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Historical Overview
and Basics of GR



Where Does the World Come From?




Where Does the World Come From?

And the lord stood upon Tiamat's hinder parts,
And with his merciless club he smashed her skull.
He cut through the channels of her blood,

And he made the North wind bear it away into
secret places.

[...]

Slicing Tiamat in half, he made from her ribs the
vault of heaven and earth.

Her weeping eyes became the source of the Tigris
and the Euphrates,

her tail became the Milky Way.

Babylonian Entima Elis
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Early Quanttative Models

Aristotle (384 - 322 BC) argued
that Earth and Moon are spheres,
based on lunar eclipses

Eratosthenes (276-194 BC) computed
the radius of the Earth to be 6800 km

...but both assumed geocentric universes
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Aristarchus (310 - 230 BC) correctly
computed the ratios between the size and
distance of the Moon and Sun...
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...and computed the distance to the Sun (wrong by a factor 20), concluding that

the Universe is much bigger than Earth, and the Sun is the centre



Mapping the Solar System

In the renaissance age, many astronomers explored the
dimensions of the solar system, including Galileo,
Coppernicus, Brahe, Keppler...

...but a quantitative understanding of the laws that govern
it had to wait until Newton’s Philosophiae Naturalis
Principia Mathematica (1687), which paved the way for

connecting cosmology to fundamental physics!

Around the same time Remer (1644-1710) and
Huygens (1629-1695) first measured the speech of
light, using modulations in the period of Jupiter’s
moons orbit




To the Stars!

s [0 13838 Bessel first measured the

STARS

EARTH IN WINTER

distance to other stars, using the parallax
method...

*

...making the “universe”
almost a million times larger!

MEaASURED
STAR

EARTH IN SUMMER

Fun fact: Greek scholars rejected Aristarchus
heliocentric model over 2000yrs before
because they did not see parallaxes.



In the early 20th century Hertzsprung and
Russel discovered a relation between colour and
luminosity of starts, while Leavitt discovered a
relation between the period and brightness of
variable cepheid stars in 1912.

The cosmic distance ladder was born!
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To the Stars!

This allows to estimate the distance of far away stars,
using distance measurements of nearby ones



T'he Golden Age of Physics

In 1915 Einstein and Hilbert developed General
Relativity, the mathematical framework to
describe the Universe on large scales

Hydrogen Absorption Spectrum

Hydrogen Emission Spectrum

-_ The detailed mapping of atomic spectra and their
|

> understanding in quantum mechanics proved that
4100nm ‘ i m

| H Alpha Line

| 6560m

| Transition N=3 10 N=2

other starts are made of the same atoms that we find on Earth
and

allows to measure their velocity via the Doppler effect



T'he Big Bang

Between 1922 and 1924 Friedmann developed the first cosmological
models in General Relativity based on the cosmological principle,

concluding that the universe expands. Lemaitre derived this
independently and proposed the “primeval atom”, marking the birth

of the Big Bang theory!

In 1924 Hubble discovered that many “nebulae” are in fact distant galaxies...

making the universe millions of times bigger!

In 1929 he found hat the galaxies move away
from us with a “velocity” that is proportional
to their distance (“Hubble-Lemaitre law”)...
...meaning that we are either the centre of the
world of Friedmann and Lemaitre were right!
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The Primordial Plasma

In the 1940s Gamov, Alpher, Herman, Bethe and others explored the

implication of the high pressure, density and temperature in the
unifant universe predicted by Friedmann and Lemaitre., concluding

that

* The temperature was so high that thermonuclear reactions would

occur, giving rise to Big Bang Nucleosynthesis

 Redshifted photons from the hot plasma should still be present as a
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Dark Matter

In 1933 Zwicky found that the Coma galaxy
cluster cannot be bound together by the
gavtity of its visible constituents, suggesting
that there is extra Dark Matter, but was
largely ignored....

...until Rubin provided convincing
evidence based on galaxy rotation curves
and proved that Dark Matter makes up
most of the mass in the universe
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Dark Energy
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Cosmic Distance Ladder

galaxy clusters




Actual Cosmic Distance Ladder
Extragalactic Distance Ladder
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Standard Model of Cosmology

The universe is largely
homogeneous and isotropic.

[t seems to have vanishing overall
spacial curvature.

It is expanding and originated from
a high temperature early phase
known as “big bang”.

The visible constituents are well
described by the Standard Model of
particle physics, but there is a lot of

dark stuff that we do not
understand...

Atoms
4.6%

Dark
Energy

72%
Dark :

Matter
23%

TODAY

Dark

Neutrinos
10% Matter
63%
Photons
15%

Atoms
12%

13.7 BILLION YEARS AGO
(Universe 380,000 years old)



The basics of GR part was based on a combination
of different books lecture notes. The main results
(geodesic equation, Einstein field equations...) can
be found in any textbook of GR



l.ecture 1l

The Friedmann - Lemaitre -
Robertson - Walter Metric

This part was closely following chapter 2 in the
book “The Early Universe” by Kolb and Turner.
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Cosmological Principle Tested

Isotropic 3K background.
The most perfect blackbody
we know

Dipolc (3.4 mK).
Our motion relative to CMB

Primordial fluctuations
20 puK
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bservable Universe

Time Since the Big Bang
(Billions of Years)




Redshift - Distance Relation
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Observable Universe

Size: 46.5 billion light-years



Changing Energy Content

Atoms
Dark
4.6% Energy
72%
Dark :
Matter
23%
TODAY
Neutrinos Dark
10% Matter
63%
Photons
15%
Atoms
12%

13.7 BILLION YEARS AGO
(Universe 380,000 years old)



Lecture 111
Standard Model of Cosmology...
...and 1ts Limits



History of the Universe

This part is closely following chapter 3 in the book
“The Early Universe” by Kolb and Turner.



Cosmic scale factor
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Effective Number of Relatvistic Degrees of Freedom

| [ | l 1 l ] ] | I | [ | I |
- tt w*,2° H° . -
- - -
106.75 . _ ' | Ce, T
100 E —~0-25  g605 ! -
- \737—’ i
L. 61.75 =
[ EW E
’h':t,ﬂ’u,;l.i +
B 17.25 ¢ §
T
9+(T) 10.75
10
= QCD
\ | | | 1 | | | | | \ | | | |
10° 10* 10° 102 10 1 0.1

T [MeV]



Freeze Out and Freeze In
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HISTORY OF THE UNIVERSE A

Cosmic Microwave \ciu.re
Background radiation formation
is visible ’
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HISTORY OF THE UNIVERSE A

Dark energy
accelerated
expansion

Structure

Cosmic Microwave :
formation

Background radiation

RHIC &
is visible

Accelerators |LHC

jons.

High-energy
cosmic rays

379’9@‘0 d

=

LlVW Xdva

3

s

WYO4 131DNN

Particle Data Group, LBNL © 2015 Supported by DOE

The concept for the above figure originated in a 1986 paper by Michael Turner.
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Big Bang Nucleosynthesis
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Light elements are
produced in a chain
of nuclear reactions.

The only unknown
parameter is the
baryon-to-photon
ratio

Primordial light
element abundances
measure the baryon
asymmetry!



Big Bang Nucleosynthesis

light element abundances
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Temperature fluctuations [ g K* ]

Cosmic Microwave Background

Constraint on
baryon-to-photon ratio n:

e 6.03 x 10"%< 1 <6.15x 10"
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Cosmic Microwave Background
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Energy Content of the Universe

Dark Matter

Dark Energy




+ What is the origin of neutrino mass?

Possible key to embed Standard Model
in a more fundamental theory of Nature

+ Why was there more matter than
antimatter in the early universe?

...S0 that some matter survived the mutual
annihilation to form galaxies, stars etc.

+ What set the initial conditions for the
“hot big bang”?

Cosmic inflation? How did the transition to the radiation
dominated epoch happen?




The Initial Conditions Problem



Flatness Problem

Supernova Cosmology Project
Amanulah.etal.. ApJ. (20°0)
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Horizon Problem

Comoving particle horizon
at CMB decoupling was
much smaller than the

comoving distance that light
has travelled to us (i.e., the

patch that we know to be in
equilibrium because we see
the same temperature in

300 000 year

opposite directions)

Why do we see the same

temperature in causally Universe
disconnected patches???



Inflation

Both problems (and some
others) can be solved if
the universe underwent a
period of exponential
growth... inflation!

This explains the CMB
anisotropies as “blown
up” quantum
fluctuations and correctly
predicted their properties
(Gaussian, spectral index)
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The Dark Matter Puzzle



Summary

There is compelling evidence that ~80% of the mass in the universe is
made of particles that are

* neutral (“dark”)

* massive

R R (x 1000 ly)

* non-baryonic
* collisionless

* cold
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Summary

There is compelling evidence that ~80% of the mass in the universe is

made of particles that are
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massive
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Summary

There is compelling evidence that ~80% of the mass in the universe is
made of particles that are

* neutral (“dark”)
No known modification of gravity

e massive can explain all of this.

The Standard Model cannot, either.

* non-baryonic .
A simple extension by one (or several) new
* collisionless “Dark Matter” particles could do the job.

* cold ...but no such “Dark Matter” particle

has been seen yet




T'he Origin on (Baryonic) Matter
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Anumatter in the Universe

[s there any antimatter in the present

universe? Yes. But little.
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Accelerators

6

¢

a
W04 SNOFTINAN

WYO4 131DNN

R 00
22

D N

The concept for the above figure originated in a 1986 paper by Michael Turner.

Jel/

4

2
0 S
~

Particle Data Group, LBNL © 2015

Supported by DOE



Baryon Asymmetry of the Universe

The observable universe contains almost no antimatter

e.g. Canetti/MaD /Shaposhnikov

and a lot more photons than baryons. .xwissss

CMB constraint on BBN constraint on baryon-to-
baryon-to-photon ratio n: photon ratio n: i
6.03x 10"« n<6.15x10 " 58x10 %1 <6.6x 10

(Planck Collaboration) (PDQG)


http://arxiv.org/abs/arXiv:1204.4186

Baryon Asymmetry of the Universe

The observable universe contains almost no antimatter

e.g. Canetti/MaD /Shaposhnikov

and a lot more photons than baryons. .xwissss

o 0 O n
® o ® ® 7 e
® O
e O pair creation processes O
“ ® O ® freeze out
O
o ® o
T >2mc? T <2mc?
CMB constraint on BBN constraint on baryon-to-
baryon-to-photon ratio n: photon ratio n: i
6.03x 10"« n<6.15x10 " 58x10 %1 <6.6x 10

(Planck Collaboration) (PDQG)


http://arxiv.org/abs/arXiv:1204.4186

Baryon-to-Photon Ratio

When the temperature was very high, pair creation

processes were in equilibrium.

When the temperature dropped below the positron mass,
no new antiparticles could be produced, and all

antiparticles were annihilated.

Obviously, some matter survived - so there was more

matter than antimatter in the early universe!

This “baryon asymmetry of the universe” was very small,

it corresponds to today’s “baryon-to-photon ratio”
#nucleons/ #photons: ~ 1 / 10.000.000.000



Where does the asymmetry come from?
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Where does the asymmetry come from?

Exists in Standard Model
at T > 130 GeV

Sakharov Conditions (1967) (sphaleron)

“Baryon number violation Exists in Standard Model
(weak interaction, CKM phase)

...but Jarlskogg invariant too small!

+C and CP violation

Exists in Standard Model

(Hubble expansion of the universe)

* Deviation from thermal ...but deviation too small!

equilibrium



Accelerators
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Accelerators
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Baryon asymmetry generated
(“Baryogenesis”)




Where does the asymmetry come from?

Baryogenesis requires New Physics!

Cosmic phase transition? Decay of a heavy particle?
% Matter Antimatter
O

Electroweak baryogengesis, GUT baryogengesis,
leptogenesis,



Appendix:
Dark Matter vs Modified Gravity
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1) Galaxy Clusters

The mass of all the stars and dust is not
enough to explain the gravitational force that is
needed to keep the cluster together!

1) Modified Gravity?
| 5 2) Or non-luminous matter?
centrifugal Both possible.

force And if 2), it could be anything
that doesn’t shine or
_ absorb too much



2) Galaxy Rotation Curves
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2) Galaxy Rotation Curves
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2) Galaxy Rotation Curves
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2) Galaxy Rotation Curves
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2) Gosmic Microwave Background
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Cosmic Microwave Backeround

. - .. ‘. I e
e b e L 28
--".w '?"1 '.‘p.- % ‘ f""‘a' TS
ey > ~ 3 4‘ L
S AR
Lot ol ;’3 ?L‘\‘_..{. R S T
sl 2R 0P 20
. .’ 3

'y 5-

Multipole moment, £

ordinary matter/radiation oscillates

- 2 W 50 500 1000 1500 2000 2500
o 6000 ~ : | e

= 4 due to radiation pressure
- 5000} {3 :

)

5 , [

-133 2000 | '; 1 ‘

B a0l .

g W | T Dark Matter

2 X7y :

2 - // VoY falls in

§_ 1000| = .||H*§‘ B,

5 b+ "“-oo—...,’._._

o 1w 1 0.2" D1 0C7 gravitational potential well
Angular scale



Temperature fluctuations [ gt KQ]
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Structure Formation

The early universe was very
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) Bullet Cluster (and friends)

Interpretation:

The visible matter scatters and
undergoes a merger.

The Dark Matter is collision free

and passes.

1) Modified Gravity?
2) Or non-luminous matter?

Very difficult to explain with
modified gravity.
Shows that DM is collisionless.



