

Looking forward: The Precision Proton Spectrometer

Michele Gallinaro

LIP Lisbon February 13, 2020

Overview
Physics motivations
Tracking and timing detectors
Exclusive dileptons, WW, and prospects
Summary

LHC: from searches to precision

- A hadron collider at full throttle
 - Reaching the energy limit
 - Large datasets
- Moving from searches to precision measurements and rare processes
 - Top quarks and rare decays
 - Higgs couplings and rare decays
 - Anomalous couplings etc.
- Preparing for High-Luminosity (2027 and beyond) with improved detectors
 - Several technological challenges ahead as complexity increases

Overview

- It is a joint CMS and TOTEM project that aims at measuring the surviving scattered protons on both sides of CMS in standard running conditions
- Tracking and timing detectors inside the beam pipe at ~210m from IP5
- Approved (2014), exploratory phase in 2015, data taking started in 2016, pixels installed from 2017, full detectors in 2018

TECHNICAL DESIGN REPORT FOR CMS-TOTEM PRECISION PROTON SPECTROMETER

Physics motivations

Central Exclusive Production

- photon-photon collisions
- gluon-gluon fusion in color singlet, $J^{PC}=0^+$
- High-mass system in central detector, together with very forward protons in PPS
 - momentum balance between central system and forward protons, provides strong kinematical constraints
 - Mass of central system measured by momentum loss of the two leading protons
- Gauge boson production by photon-photon fusion and anomalous couplings (γγWW, γγZZ, and γγγγ)
- Search for new BSM resonances
- Study of QCD in a new domain

gender at CEP

WO-PHOTOM

4

CERNCOUR

Experimental challenges

- Ability to operate the detectors close to beam (15-20σ, i.e. ~1-3 mm) to maximize acceptance for low momentum loss (ξ) protons
- Limit impedance introduced by beam pockets
 - improved RF shielding of RPs
- Sustain high radiation levels
 - For 100/fb, proton flux up to 5x10¹⁵cm⁻² in tracking detectors, 10¹²n_{eq}/cm² and 100Gy in photosensors and readout electronics
- Reject background in the high-pileup (μ =50) of normal LHC running

Data taking

- Successful RP insertions in 2016 at 15σ
- Regular near-beam operation at highluminosity
- 2016 collected ~15/fb
 - Silicon strips+diamond
- $2017 collected \sim 40/fb$
 - Tracking: silicon strips + 3D silicon pixels (first installation in CMS)
 - Timing: diamond+UFSD (1st time in HEP)
 - Detectors fully integrated in central DAQ from first fill
- 2018 collected ~60/fb
 - full scope with Si pixels+diamonds

Integrated Luminosity 2018 70 CMS-TOTEM Preliminary CMS delivered (/fb): 66.89 MD+ MS recorded (/fb): 62.75 60 At least 2RP (any arm) (/fb): 57.90 TS2 Luminosity (/fb) 60 05 CMS Online Luminosity MD MD+TS1+ high β run 10 20105 02/06 25106 18/07 02109 25109 27104 20108 18/10 Date (UTC)

6

Good stability in 2017/2018 \Rightarrow integrated luminosity in Run2 ~115 fb⁻¹

Detectors

Tracking detectors

- -Goal: measure proton momentum
- -Technology: silicon 3D pixels

Timing detectors

- -Goal: identify primary vertex, reject "pileup"
- $-\sigma_{time}$ ~10ps $\Rightarrow \sigma_{z}$ ~2mm
- -Technology: silicon/diamond

"3D" pixel sensors with columnar electrodes

7

Tracking detectors

Silicon strips

Silicon pixels

- 10 planes per station of "edgeless" silicon strip detectors (5U+5V)
- Pitch 66μm; track resolution ~12μm
- Designed for low-lumi running
- Used in 2016 and 2017

- 6 planes per station of "slim-edge" tilted silicon 3D pixel detectors
- Pixel size 100μm x 150μm; track resolution ~20μm
- Designed for high-lumi running
- Multi-track capability

Tracking detectors

- 3D silicon pixel detectors
- 2 stations per side, 6 detector planes each RP
- Planes tilted to optimize efficiency and resolution
- Thin design studied to minimize impact on beam, insertion in pot, approach to beam
- Designed for high-luminosity running
- Multi-track capability

-200

-150

150

FBK 11-37-02: Cell Efficiency at 0 degree

Tracking detectors (cont.)

Sensors:

- 3D sensor technology
- Intrinsic radiation hardness (to withstand overall integrated flux of 5x10¹⁵ protons/cm²
- Pixel size 100µm x150µm
- 150µm slim edges (small dead edge to approach beam as close as possible)
- Spatial resolution <30µm

Front-end:

- PSI46dig, same as CMS Pixel Phase 1 upgrade
- Phase 1 DAQ components

Tracking: status and performance

- Excellent performance of pixel detectors in 2017/2018
 - Track resolutions compatible with expectations
 - Average efficiency above 99%
 - Less than 0.05% bad/noisy pixels
- RP movement and BX shift to cope with radiation
- New detectors installed in 2018 (replacing strip detectors)
- Detector packages swapped btw 45 and 56 to minimize inefficiency
- Excellent spatial resolution, consistent with beam tests
- Single track events ~40%

Tracking: Radiation

- Non-uniform irradiation
- Pixels not responding in same BX
- Effect due to readout chip

- Localized radiation damage near beam spot after ~10/fb
- Shift detector package to cope with radiation
- New stations with piezoelectric motor connected to detector package

Timing detectors

Time-of-flight measurement to reject pileup bkg (uncorrelated proton tracks)

• Goal: time resolution $20ps \Rightarrow 4mm$

LGAD Silicon

- 1 plane (in 2017) per station
- Pixels of different sizes
- From test beam: single plane resolution ~30ps
- R&D to improve radiation hardness

Diamonds

- 4 planes per station
- Pixels of different sizes
- Single plane resolution ~80ps
- Radiation hard

Diamond detectors

Diamond detectors

- Sensors based on single crystal CVD diamonds
- σ_T ~80ps per plane, i.e. ~50ps with 4 planes
- Four 4x4mm² sensors per plane
- Variable pad dimensions to optimize occupancy
- Custom-made readout electronics
- Intrinsic radiation hardness

Double diamond layer

JINST12(2017)P03026

- Connected "sandwich" with two diamond sensors
- Beam tests in 2016/2017
- Performance improved (a factor of 1.7 wrt SD)
 - Larger signal amplitude dominant over extra capacitance
- With 4 diamond sandwich-planes could reach 25 ps

Timing: operation & calibration

- Timing detectors installed in late 2016
 - Integrated luminosity in Run2 with timing ~100/fb
- Calibration
 - Correction of measured arrival time wrt ToT for each channel, independently
- Two types of degradation identified
 - due to radiation damage on sensors and electronics (pre-amp stage) close to beam
 - Localized damage on sensor in the most irradiated area (~1mm²)
 - Can recover by raising LV on pre-amp stage (remote)
- Better resolution of DD by a factor of 1.7

The PPS detector

Symmetric experimental setup wrt interaction point

PPS in 2018

LHC tunnel @ PPS location

214m

CT-PPS tracking

beam

215m

CT-PPS timina

Roman Pot insertion

- Insertion procedure validated in 2016 by the LHC
 - Improvements carried out wrt earlier versions (RF shielding, cylindrical pots, ferrite, copper coating)
- Minimum distance of approach dramatically affects detector acceptance and physics reach
- A few mm (~15 σ) from beam in nominal high-luminosity runs
 - Monitor beam losses, showers, interplay with collimators, beam impedance (heating, vacuum and beam orbit stability)

Mass acceptance and resolution

RP Acceptance in 2018

Exclusive dilepton production

- Exclusive processes at the EWK scale
- Study SM candle process: $\gamma\gamma \rightarrow \ell \ell$
- Observation of $\gamma\gamma$ interaction with proton tag
 - Single arm selection to enhance statistics at low m(ℓ)
 - Signal includes both exclusive and SD production

Exclusive dilepton production

- Correlation between the ξ values in central system vs PPS
- 12 μμ, 8 ee candidates observed (>5σ over expected bkg)
 - Mass and rapidity distribution consistent with single-arm acceptance
 - Highest mass candidate >900 GeV

M. Gallinaro - "Looking forward: The Precision Proton Spectrometer" - Louvain seminar, Feb. 13, 2020 24

Prospects: WW production

- Anomalous couplings
 - -predicted in BSM theories
 - -parameters: a_0^W/Λ^2 , a_C^W/Λ^2
- Deviations from SM can be large

- Allowed in SM via charged triple and quartic gauge couplings
- Sensitive to BSM contributions in high-mass tails

- Leptonic channels cleanest, but neutrinos prevent clear mass/rapidity matching
- time difference of two protons correlated with vertex position

WW production: Selection

arXiv:1604.04464

Run 1 results w/ no proton tagging

- Dilepton decay channel (diff. flavor)
 - -OS leptons (p_T>20GeV, $|\eta|$ <2.4)
 - -No extra tracks from vertex
 - $-M_{\parallel}$ >20 GeV
 - -Use $p_T(\mu e)$ to discriminate
- SM signal region
 p_T(μe)>30 GeV
- AQGC search
 - -p_T(µe)=30-130GeV
 - -p_T(μe)>130 GeV

M. Gallinaro - "Looking forward: The Precision Proton Spectrometer" - Louvain seminar, Feb. 13, 2020 27

W+

WW production: Results

arXiv:1604.04464

- Cross section measurement $\sigma_{meas} = 10.8^{+5.1}_{-4.1} \ fb$
- SM prediction is σ =6.9±0.6 fb
- Observed significance above background-only hypothesis: 3.4σ

process	yields
inclusive dibosons	2.3 ± 0.4
Drell-Yan	0.1 ± 0.1
$\gamma\gamma ightarrow au au$	0.9 ± 0.2
other backgrounds	0.6 ± 0.1
total backgrounds	3.9 ± 0.5
signal (SM exclusive WW)	5.3 ± 0.1
data	13

AQGC results

-95% CL limits on $a^{W}{}_{C}/\Lambda^{2},\,a^{W}{}_{C}/\Lambda^{2}$

 Improvement of two orders of magnitude over LEP/Tevatron

AQGC expected limits

arXiv:1607.03745

M. Gallinaro - "Looking forward: The Precision Proton Spectrometer" - Louvain seminar, Feb. 13, 2020 29

M. Gallinaro - "Looking forward: The Precision Proton Spectrometer" - Louvain seminar, Feb. 13, 2020 30

 $\gamma\gamma \rightarrow \gamma\gamma$: Anomalous couplings, etc.

- Indirect search: neutral quartic gauge couplings (forbidden in SM) in $\gamma\gamma \rightarrow \gamma\gamma$
- Expect to provide best sensitivity at LHC
- Sensitive to axion-like particles

Associated W[∓] H[±]

arXiv:1104.0889

- Central exclusive production of a charged Higgs boson in association with a W boson as a possible signature of certain types of extended Higgs sectors
- W[∓] and H[±] expected to be back-toback

Prospects for Run3 and beyond

- More luminosity in a more challenging environment
- Will enhance the mass reach in the search for new particles
- Need to meet experimental challenges
 - Aging of detector, improve/adapt capability
 - Integrated luminosity: 300-3000/fb
 - peak luminosity of 2x10³⁵cm⁻²s⁻¹
 - pileup will be ~150 or higher (Phase2)
 - large radiation doses

Prospects for Run3 (cont.)

PPS will operate in Run3 (2021-2023) Tracker system in Run3

- 2 RPs per side at 210 m and 220 m
 - 6 detector planes per RP (as in 2018)
- New 3D silicon pixel sensors
 - Single side technology
 - 2x2 sensor geometry
 - 150um thick
 - 2E electrode configuration
- ROC: PROC600 (same as layer 1 of CMS pixel detector)
- New flex circuit design (different "look" but similar design)
- New detector package with internal movement system
 - 12 positions spaced by 500 um to handle radiation damage (more than 50/fb with minimal efficiency loss)

BSM searches: resonances, etc.

Prospects

Many BSM scenarios can be explored in $\gamma\gamma$ interactions

Summary

- Overall excellent LHC and detector performance
- PPS extends coverage to very forward regions
 - Additional sensitivity to New Physics searches
 - Collected ~115/fb
- Exclusive dilepton production
 - Exclusive process at the EWK scale
 - First physics results published
 - More data to be analyzed

- Regularly taking data in high-luminosity fills
- Preparing with improved detectors and extending sensitivity for high-luminosity phase