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Confidence Intervals in nontrivial cases
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Confidence intervals!

Confidence interval for θ with probability content β
The range θa < θ < θb containing the true value θ0 with probability β
The physicists sometimes improperly say the uncertainty on the parameter θ

Given a p.d.f., the probability content is β = P(a ≤ X ≤ b) =
∫ b

a f (X|θ)dX

If θ is unknown (as is usually the case), use auxiliary variable Z = Z(X, θ) with p.d.f. g(Z)
independent of θ
If Z can be found, then the problem is to estimate interval P(θa ≤ θ0 ≤ θb) = β

Confidence interval
A method yielding an interval satisfying this property has coverage

Example: if f (X|θ) = N(µ, σ2) with unknown
µ, σ, choose Z = X−µ

σ

Find [c, d] in
β = P(c ≤ Z ≤ d) = Φ(d)− Φ(c) by finding
[Zα, Zα+β ]

Infinite interval choices: here central interval
α = 1−β

2

Plot from James, 2nd ed.
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Confidence intervals in many dimensions

Generalization to multidimensional θ is immediate
Probability statement concerns the whole θ, not the individual θi

Shape of the ellipsoid governed by the correlation coefficient (or the mutual information)
between the parameters
Arbitrariety in the choice of the interval is still present

Plot from James, 2nd ed.
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Confidence belts: the Neyman construction

Unique solutions to finding confidence intervals are infinite
Central intervals, lower limits, upper limits, etc

Let’s suppose we have chosen a way

Build horizontally: for each (hypothetical) value of θ, determine t1(θ), t2(θ) such that∫
t 1t2P(t|θ)dt = β

Read vertically: from the observed value t0, determine [θL, θU ] by intersection
The resulting interval might be disconnected in severely non-linear cases

Probability content statements to be seen in a frequentist way
Repeating many times the experiment, the fraction of [θL, θ

U ] containing θ0 is β

Plot from James, 2nd ed.
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Coverage

Coverage probability of a method for calculating a confidence interval [θ1, θ2]:
P(θ1 ≤ θtrue ≤ θ2)

Fraction of times, over a set of (usually hypothetical) measurements, that the resulting interval covers
the true value of the parameter
Can sample with toys to study coverage

Coverage is not a property of a specific confidence interval!

The nominal coverage is the value of confidence level you have built your method around
(often 0.95)
When actually derive a set of intervals, the fraction of them that contain θtrue ideally would be
equal to the nominal coverage

You can build toy experiments in each of whose you sample N times for a known value of θtrue
You calculate the interval for each toy experiment
You count how many times the interval contains the true value

Nominal coverage (CL) and the actual coverage (Co) observed with toys should agree
If all the assumptions you used in computing the intervals are valid
If they don’t agree, it might be that Co < CL (undercoverage) or Co > CL (overcoverage)
It’s OK to strive to be conservative, but one might be unnecessarily lowering the precision of the
measurement
When Co! = CL you usually want at least a convergence to equality in some limit
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Coverage: the binomial case

For discrete distributions, the discreteness induces steps in the probability content of the
interval

Continuous case: P(a ≤ X ≤ b) =
∫ b

a f (X|θ)dX = β

Discrete case: P(a ≤ X ≤ b) =
∑b

a f (X|θ)dX ≤ β

Binomial: find interval (rlow, rhigh) such that
∑r=rhigh

r=rlow

( r
N

)
pr(1− p)N−r ≤ 1− α

Also,
( r

N

)
computationally taxing for large r and N

Approximations are found in order to deal with the problem

Gaussian approximation: p± Z1−α/2

√
p(1−p)

N

Clopper Pearson: invert two single-tailed binomial tests, designed to overcover∑N
r=0
( r

N

)
pn(1− plow)N−n ≤ α/2∑N

r=0
( r

N

)
pr(1− phigh)N−r ≤ α/2

Single-tailed→ use α/2 instead of α
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Coverage: the binomial case

Gaussian approximation: p± Z1−α/2

√
p(1−p)

N

Clopper Pearson: invert two single-tailed binomial tests, designed to overcover∑N
r=0
( r

N

)
pn(1− plow)N−n ≤ α/2∑N

r=0
( r

N

)
pr(1− phigh)N−r ≤ α/2

Single-tailed→ use α/2 instead of α

Study coverage of intervals from a gaussian approximation and from the Clopper-Pearson
method
wget https://raw.githubusercontent.com/vischia/statex/master/coverageTest.R
wget https://raw.githubusercontent.com/vischia/statex/master/coverageTest.py
wget https://raw.githubusercontent.com/vischia/statex/master/coverageTest.ipynb

For a given N, calculate intervals for various numbers of successes r, and plot the intervals of p as a
function of r
Do a coverage test by using the procedure outlined in the previous slide
Draw the coverage probability as a function of p
Find the issue with the Clopper Pearson implementation in python
What happens for different sample sizes N?
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Coverage, N = 20
Gaussian approximation bad for small sample sizes
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Coverage, N = 1000
Gaussian approximation bad near p = 0 and p = 1 even for large sample sizes
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Upper limits for non-negative parameters
Gaussian measurement ( variance 1) of a non-negative parameter µ ∼ 0 (physical bound)
Individual prescriptions are self-consistent

90% central limit (solid lines)
90% upper limit (single dashed line)

Other choices are problematic (flip-flopping): never choose after seeing the data!
“quote upper limit if xobs is less than 3σ from zero, and central limit above” (shaded)
Coverage not guaranteed anymore (see e.g. µ = 2.5)

Unphysical values and empty intervals: choose 90% central interval, measure xobs = −2.0
Don’t extrapolate to an unphysical interval for the true value of µ!
The interval is simply empty, i.e. does not contain any allowed value of µ
The method still has coverage (90% of other hypothetical intervals would cover the true value)

Plot from James, 2nd ed.
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Unphysical values: Feldman-Cousins

The Neyman construction results in guaranteed coverage, but choice still free on how to fill
probability content

Different ordering principles are possible (e.g. central/upper/lower limits)

Unified approach for determining interval for µ = µ0: the likelihood ratio ordering principle

Include in order by largest `(x) =
P(x|µ0)
P(x|µ̂)

µ̂ value of µ which maximizes P(x|µ) within the physical region
µ̂ remains equal to zero for µ < 1.65, yielding deviation w.r.t. central intervals

Minimizes Type II error (likelihood
ratio for simple test is the most
powerful test)

Solves the problem of empty
intervals

Avoids flip-flopping in choosing an
ordering prescription

Plot from James, 2nd ed.
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Feldman-Cousins in HEP
The most typical HEP application of F-C is confidence belts for the mean of a Poisson
distribution
Discreteness of the problem affects coverage
When performing the Neyman construction, will add discrete elements of probability
The exact probability content won’t be achieved, must accept overcoverage∫ x2

x1

f (x|θ)dx = β →
U∑

i=L

P(xi|θ) ≥ β

Overcoverage larger for small values of µ (but less than other methods)

Plot from James, 2nd ed.
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Bayesian intervals

Often numerically identical to frequentist confidence intervals
Particularly in the large sample limit

Interpretation is different: credible intervals

Posterior density summarizes the complete knowledge about θ

π(θ|X) =

∏N
i=1 f (Xi, θ)π(θ)∫ ∏N
i=1 f (Xi, θ)π(θ)dθ

An interval [θL, θU ] with content β defined by
∫ θU

θL
π(θ|X)dθ = β

Bayesian statement! P(θL < θ < θU = β

Again, non unique

Issues with empty intervals don’t arise, though, because the prior takes care of defining the
physical region in a natural way!

But this implies that central intervals cannot be seamlessly converted into upper limits
Need the notion of shortest interval
Issue of the metric (present in frequentist statistic) solved because here the preferred metric is
defined by the prior
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What is an hypothesis...

Is our hypothesis compatible with the experimental data? By how much?
Hypothesis: a complete rule that defines probabilities for data.

An hypothesis is simple if it is completely specified (or if each of its parameters is fixed to a single
value)
An hypothesis is complex if it consists in fact in a family of hypotheses parameterized by one or more
parameters

“Classical” hypothesis testing is based on frequentist statistics
An hypothesis—as we do for a parameter ~θtrue—is either true or false. We might improperly say that
P(H) can only be either 0 or 1
The concept of probability is defined only for a set of data~x

We take into account probabilities for data, P(~x|H)

For a fixed hypotesis, often we write P(~x; H), skipping over the fact that it is a conditional probability
The size of the vector~x can be large or just 1, and the data can be either continuos or discrete.
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...and how do we test it?

The hypothesis can depend on a parameter
Technically, it consists in a family of hypotheses scanned by the parameter
We use the parameter as a proxy for the hypothesis, P(~x; θ) := P(~x; H(θ).

We are working in frequentist statistics, so there is no P(H) enabling conversion from P(~x|θ)
to P(θ|~x).
Statistical test

A statistical test is a proposition concerning the compatibility of H with the available data.
A binary test has only two possible outcomes: either accept or reject the hypothesis
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Testing the world as we know it...
Suppose we want to test an hypothesis H0

H0 is normally the hypothesis that we assume true in absence of further evidence
Let X be a function of the observations (called “test statistic”)
Let W be the space of all possible values of X, and divide it into

A critical region w: observations X falling into w are regarded as suggesting that H0 is NOT true
A region of acceptance W − w

The size of the critical region is adjusted to obtain a desired level of significance α
Also called size of the test
P(X ∈ w|H0) = α
α is the probability of rejecting H0 when H0 is actually true

OnceW is defined, given an observed value~xobs in the space of data, we define the test by
saying that we reject the hypothesis H0 if~xobs ∈ W.
If~xobs is inside the critical region, then H0 is rejected; in the other case, H0 is accepted

In this context, accepting H0 does not mean demonstrating its truth, but simply not rejecting it
Choosing a small α is equivalente to giving a priori preference to H0!!!
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...while introducing some spice in it

The definition ofW depends only on its area α, without any other condition
Any other area of area α can be defined as critical region, independently on how it is placed with
respect to~xobs
In particular, for an infinite number of choices ofW , the point~xobs—which beforehand was situated
outside ofW—is now included inside the critical region
In this condition, the result of the test switches from accept H0 to reject H0

To remove or at least reduce this arbitrariness in the choice ofW, we introduce the alternative
hypothesis, H1

The idea is to choose the critical region so that the probability of a point~x being insideW be
α under H0, and that it is as large as possible under H1
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A small example

H0: pp→ pp elastic scattering

H1: pp→ ppπ0

Compute the missing mass M (as
total rest energy of unseen
particles)

Under H0, M = 0

Under H1, M = 135 MeV

Choose H0 Choose H1
H0 is true 1− α α (Type I error)
H1 is true β (Type II error) 1− β

Plot from James, 2nd ed.
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A longer example

Student’s t distribution

Test the mean!

wget hyptest.ipynb
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Basic hypothesis testing – 4

The usefulness of the test depends on how well it discriminates against the alternative
hypothesis
The measure of usefulness is the power of the test

P(X ∈ w|H1) = 1− β
Power (1− β) is the probabiliity of X falling into the critical region if H1 is true
P(X ∈ W − w|H1) = β
β is the probability that X will fall into the acceptance region if H1 is true

NOTE: some authors use β where we use 1− β. Pay attention, and live with it.

Plots from James, 2nd ed.
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Comparing tests

For parametric (families of) hypotheses, the power depends on the parameter
H0 : θ = θ0
H1 : θ = θ1
Power: p(θ1) = 1− β

Generalize for all possible alternative hypotheses: p(θ) = 1− β(θ)
For the null, p(θ0) = 1− β(θ0) = α

Plot from James, 2nd ed.
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Properties of tests
More powerful test: a test which at least as powerful as any other test for a given θ
Uniformly more powerful test: a test which is the more powerful test for any value of θ

A less powerful test might be preferrable if more robust than the UMP1

If we increase the number of observations, it makes sense to require consistency
The more observations we add, the more the test distinguishes between the two hypotheses
Power function tends to a step function for N →∞

Biased test: argmin(p(θ)) 6= θ0

More likely to accept H0 when it is false than
when it is true

Big no-no for θ0 vs θ1]

Still useful (larger power) for θ0 vs θ2

Plot from James, 2nd ed.
1Robust: a test with low sensitivity to unimportant changes of the null hypothesis
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Play with Type I (α) and Type II (β) errors freely

Comparing only based on the power curve
is asymmetric w.r.t. α
For each value of α = p(θ0), compute
β = p(θ1), and draw the curve

Unbiased tests fall under the line 1− β = α
Curves closer to the axes are better tests

Ultimately, though, choose based on the
cost function of a wrong decision

Bayesian decision theory

Plot from James, 2nd ed.
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Find the most powerful test

Testing simple hypotheses H0 vs H1, find the best critical region

Maximize power curve 1− β =
∫

wα
f (X|θ1)dX, given α =

∫
wα

f (X|θ0)dX

The best critical region wα consists in the region satisfying the likelihood ratio equation

`(X, θ0, θ1) :=
f (X|θ1)

f (X|θ0)
≥ cα

The criterion, called Neyman-Pearson test is therefore
If `(X, θ0, θ1) > cα then choose H1
If `(X, θ0, θ1) ≤ cα then choose H0

The likelihood ratio must be calculable for any X
The hypotheses must therefore be completely specified simple hypotheses
For complex hypotheses, ` is not necessarily optimal
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Intermezzo: the Wilks theorem

The likelihood ratio is commonly used
As any test statistic in the market, in order to select critical regions based on confidence
levels it is necessary to know its distribution

Run toys to find its distribution (very expensive if you want to model extreme tails)
Find some asymptotic condition under which the likelihood ratio assumes a simple known form

Wilks theorem: when the data sample size tends to∞, the likelihood ratio tends to
χ2(N − N0)

Check if it’s actually true!
wget https://raw.githubusercontent.com/vischia/statex/master/wilks.R
wget https://raw.githubusercontent.com/vischia/statex/master/wilks.ipynb
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Verifying the Wilks theorem: N=2

Log−likelihood ratio

Sampled values of log−likelihood ratio values
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Verifying the Wilks theorem: N=10

Log−likelihood ratio

Sampled values of log−likelihood ratio values
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Verifying the Wilks theorem: N=100

Log−likelihood ratio

Sampled values of log−likelihood ratio values
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Testing hypotheses near the boundary: Zech

Counting experiment: observe n events

Assume they come from Poisson processes: n ∼ Pois(s + b), with known b

Set limit on s given nobs

Exclude values of s for which P(n ≤ nobs|s + b) ≤ α (guaranteed coverage 1− α)
b = 3, nobs = 0

Exclude s + b ≤ 3 at 95%CL
Therefore excluding s ≤ 0, i.e. all possible values of s (can’t distinguish b-only from very-small-s)

Zech: let’s condition on nb ≤ nobs (nb unknown number of background events)
For small nb the procedure is more likely to undercover than when nb is large, and the distribution of
nb is independent of s
P(n ≤ nobs|nb ≤ nobs, s + b) = ... =

P(n≤nobs|s+b)
P(n≤nobs|b)
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Beyond coverage: CLs

Goal: seamless transition between exclusion, observation, discovery (historically for the
Higgs)

Exclude Higgs as strongly as possible in its absence (in a region where we would be sensitive to its
presence)
Confirm its existence as strongly as possible in its presence (in a region where we are sensitive to its
presence)
Maintain Type I and Type II errors below specified (small) levels

Identify observables, and a suitable test statistic Q
Define rules for exclusion/discovery, i.e. ranges of values of Q leading to various conclusions

Specify the significance of the statement, in form of confidence level (CL)

Confidence limit: value of a parameter (mass, xsec) excluded at a given confidence level CL
A confidence limit is an upper(lower) limit if the exclusion confidence is greater(less) than the
specified CL for all values of the parameter below(above) the confidence limit

The resulting intervals are neither frequentist nor bayesian!
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Get your confidence levels right

Find a monotonic Q for increasing signal-like
experiments (e.g. likelihood ratio)
CLs+b = Ps+b(Q ≤ Qobs)

Small values imply poor compatibility with S + B
hypothesis, favouring B-only

CLb = Pb(Q ≤ Qobs)
Large (close to 1) values imply poor compatibility with
B-only, favouring S + B

What to do when the estimated parameter is
unphysical?

The same issue solved by Feldman-Cousins
If there is also underfluctuation of backgrounds, it’s
possible to exclude even zero events at 95%CL!
It would be a statement about future experiments
Not enough information to make statements about the
signal

Normalize the S + B confidence level to the B-only
confidence level!

Plot from Read, CERN-open-2000-205
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Avoid issues at low signal rates

CLs :=
CLs+b

CLb

Exclude the signal hypothesis at confidence level CL if
1− CLs ≤ CL
Ratio of confidences is not a confidence

The hypotetical false exclusion rate is generally less
than the nominal 1− CL rate
CLs and the actual false exclusion rate grow more
different the more S + B and B p.d.f. become similar

CLs increases coverage, i.e. the range of parameters
that can be exclude is reduced

It is more conservative
Approximation of the confidence in the signal hypothesis
that might be obtained if there was no background

Avoids the issue of CLs+b with experiments with the
same small expected signal

With different backgrounds, the experiment with the
larger background might have a better expected
performance

Formally corresponds to have H0 = H(θ! = 0) and
test it against H1 = H(θ = 0)

Test inversion!

Dashed: CLs+b
Solid: CLs

S < 3: exclusion for a B-free search ≡ 0

Plot from Read, CERN-open-2000-205
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A practical example: Higgs discovery - 1

Apply the CLs method to each Higgs mass point
Green/yellow bands indicate the ±1σ and ±2σ intervals for the expected values under B-only
hypothesis

Obtained by taking the quantiles of the B-only hypothesis

Vischia Statistics for HEP June 24–28th, 2019 35 / 48



Deal with CLs!

Now let’s play with CLs!

wget https://raw.githubusercontent.com/vischia/statex/master/cls_counting.ipynb

You will need to install the first two (the other two are for the next exercises)
pip3 install pyhf -user
pip3 install uproot -user
pip3 install -user pyunfold
pip3 install -user seaborn
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Quantifying excesses

Quantify the presence of the signal by using the background-only p-value
Probability that the background fluctuates yielding and excess as large or larger of the observed one

For the mass of a resonance, q0 = −2logL(data|0,θ̂0)

L(data|µ̂,θ̂)
, with µ̂ ≥ 0

Interested only in upwards fluctuation, accumulate downwards one to zero

Use pseudo-data to generate background-only Poisson counts and nuisance parameters θobs
0

Use distribution to evaluate tail probability p0 = P(q0 ≤ qobs
0 )

Convert to one-sided Gaussian tail areas by inverting p = 1
2 P

χ2
1
(Z2)

Plots from ATL-PHYS-PUB-2011-011 and from Higgs discovery
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The Look-elsewhere effect
Searching for a resonance X of arbitrary mass

H0 = no resonance, the mass of the resonance is not defined (Standard Model)
H1 = H(M 6= 0), but there are infinte possible values of M

Wilks theorem not valid anymore, no unique test statistic encompassing every possible H1
Quantify the compatibility of an observation with the B-only hypothesis

q0(m̂X) = maxmX q0(mX)

Write a global p-value as pglobal
b := P(q0(m̂X) > u) ≤ 〈Nu〉+ 1

2 P
χ2

1
(u)

u fixed confidence level
Crossings computable using pseudo-data (toys)
Ratio of global and local p-value: trial factor
Asymptoticly linear in the number of search regions and in the fixed significance level

Plot from Gross-Vitells, 10.1140/epjc/s10052-010-1470-8
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Measuring differential distributions
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Unfolding: the problem

Unfolding it’s about how to invert a matrix that should not be inverted

L = (y− Ax)T Vyy(y− Ax),

Observations y, to be transformed in the theory space into x
Model the detector as a response matrix
Invert the response to convert experimental data to theory space distributions
Usually to compare with models in the theory space

The best solution is to fold any new theory and make comparisons in the experimental data
space
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Unfolding: naïve solutions

Bin-by-bin correction factors x̂i = (yi − bi)
Ngen

i
Nrec

i
; disfavoured

Heavy biases due to the underlying MC truth
Yields the wrong normalization for the unfolded distribution

Invert the response matrix x̂ = A−1(y− b)
Only for square matrices, but always unbiased
Oscillation patterns (small determinants in matrix inversion)
Patterns also seen as large negative ρij ∼ −1 near diagonal
Result is correct within uncertainty envelope given by Vxx
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Unfolding: regularization 1/

χ2
TUnfold =χ2

A + τ 2χ2
L

χ2
A = (Ax̂ + b− y)T(Vyy)

−1(Ax̂ + b− y)

χ2
L = (x̂− xB)TLTL(x̂− xB)

Choose τ corresponding to maximum curvature of L-curve

Or minimize the global ρavg = 1
Mx

∑Mx
j=1 ρj

Often results in stronger regularization than L-curve
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Unfolding: regularization 2/

L(x, λ) = L1 + L2 + L3,

L1 = (y− Ax)T Vyy(y− Ax),

L2 = τ
2
(x− fbx0)

T
(LT L)(x− fbx0),

L3 = λ(Y − eT x),

Y =
∑

i

yi,

ej =
∑

i

Aij.

y: observed yields

A: response matrix

x: the unfolded result

L1: least-squares minimization
(Vij = eij/eiiejj correlation coefficients)

L2: regularization with strength τ

Bias vector fbx0: reference with respect to
which large deviations are suppressed

L3; area constraint (bind unfolded
normalization to the total yields in folded
space)
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Unfolding: Iterative Unfolding
Iterative improvement over the result of a previous iteration;
x(n+1)

j = x(n)
j
∑M

i=1
Aij
εj

yi∑N
k=1 Aikx(n)

k +bi

It converges (slowly, Niter ∼ N2
bins) to the MLE of the likelihood for independent Poisson-distributed yi

Not necessarily unbiased for correlated data (does not make use of covariance of input data Vyy)
In HEP most people don’t iterate until convergence

Fixed Niter is often used; the dependence on starting values provides regularization
Intrinsically frequentist method

for Niter →∞ converges to matrix inversion, if all x̂j from matrix inversion are positive
Niter = 0 sometimes called improperly “Bayesian” unfolding (the author, D’Agostini, is Bayesian)

Don’t use software defaults!!! (e.g. some software has Niter = 4)
Minimizing the global ρ is a good objective criterion, but there are others (Akaike information, etc)
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Exercise time!

I don’t really have to add anything to the wonderful pyunfold tutorials:
https://github.com/jrbourbeau/pyunfold/tree/master/docs/source/notebooks

Basic unfolding
wget tutorial.ipynb

Change your prior!
wget user_prior.ipynb

Regularization
wget regularization.ipynb

Multivariate unfolding
wget multivariate.ipynb

You can get them all by running
the pyunfold/https://raw.githubusercontent.com/vischia/statex/master/pyunfold/get.sh script
from the exercises repository
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Statistics is about answering questions
...and posing the questions in an appropriate way

Foundations
Mathematical definition of probability
Bayesian and Frequentist realizations

How wide is the table?: Point estimates and the method of maximum likelihood
Is it really that wide, or am I somehow uncertain about it?: Interval estimates

Maximum likelihood
Neyman construction
Feldman-Cousins ordering
Coverage

Is the table a standard-size ping-pong table or not? Testing hypotheses
Frequentist hypothesis testing, and some mention to the Bayesian one
I need no toy: the Wilks theorem
Upper limits and the CLs prescription

Can I decouple my result from my instrumentation? Unfolding
What we did not go through (but I am happier having provided more detail about core
methods)

A couple experimental methods (ABCD and the like)
Machine learning

Thanks to Cristian for having written a notebook with the first non-notebook exercises!
If it’s fine with you, I’ll check it and upload it with your name on it

Are you satisfied? Tell me more by clicking here https://forms.gle/T4XbmZXLEi6KL8rN7 (or
taking the link from the indico of the last lecture)

Vischia Statistics for HEP June 24–28th, 2019 46 / 48

https://docs.google.com/forms/d/e/1FAIpQLScWK8Q2pz9QRcmfHHXXgC9IKSSUdggDSjnt3QTw18P10aZZzA/viewform?usp=pp_url


THANK YOU VERY MUCH FOR
ATTENDING!!

This course has already improved on the fly thanks to you!
I’ll take any further feedback and trasforming into improvements for the

next edition!
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Non-exhaustive list of references

Frederick James: Statistical Methods in Experimental Physics - 2nd Edition, World Scientific

Glen Cowan: Statistical Data Analysis - Oxford Science Publications

Louis Lyons: Statistics for Nuclear And Particle Physicists - Cambridge University Press

Louis Lyons: A Practical Guide to Data Analysis for Physical Science Students - Cambridge
University Press

Annis?, Stuard, Ord, Arnold: Kendall’s Advanced Theory Of Statistics I and II

Pearl, Judea: Causal inference etc etc, a Primer ( add full details)

R.J.Barlow: A Guide to the Use of Statistical Methods in the Physical Sciences - Wiley

Kyle Cranmer: Lessons at HCP Summer School 2015

Kyle Cranmer: Practical Statistics for the LHC - http://arxiv.org/abs/1503.07622

Harrison Prosper: Practical Statistics for LHC Physicists - CERN Academic Training Lectures,
2015 https://indico.cern.ch/category/72/
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THANKS FOR THE ATTENTION!
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