m T1}/\Lambda^4$	[-0.12, 0.13]	[-0.18, 0.18]	[-1.5, 1.5]	[-1.0, 1.0]	[-0.12, 0.13]	[-0.18, 0.18]
$f_{\rm T2}/\Lambda^4$	[-0.28, 0.28]	[-0.41, 0.41]	[-3.4, 3.4]	[-2.4, 2.4]	[-0.28, 0.28]	[-0.41, 0.41]

X. Janssen - 22/6/2020 VBS measurements at CMS

$W\gamma \rightarrow l\nu\gamma VBS @ 13 TeV$

CMS SMP-19-008

Control Region: 200 < m_{ii} < 400 GeV

X. Janssen - 22/6/2020 VBS measurements at CMS

$W\gamma \rightarrow l\nu\gamma VBS: EW Cross-section$

Fit the 2D distribution of m_{jj} and $m_{l\gamma}$ in 4 catergories: e and μ in barrel and endcap

	electron barrel	electron endcap	muon barrel	muon endcap
Misidentified photon	81.0 ± 5.2	48.1 ± 4.9	134.8 ± 8.2	52.1 ± 4.8
Misidentified lepton	63.7 ± 12.3	27.8 ± 7.2	46.8 ± 10.6	23.1 ± 6.5
$\mathrm{e} ightarrow \gamma$	1.5 ± 0.6	2.1 ± 0.8	1.7 ± 0.7	1.1 ± 0.6
QCD $Z\gamma$	18.0 ± 3.1	1.9 ± 0.9	16.2 ± 3.0	4.9 ± 1.3
Single top	4.9 ± 0.8	2.5 ± 0.5	6.8 ± 0.9	2.4 ± 0.5
VV	4.2 ± 1.6	0.6 ± 0.6	7.5 ± 2.1	1.4 ± 0.7
$t\bar{t}\gamma$	20.6 ± 1.6	5.1 ± 0.6	28.3 ± 1.8	6.9 ± 0.8
QCD Wγjj	154.2 ± 12.0	41.1 ± 4.4	221.2 ± 15.8	72.1 ± 6.2
Total background	348.3 ± 18.4	129.1 ± 9.9	463.4 ± 21.2	163.8 ± 10.4
EWWγjj	48.8 ± 2.2	16.1 ± 1.0	74.5 ± 2.8	24.4 ± 1.3
Data	393	159	565	201

 EW Component:

 σ_{fid} (EW)= 20.4 ± 0.4 (lumi) ± 2.8 (stat)

 ± 3.5 (syst) fb

 = 20.4 ± 4.5 fb

→ 4.9 σ observation of EW W γ → 5.3 σ combining with 8 TeV results

EW+QCD:

 σ_{fid} (EW+QCD)= 108 ±2(lumi) ±5(stat) ±15(syst) fb = 108±16fb

$W\gamma \rightarrow l\nu\gamma VBS: aQGC limits$

Further restrict the phase space:

 $\begin{array}{ll} m_{_{jj}} &> 800 \; {\rm GeV} \\ |\Delta\eta_{_{jj}}| &> 2.5 \\ m_{_{WY}} &> 150 \; {\rm GeV} \\ p_{_{TY}} &> 100 \; {\rm GeV} \end{array}$

→ Use the m_{Wγ} distribution to set limits on the anomalous Quartic Gauge Couplings

 $-19.4 < F_{M7}/\Lambda^4 < 18.7$

 $-0.60 < F_{\rm T,0} / \Lambda^4 < 0.62$

 $-0.34 < F_{T1}/\Lambda^4 < 0.38$

 $-0.98 < F_{T_2}/\Lambda^4 < 1.16$

 $-0.43 < F_{T5}/\Lambda^4 < 0.44$

 $-0.34 < F_{T6}/\Lambda^4 < 0.36$

 $-0.83 < F_{T7}/\Lambda^4 < 0.89$

These are the most stringent limits to date on the aQGC parameters $F_{M,2-5}/\Lambda_4$ and $F_{T,6-7}/\Lambda_4$

 $-20.8 < F_{M,7}/\Lambda^4 < 20.2$

 $-0.62 < F_{T,0}/\Lambda^4 < 0.64$

 $-0.35 < F_{T1}/\Lambda^4 < 0.39$

 $-0.99 < F_{T2}/\Lambda^4 < 1.18$

 $-0.45 < F_{T5}/\Lambda^4 < 0.46$

 $-0.36 < F_{T.6}/\Lambda^4 < 0.38$

 $-0.87 < F_{\rm T.7}/\Lambda^4 < 0.93$

X. Janssen - 22/6/2020 VBS measurements at CMS

1.3

1.4

1.5

1.5

1.8

1.7

1.8

$Z\gamma \rightarrow ll\gamma VBS @ 13 TeV$

CMS-SMP-18-007

2016 data \rightarrow 35.9 fb⁻¹

 $p_{\rm T}^{\ell_1,\ell_2} > 25 \,{\rm GeV}, \, |\eta^{\ell_1,\ell_2}| < 2.5$ for electron channel Common selection $p_{\mathrm{T}}^{\ell 1,\ell 2} > 20 \,\mathrm{GeV}, \, |\eta^{\ell 1,\ell 2}| < 2.4$ for muon channel $p_{\rm T}^{\gamma}$ > 20 GeV, $|\eta^{\gamma}| < 1.444$ or 1.566 $< |\eta^{\gamma}| < 2.500$ $p_{\rm T}^{j1,j2} > 30 \,{\rm GeV}, \, |\eta^{j1,j2}|4.7$ $70 < m_{\ell\ell} < 110 \,\text{GeV}, m_{Z\gamma} > 100 \,\text{GeV}$ $\Delta R_{ii}, \Delta R_{i\gamma}, \Delta R_{i\ell} > 0.5, \Delta R_{\ell\gamma} > 0.7$ Control region

 $150 < m_{\rm ij} < 400 \,{\rm GeV}$, Common selection

 $m_{\rm ii} > 500 \,{\rm GeV}, \, \Delta \eta_{\rm ii} > 2.5,$ $\eta^* < 2.4, \Delta \phi_{Z\gamma,ij} > 1.9,$ Common selection

 $m_{\rm ii} > 500 \,{\rm GeV}, \, \Delta \eta_{\rm ii} > 2.5,$ Common selection, without requirement on $m_{Z\gamma}$

aQGC search region

EW signal region

Fiducial region

 $m_{\rm ii} > 500 \,{\rm GeV}, \, \Delta \eta_{\rm ii} > 2.5,$ $p_{\rm T}^{\gamma} > 100 \,{\rm GeV}$, Common selection, without requirement on $m_{Z\gamma}$

X. Janssen - 22/6/2020 **VBS** measurements at CMS

1800 2000 m_{ii} [GeV]

Data

EW Zy

Other

1600

QCD Zy

Nonprompt

$Z\gamma \rightarrow ll\gamma VBS: EW Cross-sections$

Fit the 2D distribution of m_{ii} and $\Delta \eta_{ii}$ in 4 catergories: e and μ in barrel and endcap

CMS

~ -	CMS		35.9 fb⁻' (13 TeV)
nid / å	eeγ +	Data Stat.⊕Syst	Nonprompt
20 Svents		EW ZY QCD ZY	VV Other
ш 15	$\Delta \eta_{ij} \in [2.5, 4].$	5) Δη _μ ∈(4.5,	$6j \Delta \eta_{ij} > 6$
10			
5			
0	0.5 _{~0.8} 0.8~1.2	² ~2.0 ^{0.5} ~0.8 ^{0.8} ~1.2	^{1.2} ~2.0 ^{0.5} ~1.2 ^{1.2} ~2.0 m _{ii} [TeV]

Processes	${ m ee}\gamma_{ m barrel}$	$ee\gamma_{end}$	$\mu\mu\gamma_{\rm barrel}$	$\mu\mu\gamma_{ m end}$
QCD-induced $Z\gamma$ jj bkg.	39.0 ± 3.0	12.2 ± 1.4	51.1 ± 3.5	14.9 ± 1.5
Nonprompt photon bkg.	23.2 ± 3.0	23.9 ± 3.3	27.1 ± 3.2	28.9 ± 3.8
Other bkgs.	2.2 ± 1.0	0.7 ± 0.5	5.4 ± 1.3	2.5 ± 1.0
Total bkgs.	64.4 ± 4.4	36.8 ± 3.6	83.6 ± 5.0	46.3 ± 4.2
EW Z γ jj signal	14.0 ± 1.6	5.0 ± 0.6	20.2 ± 2.3	7.0 ± 0.8
		41.0 + 0.7		
EW signal + total bkgs.	78.4 ± 4.7	41.8 ± 3.7	103.8 ± 5.5	53.3 ± 4.3
Data	69	44	110	62

EW Component: $\sigma_{\rm fid}$ (EW) = 3.2 ±0.2(lumi) ±1.1(stat) ± 0.6 (syst) fb $= 3.2 \pm 1.2$ fb \rightarrow 3.9 σ observed signif. of EW Z γ \rightarrow 4.7 σ combining with 8 TeV results

EW+QCD: $\sigma_{\rm fid}$ (EW+QCD) = 14.3 ± 0.4 (lumi) ± 1.1 (stat) \pm 2.7 (syst) fb $= 14.3 \pm 3.0$ fb

$Z\gamma \rightarrow ll\gamma VBS: aQGC limits$

Summary of Cross-sections

- → Very large set of results on (V+jj and) VV+jj (VBS) by CMS with Run I/II data
- → Relatively good agreement with SM expectations
- → Vector Boson Scattering has been established by LHC Run II
- → Work on more channels & longitudinal XS ongoing in WW

X. Janssen - 22/6/2020 VBS measurements at CMS

Summary of aQGC limits

→ aQGC (dim-8 EFT) has been explored In VBS at Run-II (also by ATLAS)

→ Stringent limits obtained

 → Ongoing work on adding the dim-6 on the picture in VBS (stay tuned)
 + need to incorporate effects of unitarity bounds coherently

