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Practicalities

We start now (10:00), and will stop at 11:45 to give room to a one-hour seminar
It has been called at the last minute and there was no other option compatible with the speaker’s
plans
The quantum enhanced Virgo interferometer by Dr. Marco Vardaro, abstract at
https://agenda.irmp.ucl.ac.be/event/3415/

As announced yesterday by email, you can choose among yourselves:
Restarting at 12:00 until 13:45
Restarting at 13:00 until 14:45 (in case you prefer to have lunch at about 12:00)

Some of you asked for certificate of attendance with explicit mention of the amount of hours
(for PhD courses credits)

It will be provided on the last day
Please let me know (now) if you need it, so I can pass the list to Carinne
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Throwback Tuesday — Flat prior

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Flat prior

θ

Li
ke

lih
oo

d 
(a

.u
.)

Likelihood
Prior
Posterior

Vischia Statistics for HEP June 24–28th, 2019 3 / 47



Throwback Tuesday — Non-flat prior
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Throwback Tuesday — Broad and narrow non-flat priors
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Estimating a physical quantity
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Information, the Fisher way

The information of a set of observations should increase with the number of observations
Double the data should result in double the information if the data are independent

Information should be conditional on what we want to learn from the experiment
Data which are irrelevant to our hypothesis should carry zero information relative to our hypothesis

Information should be related to precision
The greatest the information carried by the data, the better the precision of our result
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Likelihood and Fisher Information

The narrowness of the likelihood can be estimated by looking at its curvature

The curvature is the second derivative with respect to the parameter of interest

A very narrow (peaked) likelihood is characterized by a very large and positive − ∂
2lnL
∂θ2

The second derivative of the likelihood is linked to the Fisher Information

I(θ) = −E

[
∂2lnL
∂θ2

]
= E

[(
∂lnL
∂θ

)2]
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Likelihood and Fisher Information

A very narrow likelihood will provide much information about θtrue

The posterior probability will be more localized than the prior in the regimen in which the likelihood
function dominates the product L(~x; ~θ)× π
The Fisher Information will be large

A very broad likelihood will not carry much information, and in fact the computed Fisher
Information will turn out to be small
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Fisher Information and Jeffreys priors
When changing variable, the change of parameterization must not result in a change of the
information

The information is a property of the data only, through the likelihood—that summarizes them
completely (likelihood principle)

Search for a parametrization θ′(θ) in which the Fisher Information is constant
Compute the prior as a function of the new variable

π(θ) = π(θ′)
∣∣∣ dθ′

dθ

∣∣∣ ∝
√√√√E

[(
∂lnN
∂θ′

)2]∣∣∣∣∣∂θ′∂θ
∣∣∣∣∣

=

√√√√E

[(
∂lnL
∂θ′

∂θ′

∂θ

)2]

=

√√√√E

[(
∂lnL
∂θ

)2]
=
√

I(θ)

For any θ, π(θ) =
√

I(θ); with this choice, the information is constant under changes of
variable
Such priors are called Jeffreys priors, and assume different forms depending on the type of
parametrization

Location parameters: uniform prior
Scale parameters: prior ∝ 1

θ

Poisson processes: prior ∝ 1√
θ
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Sufficient statistic and data reduction

A test statistic is a function of the data (a quantity derived from the data sample)
A statistic T = T(X) is sufficient for θ if the density function f (X|T) is independent of θ

If T is a sufficient statistic for θ, then also any strictly monotonic g(T) is sufficient for θ

The statistic T carries as much information about θ as the original data X
No other function can give any further information about θ
Same inference from data X with model M and from sufficient statistic T(X) with model M′
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Example: is it sufficient?

Example: data 1, 2, 3, 4, 5; sample mean (estimate of population mean) x̂ = 1+2+3+4+5
5 = 3

Imagine we don’t have the data; we only know that the sample mean is 3
Is the sample mean a sufficient statistic?

Since the sample mean is 3, we also estimate the population mean to be 3
Knowing the data (the set 1, 2, 3, 4, 5) or knowing only the sample mean does not improve our
estimate for the population mean

Binomial test in coin toss

Record heads and tails, with their order: HTTHHHTHHTTTHTHTH
Can we somehow improve by identifying a sufficient statistic?
What happens if we record only the number of heads? (remember that the binomial p.d.f. is:
P(r) =

(N
r

)
pr(1− p)N−r , r = 0, 1, ...,N

Recording only the number of heads (no tails, no order) gives exactly the same information
Data can be reduced; we only need to store a sufficient statistic
Storage needs are reduced
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The Likelihood Principle

Common enunciation: given a set of observed data~x, the likelihood function L(~x; θ) contains
all the information relevant to the measurement of θ contained in the data sample

The likelihood function is seen as a function of θ, for a fixed set (a particular realization) of observed
data~x
As we have seen, the likelihood is used to define the information contained in a sample

Bayesian statistics normally complies, frequentist statistics usually does not, because a
frequentist has to consider the hypothetical set of data that might have been obtained.
This on one side implies that a frequentist always needs multiple sets of observations

Even in forecasts: computer simulations of the day of tomorrow, or counting the past frequency of
correct forecasts by the grandpa feeling arthritis in the shoulder

On the other side a Bayesian would say “Probably tomorrow will rain”, a frequentist “the
sentence -tomorrow it will rain- is probably true”
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Estimators

Set~x = (x1, ..., xN) of N statistically independent observations xi, sampled from a p.d.f. f (x).

Mean and width of f (x) (or some parameter of it: f (x; ~θ), with ~θ = (θ1, ..., θM) unknown)
In case of a linear p.d.f., the vector of parameters would be ~θ = (intercept, slope)

We call estimator a function of the observed data~x which returns numerical values ~̂θ for the
vector ~θ.

~̂θ is (asymptotically) consistent if it converges to ~θtrue
for large N:

lim
N→∞

~̂θ = ~θtrue

~̂θ is unbiased if its bias is zero, ~b = 0

Bias of ~̂θ: ~b := E[~̂θ]− ~θtrue

If bias is known, can redefine ~̂θ′ = ~̂θ −~b, resulting in
~b′ = 0.

~̂θ is efficient if its variance V[~̂θ] is the smallest possible Plot from James, 2nd ed.

An estimator is robust when it is insensitive to small deviations from the underlying
distribution (p.d.f.) assumed (ideally, one would want distribution-free estimates, without
assumptions on the underlying p.d.f.)



The Maximum Likelihood Method 1/
Let~x = (x1, ..., xN) be a set of N statistically independent observations xi, sampled from a
p.d.f. f (x; ~θ) depending on a vector of parameters
Under independence of the observations, the likelihood function factorizes to the individual
p.d.f. s

L(~x; ~θ) =
N∏

i=1

f (xi, ~θ)

The maximum-likelihood estimator is the ~θML which maximizes the joint likelihood

~θML := argmaxθ
(

L(~x, ~θ)
)

The maximum must be global
Numerically, it’s usually easier to minimize

− lnL(~x; ~θ) = −
N∑

i=1

lnf (xi, ~θ)

Easier working with sums than with products
Easier minimizing than maximizing

If the minimum is far from the range of permitted values for ~θ, then the minimization can be
performed by finding solutions to

−
lnL(~x; ~θ)

∂θj
= 0

It is assumed that the p.d.f. s are correctly normalized, i.e. that
∫

f (~x; ~θ)dx = 1 (→ integral does not
depend on ~θ)
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The Maximum Likelihood Method 2/

Solutions to the likelihood minimization are found via numerical methods such as MINOS
Fred James’ Minuit: https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html

~θML is an estimator→ let’s study its properties!
1 Consistent: limN→∞ ~θML = ~θtrue;
2 Unbiased: only asymptotically. ~b ∝ 1

N , so~b = 0 only for N →∞;
3 Efficient: V[~θML] = 1

I(θ)

4 Invariant: for change of variables ψ = g(θ); ψ̂ML = g(~θML)

~θML is only asymptotically unbiased, and therefore it does not always represent the best
trade-off between bias and variance

Remember that in frequentist statistics L(~x; ~θ) is not a p.d.f. . In Bayesian statistics, the
posterior probability is a p.d.f.:

P(~θ|~x) =
L(~x|~θ)π(~θ)∫
L(~x|~θ)π(~θ)d~θ

Note that if the prior is uniform, π(~θ) = k, then the MLE is also the maximum of the posterior
probability, ~θML = maxP(~θ|~x).

Vischia Statistics for HEP June 24–28th, 2019 16 / 47

https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html


Nuclear Decay with Maximum Likelihood Method

A nuclear decay with half-life τ is described by the p.d.f., expected value, and variance

f (t; τ) =
1
τ

e−
t
τ

E[f ] = τ

V[f ] = τ 2

Sampling N independent measurements ti from the same p.d.f. results in a set of
measurements identically distributed
Exercise: compute the MLE for this p.d.f.

The joint p.d.f. can be factorized

f (t1, ...tN ; τ) =
∏

i

f (ti; τ)

For a particular set of N measurements ti, the p.d.f. can be written as a function of τ only,
L(τ) := f (ti; τ)

Now all you need to do is to maximize the likelihood

The logarithm of the likelihood, lnL(τ) =
∑(

ln 1
τ
− ti
τ

)
, can be maximized analytically

∂lnL(τ)

∂τ
=
∑

i

(
−

1
τ

+
ti
τ 2

)
≡ 0
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Nuclear Decay with Maximum Likelihood Method
The maximum-likelihood estimator is

τ̂(t1, ..., tN) =
1
N

∑
i

ti

It’s the simple arithmetical mean of the individual measurements!
What’s the expected value? Is the estimator unbiased?

The expected value is E[τ̂ ] = τ , and the estimator is unbiased:

b = E[τ̂ ]− E[f ] = τ − τ = 0

What is the variance? Which is its relationship to N? Is the estimator efficient?
The variance interestingly decreases when N increases, and it is possible to demonstrate that
the estimator is efficient

V[τ̂ ] = V
[ 1

N

∑
i

ti
]

=
1

N2

∑
i

V[ti] =
τ 2

N

The MLE is not the only estimator we can think of. Fill the table!
Consistente Insesgado Eficiente

τ̂ = τ̂ML = t1+...+tN
N

τ̂ = t1+...+tN
N−1

τ̂ = ti

Table: Propiedades de diferentes estimadores de la vida media de un decaimiento nuclear.
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Nuclear Decay with Maximum Likelihood Method
The maximum-likelihood estimator is

τ̂(t1, ..., tN) =
1
N

∑
i

ti

It’s the simple arithmetical mean of the individual measurements!
What’s the expected value? Is the estimator unbiased?
The expected value is E[τ̂ ] = τ , and the estimator is unbiased:

b = E[τ̂ ]− E[f ] = τ − τ = 0

What is the variance? Which is its relationship to N? Is the estimator efficient?
The variance interestingly decreases when N increases, and it is possible to demonstrate that
the estimator is efficient

V[τ̂ ] = V
[ 1

N

∑
i

ti
]

=
1

N2

∑
i

V[ti] =
τ 2

N

The MLE is not the only estimator we can think of. Fill the table!
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τ̂ = τ̂ML = t1+...+tN
N 3 3 3

τ̂ = t1+...+tN
N−1 3 7 7

τ̂ = ti

Table: Propiedades de diferentes estimadores de la vida media de un decaimiento nuclear.
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Why τ̂ = ti is unbiased

Bias: b = E[τ̂ ]− τ
Note: if you don’t know the true value, you must simulate the bias of the method
Generate toys with known parameters, and check what is the estimate of the parameter for the toy
data
If there is a bias, correct for it to obtain an unbiased estimator

ti is an individual observation, which is still sampled from the original factorized p.d.f.

f (ti; τ) = 1
τ

e−
ti
τ

The expected value of ti is therefore still E[τ̂ ] = E[ti] = τ

τ̂ = ti is therefore unbiased!
Consistente Insesgado Eficiente

τ̂ = ti 7 3 7

Table: Propiedades de diferentes estimadores de la vida media de un decaimiento nuclear.
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Bias-variance tradeoff and optimal variance 1/

We usually want to optimize both bias ~b and variance V[~̂θ]

While we can optimize each one separately, optimizing them simultaneously leads to none
being optimally optimized, in genreal

Optimal solutions in two dimensions are often suboptimal with respect to the optimization of just one
of the two properties

The variance is linked to the width of the likelihood function, which naturally leads to linking it
to the curvature of L(~x; ~θ) near the maximum

However, the curvature of L(~x; ~θ) near the maximum is linked to the Fisher information, as we
have seen

Information is therefore a limiting factor for the variance (no data set contains infinite
information, variance cannot collapse to zero)

Variance of an estimator satisfies the Rao-Cramér-Frechet (RCF) bound

V[θ̂] ≥
1

θ̂
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Information Inequality – 1

Rao-Cramer-Frechet (RCF) bound

V[θ̂] ≥ (1+∂b/∂θ)2

−E
[
∂2lnL/∂θ2

]
In multiple dimensions, this is linked with the Fisher Information Matrix:
Iij = E

[
∂2lnL/∂θi∂θj

]
Approximations

Neglect the bias (b = 0)
Inequality is an approximate equality (true for large data samples)

V[θ̂] ' 1
−E
[
∂2lnL/∂θ2

]
Estimate of the variance of the estimate of the parameter!

V̂[θ̂] ' 1
−E
[
∂2lnL/∂θ2

]
|
θ= ˆtheta
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Bias-variance tradeoff and optimal variance 2/

For multidimensional parameters, we can build the information matrix with elements:

Ijk(~θ) = −E
[ N∑

i

∂2lnf (xi; ~θ)

∂θk∂θk

]
= N

∫
1
f
∂f
∂θj

∂f
∂θk

dx

(the last equality is due to the integration interval not being dependent on ~θ)
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Estimating variance non-analytically

We have calculated the variance of the MLE in the simple case of the nuclear decay

Analytic calculation of the variance is not always possible

Write the variance approximately as:

V[θ̂] ≥

(
1 + ∂b

∂θ

)2

−E
[
∂2lnL
∂θ2

]
This expression is valid for any estimator, but if applied to the MLE then we can note ~θML is
efficient and asymptotically unbiased

Therefore, when N →∞ then b = 0 and the variance approximate to the RCF bound, and ≥
becomes ':

V[~θML] '
1

−E
[
∂2lnL
∂θ2

]∣∣∣
θ=~θML
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How to extract an interval from the likelihood function 1/

For a Gaussian p.d.f., f (x; ~θ) = N(µ, σ), the likelihood can be written as:

L(~x; ~θ) = ln
[
−

(~x− ~θ)2

2σ2

]
Moving away from the maximum of L(~x; ~θ) by one unit of σ, the likelihood assumes the value
1
2 , and the area enclosed in [~θ − σ, ~θ + σ] will be—because of the properties of the Normal
distribution—equal to 68.3%.
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How to extract an interval from the likelihood function 2/
We can therefore write

P
(

(~x− ~θ)2 ≤ σ)
)

= 68.3%

P(−σ ≤ ~x− ~θ ≤ σ) = 68.3%

P(~x− σ ≤ ~θ ≤ ~x + σ) = 68.3%

Taking into account that it is important to keep in mind that probability is a property of sets, in
frequentist statistics

Confidence interval: interval with a fixed probability content
This process for computing a confidence interval is exact for a Gaussian p.d.f.

Pathological cases reviewed later on (confidence belts and Neyman construction)
Practical prescription:

Point estimate by computing the Maximum Likelihood Estimate
Confidence interval by taking the range delimited by the crossings of the likelihood function with 1

2 (for
68.3% probability content, or 2 for 95% probability content—2σ, etc)
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How to extract an interval from the likelihood function 3/
MLE is invariant for monotonic transformations of θ

This applies not only to the maximum of the likelihood, but to all relative values
The likelihood ratio is therefore an invariant quantity (we’ll use it for hypothesis testing)
Can transform the likelihood such that log(L(~x; ~θ)) is parabolic, but not necessary (MINOS/Minuit)

When the p.d.f. is not normal, either assume it is, and use symmetric intervals from Gaussian
tails...

This yields symmetric approximate intervals
The approximation is often good even for small amounts of data

...or use asymmetric intervals by just looking at the crossing of the log(L(~x; ~θ)) values
Naturally-arising asymmetrical intervals
No gaussian approximation

In any case (even asymmetric intervals) still based on asymptotic expansion
Method is exact only to O( 1

N )

Plot from James, 2nd ed.
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And in many dimensions...

Construct logL contours and determine confidence intervals by MINOS
Elliptical contours correspond to gaussian Likelihoods

The closer to MLE, the more elliptical the contours, even in non-linear problems
All models are linear in a sufficiently small region

Nonlinear regions not problematic (no parabolic transformation of logL needed)
MINOS accounts for non-linearities by following the likelihood contour

Confidence intervals for each
parameter

max
θj,j6=i

logL(θ) = logL(θ̂)− λ

λ =
Z2

1−β
2

λ = 1/2 for β = 0.683 (“1σ”)
λ = 2 for β = 0.955 (“2σ”)

Plot from James, 2nd ed.
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What if I have systematic uncertainties? /1

Parametrize them into the likelihood function; conventional separation of parameters in two
classes

the Parameter(s) of Interest (POI), often representing σ/σSM and denoted as µ (signal strength)
the parameters representing uncertainties, nuisance parameters θ

H0: µ = 0 (Standard Model only, no Higgs)

H1: µ = 1 (Standard Model + Standard Model Higgs)

Find the maximum likelihood estimates (MLEs) µ̂, θ̂

Find the conditional MLE ˆ̂
θ(µ), i.e. the value of θ maximizing the likelihood function for each

fixed value of µ
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What if I have systematic uncertainties? /2

Write the test statistics as λ(µ) =
L(µ, ˆ̂θ(µ))

L(µ̂,θ̂)
Independent on the nuisance parameters (profiled, i.e. their MLE has been taken as a function of
each value of µ)
Can even freeze them one by one to extract their contribution to the total uncertainty

Conceptually, you can run the experiment many times (e.g. toys) and record the value of the
test statistic
The test statistic can therefore be seen as a distribution
Asymptotically, λ(µ) ∼ exp

[
− 1

2χ
2
](

1 +O( 1√
N

)
)

(Wilks Theorem, under some regularity
conditions—continuity of the likelihood and up to 2nd derivatives, existence of a maximum,
etc)

The χ2 distribution depends only on a single parameter, the number of degrees of freedom
It follows that the test statistic is independent of the values of the nuisance parameters
Useful: you don’t need to make toys in order to find out how is λ(µ) distributed!
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How to extract an interval from the likelihood function

Theorem: for any p.d.f. f (x|~θ), in the large numbers limit N →∞, the likelihood can always
be approximated with a gaussian:

L(~x; ~θ) ∝N→∞ e−
1
2 (
~θ−~θML)

T H(~θ−~θML)

where H is the information matrix I(~θ).

Under these conditions, V[~θML]→ 1
I(~θML)

, and the intervals can be computed as:

∆lnL := lnL(θ′)− lnLmax = −
1
2

The resulting interval has in general a larger probability content than the one for a gaussian
p.d.f., but the approximation grows better when N increases

The interval overcovers the true value ~θtrue
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How to extract an interval from the likelihood function—interpretation

~θtrue is therefore stimated as θ̂ = ~θML ± σ. This is another situation in which frequentist and
Bayesian statistics differ in the interpretation of the numerical result

Frequentist: ~θtrue is fixed
“if I repeat the experiment many times, computing each time a confidence interval around ~θML, on
average 68.3% of those intervals will contain ~θtrue”
Coverage: “the interval covers the true value with 68.3% probability”
Direct consequence of the probability being a property of data sets

Bayesian: ~θtrue is not fixed
“the true value ~θtrue will be in the range [~θML − σ, ~θML + σ] with a probabilty of 68.3%”
This corresponds to giving a value for the posterior probability of the parameter ~θtrue
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Non-normal likelihoods and Gaussian approximation — 1

How good is the approximation L(~x; ~θ ∝ exp
[
− 1

2 (~θ − ~θMLE)T H(~θ − ~θML)
]
?

Here H is the information matrix I(~θ)
True only to O( 1

N )

In these conditions, V[~θML]→ 1
I(~θML)

Intervals can be derived by crossings: ∆lnL = lnL(θ′)− lnLmax = k

Convince yourselves of how good is this approximation in case of the nuclear decay
(simplified case of N measurements in which ti = 1)!
wget https://raw.githubusercontent.com/vischia/statex/master/nuclearDecay.R

0 1 2 3 4 5

2
4

6
8

10
12

14
Nuclear decay at time t=1

1 τ

−
2 

ln
(L

) 
(a

.u
.)
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Non-normal likelihoods and Gaussian approximation — 2
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Non-normal likelihoods and Gaussian approximation — 3

0.90 0.95 1.00 1.05 1.10

0.
0

0.
5

1.
0

1.
5

2.
0

Nuclear decay at time t=1 and N=100

1 τ

Li
ke

lih
oo

d 
(a

.u
.)

Exact MLE
Gaussian approximation

0.96 0.98 1.00 1.02 1.04
0.

0
0.

5
1.

0
1.

5
2.

0

Nuclear decay at time t=1 and N=1000

1 τ

Li
ke

lih
oo

d 
(a

.u
.)

Exact MLE
Gaussian approximation

Vischia Statistics for HEP June 24–28th, 2019 37 / 47



The Central Limit Theorem

The convergence of the likelihood L(~x; ~θ) to a gaussian is a direct consequence of the central
limit theorem

Take a set of measurements~x = (xi, ..., xN) affected by experimental errors that results in
uncertainties σ1, ..., σN (not necessarily equal among each other)

In the limit of a large number of events, M →∞, the random variable built summing M
measurements is gaussian-distributed:

Q :=
M∑

j=1

xj ∼ N
( M∑

j=1

xj,
M∑

j=1

σ2
j

)
, ∀ f (x, ~θ)

The demonstration runs by expanding in series the characteristic function yi =
xj−µj√
σj

The theorem is valid for any p.d.f. f (x, ~θ) that is reasonably peaked around its expected value.
If the p.d.f. has large tails, the bigger contributions from values sampled from the tails will have a
large weight in the sum, and the distribution of Q will have non-gaussian tails
The consequence is an alteration of the probability of having sums Q outside of the gaussian
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Asymptoticity of the Central limit theorem

The condition M →∞ is reasonably valid if the sum is of many small contributions.

How large does M need to be for the approximation to be reasonably good?

Download the file and check!
wget https://raw.githubusercontent.com/vischia/statex/master/centralllimit.py

Not much!
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Combination of measurements

Measure N times the same quantity: values xi and uncertainties σi. MLE and variance are:

x̂ML =

∑N
i=1

xi
σ2

i∑N
i=1

1
σ2

i

1
σ̂2

x
=

N∑
i=1

1
σ2

i

The MLE is obtained when each measurement is weighted by its own variance
This is because the variance is essentially an estimate of how much information lies in each
measurement

This works if the p.d.f. is known
Compare this method with an alternative one that does not assume knowledge of the p.d.f.
The second method will be the only one applicable to cases in which the p.d.f. is unknown
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Combination of measurements: alternative method 1/

Take a set of measures sampled from an unknown p.d.f. f (~x, ~θ)

Compute the expected value and variance of a combination of such measurements described
by a function g(~x).

The expected value and variance of xi are elementary:

µ = E[x]Vij = E[xixj]− µiµj

If we want to extract the p.d.f. of g(~x), we would normally use the jacobian of the
transformation of f to g, but in this case we assumed f (~x) is unknown.
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Combination of measurements: alternative method 2/

We don’t know f , but we can still write an expansion in series for it:

g(~x) ' g(~µ) +
N∑

i=1

( ∂g
∂xi

)∣∣∣
x=µ

(xi − µi)

We can compute the expected value and variance of g by using the expansion:

E
[
g(~x)

]
' g(µ), (E[xi − µi] = 0)

σ2
g =

N∑
ij=1

[ ∂g
∂xi

∂g
∂xj

]∣∣∣
~x=~µ

Vij

The variances are propagated to g by means of their jacobian!

For a sum of measurements, y = g(~x) = x1 + x2, the variance of y is σ2
y = σ2

1 + σ2
2 + 2V12,

which is reduced to the sum of squares for independent measurements
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Combination of measurements: example 1/

Let’s compare the two ways of combining measurements, and check the role of the Fisher
Information
Let’s estimate the time taken for a laser light pulse to go from the Earth to the Moon and back
(in units of Earth-to-Moon-Time EMT)

On the Moon we have a receiver built by NASA. It’s very good but placed in unfavourable conditions,
yielding only a 2% precision on Earth-to-Moon
On Earth we have a receiver made out of scrap material. It is however placed in favourable
conditions, yielding a 5% precisionon Moon-to-Earth

NEM = 0.99± 0.02 EMT

NME = 1.05± 0.05 EMT

Evidently, the time to moon and back is NEME = NEM + NME, and we can apply Eq. 42: Do it!

Resulting estimate:
NEME = 0.99 + 1.05±

√
0.022 + 0.052 EMT = 2.05± 0.05 EMT, corresponding to a precision of

σNEME
NEME

∼ 2.4%.
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Combination of measurements: example 2/

We now however can argue that over the time it takes for light to go to the Moon and back any
environment condition would be roughly constant

How can we exploit this additional information?

We can use this additional information to note that the two estimates NEM and NME are
independent estimates of the same physical quantity NEME

2

Compute NEME and σ(NEME)based on this reasonment

We can therefore use Eq. 40 to compute NEME
2 and multiply the result by 2, obtaining

NEME = 2.00± 0.03 EMT

This estimate corresponds to a precision of only 1.5%!!!

The dramatic improvement in the precision of the measurement, from 2.4% to 1.5%, is a
direct consequence of having used additional information under the form of a relationship
(constraint) between the two available measurements.
A good physicist exploits as many constraints as possible in order to improve the precision of
a measurement

Sometimes the contraints are arbitrary or correspond to special cases
Is is very important to explicitly mention any constraint used to derive a measurement, when quoting
the result.
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What about asymmetric uncertainties?

Now suppose my receivers operate by taking data and performing a maximum likelihood fit to
estimate NEM and NME

Can I combine these two measurements with the two methods seen above?
NEM = 0.99± 0.03
NME = 1.10+0.05

−0.01

For example, NEMT = 2.09+0.06
−0.03

No!

Why?
The naïve quadrature of the two uncertainties is wrong!

The naïve combination is an expression of the Central Limit Theorem
The resulting combination is expected to be more symmetric than the measurements it originates
from
Symmetric uncertainties usually assume a Gaussian approximation of the likelihood
Asymmetric uncertainties? One would need a study of the non-linearity (large biases might be
introduced if ignoring this)

Intrinsic difference between averaging and most probable value
Averaging results in average value and variance that propagate linearly
Taking the mode (essentially what MLE does) does not add up linearly!

With asymmetric uncertainties from MLE fits, always combine the likelihoods (better in an
individual simultaneous fit)
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Throwback Tuesday: what happens to the posterior for different broadness/narrowness of the
likelihood and the prior

Information and estimates of physical parameters

Sufficient statistic

The Likelihood Principle

The Maximum Likelihood Method

Uncertainties: how to get them from the likelihood

Combining measurements: use all the available information
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Non-exhaustive list of references

Frederick James: Statistical Methods in Experimental Physics - 2nd Edition, World Scientific

Glen Cowan: Statistical Data Analysis - Oxford Science Publications

Louis Lyons: Statistics for Nuclear And Particle Physicists - Cambridge University Press

Louis Lyons: A Practical Guide to Data Analysis for Physical Science Students - Cambridge
University Press

Annis?, Stuard, Ord, Arnold: Kendall’s Advanced Theory Of Statistics I and II

Pearl, Judea: Causal inference etc etc, a Primer ( add full details)

R.J.Barlow: A Guide to the Use of Statistical Methods in the Physical Sciences - Wiley

Kyle Cranmer: Lessons at HCP Summer School 2015

Kyle Cranmer: Practical Statistics for the LHC - http://arxiv.org/abs/1503.07622

Harrison Prosper: Practical Statistics for LHC Physicists - CERN Academic Training Lectures,
2015 https://indico.cern.ch/category/72/
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THANKS FOR THE ATTENTION!
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