Statistics

or "How to find answers to your questions"

Pietro Vischia ${ }^{1}$
${ }^{1} \mathrm{CP} 3$ - IRMP, Université catholique de Louvain
UCLouvain
Institut de recherche
en mathématique et physique

CP3, Lectures on Statistics for HEP

- We start now (10:00), and will stop at 11:45 to give room to a one-hour seminar
- It has been called at the last minute and there was no other option compatible with the speaker's plans
- The quantum enhanced Virgo interferometer by Dr. Marco Vardaro, abstract at https://agenda.irmp.ucl.ac.be/event/3415/
- As announced yesterday by email, you can choose among yourselves:
- Restarting at 12:00 until 13:45
- Restarting at 13:00 until 14:45 (in case you prefer to have lunch at about 12:00)
- Some of you asked for certificate of attendance with explicit mention of the amount of hours (for PhD courses credits)
- It will be provided on the last day
- Please let me know (now) if you need it, so I can pass the list to Carinne

Throwback Tuesday — Flat prior

Flat prior

Throwback Tuesday — Non-flat prior

Non-flat prior

Throwback Tuesday — Broad and narrow non-flat priors

Broad prior vs narrow prior

Estimating a physical quantity

- The information of a set of observations should increase with the number of observations
- Double the data should result in double the information if the data are independent
- Information should be conditional on what we want to learn from the experiment
- Data which are irrelevant to our hypothesis should carry zero information relative to our hypothesis
- Information should be related to precision
- The greatest the information carried by the data, the better the precision of our result
- The narrowness of the likelihood can be estimated by looking at its curvature
- The curvature is the second derivative with respect to the parameter of interest
- A very narrow (peaked) likelihood is characterized by a very large and positive $-\frac{\partial^{2} \ln L}{\partial \theta^{2}}$
- The second derivative of the likelihood is linked to the Fisher Information

$$
I(\theta)=-E\left[\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right]=E\left[\left(\frac{\partial \ln L}{\partial \theta}\right)^{2}\right]
$$

Likelihood and Fisher Information

- A very narrow likelihood will provide much information about $\theta_{\text {true }}$
- The posterior probability will be more localized than the prior in the regimen in which the likelihood function dominates the product $L(\vec{x} ; \vec{\theta}) \times \pi$
- The Fisher Information will be large
- A very broad likelihood will not carry much information, and in fact the computed Fisher Information will turn out to be small

Fisher Information and Jeffreys priors

- When changing variable, the change of parameterization must not result in a change of the information
- The information is a property of the data only, through the likelihood-that summarizes them completely (likelihood principle)
- Search for a parametrization $\theta^{\prime}(\theta)$ in which the Fisher Information is constant
- Compute the prior as a function of the new variable

$$
\begin{aligned}
\pi(\theta)=\pi\left(\theta^{\prime}\right)\left|\frac{d \theta^{\prime}}{d \theta}\right| & \propto \sqrt{E\left[\left(\frac{\partial \ln N}{\partial \theta^{\prime}}\right)^{2}\right]\left|\frac{\partial \theta^{\prime}}{\partial \theta}\right|} \\
& =\sqrt{E\left[\left(\frac{\partial \ln L}{\partial \theta^{\prime}} \frac{\partial \theta^{\prime}}{\partial \theta}\right)^{2}\right]} \\
& =\sqrt{E\left[\left(\frac{\partial \ln L}{\partial \theta}\right)^{2}\right]} \\
& =\sqrt{I(\theta)}
\end{aligned}
$$

- For any $\theta, \pi(\theta)=\sqrt{I(\theta)}$; with this choice, the information is constant under changes of variable
- Such priors are called Jeffreys priors, and assume different forms depending on the type of parametrization
- Location parameters: uniform prior
- Scale parameters: prior $\propto \frac{1}{\theta}$
- Poisson processes: prior $\propto \frac{1}{\sqrt{\theta}}$
- A test statistic is a function of the data (a quantity derived from the data sample)
- A statistic $T=T(\boldsymbol{X})$ is sufficient for θ if the density function $f(\boldsymbol{X} \mid T)$ is independent of θ
- If T is a sufficient statistic for θ, then also any strictly monotonic $g(T)$ is sufficient for θ
- The statistic T carries as much information about θ as the original data X
- No other function can give any further information about θ
- Same inference from data X with model M and from sufficient statistic $T(\boldsymbol{X})$ with model M^{\prime}

Example: is it sufficient?

- Example: data 1, 2, 3, 4, 5; sample mean (estimate of population mean) $\hat{x}=\frac{1+2+3+4+5}{5}=3$
- Imagine we don't have the data; we only know that the sample mean is 3
- Is the sample mean a sufficient statistic?

Example: is it sufficient?

- Example: data 1, 2, 3, 4, 5; sample mean (estimate of population mean) $\hat{x}=\frac{1+2+3+4+5}{5}=3$
- Imagine we don't have the data; we only know that the sample mean is 3
- Is the sample mean a sufficient statistic?
- Since the sample mean is 3 , we also estimate the population mean to be 3
- Knowing the data (the set $1,2,3,4,5$) or knowing only the sample mean does not improve our estimate for the population mean

Example: is it sufficient?

- Example: data $1,2,3,4$, 5 ; sample mean (estimate of population mean) $\hat{x}=\frac{1+2+3+4+5}{5}=3$
- Imagine we don't have the data; we only know that the sample mean is 3
- Is the sample mean a sufficient statistic?
- Since the sample mean is 3 , we also estimate the population mean to be 3
- Knowing the data (the set $1,2,3,4,5$) or knowing only the sample mean does not improve our estimate for the population mean
- Binomial test in coin toss
- Record heads and tails, with their order: нттнннтннтттнтнтн
- Can we somehow improve by identifying a sufficient statistic?
- Example: data 1, 2, 3, 4, 5; sample mean (estimate of population mean) $\hat{x}=\frac{1+2+3+4+5}{5}=3$
- Imagine we don't have the data; we only know that the sample mean is 3
- Is the sample mean a sufficient statistic?
- Since the sample mean is 3 , we also estimate the population mean to be 3
- Knowing the data (the set $1,2,3,4,5$) or knowing only the sample mean does not improve our estimate for the population mean
- Binomial test in coin toss
- Record heads and tails, with their order: нттнннтннтттнтнтн
- Can we somehow improve by identifying a sufficient statistic?
- What happens if we record only the number of heads? (remember that the binomial p.d.f. is: $P(r)=\binom{N}{r} p^{r}(1-p)^{N-r}, r=0,1, \ldots, N$
- Example: data 1, 2, 3, 4, 5; sample mean (estimate of population mean) $\hat{x}=\frac{1+2+3+4+5}{5}=3$
- Imagine we don't have the data; we only know that the sample mean is 3
- Is the sample mean a sufficient statistic?
- Since the sample mean is 3 , we also estimate the population mean to be 3
- Knowing the data (the set $1,2,3,4,5$) or knowing only the sample mean does not improve our estimate for the population mean
- Binomial test in coin toss
- Record heads and tails, with their order: нттнннтннтттнтнтн
- Can we somehow improve by identifying a sufficient statistic?
- What happens if we record only the number of heads? (remember that the binomial p.d.f. is: $P(r)=\binom{N}{r} p^{r}(1-p)^{N-r}, r=0,1, \ldots, N$
- Recording only the number of heads (no tails, no order) gives exactly the same information
- Data can be reduced; we only need to store a sufficient statistic
- Storage needs are reduced
- Common enunciation: given a set of observed data \vec{x}, the likelihood function $L(\vec{x} ; \theta)$ contains all the information relevant to the measurement of θ contained in the data sample
- The likelihood function is seen as a function of θ, for a fixed set (a particular realization) of observed data \vec{x}
- As we have seen, the likelihood is used to define the information contained in a sample
- Bayesian statistics normally complies, frequentist statistics usually does not, because a frequentist has to consider the hypothetical set of data that might have been obtained.
- This on one side implies that a frequentist always needs multiple sets of observations
- Even in forecasts: computer simulations of the day of tomorrow, or counting the past frequency of correct forecasts by the grandpa feeling arthritis in the shoulder
- On the other side a Bayesian would say "Probably tomorrow will rain", a frequentist "the sentence -tomorrow it will rain- is probably true"

Estimators

- Set $\vec{x}=\left(x_{1}, \ldots, x_{N}\right)$ of N statistically independent observations x_{i}, sampled from a p.d.f. $f(x)$.
- Mean and width of $f(x)$ (or some parameter of it: $f(x ; \vec{\theta})$, with $\vec{\theta}=\left(\theta_{1}, \ldots, \theta_{M}\right)$ unknown)
- In case of a linear p.d.f., the vector of parameters would be $\vec{\theta}=$ (intercept, slope)
- We call estimator a function of the observed data \vec{x} which returns numerical values $\hat{\vec{\theta}}$ for the vector $\vec{\theta}$.
- $\hat{\vec{\theta}}$ is (asymptotically) consistent if it converges to $\vec{\theta}_{\text {true }}$ for large N :

$$
\lim _{N \rightarrow \infty} \hat{\vec{\theta}}=\vec{\theta}_{\text {true }}
$$

- $\hat{\vec{\theta}}$ is unbiased if its bias is zero, $\vec{b}=0$
- Bias of $\hat{\vec{\theta}}: \vec{b}:=E[\hat{\vec{\theta}}]-\vec{\theta}_{\text {true }}$
- If bias is known, can redefine $\hat{\vec{\theta}^{\prime}}=\hat{\vec{\theta}}-\vec{b}$, resulting in $\vec{b}^{\prime}=0$.
- $\hat{\vec{\theta}}$ is efficient if its variance $V[\hat{\vec{\theta}}]$ is the smallest possible

Plot from James, 2nd ed.

- An estimator is robust when it is insensitive to small deviations from the underlying distribution (p.d.f.) assumed (ideally, one would want distribution-free estimates, without assumptions on the underlying p.d.f.)

The Maximum Likelihood Method 1/

- Let $\vec{x}=\left(x_{1}, \ldots, x_{N}\right)$ be a set of N statistically independent observations x_{i}, sampled from a p.d.f. $f(x ; \vec{\theta})$ depending on a vector of parameters
- Under independence of the observations, the likelihood function factorizes to the individual p.d.f. s

$$
L(\vec{x} ; \vec{\theta})=\prod_{i=1}^{N} f\left(x_{i}, \vec{\theta}\right)
$$

- The maximum-likelihood estimator is the $\vec{\theta}_{M L}$ which maximizes the joint likelihood

$$
\vec{\theta}_{M L}:=\operatorname{argmax}_{\theta}(L(\vec{x}, \vec{\theta}))
$$

- The maximum must be global
- Numerically, it's usually easier to minimize

$$
-\ln L(\vec{x} ; \vec{\theta})=-\sum_{i=1}^{N} \ln f\left(x_{i}, \vec{\theta}\right)
$$

- Easier working with sums than with products
- Easier minimizing than maximizing
- If the minimum is far from the range of permitted values for $\vec{\theta}$, then the minimization can be performed by finding solutions to

$$
-\frac{\ln L(\vec{x} ; \vec{\theta})}{\partial \theta_{j}}=0
$$

- It is assumed that the p.d.f. s are correctly normalized, i.e. that $\int f(\vec{x} ; \vec{\theta}) d x=1(\rightarrow$ integral does not depend on $\vec{\theta}$)
- Solutions to the likelihood minimization are found via numerical methods such as MINOS
- Fred James' Minuit: https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html
- $\vec{\theta}_{M L}$ is an estimator \rightarrow let's study its properties!
(1) Consistent: $\lim _{N \rightarrow \infty} \vec{\theta}_{M L}=\vec{\theta}_{\text {true }}$;
(2) Unbiased: only asymptotically. $\vec{b} \propto \frac{1}{N}$, so $\vec{b}=0$ only for $N \rightarrow \infty$;
(3) Efficient: $V\left[\vec{\theta}_{M L}\right]=\frac{1}{I(\theta)}$
(9) Invariant: for change of variables $\psi=g(\theta) ; \hat{\psi}_{M L}=g\left(\vec{\theta}_{M L}\right)$
- $\vec{\theta}_{M L}$ is only asymptotically unbiased, and therefore it does not always represent the best trade-off between bias and variance
- Remember that in frequentist statistics $L(\vec{x} ; \vec{\theta})$ is not a p.d.f. . In Bayesian statistics, the posterior probability is a p.d.f.:

$$
P(\vec{\theta} \mid \vec{x})=\frac{L(\vec{x} \mid \vec{\theta}) \pi(\vec{\theta})}{\int L(\vec{x} \mid \vec{\theta}) \pi(\vec{\theta}) d \vec{\theta}}
$$

- Note that if the prior is uniform, $\pi(\vec{\theta})=k$, then the MLE is also the maximum of the posterior probability, $\vec{\theta}_{M L}=\operatorname{maxP}(\vec{\theta} \mid \vec{x})$.
- A nuclear decay with half-life τ is described by the p.d.f., expected value, and variance

$$
\begin{aligned}
f(t ; \tau) & =\frac{1}{\tau} e^{-\frac{t}{\tau}} \\
E[f] & =\tau \\
V[f] & =\tau^{2}
\end{aligned}
$$

- Sampling N independent measurements t_{i} from the same p.d.f. results in a set of measurements identically distributed
- Exercise: compute the MLE for this p.d.f.
- A nuclear decay with half-life τ is described by the p.d.f., expected value, and variance

$$
\begin{aligned}
f(t ; \tau) & =\frac{1}{\tau} e^{-\frac{t}{\tau}} \\
E[f] & =\tau \\
V[f] & =\tau^{2}
\end{aligned}
$$

- Sampling N independent measurements t_{i} from the same p.d.f. results in a set of measurements identically distributed
- Exercise: compute the MLE for this p.d.f.
- The joint p.d.f. can be factorized

$$
f\left(t_{1}, \ldots t_{N} ; \tau\right)=\prod_{i} f\left(t_{i} ; \tau\right)
$$

- A nuclear decay with half-life τ is described by the p.d.f., expected value, and variance

$$
\begin{aligned}
f(t ; \tau) & =\frac{1}{\tau} e^{-\frac{t}{\tau}} \\
E[f] & =\tau \\
V[f] & =\tau^{2}
\end{aligned}
$$

- Sampling N independent measurements t_{i} from the same p.d.f. results in a set of measurements identically distributed
- Exercise: compute the MLE for this p.d.f.
- The joint p.d.f. can be factorized

$$
f\left(t_{1}, \ldots t_{N} ; \tau\right)=\prod_{i} f\left(t_{i} ; \tau\right)
$$

- For a particular set of N measurements t_{i}, the p.d.f. can be written as a function of τ only, $L(\tau):=f\left(t_{i} ; \tau\right)$
- A nuclear decay with half-life τ is described by the p.d.f., expected value, and variance

$$
\begin{aligned}
f(t ; \tau) & =\frac{1}{\tau} e^{-\frac{t}{\tau}} \\
E[f] & =\tau \\
V[f] & =\tau^{2}
\end{aligned}
$$

- Sampling N independent measurements t_{i} from the same p.d.f. results in a set of measurements identically distributed
- Exercise: compute the MLE for this p.d.f.
- The joint p.d.f. can be factorized

$$
f\left(t_{1}, \ldots t_{N} ; \tau\right)=\prod_{i} f\left(t_{i} ; \tau\right)
$$

- For a particular set of N measurements t_{i}, the p.d.f. can be written as a function of τ only, $L(\tau):=f\left(t_{i} ; \tau\right)$
- Now all you need to do is to maximize the likelihood

Nuclear Decay with Maximum Likelihood Method

- A nuclear decay with half-life τ is described by the p.d.f., expected value, and variance

$$
\begin{aligned}
f(t ; \tau) & =\frac{1}{\tau} e^{-\frac{t}{\tau}} \\
E[f] & =\tau \\
V[f] & =\tau^{2}
\end{aligned}
$$

- Sampling N independent measurements t_{i} from the same p.d.f. results in a set of measurements identically distributed
- Exercise: compute the MLE for this p.d.f.
- The joint p.d.f. can be factorized

$$
f\left(t_{1}, \ldots t_{N} ; \tau\right)=\prod_{i} f\left(t_{i} ; \tau\right)
$$

- For a particular set of N measurements t_{i}, the p.d.f. can be written as a function of τ only, $L(\tau):=f\left(t_{i} ; \tau\right)$
- Now all you need to do is to maximize the likelihood
- The logarithm of the likelihood, $\ln L(\tau)=\sum\left(\ln \frac{1}{\tau}-\frac{t_{i}}{\tau}\right)$, can be maximized analytically

$$
\frac{\partial \ln L(\tau)}{\partial \tau}=\sum_{i}\left(-\frac{1}{\tau}+\frac{t_{i}}{\tau^{2}}\right) \equiv 0
$$

Nuclear Decay with Maximum Likelihood Method

- The maximum-likelihood estimator is

$$
\hat{\tau}\left(t_{1}, \ldots, t_{N}\right)=\frac{1}{N} \sum_{i} t_{i}
$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased?

Nuclear Decay with Maximum Likelihood Method

- The maximum-likelihood estimator is

$$
\hat{\tau}\left(t_{1}, \ldots, t_{N}\right)=\frac{1}{N} \sum_{i} t_{i}
$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased?
- The expected value is $E[\hat{\tau}]=\tau$, and the estimator is unbiased:

$$
b=E[\hat{\tau}]-E[f]=\tau-\tau=0
$$

Nuclear Decay with Maximum Likelihood Method

- The maximum-likelihood estimator is

$$
\hat{\tau}\left(t_{1}, \ldots, t_{N}\right)=\frac{1}{N} \sum_{i} t_{i}
$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased?
- The expected value is $E[\hat{\tau}]=\tau$, and the estimator is unbiased:

$$
b=E[\hat{\tau}]-E[f]=\tau-\tau=0
$$

- What is the variance? Which is its relationship to N ? Is the estimator efficient?

Nuclear Decay with Maximum Likelihood Method

- The maximum-likelihood estimator is

$$
\hat{\tau}\left(t_{1}, \ldots, t_{N}\right)=\frac{1}{N} \sum_{i} t_{i}
$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased?
- The expected value is $E[\hat{\tau}]=\tau$, and the estimator is unbiased:

$$
b=E[\hat{\tau}]-E[f]=\tau-\tau=0
$$

- What is the variance? Which is its relationship to N ? Is the estimator efficient?
- The variance interestingly decreases when N increases, and it is possible to demonstrate that the estimator is efficient

$$
V[\hat{\tau}]=V\left[\frac{1}{N} \sum_{i} t_{i}\right]=\frac{1}{N^{2}} \sum_{i} V\left[t_{i}\right]=\frac{\tau^{2}}{N}
$$

Nuclear Decay with Maximum Likelihood Method

- The maximum-likelihood estimator is

$$
\hat{\tau}\left(t_{1}, \ldots, t_{N}\right)=\frac{1}{N} \sum_{i} t_{i}
$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased?
- The expected value is $E[\hat{\tau}]=\tau$, and the estimator is unbiased:

$$
b=E[\hat{\tau}]-E[f]=\tau-\tau=0
$$

- What is the variance? Which is its relationship to N ? Is the estimator efficient?
- The variance interestingly decreases when N increases, and it is possible to demonstrate that the estimator is efficient

$$
V[\hat{\tau}]=V\left[\frac{1}{N} \sum_{i} t_{i}\right]=\frac{1}{N^{2}} \sum_{i} V\left[t_{i}\right]=\frac{\tau^{2}}{N}
$$

- The MLE is not the only estimator we can think of. Fill the table!

	Consistente \quad Insesgado	Eficiente
$\hat{\tau}=\hat{\tau}_{M L}=\frac{t_{1}+\ldots+t_{N}}{N}$		
$\hat{\tau}=\frac{t_{1}+\ldots+t_{N}}{N-1}$		
$\hat{\tau}=t_{i}$		

Table: Propiedades de diferentes estimadores de la vida media de un decaimiento nuclear.

Nuclear Decay with Maximum Likelihood Method

- The maximum-likelihood estimator is

$$
\hat{\tau}\left(t_{1}, \ldots, t_{N}\right)=\frac{1}{N} \sum_{i} t_{i}
$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased?
- The expected value is $E[\hat{\tau}]=\tau$, and the estimator is unbiased:

$$
b=E[\hat{\tau}]-E[f]=\tau-\tau=0
$$

- What is the variance? Which is its relationship to N ? Is the estimator efficient?
- The variance interestingly decreases when N increases, and it is possible to demonstrate that the estimator is efficient

$$
V[\hat{\tau}]=V\left[\frac{1}{N} \sum_{i} t_{i}\right]=\frac{1}{N^{2}} \sum_{i} V\left[t_{i}\right]=\frac{\tau^{2}}{N}
$$

- The MLE is not the only estimator we can think of. Fill the table!

	Consistente	Insesgado	Eficiente
$\hat{\tau}=\hat{\tau}_{M L}=\frac{t_{1}+\ldots+t_{N}}{N}$	\checkmark	\checkmark	\checkmark
$\hat{\tau}=\frac{t_{1}+\ldots+t_{N}}{N-1}$			
$\hat{\tau}=t_{i}$			

Table: Propiedades de diferentes estimadores de la vida media de un decaimiento nuclear.

Nuclear Decay with Maximum Likelihood Method

- The maximum-likelihood estimator is

$$
\hat{\tau}\left(t_{1}, \ldots, t_{N}\right)=\frac{1}{N} \sum_{i} t_{i}
$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased?
- The expected value is $E[\hat{\tau}]=\tau$, and the estimator is unbiased:

$$
b=E[\hat{\tau}]-E[f]=\tau-\tau=0
$$

- What is the variance? Which is its relationship to N ? Is the estimator efficient?
- The variance interestingly decreases when N increases, and it is possible to demonstrate that the estimator is efficient

$$
V[\hat{\tau}]=V\left[\frac{1}{N} \sum_{i} t_{i}\right]=\frac{1}{N^{2}} \sum_{i} V\left[t_{i}\right]=\frac{\tau^{2}}{N}
$$

- The MLE is not the only estimator we can think of. Fill the table!

	Consistente	Insesgado	Eficiente
$\hat{\tau}=\hat{\tau}_{M L}=\frac{t_{1}+\ldots+t_{N}}{N}$	\checkmark	\checkmark	\checkmark
$\hat{\tau}=\frac{t_{1}+\ldots+t_{N}}{N-1}$	\checkmark	x	x
$\hat{\tau}=t_{i}$			

Table: Propiedades de diferentes estimadores de la vida media de un decaimiento nuclear.

Nuclear Decay with Maximum Likelihood Method

- The maximum-likelihood estimator is

$$
\hat{\tau}\left(t_{1}, \ldots, t_{N}\right)=\frac{1}{N} \sum_{i} t_{i}
$$

- It's the simple arithmetical mean of the individual measurements!
- What's the expected value? Is the estimator unbiased?
- The expected value is $E[\hat{\tau}]=\tau$, and the estimator is unbiased:

$$
b=E[\hat{\tau}]-E[f]=\tau-\tau=0
$$

- What is the variance? Which is its relationship to N ? Is the estimator efficient?
- The variance interestingly decreases when N increases, and it is possible to demonstrate that the estimator is efficient

$$
V[\hat{\tau}]=V\left[\frac{1}{N} \sum_{i} t_{i}\right]=\frac{1}{N^{2}} \sum_{i} V\left[t_{i}\right]=\frac{\tau^{2}}{N}
$$

- The MLE is not the only estimator we can think of. Fill the table!

	Consistente	Insesgado	Eficiente
$\hat{\tau}=\hat{\tau}_{M L}=t_{1}+\ldots+t_{N}$			
$\hat{\tau}=\frac{t_{1}+\ldots+t_{N}}{N-1}$	\checkmark	\checkmark	\checkmark
$\hat{\tau}=t_{i}$	\checkmark	x	x

Table: Propiedades de diferentes estimadores de la vida media de un decaimiento nuclear.

- Bias: $b=E[\hat{\tau}]-\tau$
- Note: if you don't know the true value, you must simulate the bias of the method
- Generate toys with known parameters, and check what is the estimate of the parameter for the toy data
- If there is a bias, correct for it to obtain an unbiased estimator
- t_{i} is an individual observation, which is still sampled from the original factorized p.d.f.

$$
f\left(t_{i} ; \tau\right)=\frac{1}{\tau} e^{-\frac{t_{i}}{\tau}}
$$

- The expected value of t_{i} is therefore still $E[\hat{\tau}]=E\left[t_{i}\right]=\tau$
- $\hat{\tau}=t_{i}$ is therefore unbiased!

	Consistente	Insesgado	Eficiente
$\hat{\tau}=t_{i}$	X	\checkmark	X

Table: Propiedades de diferentes estimadores de la vida media de un decaimiento nuclear.

- We usually want to optimize both bias \vec{b} and variance $V[\hat{\vec{\theta}}]$
- While we can optimize each one separately, optimizing them simultaneously leads to none being optimally optimized, in genreal
- Optimal solutions in two dimensions are often suboptimal with respect to the optimization of just one of the two properties
- The variance is linked to the width of the likelihood function, which naturally leads to linking it to the curvature of $L(\vec{x} ; \vec{\theta})$ near the maximum
- However, the curvature of $L(\vec{x} ; \vec{\theta})$ near the maximum is linked to the Fisher information, as we have seen
- Information is therefore a limiting factor for the variance (no data set contains infinite information, variance cannot collapse to zero)
- Variance of an estimator satisfies the Rao-Cramér-Frechet (RCF) bound

$$
V[\hat{\theta}] \geq \frac{1}{\hat{\theta}}
$$

- Rao-Cramer-Frechet (RCF) bound
$V[\hat{\theta}] \geq \frac{(1+\partial b / \partial \theta)^{2}}{-E\left[\partial^{2} \ln L / \partial \theta^{2}\right]}$
- In multiple dimensions, this is linked with the Fisher Information Matrix:

$$
I_{i j}=E\left[\partial^{2} \ln L / \partial \theta_{i} \partial \theta_{j}\right]
$$

- Approximations
- Neglect the bias $(b=0)$
- Inequality is an approximate equality (true for large data samples)
- $V[\hat{\theta}] \simeq \frac{1}{-E\left[\partial^{2} \ln L / \partial \theta^{2}\right]}$
- Estimate of the variance of the estimate of the parameter!
- $\hat{V}[\hat{\theta}] \simeq \frac{1}{-\left.E\left[\partial^{2} \ln L / \partial \theta^{2}\right]\right|_{\theta=\text { thêta }}}$

Bias-variance tradeoff and optimal variance 2/

- For multidimensional parameters, we can build the information matrix with elements:

$$
\begin{aligned}
I_{j k}(\vec{\theta}) & =-E\left[\sum_{i}^{N} \frac{\partial^{2} \ln f\left(x_{i} ; \vec{\theta}\right)}{\partial \theta_{k} \partial \theta_{k}}\right] \\
& =N \int \frac{1}{f} \frac{\partial f}{\partial \theta_{j}} \frac{\partial f}{\partial \theta_{k}} d x
\end{aligned}
$$

- (the last equality is due to the integration interval not being dependent on $\vec{\theta}$)
- We have calculated the variance of the MLE in the simple case of the nuclear decay
- Analytic calculation of the variance is not always possible
- Write the variance approximately as:

$$
V[\hat{\theta}] \geq \frac{\left(1+\frac{\partial b}{\partial \theta}\right)^{2}}{-E\left[\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right]}
$$

- This expression is valid for any estimator, but if applied to the MLE then we can note $\vec{\theta}_{M L}$ is efficient and asymptotically unbiased
- Therefore, when $N \rightarrow \infty$ then $b=0$ and the variance approximate to the RCF bound, and \geq becomes \simeq :

$$
V\left[\vec{\theta}_{M L}\right] \simeq \frac{1}{-\left.E\left[\frac{\partial^{2} \ln }{\partial \theta^{2}}\right]\right|_{\theta=\vec{\theta}_{M L}}}
$$

- For a Gaussian p.d.f., $f(x ; \vec{\theta})=N(\mu, \sigma)$, the likelihood can be written as:

$$
L(\vec{x} ; \vec{\theta})=\ln \left[-\frac{(\vec{x}-\vec{\theta})^{2}}{2 \sigma^{2}}\right]
$$

- Moving away from the maximum of $L(\vec{x} ; \vec{\theta})$ by one unit of σ, the likelihood assumes the value $\frac{1}{2}$, and the area enclosed in $[\vec{\theta}-\sigma, \vec{\theta}+\sigma]$ will be-because of the properties of the Normal distribution-equal to 68.3\%.

How to extract an interval from the likelihood function 2/

- We can therefore write

$$
\begin{aligned}
\left.P\left((\vec{x}-\vec{\theta})^{2} \leq \sigma\right)\right) & =68.3 \% \\
P(-\sigma \leq \vec{x}-\vec{\theta} \leq \sigma) & =68.3 \% \\
P(\vec{x}-\sigma \leq \vec{\theta} \leq \vec{x}+\sigma) & =68.3 \%
\end{aligned}
$$

- Taking into account that it is important to keep in mind that probability is a property of sets, in frequentist statistics
- Confidence interval: interval with a fixed probability content
- This process for computing a confidence interval is exact for a Gaussian p.d.f.
- Pathological cases reviewed later on (confidence belts and Neyman construction)
- Practical prescription:
- Point estimate by computing the Maximum Likelihood Estimate
- Confidence interval by taking the range delimited by the crossings of the likelihood function with $\frac{1}{2}$ (for 68.3% probability content, or 2 for 95% probability content- 2σ, etc)

How to extract an interval from the likelihood function 3/

- MLE is invariant for monotonic transformations of θ
- This applies not only to the maximum of the likelihood, but to all relative values
- The likelihood ratio is therefore an invariant quantity (we'll use it for hypothesis testing)
- Can transform the likelihood such that $\log (L(\vec{x} ; \vec{\theta})$) is parabolic, but not necessary (MINOS/Minuit)
- When the p.d.f. is not normal, either assume it is, and use symmetric intervals from Gaussian tails...
- This yields symmetric approximate intervals
- The approximation is often good even for small amounts of data
- ...or use asymmetric intervals by just looking at the crossing of the $\log (L(\vec{x} ; \vec{\theta}))$ values
- Naturally-arising asymmetrical intervals
- No gaussian approximation
- In any case (even asymmetric intervals) still based on asymptotic expansion
- Method is exact only to $\mathcal{O}\left(\frac{1}{N}\right)$

(a)

(b)

Plot from James, 2nd ed.

And in many dimensions...

- Construct $\log \mathcal{L}$ contours and determine confidence intervals by MINOS
- Elliptical contours correspond to gaussian Likelihoods
- The closer to MLE, the more elliptical the contours, even in non-linear problems
- All models are linear in a sufficiently small region
- Nonlinear regions not problematic (no parabolic transformation of $\log \mathcal{L}$ needed)
- MINOS accounts for non-linearities by following the likelihood contour
- Confidence intervals for each parameter

$$
\max _{\theta_{j}, j \neq i} \log \mathcal{L}(\theta)=\log \mathcal{L}(\hat{\theta})-\lambda
$$

- $\lambda=\frac{Z_{1-\beta}^{2}}{2}$
- $\lambda=1 / 2$ for $\beta=0.683$ (" 1σ ")
- $\lambda=2$ for $\beta=0.955$ (" 2σ ")

Plot from James, 2nd ed.

- Parametrize them into the likelihood function; conventional separation of parameters in two classes
- the Parameter(s) of Interest (POI), often representing $\sigma / \sigma_{S M}$ and denoted as μ (signal strength)
- the parameters representing uncertainties, nuisance parameters θ
- $H_{0}: \mu=0$ (Standard Model only, no Higgs)
- $H_{1}: \mu=1$ (Standard Model + Standard Model Higgs)
- Find the maximum likelihood estimates (MLEs) $\hat{\mu}, \hat{\theta}$
- Find the conditional $\operatorname{MLE} \hat{\hat{\theta}}(\mu)$, i.e. the value of θ maximizing the likelihood function for each fixed value of μ

What if I have systematic uncertainties? /2

- Write the test statistics as $\lambda(\mu)=\frac{L(\mu, \hat{\hat{\theta}}(\mu))}{L(\hat{\mu}, \hat{\theta})}$
- Independent on the nuisance parameters (profiled, i.e. their MLE has been taken as a function of each value of μ)
- Can even freeze them one by one to extract their contribution to the total uncertainty
- Conceptually, you can run the experiment many times (e.g. toys) and record the value of the test statistic
- The test statistic can therefore be seen as a distribution
- Asymptotically, $\lambda(\mu) \sim \exp \left[-\frac{1}{2} \chi^{2}\right]\left(1+\mathcal{O}\left(\frac{1}{\sqrt{N}}\right)\right)$ (Wilks Theorem, under some regularity conditions-continuity of the likelihood and up to 2nd derivatives, existence of a maximum, etc)
- The χ^{2} distribution depends only on a single parameter, the number of degrees of freedom
- It follows that the test statistic is independent of the values of the nuisance parameters
- Useful: you don't need to make toys in order to find out how is $\lambda(\mu)$ distributed!

- Theorem: for any p.d.f. $f(x \mid \vec{\theta})$, in the large numbers limit $N \rightarrow \infty$, the likelihood can always be approximated with a gaussian:

$$
L(\vec{x} ; \vec{\theta}) \propto_{N \rightarrow \infty} e^{-\frac{1}{2}\left(\vec{\theta}-\vec{\theta}_{M L}\right)^{T} H\left(\vec{\theta}-\vec{\theta}_{M L}\right)}
$$

- where H is the information matrix $I(\vec{\theta})$.
- Under these conditions, $V\left[\vec{\theta}_{M L}\right] \rightarrow \frac{1}{I\left(\vec{\theta}_{M L}\right)}$, and the intervals can be computed as:

$$
\Delta \ln L:=\ln L\left(\theta^{\prime}\right)-\ln L_{\max }=-\frac{1}{2}
$$

- The resulting interval has in general a larger probability content than the one for a gaussian p.d.f., but the approximation grows better when N increases
- The interval overcovers the true value $\vec{\theta}_{\text {true }}$
- $\vec{\theta}_{\text {rue }}$ is therefore stimated as $\hat{\theta}=\vec{\theta}_{M L} \pm \sigma$. This is another situation in which frequentist and Bayesian statistics differ in the interpretation of the numerical result
- Frequentist: $\vec{\theta}_{\text {rue }}$ is fixed
- "if I repeat the experiment many times, computing each time a confidence interval around $\vec{\theta}_{M L}$, on average 68.3% of those intervals will contain $\vec{\theta}_{\text {rue }}$ "
- Coverage: "the interval covers the true value with 68.3% probability"
- Direct consequence of the probability being a property of data sets
- Bayesian: $\vec{\theta}_{\text {true }}$ is not fixed
- "the true value $\vec{\theta}_{\text {true }}$ will be in the range $\left[\vec{\theta}_{M L}-\sigma, \vec{\theta}_{M L}+\sigma\right]$ with a probabilty of 68.3% "
- This corresponds to giving a value for the posterior probability of the parameter $\vec{\theta}_{\text {true }}$
- How good is the approximation $L\left(\vec{x} ; \vec{\theta} \propto \exp \left[-\frac{1}{2}\left(\vec{\theta}-\vec{\theta}_{M L E}\right)^{T} H\left(\vec{\theta}-\vec{\theta}_{M L}\right)\right]\right.$?
- Here H is the information matrix $I(\vec{\theta})$
- True only to $\mathcal{O}\left(\frac{1}{N}\right)$
- In these conditions, $V\left[\vec{\theta}_{M L}\right] \rightarrow \frac{1}{I\left(\vec{\theta}_{M L}\right)}$
- Intervals can be derived by crossings: $\Delta \ln L=\ln L\left(\theta^{\prime}\right)-\ln L_{\text {max }}=k$
- Convince yourselves of how good is this approximation in case of the nuclear decay (simplified case of N measurements in which $t_{i}=1$)! wget https://raw.githubusercontent.com/vischia/statex/master/nuclearDecay.R

Nuclear decay at time $\mathrm{t}=\mathbf{1}$

Non-normal likelihoods and Gaussian approximation - 2

Nuclear decay at time $t=1$ and $N=1$

Nuclear decay at time $\mathbf{t}=1$ and $\mathbf{N}=10$

Non-normal likelihoods and Gaussian approximation - 3

Nuclear decay at time $\mathrm{t}=1$ and $\mathrm{N}=100$

Nuclear decay at time $\mathrm{t}=1$ and $\mathrm{N}=1000$

- The convergence of the likelihood $L(\vec{x} ; \vec{\theta})$ to a gaussian is a direct consequence of the central limit theorem
- Take a set of measurements $\vec{x}=\left(x_{i}, \ldots, x_{N}\right)$ affected by experimental errors that results in uncertainties $\sigma_{1}, \ldots, \sigma_{N}$ (not necessarily equal among each other)
- In the limit of a large number of events, $M \rightarrow \infty$, the random variable built summing M measurements is gaussian-distributed:

$$
Q:=\sum_{j=1}^{M} x_{j} \sim N\left(\sum_{j=1}^{M} x_{j}, \sum_{j=1}^{M} \sigma_{j}^{2}\right), \quad \forall f(x, \vec{\theta})
$$

- The demonstration runs by expanding in series the characteristic function $y_{i}=\frac{x_{j}-\mu_{j}}{\sqrt{\sigma_{j}}}$
- The theorem is valid for any p.d.f. $f(x, \vec{\theta})$ that is reasonably peaked around its expected value.
- If the p.d.f. has large tails, the bigger contributions from values sampled from the tails will have a large weight in the sum, and the distribution of Q will have non-gaussian tails
- The consequence is an alteration of the probability of having sums Q outside of the gaussian

Asymptoticity of the Central limit theorem

- The condition $M \rightarrow \infty$ is reasonably valid if the sum is of many small contributions.
- How large does M need to be for the approximation to be reasonably good?

Asymptoticity of the Central limit theorem

- The condition $M \rightarrow \infty$ is reasonably valid if the sum is of many small contributions.
- How large does M need to be for the approximation to be reasonably good?
- Download the file and check! wget https://raw.githubusercontent.com/vischia/statex/master/centralllimit.py

Asymptoticity of the Central limit theorem

- The condition $M \rightarrow \infty$ is reasonably valid if the sum is of many small contributions.
- How large does M need to be for the approximation to be reasonably good?
- Download the file and check! wget https://raw.githubusercontent.com/vischia/statex/master/centralllimit.py
- Not much!

- Measure N times the same quantity: values x_{i} and uncertainties σ_{i}. MLE and variance are:

$$
\begin{aligned}
\hat{x}_{M L} & =\frac{\sum_{i=1}^{N} \frac{x_{i}}{\sigma_{i}^{2}}}{\sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}}} \\
\frac{1}{\hat{\sigma}_{x}^{2}} & =\sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}}
\end{aligned}
$$

- The MLE is obtained when each measurement is weighted by its own variance
- This is because the variance is essentially an estimate of how much information lies in each measurement
- This works if the p.d.f. is known
- Compare this method with an alternative one that does not assume knowledge of the p.d.f.
- The second method will be the only one applicable to cases in which the p.d.f. is unknown
- Take a set of measures sampled from an unknown p.d.f. $f(\vec{x}, \vec{\theta})$
- Compute the expected value and variance of a combination of such measurements described by a function $g(\vec{x})$.
- The expected value and variance of x_{i} are elementary:

$$
\mu=E[x] V_{i j}=E\left[x_{i} x_{j}\right]-\mu_{i} \mu_{j}
$$

- If we want to extract the p.d.f. of $g(\vec{x})$, we would normally use the jacobian of the transformation of f to g, but in this case we assumed $f(\vec{x})$ is unknown.
- We don't know f, but we can still write an expansion in series for it:

$$
g(\vec{x}) \simeq g(\vec{\mu})+\left.\sum_{i=1}^{N}\left(\frac{\partial g}{\partial x_{i}}\right)\right|_{x=\mu}\left(x_{i}-\mu_{i}\right)
$$

- We can compute the expected value and variance of g by using the expansion:

$$
\begin{aligned}
E[g(\vec{x})] & \simeq g(\mu), \quad\left(E\left[x_{i}-\mu_{i}\right]=0\right) \\
\sigma_{g}^{2} & =\left.\sum_{i j=1}^{N}\left[\frac{\partial g}{\partial x_{i}} \frac{\partial g}{\partial x_{j}}\right]\right|_{\vec{x}=\vec{\mu}} V_{i j}
\end{aligned}
$$

- The variances are propagated to g by means of their jacobian!
- For a sum of measurements, $y=g(\vec{x})=x_{1}+x_{2}$, the variance of y is $\sigma_{y}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+2 V_{12}$, which is reduced to the sum of squares for independent measurements
- Let's compare the two ways of combining measurements, and check the role of the Fisher Information
- Let's estimate the time taken for a laser light pulse to go from the Earth to the Moon and back (in units of Earth-to-Moon-Time EMT)
- On the Moon we have a receiver built by NASA. It's very good but placed in unfavourable conditions, yielding only a 2\% precision on Earth-to-Moon
- On Earth we have a receiver made out of scrap material. It is however placed in favourable conditions, yielding a 5% precisionon Moon-to-Earth

$$
\begin{aligned}
& N_{E M}=0.99 \pm 0.02 E M T \\
& N_{M E}=1.05 \pm 0.05 E M T
\end{aligned}
$$

- Evidently, the time to moon and back is $N_{E M E}=N_{E M}+N_{M E}$, and we can apply Eq. 42: Do it!
- Let's compare the two ways of combining measurements, and check the role of the Fisher Information
- Let's estimate the time taken for a laser light pulse to go from the Earth to the Moon and back (in units of Earth-to-Moon-Time EMT)
- On the Moon we have a receiver built by NASA. It's very good but placed in unfavourable conditions, yielding only a 2\% precision on Earth-to-Moon
- On Earth we have a receiver made out of scrap material. It is however placed in favourable conditions, yielding a 5% precisionon Moon-to-Earth

$$
\begin{aligned}
& N_{E M}=0.99 \pm 0.02 E M T \\
& N_{M E}=1.05 \pm 0.05 E M T
\end{aligned}
$$

- Evidently, the time to moon and back is $N_{E M E}=N_{E M}+N_{M E}$, and we can apply Eq. 42: Do it!
- Resulting estimate:
- $N_{E M E}=0.99+1.05 \pm \sqrt{0.02^{2}+0.05^{2}} E M T=2.05 \pm 0.05 E M T$, corresponding to a precision of $\frac{\sigma_{N_{E M E}}}{N_{E M E}} \sim 2.4 \%$.
- We now however can argue that over the time it takes for light to go to the Moon and back any environment condition would be roughly constant
- How can we exploit this additional information?
- We now however can argue that over the time it takes for light to go to the Moon and back any environment condition would be roughly constant
- How can we exploit this additional information?
- We can use this additional information to note that the two estimates $N_{E M}$ and $N_{M E}$ are independent estimates of the same physical quantity $\frac{N_{E M E}}{2}$
- Compute $N_{E M E}$ and $\sigma\left(N_{E M E}\right)$ based on this reasonment
- We now however can argue that over the time it takes for light to go to the Moon and back any environment condition would be roughly constant
- How can we exploit this additional information?
- We can use this additional information to note that the two estimates $N_{E M}$ and $N_{M E}$ are independent estimates of the same physical quantity $\frac{N_{E M E}}{2}$
- Compute $N_{E M E}$ and $\sigma\left(N_{E M E}\right)$ based on this reasonment
- We can therefore use Eq. 40 to compute $\frac{N_{E M E}}{2}$ and multiply the result by 2, obtaining

$$
N_{E M E}=2.00 \pm 0.03 E M T
$$

- This estimate corresponds to a precision of only 1.5% !!!
- The dramatic improvement in the precision of the measurement, from 2.4% to 1.5%, is a direct consequence of having used additional information under the form of a relationship (constraint) between the two available measurements.
- A good physicist exploits as many constraints as possible in order to improve the precision of a measurement
- Sometimes the contraints are arbitrary or correspond to special cases
- Is is very important to explicitly mention any constraint used to derive a measurement, when quoting the result.
- Now suppose my receivers operate by taking data and performing a maximum likelihood fit to estimate $N_{E M}$ and $N_{M E}$
- Can I combine these two measurements with the two methods seen above?
- $N_{E M}=0.99 \pm 0.03$
- $N_{M E}=1.10_{-0.01}^{+0.05}$
- For example, $N_{E M T}=2.09_{-0.03}^{+0.06}$
- Now suppose my receivers operate by taking data and performing a maximum likelihood fit to estimate $N_{E M}$ and $N_{M E}$
- Can I combine these two measurements with the two methods seen above?
- $N_{E M}=0.99 \pm 0.03$
- $N_{M E}=1.10_{-0.01}^{+0.05}$
- For example, $N_{E M T}=2.09_{-0.03}^{+0.06}$
- No!
- Why?
- Now suppose my receivers operate by taking data and performing a maximum likelihood fit to estimate $N_{E M}$ and $N_{M E}$
- Can I combine these two measurements with the two methods seen above?
- $N_{E M}=0.99 \pm 0.03$
- $N_{M E}=1.10_{-0.01}^{+0.05}$
- For example, $N_{E M T}=2.09_{-0.03}^{+0.06}$
- No!
- Why?
- The naïve quadrature of the two uncertainties is wrong!
- The naïve combination is an expression of the Central Limit Theorem
- The resulting combination is expected to be more symmetric than the measurements it originates from
- Symmetric uncertainties usually assume a Gaussian approximation of the likelihood
- Asymmetric uncertainties? One would need a study of the non-linearity (large biases might be introduced if ignoring this)
- Intrinsic difference between averaging and most probable value
- Averaging results in average value and variance that propagate linearly
- Taking the mode (essentially what MLE does) does not add up linearly!
- With asymmetric uncertainties from MLE fits, always combine the likelihoods (better in an individual simultaneous fit)
- Throwback Tuesday: what happens to the posterior for different broadness/narrowness of the likelihood and the prior
- Information and estimates of physical parameters
- Sufficient statistic
- The Likelihood Principle
- The Maximum Likelihood Method
- Uncertainties: how to get them from the likelihood
- Combining measurements: use all the available information
- Frederick James: Statistical Methods in Experimental Physics - 2nd Edition, World Scientific
- Glen Cowan: Statistical Data Analysis - Oxford Science Publications
- Louis Lyons: Statistics for Nuclear And Particle Physicists - Cambridge University Press
- Louis Lyons: A Practical Guide to Data Analysis for Physical Science Students - Cambridge University Press
- Annis?, Stuard, Ord, Arnold: Kendall's Advanced Theory Of Statistics I and II
- Pearl, Judea: Causal inference etc etc, a Primer (add full details)
- R.J.Barlow: A Guide to the Use of Statistical Methods in the Physical Sciences - Wiley
- Kyle Cranmer: Lessons at HCP Summer School 2015
- Kyle Cranmer: Practical Statistics for the LHC - http://arxiv.org/abs/1503.07622
- Harrison Prosper: Practical Statistics for LHC Physicists - CERN Academic Training Lectures, 2015 https://indico.cern.ch/category/72/

THANKS FOR THE ATTENTION!

Backup

