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Gravitational waves from isolated neutron stars

Small deformation on the
star → gravitional waves
(GWs) are radiated [12]

For older neutron stars,
search spindowns/spinups
−1 ×10−8 to 2 × 10−9 Hz/s-
“continuous waves” [18]

Model is generally Taylor
series expansion of frequency

For younger neutron stars,
O(10−3 − 10−1) Hz/s,
so-called “long duration
transients”, O(hours − days)

Result of binary neutron star
merger or supernova
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LIGO/Virgo Design

We measure a relative displacement of the two arms
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The signal model for long duration transients

ḟ = −kf n (1)

f (t) = f0 (1 + (n − 1)kf n−10 (t − t0))
−1/(n−1)

(2)

f ,ḟ : frequency, spindown

n: braking index

k: proportionality constant, some physics is here

t0: reference time

f0: frequency at t0
n indicates emission mechanism [19]:

n = 3 → rotating magnetic dipole [11]
n = 5 → GWs due to deformation (ellipticity) [17]
n = 7 → GWs due to r-modes [16]
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The FrequencyHough

Maps points in detector’s time/frequency plane to lines in
source frequency/spindown plane

f (t) = f0 + ḟ (t − t0) + ... (3)

Slope of line is −1/(t − t0) in (f , ˙f ) plane

Line drawn for each spindown in the grid at each time

Used for continuous wave searches [5]
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Doppler-corrected peakmap for continuous wave signal

Whiten the noise, then select time/frequency points (“peaks”)
with values above 2.5 and local maxes
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Hough map for continuous wave signal
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Generalizing the FrequencyHough

Start with [13]:

f (t) = f0 (1 + (n − 1)kf n−10 (t − t0))
−1/(n−1)

Change coordinates:

x0 =
1

f n−10

x =
1

f n−1

Do some algebra:

x = x0 + (n − 1)k(t − t0)
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Peakmap before transformation (r-mode, white noise)
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Peakmap after transformation
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Hough map (zoomed)
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Why search for a remnant?

Kilanova model (r-process)
cannot fully explain the
spectra: hybrid models
considered [20]

Search for O(s)-O(mins)
signals done already [1].

Parameter space explored
for long-lived remnant-
could be produced with stiff
equation of state (EoS) [3]

Constrain pre/post merger
EoS [7]
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Search parameters

f0: [500, 2000] Hz

n: [2.5, 7]

ḟ : [− 1
22

, − 1
162

] Hz/s

Began the search about 1 hour after the merger

Signal immediately after merger is very complicated
Less frequency variation later because spindown is smaller
Improves sensitivity because we use longer Fast Fourier
Transforms

Looking for sources lasting at most 1 day

Grids in x0, k and n are constructed

Search run in 3 configurations, one for FFT length (2,4,8 s)
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Parameter space explored (1 hour after merger)

“Holes”: still sensitive to, just not as much

Done to reduce computation cost and maximize sensitivity
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Candidate selection and follow-up

Candidate = x0, k , t0, lon, lat, → f0, ḟ0

Nonuniform noise → select 1 candidate in each “square” of
the Hough map, uniformly in f0/k

25 − 50 candidates per map

Coincidences between detectors’ candidates and each
configuration

Correct for phase evolution of signal
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Peakmap before follow-up
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Peakmap after follow-up
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Upper limits

4 pipelines (2 modelled and 2 unmodelled) searched for a
remnant [2]
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Method summary
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Why machine learning?

Unmodeled approach to detecting GWs

Modeled searches are slow, computationally expensive, and
not ideal if you don’t fully trust your model

Can see signals with time-varying braking indices

Lots of applications already in GW physics

Neural networks, support vector machines [15]
Convolutional Neural Networks (CNNs) for binary black hole
detection [9, 10]
Determining if neutron star remnant remains after a merger [8]

Here we are extending the work in [15] to CNNs
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Key questions not well answered in GW machine learning

How much to train?

How to train (types of architectures)?

How robust, effects on false alarm probability

Effects of unpredictable noise/ finite data

How can we use them in a search?
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Convolutional neural network architecture

Input: time/frequency map
Output: probability of signal pout , apply threshold pthr = 0.9
to control false alarm probability (FAP)
Architecture used in [4, 14]
Network constructed per detector (Hanford, Livingston)Andrew Miller Machine Learning and Hough Transform
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How much to train?

Not many injections are needed
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A comparison of the networks with the Hough

The efficiencies are similar but the false alarm probabilities are
different: O(1%) vs. O(0.01%)

Green = no noise
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Are the networks robust?

The network is robust towards signals with different behaviors
than those on which it was trained.

Even variations in n can be seen with the network.

Tails represent the false alarm probability
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How wrong can the networks be?

We choose the threshold to be 0.9
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How bad is the error?

The false alarm probability and false dismissal probability
must be computed empirically

Choosing threshold of 0.9 allows repeatable experiments
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Search design

Start with Short Fast Fourier Transform Database (SFDB) [6]

Choose TFFT , construct 2000 s x 150 Hz time/frequency
maps, give to CNNs

Look for coincident maps in H/L when pout > pthr

For triggered maps, perform follow-up using Generalized
FrequencyHough Transform [13] to estimate parameters
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Parameter space explored and search design

Searched the 1 week of data after GW170817 in 2000 s pieces

Made a network for each detector, then performed
coincidences in time between maps with output > 0.9
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Upper limits at 50% confidence
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Future work

Expanding classification of neural networks to include separate
categories for glitches and time-varying braking indices

Parameter estimation of GW signal using machine learning

In the event of detection, develop ways to extract meaningful
signal parameters

Fitting techniques at time-domain level, weighting of different
power laws, etc.
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Backup Slides
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Choice of Fast Fourier Transform length

Time/frequency bands chosen for a spindown window and n
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Grid in x0

x0 =
1

f n−10

(4)

dx0 =
1 − n

f n0
df0 (5)

Changes as a function of frequency, but we over-resolve the
grid by taking f0 = f0,max so the grid is uniform

Computationally, doesn’t increase burden of analysis
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Grid in k

The idea: in the log10 f -log10 ḟ space, the power law
equation forms lines:

ḟ = −kf n

log ∣ḟ ∣ = n log f + log k

y = nx + b

Consider f → f + df and k → k + dk

Find dk so that spindown remains constant when shifting one
frequency bin df for a fixed n

dk = k [(1 +
df

f
)

−n
− 1] (6)

dk ≈ −nk
df

f
(7)
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Grid on n

Calculated numerically with the criteria: stepping from n to
n + dn will result in a signal’s frequency varying by less than
df = 1/TFFT

For each point in this grid, we do a Hough
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Coincidences

Define a distance in the parameter space as:

d =

¿

Á
ÁÀ

(
x2 − x1
δx

)

2

+ (
k2 − k1
δk

)

2

(8)

If 2 candidates within a certain distance, a coincidence has
occurred
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Doing the follow-up

Look for coincidences among candidates in each configuration
run, 3 bins

Each candidate has n, f0, ḟ0, t0,∆t → we know f (t)

Correct the phase of the signal in time domain

Increase TFFT depending on frequency band and what kind of
grid we consider around candidate

Ideally, we would get a horizontal line in the time/frequency
plane (monochromatic signal) at f0

In practice, frequency will spin up/ down near true f0

Do original Hough
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Zoomed-in CNN errorbars plot
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Log-scale CNN false alarm probability plot
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