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Overview

1. Universal One-Loop Effective Action

2. Effective action for gauge bosons

3. Effective action and anomalies (axion)
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How far is new physics from the weak scale?
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scale of new physics

direct experimental reach
Eexp



BSM heavy states
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(resum large logs)

LUV [ BSM , SM ]

LEFT [ SM ] = LSM +
X

i
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LEFT [ SM ] = LSM +
X

i

ci(mW )Oi
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(resum large logs)

LUV [ BSM , SM ]

LEFT [ SM ] = LSM +
X

i

ci(⇤)Oi

LEFT [ SM ] = LSM +
X

i

ci(mW )Oi

Feynman diagrams
Fonctional path integral* 

(*)Schwinger proper time,  
Covariant Derivative Expansion, 
Various log expansions, 
heavy-light subtraction procedures,  
integration by regions,  
covariant diagrams, …



Effective Action by the path  integral method
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Expand action around minimum :

Write Gaussian integral as determinant :

Write determinant as trace of log in exponent :



One-loop Effective Action
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Heavy fields can be bosons or fermions

S1-loop
e↵ = icsTr ln


� �2S

��2
(�c)

�
= icsTr ln

⇥
� P 2 +m2

� + U
⇤

= ics

Z
d4x

Z
d4q tr ln

⇥
eOp(�P 2

µ
+m2

� + U)e�Op
⇤

1. Op = q.x

2. Op = Pµ
@

@qµ

= ics

Z
d4x

Z
d4q tr ln

⇥
� (G̃⌫µ

@

@qµ
+ qµ)

2 +m2
� + Ũ
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M.K. Gaillard, Nucl. Phys. B 268 669 (1986)
O. Cheyette, Nucl. Phys. B 297 183 (1988)
B. Henning, X. Lu and H. Murayama arXiv:1412.1837

Pµ ⌘ iDµ

Gaillard & Cheyette’s trick : momentum shift 

So covariant derivatives are explicitly in commutators from beginning :
gauge invariance manifest through the computation

contain dim-6 operators & independent of momentum q! 
integration on q can be done once for all!!!

• q-integrals factorize give usual & simple Feynman Integrals

• traces give Higher Dimensional Operators

http://arxiv.org/abs/arXiv:1412.1837


One-Loop Effective Action
assuming degenerate mass matrix

B. Henning, X. Lu and H. Murayama arXiv:1412.1837

L1-loop = �† ��D2 �m2 � U
�
�
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http://arxiv.org/abs/arXiv:1412.1837
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Universality of the One-Loop Effective Action

• No need to reinvent the wheel, every slide up to here can be ignored

• Universality of CDE expansion results first noticed in the simplified 
case of degenerate mass for heavy fields

• The general Universal One-Loop Effective Action (UOLEA) 
subsequently derived without such assumption

• However, extra structures (heavy-light terms, « open »covariant 
derivatives, momentum-shifted-gamma matrices) in CDE expansion 
not included in initial UOLEA

• Universal heavy-light terms now done

• A complete UOLEA, including all possible CDE structures, is in sight…

B. Henning, X. Lu and H. Murayama arXiv:1412.1837

A. Drozd, J. Ellis, JQ and T. You arXiv:1504.02409

S.A.R. Ellis, JQ, T. You, Z. Zhang arXiv:1604.02445

S.A.R. Ellis, JQ, T. You, Z. Zhang arXiv:1706.07765

http://arxiv.org/abs/arXiv:1412.1837
http://arxiv.org/abs/arXiv:1412.1837
http://arxiv.org/abs/arXiv:.1837


Universal One-Loop Effective Action
for non degenerate mass heavy fields
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L1-loop = �† ��D2 �m2 � U
�
�

A. Drozd, J. Ellis, JQ and T. You arXiv:1512.03003

that can now be di↵erentiated with respect to and integrated over. After the integration,
we set ⇠ = 1. In the non-degenerate case, Eq. (2.3) is replaced by
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and then Taylor expanded to give
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The matrices M2, �⇠ ⌘ 1/(q2 � ⇠M

2) and G̃ will not necessarily commute with Ũ .
The UOLEA is the result of evaluating the integrals in this expansion, extracting the

coe�cients and operator structure, eventually giving the following expressions relevant
for operators of dimensions up to six [4]:

L
e↵
1-loop[�] � �ics

(
f
i

1 + f
i

2Uii + f
i

3G
02
µ⌫,ij

+ f
ij

4 U
2
ij

+ f
ij

5 (PµG
0

µ⌫,ij
)2 + f

ij

6 (G
0

µ⌫,ij
)(G

0

⌫�,jk
)(G

0

�µ,ki
) + f

ij

7 [Pµ, Uij]
2

+ f
ijk

8 (UijUjkUki) + f
ij

9 (UijG
0

µ⌫,jk
G

0

µ⌫,ki
)

+ f
ijkl

10 (UijUjkUklUli) + f
ijk

11 Uij[Pµ, Ujk][Pµ, Uki]

+ f
ij

12,a [Pµ, [P⌫ , Uij]] [Pµ, [P⌫ , Uji]] + f
ij

12,b [Pµ, [P⌫ , Uij]] [P⌫ , [Pµ, Uji]]

+ f
ij

12,c [Pµ, [Pµ, Uij]] [P⌫ , [P⌫ , Uji]]

+ f
ijk

13 UijUjkG
0

µ⌫,kl
G

0

µ⌫,li
+ f

ijk

14 [Pµ, Uij] [P⌫ , Ujk]G
0

⌫µ,ki

+
⇣
f
ijk

15aUi,j[Pµ, Uj,k]� f
ijk

15b [Pµ, Ui,j]Uj,k

⌘
[P⌫ , G

0

⌫µ,ki
]

+ f
ijklm

16 (UijUjkUklUlmUmi) + f
ijkl

17 UijUjk[Pµ, Ukl][Pµ, Uli]

+ f
ijkl

18 Uij[Pµ, Ujk]Ukl[Pµ, Uli] + f
ijklmn

19 (UijUjkUklUlmUmnUni)

)
. (2.7)

The indices i, j, k, l,m, n range over the dimension of the mass matrix M using an implied
summation convention for repeated indices, and the fN are the universal coe�cients that
encapsulate the mass parameter dependence from loop integrals over momenta. Explicit
expressions for these can be found in Ref. [4]. In the degenerate mass limit Eq. 2.7 reduces
to the result of Ref. [3].

3 Integrating out mixed heavy-light contributions

In the presence of light fields coupling linearly to the heavy particles, it initially ap-
pears that matching using the functional method does not account for mixed heavy-light
contributions at one-loop, as argued for example in Refs. [12, 15]. This is because the

4

f3 universal term calculated by ’t Gooft ‘73

Universal 
coefficients f 
encapsulate 

dependence on 
combinations of 

momentum 
master integrals
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Application of the UOLEA: MSSM stops
•Write UV Lagrangian for heavy multiplet in appropriate form to extract U matrix, 

mass matrix and covariant derivative

LUV = LSM + (�†F + h.c.) + �†(�D2
�M2

� U)�+O(�3)
R-parity

� =

✓
Q̃
t̃⇤R

◆

•Example:



Effective action for gauge bosons  
(Euler-Heisenberg generalisation )
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J.Q., C. Smith and S. Touati, Phys.Rev. D99 (2019) no.1, 013003
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Photon effective interactions

QCD, this means four instead of six operators are required to describe the four-gluon interaction, while
only two instead of four operators are needed for the two gluon-two photon interaction. Throughout this
section, the only technical di�culty is related to quartic Casimir invariants, which arise in the reduction of
traces of four generators. From a group theory perspective, these invariants have been described in details
before [34, 35], but a more user-oriented review seems to be lacking. Therefore, we collect in Appendix B
all the relevant information, as well as the explicit values of the quartic invariant for simple Lie algebras of
interest for particle physics.

2 Photon e↵ective interactions

In the path integral formalism, the e↵ective action is obtained by integrating out some heavy fields [36]. In
general, this generates an infinite number of e↵ective couplings among the remaining light fields. Renormal-
izability ensures that the e↵ective couplings of dimension less than four can be absorbed into the light-field
Lagrangian free parameters, while the other couplings are all finite and can be organized as a series in powers
of the inverse of the heavy mass [37].

To set the stage, consider the QED generating functional

ZQED [Jµ, ⌘, ⌘] =

Z
DAµD D exp i

Z
dx(LQED + ⌘ +  ⌘ + JµAµ) , (3)

with

LQED = �
1

4
Fµ⌫F

µ⌫ +  (i /D �m) , (4)

and Dµ the usual covariant derivative. We omit the gauge fixing term and its associated ghosts. At very
low energy, below m, only the photons are active. To construct the e↵ective theory valid in that limit, the
fermion field is integrated out. This can easily be carried out since the fermionic path integral is gaussian
when the sources ⌘, ⌘ are set to zero:

ZQED [Jµ, 0, 0] =

Z
DAµ exp i

Z
dx

⇢
�
1

4
Fµ⌫F

µ⌫ + JµAµ

�
⇥ det(i /D �m) (5)
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Z
DAµ exp i

Z
dx(Leff + JµAµ) . (6)

Exponentiating the determinant, the QED e↵ective Lagrangian is then

Leff = �
1

4
Fµ⌫F

µ⌫
� iT r ln(i /D �m) . (7)

At this stage, several techniques are available to actually compute det(i /D�m) perturbatively, as an inverse
mass expansion.

Probably the most universal and powerful way is using functional methods. Covariant calculation of
the one-loop e↵ective action can be obtained by using a heat kernel [38–40] to evaluate the e↵ective action.
This method utilizes a position space representation and is significantly more involved than the approach
of Gaillard [26] and Cheyette [27] who introduced a manifestly gauge-covariant method of performing the
calculation, using a Covariant Derivative Expansion (CDE). This elegant method simplifies evaluating the
quadratic term of the heavy fields in the path integral to obtain the low-energy EFT, and was revived
recently in Ref. [28]. In particular, this work pointed out that under the assumption of degenerate particle
masses one could evaluate the momentum dependence of the coe�cients that factored out of the trace over the
operator matrix structure, without specifying the specific UV model. In Ref. [29], it has been shown that this
universality property can be extended without any assumptions on the mass spectrum, to obtain a universal
result for the one-loop e↵ective action for up to dimension-six operators. There the loop integrals have been
computed for a general mass spectrum once and for all. This Universal One-Loop E↵ective Action [29–32,41]
is a general expression that may then be applied in any context where a one-loop path integral needs to be
computed, as for example in matching new physics models to the Standard Model (SM) EFT. We should
also mention the usefulness of the string-inspired technique for deriving e↵ective actions [42–44].
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all about perturbatively 
expand the « det »

Figure 1: Fermionic one-loop 1PI amplitudes generating the QED e↵ective action up to dimension-eight
operators. The six permutations of the photons are understood for diagram (b).

However, in the present work, we wish to stick to the more pedestrian diagrammatic approach with
external gauge fields, in which case one expands det(i /D �m) as
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Graphically, this series is represented by the tower of one-loop 1PI diagrams shown in Fig. 1. The main
advantage of expressing the e↵ective action in terms of 1PI diagrams is that well-tested automatic tools are
available to actually compute these loop amplitudes. In the present work, we will rely on the Mathematica
packages FeynArts [45], FeynCalc [46], and Package X [47] (as implemented through FeynHelpers [48]).

For QED, all the diagrams with an odd number of photons vanish because they are odd under charge
conjugation (Furry’s theorem [49]). Let us construct the e↵ective couplings up to order m�4. First, the
inverse-mass expansion of a charge-one fermion (of mass m and quadri-momentum pµ) contribution to the
photon vacuum polarization is
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with D" = 2/"� � + log 4⇡µ2/m2. The corresponding e↵ective interactions with two photons are
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With four photons, the amplitude matches onto the two couplings
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Figure 2: Scalar one-loop 1PI amplitudes generating the QED e↵ective action up to dimension-eight opera-
tors. Permutations of the photons are understood for diagrams (b). For massive vector bosons, the topologies
are the same but one should also include the appropriate would-be Goldstone and ghost diagrams.
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encoded into e↵ective couplings among light fields at the path integral (i.e., quantum) level. At no stage are
the light fields assumed on-shell. So, some e↵ective interactions may actually never contribute to physical
processes, even though they are required to fully encode the underlying dynamics of the heavy field.

At this stage, it should also be clear that the e↵ective couplings can be constructed a priori. Using only
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The derivative operators are rewritten in a form that makes the EOM manifest. This will prove useful when
comparing with the non-abelian results in the next section, for which this choice of operator basis is far
more convenient. The nomenclature adopted throughout the paper is to denote by ↵i, �i, �i the two, three,
four-field strength couplings of inverse mass dimension i. Only the specific values of these coe�cients encode
the information about the heavy field, and we give in Table 1 the results for a scalar, fermion, and vector
boson. Note that the sole purpose of the rather unconventional normalization of the coe�cients in Eq. (13) is
to increase the readability of Table 1. It is designed to make the coe�cients appear as simple O(1) fractions
for the fermion case.

The calculation in the scalar case is very similar to that for fermions and present no particular di�culty
(see Fig. 2). On the other hand, that for vectors circulating in the loop is far less straightforward. Let us take
the SM, where the electroweak gauge bosons acquire their masses through the Higgs mechanism. Working
in the ’t Hooft-Feynman gauge, the amplitude does not satisfy the QED ward identities when the photons
are o↵-shell. Consequently, the four-photon amplitude matches onto the local O(m�4) e↵ective operators
only when the four photons are on-shell [51], and the usual procedure to construct the e↵ective action breaks
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Photon effective interactions
integrate out vectors

does not satisfy QED ward identities when 
photons are off-shell 

4 photons amplitude matches onto effective operators only for on-shell photons

•the problem: the gauge fixing procedure down. The problem originates in the gauge-fixing procedure. In the usual R⇠ gauge, one adds the term

L
R⇠,linear
gauge�fixing = �

1

⇠
|@µW+

µ + ⇠MW�+
|
2 , (14)

with �± the would-be Goldstone (WBG) scalars associated to W±, and this explicitly breaks U(1)QED.
Though the photon vacuum polarization remains transverse and matches onto the e↵ective operators in
Eq. (13), the o↵-shell four-photon amplitude is not gauge invariant and requires more operators already
at the O(m�2) [52]. Of course, physical processes have to be gauge invariant, so this should have no
consequence. But in practice, adding non-gauge invariant operators in the e↵ective Lagrangian is not very
appealing. One could attempt to solve this problem by working in the unitary gauge, for which the W
couplings to the photon derive from

LU�gauge = �
1

2
(DµW

+

⌫ �D⌫W
+

⌫ )(DµW�⌫
�D⌫W�µ) + ieFµ⌫W+

µ W�
⌫ +M2

WW+

µ W�µ , (15)

where DµW±
⌫ = @µW±

⌫ ⌥ ieAµW±
⌫ . The magnetic moment term Fµ⌫W+

µ W�
⌫ , gauge-invariant by itself,

is fixed by the underlying SU(2)L gauge symmetry. As shown in Ref. [53], its presence ensures a proper
high-energy behavior for scattering amplitudes. However, this is not su�cient to ensure a correct behavior
o↵-shell, and the matching fails again [54].

A better way to proceed is to enforce a non-linear gauge condition where @µW±
µ ! DµW±

µ = @µW±
µ ±

ieAµW±
µ in Eq. (14). This closely parallels the constraint one needs to impose to construct the CDE [28].

In the diagrammatic approach, as shown in Ref. [33], the four-photon amplitude is then gauge invariant,
even o↵-shell. We checked this explicitly using the dedicated FeynArts model file [55] for the SM in the
non-linear gauge, and indeed found a consistent o↵-shell matching on the Euler-Heisenberg operators. The
result in that gauge for all the coe�cients is shown in Table 1. It should be clear though that the first three
coe�cients are gauge-dependent, and only �4,1 and �4,2 are physical. To investigate this feature, let us set
the gauge fixing term as [56,57]

Lnon�linear
gauge�fixing = �

1

⇠
|@µW+

µ + ieAµW+

µ + ⇠MW�+
|
2 , (16)

which permits to interpolate between the linear ( = 0) and the U(1)-gauge-invariant non-linear ( = 1)
gauge. The inverse-mass expansion of the photon vacuum polarization in the ’t Hooft-Feynman gauge (⇠ = 1)
then gives -dependent coe�cients:

↵0 = �
12+ 9

2
D" � 1 , ↵2 =

20+ 17

8
, ↵4 = �

84+ 75

56
. (17)

Of course, these gauge dependences are unphysical. At very low energy, when the photon remains as
the only active degree of freedom, the first coe�cient is absorbed into the photon field as the wavefunction
renormalization constant while the other two do not contribute since @µFµ⌫ = 0. If some fields remain active
such that @µFµ⌫ = j⌫ 6= 0, then other types of processes are also present. In that case, the ↵2 operator
should be eliminated in favor of the dimension-six jµjµ/m2 operator, for which other diagrams occur. In
the SM, even if the fields in the current jµ are not coupled directly to the W±, they are necessarily coupled
to the Z boson. The  dependence of the W± contributions to the Z� and ZZ vacuum polarization [58]
must cancel that of ↵2, so that the coe�cient of the jµjµ/m2 operator ends up gauge-invariant and physical.
The conclusion is thus that in the SM, it is not consistent to define the Uehling potential in terms of the
Fµ⌫⇤Fµ⌫ operator, and one must use the e↵ective four-fermion operators instead. After all, this is rather
natural since the Uehling potential is only relevant when some fermion fields remain active.
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with �± the would-be Goldstone (WBG) scalars associated to W±, and this explicitly breaks U(1)QED.
Though the photon vacuum polarization remains transverse and matches onto the e↵ective operators in
Eq. (13), the o↵-shell four-photon amplitude is not gauge invariant and requires more operators already
at the O(m�2) [52]. Of course, physical processes have to be gauge invariant, so this should have no
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is fixed by the underlying SU(2)L gauge symmetry. As shown in Ref. [53], its presence ensures a proper
high-energy behavior for scattering amplitudes. However, this is not su�cient to ensure a correct behavior
o↵-shell, and the matching fails again [54].

A better way to proceed is to enforce a non-linear gauge condition where @µW±
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coe�cients are gauge-dependent, and only �4,1 and �4,2 are physical. To investigate this feature, let us set
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should be eliminated in favor of the dimension-six jµjµ/m2 operator, for which other diagrams occur. In
the SM, even if the fields in the current jµ are not coupled directly to the W±, they are necessarily coupled
to the Z boson. The  dependence of the W± contributions to the Z� and ZZ vacuum polarization [58]
must cancel that of ↵2, so that the coe�cient of the jµjµ/m2 operator ends up gauge-invariant and physical.
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result in that gauge for all the coe�cients is shown in Table 1. It should be clear though that the first three
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Of course, these gauge dependences are unphysical. At very low energy, when the photon remains as
the only active degree of freedom, the first coe�cient is absorbed into the photon field as the wavefunction
renormalization constant while the other two do not contribute since @µFµ⌫ = 0. If some fields remain active
such that @µFµ⌫ = j⌫ 6= 0, then other types of processes are also present. In that case, the ↵2 operator
should be eliminated in favor of the dimension-six jµjµ/m2 operator, for which other diagrams occur. In
the SM, even if the fields in the current jµ are not coupled directly to the W±, they are necessarily coupled
to the Z boson. The  dependence of the W± contributions to the Z� and ZZ vacuum polarization [58]
must cancel that of ↵2, so that the coe�cient of the jµjµ/m2 operator ends up gauge-invariant and physical.
The conclusion is thus that in the SM, it is not consistent to define the Uehling potential in terms of the
Fµ⌫⇤Fµ⌫ operator, and one must use the e↵ective four-fermion operators instead. After all, this is rather
natural since the Uehling potential is only relevant when some fermion fields remain active.
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Of course, these gauge dependences are unphysical. At very low energy, when the photon remains as
the only active degree of freedom, the first coe�cient is absorbed into the photon field as the wavefunction
renormalization constant while the other two do not contribute since @µFµ⌫ = 0. If some fields remain active
such that @µFµ⌫ = j⌫ 6= 0, then other types of processes are also present. In that case, the ↵2 operator
should be eliminated in favor of the dimension-six jµjµ/m2 operator, for which other diagrams occur. In
the SM, even if the fields in the current jµ are not coupled directly to the W±, they are necessarily coupled
to the Z boson. The  dependence of the W± contributions to the Z� and ZZ vacuum polarization [58]
must cancel that of ↵2, so that the coe�cient of the jµjµ/m2 operator ends up gauge-invariant and physical.
The conclusion is thus that in the SM, it is not consistent to define the Uehling potential in terms of the
Fµ⌫⇤Fµ⌫ operator, and one must use the e↵ective four-fermion operators instead. After all, this is rather
natural since the Uehling potential is only relevant when some fermion fields remain active.
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Of course, these gauge dependences are unphysical. At very low energy, when the photon remains as
the only active degree of freedom, the first coe�cient is absorbed into the photon field as the wavefunction
renormalization constant while the other two do not contribute since @µFµ⌫ = 0. If some fields remain active
such that @µFµ⌫ = j⌫ 6= 0, then other types of processes are also present. In that case, the ↵2 operator
should be eliminated in favor of the dimension-six jµjµ/m2 operator, for which other diagrams occur. In
the SM, even if the fields in the current jµ are not coupled directly to the W±, they are necessarily coupled
to the Z boson. The  dependence of the W± contributions to the Z� and ZZ vacuum polarization [58]
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Of course, these gauge dependences are unphysical. At very low energy, when the photon remains as
the only active degree of freedom, the first coe�cient is absorbed into the photon field as the wavefunction
renormalization constant while the other two do not contribute since @µFµ⌫ = 0. If some fields remain active
such that @µFµ⌫ = j⌫ 6= 0, then other types of processes are also present. In that case, the ↵2 operator
should be eliminated in favor of the dimension-six jµjµ/m2 operator, for which other diagrams occur. In
the SM, even if the fields in the current jµ are not coupled directly to the W±, they are necessarily coupled
to the Z boson. The  dependence of the W± contributions to the Z� and ZZ vacuum polarization [58]
must cancel that of ↵2, so that the coe�cient of the jµjµ/m2 operator ends up gauge-invariant and physical.
The conclusion is thus that in the SM, it is not consistent to define the Uehling potential in terms of the
Fµ⌫⇤Fµ⌫ operator, and one must use the e↵ective four-fermion operators instead. After all, this is rather
natural since the Uehling potential is only relevant when some fermion fields remain active.

6

Figure 2: Scalar one-loop 1PI amplitudes generating the QED e↵ective action up to dimension-eight opera-
tors. Permutations of the photons are understood for diagrams (b). For massive vector bosons, the topologies
are the same but one should also include the appropriate would-be Goldstone and ghost diagrams.
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Table 1: Wilson coe�cients of the e↵ective photon operators for a scalar, fermion, and vector boson of
electric charge Q. For the latter, the matching of 1PI amplitudes onto the U(1)-gauge-invariant operators
of Eq. (13) is possible only when using a non-linear gauge for the massive vector bosons, and the quoted
values for ↵1,2,3 are specific to that gauge ( = 1 in Eq. (16) and (17)).

encoded into e↵ective couplings among light fields at the path integral (i.e., quantum) level. At no stage are
the light fields assumed on-shell. So, some e↵ective interactions may actually never contribute to physical
processes, even though they are required to fully encode the underlying dynamics of the heavy field.
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Figure 3: Fermionic one-loop 1PI amplitudes generating the gluonic e↵ective action. Permutations of the
gluons are understood for diagram (b) and (c). As for QED in Fig. 2, additional diagrams are understood
for the scalar and vector case.

3 Gluon e↵ective interactions

The e↵ective action for gluon fields is constructed in the same way as for photons, using the diagrammatic
approach. For example, integrating out a heavy fermion generates
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where T a are the SU(3) generators, and the trace carries over both Dirac and color space. This generates
the series of 1PI diagrams shown in Fig. 3 where, contrary to QED, the odd-number of gluon amplitudes
do not vanish. Another di↵erence with respect to QED is the non-linear nature of the field strength, which
blurs the relationship between the leading inverse-mass power of a given diagram and the number of external
gluons. The most striking consequence is that the three and four-gluon diagrams are not finite. Actually,
since these infinities both correspond to the renormalization of the same operator Ga

µ⌫G
a,µ⌫ , they must be

coherent with that obtained from the two-gluon vacuum polarization. Let us see how this happens in more
details.

As a first step in the calculation of the e↵ective action, let us construct the most general basis of operators
up to O(m�4). With two field strengths, the operators are simple generalizations of those for QED:
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µ⌫ . To see that there can be only

one derivative operator per inverse-mass order [12], first remark that all the derivatives can be move to act
on one of the field strength by partial integration. Then, only one ordering of the covariant derivatives is
relevant since commuting them generates an additional field strength, [D⇢, D�]Ga

µ⌫ = gfabcGb
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c
µ⌫ . Finally,

combining this with the Bianchi identity
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�µ +D�G
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µ⇢ = 0 , (20)

these operators can be written as manifestly vanishing under the EOM for the field strength, DµGa
µ⌫ = 0.

Let us stress though that the EOM are not used at any stage, since using them would render the matching
impossible.

With three-gluon field strengths, there is only one operator at O(m�2) but many at O(m�4). However,
upon partial integration, use of the Bianchi identity, and discarding terms involving four or more field
strengths, only two inequivalent contractions remain [59]. Here again, we choose them to be manifestly
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Figure 4: The four basic s-channel topologies for the gluon-gluon scattering amplitude. That for the t- and
u-channel are understood. The grey disks represent the insertion of the e↵ective action vertices.

vanishing under the field strength EOM:
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At the four-field strength level, the operators up to O(m�4) contain no covariant derivatives. To reach
a minimal number of operators, we use the generalization of the QED identity:
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and note that no contractions with the totally symmetric tensor dabc occurs because those are reduced using
(see Appendix B)

3dabedcde = �ac�bd � �ab�cd + �ad�bc + facef bde + fadef bce . (24)

Contractions with both f and d tensors vanish identically owing to their mixed symmetry properties. This

leaves six O(m�4) operators for L(4)
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This basis corresponds to that in Ref. [25], but for a slightly di↵erent numbering and replacement of dual
tensors via Eq. (23).

The non-abelian nature of QCD makes the e↵ective action expansion quite di↵erent from the QED case.
The operators vanishing under the EOM have to be kept because they contribute to several o↵-shell 1PI
diagrams. For example, the D⌫Ga

⌫µD⇢Ga,⇢µ operator occurs in the two, three, and four-gluon o↵-shell 1PI
diagrams of Fig. 3 simply because of the non-abelian terms present in the gluon field strengths. On the
other hand, for a physical process involving external on-shell gluons, these operators should not contribute,
and the basis could be simplified. Let us check this in the simplest case, which is the gluon-gluon scattering
amplitude
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Computing this amplitude using the e↵ective Lagrangian up to O(m�4), the basic topologies to consider
are shown in Fig. 4. Besides the four point local terms, we must add the non-local contributions from the
three-gluon and two-gluon operators, as well as the wavefunction corrected tree-level term. We observe:

• The wavefunction correction is automatically accounted for through a rescaling of the field and coupling
constant gS .
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Table 2: Wilson coe�cients of the e↵ective gluonic operators for a scalar, fermion, and vector boson in the
fundamental representation. This corresponds for example to the contributions of squarks in the MSSM, or
heavy quarks in the SM. For the coe�cients in the vector case, we use the leptoquark gauge fields of the
minimal SU(5) GUT model, quantized using a non-linear gauge fixing procedure (see Appendix A).

• The L(2)

eff operators contribute to all topologies, L(3)

eff operators to (b� d) topologies, and L(4)

eff to the
(d) topology only.

• For the EOM operators, these topologically distinct contributions precisely cancel each other. These
operators thus play no role for physical processes.

• Independently for each non-EOM operator Qi, the sum of the contributions Mµ1µ2µ3µ4(Qi) satisfy the
four Ward identities pµk

k Mµ1µ2µ3µ4(Qi) = 0, k = 1, 2, 3, 4.

The fact that EOM operators drop out of the full physical amplitude can be easily understood qualita-

tively. For example, taking the dimension-six L(2)

eff operator D⌫Ga
⌫µD⇢Ga,⇢µ and expanding the covariant

derivatives, we get
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+ gfabc@⌫Ga
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b
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⌫µG

d
⇢G

e,⇢µ . (27)

Replacing the field strength as Ga
µ⌫ ! @µGa

⌫ � @⌫Ga
µ, these four terms are precisely those entering the four

topologies in Fig. 4. We can see that the cancellation occurs because the gluon propagator poles are precisely
compensated by the momentum factors arising from the LO three-gluon vertex and from the derivatives in
the first three terms of Eq. (27). A similar reasoning can be applied to the non-abelian terms in the field
strengths, which cancel out similarly.

Let us now compute explicitly the coe�cients of the e↵ective operators for a fermion, scalar, or vector
in the fundamental representation. Generically, the procedure is as follow. Starting with the vacuum
polarization graph (Fig. 3a), we fix the ↵0,2,4 coe�cients. Then, the three-point 1PI loop amplitudes

(Fig. 3b) generate again the L(2)

eff operators together with that of L(3)

eff and thus fix �2, �4,1, and �4,2. As

a side e↵ect, the basis chosen for L(0+2)

eff thus a↵ects the three Wilson coe�cients of L(3)

eff . Finally, the

four-point 1PI amplitudes (Fig. 3c) match over the local four-gluon terms extracted from L(0+2+3+4)

eff , and
given the coe�cients obtained in the first two steps, fix the six �4,i coe�cients. The final results for the
coe�cients are given in Table 2. They agree with Ref. [28] for dimension-six operators.
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compensated by the momentum factors arising from the LO three-gluon vertex and from the derivatives in
the first three terms of Eq. (27). A similar reasoning can be applied to the non-abelian terms in the field
strengths, which cancel out similarly.
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in the fundamental representation. Generically, the procedure is as follow. Starting with the vacuum
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four-point 1PI amplitudes (Fig. 3c) match over the local four-gluon terms extracted from L(0+2+3+4)
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the first three terms of Eq. (27). A similar reasoning can be applied to the non-abelian terms in the field
strengths, which cancel out similarly.
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eff , and
given the coe�cients obtained in the first two steps, fix the six �4,i coe�cients. The final results for the
coe�cients are given in Table 2. They agree with Ref. [28] for dimension-six operators.

9

↵0 ↵2 ↵4 �2 �4,1 �4,2

Scalar
1

4
D" �

1

16

3

112

1

48
�

1

28
0

Fermion D" �
1

2

9

28
�

1

24

1

14
�
3

4

Vector �
21D" + 2

4

37

16
�
159

112

1

16
�

3

28
3

�4,1 �4,2 �4,3 �4,4 �4,5 �4,6

Scalar
7

768

1

768

7

384

1

384

1

96

1

672

Fermion
1

48

7

192

1

24

7

96

1

96

19

672

Vector
87

256

81

256

87

128

81

128
�

3

32
�

27

224

Table 2: Wilson coe�cients of the e↵ective gluonic operators for a scalar, fermion, and vector boson in the
fundamental representation. This corresponds for example to the contributions of squarks in the MSSM, or
heavy quarks in the SM. For the coe�cients in the vector case, we use the leptoquark gauge fields of the
minimal SU(5) GUT model, quantized using a non-linear gauge fixing procedure (see Appendix A).

• The L(2)

eff operators contribute to all topologies, L(3)

eff operators to (b� d) topologies, and L(4)

eff to the
(d) topology only.

• For the EOM operators, these topologically distinct contributions precisely cancel each other. These
operators thus play no role for physical processes.

• Independently for each non-EOM operator Qi, the sum of the contributions Mµ1µ2µ3µ4(Qi) satisfy the
four Ward identities pµk

k Mµ1µ2µ3µ4(Qi) = 0, k = 1, 2, 3, 4.

The fact that EOM operators drop out of the full physical amplitude can be easily understood qualita-

tively. For example, taking the dimension-six L(2)

eff operator D⌫Ga
⌫µD⇢Ga,⇢µ and expanding the covariant

derivatives, we get

D⌫Ga
⌫µD⇢G

a,⇢µ = @⌫Ga
⌫µ@⇢G

a,⇢µ + gfabcGb,⌫Gc
⌫µ@⇢G

a,⇢µ

+ gfabc@⌫Ga
⌫µG

b
⇢G

c,⇢µ + g2fabcfadeGb,⌫Gc
⌫µG

d
⇢G

e,⇢µ . (27)

Replacing the field strength as Ga
µ⌫ ! @µGa

⌫ � @⌫Ga
µ, these four terms are precisely those entering the four

topologies in Fig. 4. We can see that the cancellation occurs because the gluon propagator poles are precisely
compensated by the momentum factors arising from the LO three-gluon vertex and from the derivatives in
the first three terms of Eq. (27). A similar reasoning can be applied to the non-abelian terms in the field
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eff operators contribute to all topologies, L(3)

eff operators to (b� d) topologies, and L(4)

eff to the
(d) topology only.

• For the EOM operators, these topologically distinct contributions precisely cancel each other. These
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topologies in Fig. 4. We can see that the cancellation occurs because the gluon propagator poles are precisely
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the first three terms of Eq. (27). A similar reasoning can be applied to the non-abelian terms in the field
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•calculation far more challenging!

•need to generalize the non-linear gauge to preserve QCD symmetry otherwise  
1 PI off-shell amplitudes cannot matched onto gauge invariant operators

•non-linear gauge drastically reduce the number of diagrams to compute                     
(4-gluon diagrams: 207        84)

•      gauge: get rid of mixing term like

This procedure is rather straightforward for scalars and fermions circulating in the loop, and only
marginally more complicated than in the QED case of Section 2. We checked our computation using the
SM and MSSM FeynArts models, using quarks or squarks as representative particles in the fundamental
representation. For vector particles, the calculation is far more challenging. First, we must construct a con-
sistent model involving a massive vector field in the fundamental representation of QCD. Second, we know
from the QED case that working in the unitary gauge does not work, and even introducing an appropriate
Higgs mechanism to make these vectors massive is not su�cient. Some generalization of the non-linear gauge
has to be designed to preserve the QCD symmetry throughout the quantization, otherwise the 1PI o↵-shell
amplitudes cannot be matched onto gauge invariant operators. This is particularly annoying here since the
three gluon 1PI amplitudes kinematically vanish on-shell.

To proceed, our strategy is to use the minimal SU(5) GUT model, spontaneously broken by an adjoint
Higgs scalar down to the (unbroken) SM gauge group. Twelve of the SU(5) gauge bosons become massive in
the process, and those fields have precisely the quantum numbers we need. The weak doublet of leptoquarks
(X,Y ) transforms as color antitriplets, so integrating them out generate the e↵ective gluonic operators. Note
that we do not need the second breaking stage down to SU(3)C ⌦ U(1)em. In Appendix A, we describe in
some details the minimal SU(5) GUT model, along with its quantization using non-linear gauge fixing terms
for the X and Y gauge bosons. Denoting by Hk

X and Hk
Y the WBG scalars associated to Xk

µ and Y k
µ , the

main point is to modify the usual R⇠ gauge fixing terms

Lgf = �
1

⇠
|@µXk+

µ � i⇠MXY H
k+
X |

2
�

1

⇠
|@µY k+

µ � i⇠MXY H
k+
Y |

2 + .... (28)

by replacing the derivative by

@µXi+
µ ! @µXi+
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BµY

i+
⌫

!
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where T↵ are the SU(3) generators for the fundamental representation, and i, j, k the corresponding indices.
The gauge parameters ↵G, ↵W , ↵B interpolate between the ’t Hooft-Feynman gauge ↵G = ↵W = ↵B = 0
and the non-linear gauge ↵G = ↵W = ↵B = 1, when the above terms coincide with DµXi+

µ and DµY i+
µ .

In that limit, the SM gauge symmetries are preserved, exactly like the U(1)em in the SM in the non-linear
gauge. Technically, it should be remarked also that this gauge has the nice feature of drastically reducing the
number of diagrams for a given process [57]. Indeed, remember that the purpose of the usual R⇠ gauge is to
get rid of the mixing terms like Xk

µ@
µHk

X . But when the vector is charged under some remaining unbroken

symmetries, this term is necessarily of the form Xk
µD

µHk
X since it arises from the Higgs scalar kinetic term

which is invariant under the unbroken symmetries. With the non-linear gauge, all these terms cancel out,
leaving no X � VSM � HX couplings. As a result, all the mixed loops where the massive vector occurs
alongside its WBG boson disappear, and given the large number of diagrams, this is very welcome.

To actually perform the computation, we again use FeynArts [45] but with a custom SU(5) model file.
The calculation then proceeds without particular di�culty, and gives the coe�cients quoted in Table 2.
Several comments are in order:

• The matching works only for ↵G = ↵W = ↵B = 1. Without this condition, non-gauge-invariant
operators are required. Note that out of a total of 207 irreducible four-gluon diagrams, the gauge
conditions ↵G = ↵W = ↵B = 1 leaves only 21 gauge-boson loops, 21 WBG loops, and 42 ghost loops.
The disappearance of mixed loops therefore reduces the number of diagrams by more than a factor of
two.

• Many of the properties discovered in Ref. [33] for photons survive to the non-abelian generalization:
the ghost and WBG contributions are separately gauge invariant when ↵G = ↵W = ↵B = 1. Actually,
matching separately the Hk

X contributions on the e↵ective operators reproduce the coe�cients for the

scalar case in Table 2, while matching the cX and c†X ghost contributions gives �2 times the scalar
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where T↵ are the SU(3) generators for the fundamental representation, and i, j, k the corresponding indices.
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gauge. Technically, it should be remarked also that this gauge has the nice feature of drastically reducing the
number of diagrams for a given process [57]. Indeed, remember that the purpose of the usual R⇠ gauge is to
get rid of the mixing terms like Xk
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which is invariant under the unbroken symmetries. With the non-linear gauge, all these terms cancel out,
leaving no X � VSM � HX couplings. As a result, all the mixed loops where the massive vector occurs
alongside its WBG boson disappear, and given the large number of diagrams, this is very welcome.

To actually perform the computation, we again use FeynArts [45] but with a custom SU(5) model file.
The calculation then proceeds without particular di�culty, and gives the coe�cients quoted in Table 2.
Several comments are in order:

• The matching works only for ↵G = ↵W = ↵B = 1. Without this condition, non-gauge-invariant
operators are required. Note that out of a total of 207 irreducible four-gluon diagrams, the gauge
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which is invariant under the unbroken symmetries. With the non-linear gauge, all these terms cancel out,
leaving no X � VSM � HX couplings. As a result, all the mixed loops where the massive vector occurs
alongside its WBG boson disappear, and given the large number of diagrams, this is very welcome.

To actually perform the computation, we again use FeynArts [45] but with a custom SU(5) model file.
The calculation then proceeds without particular di�culty, and gives the coe�cients quoted in Table 2.
Several comments are in order:

• The matching works only for ↵G = ↵W = ↵B = 1. Without this condition, non-gauge-invariant
operators are required. Note that out of a total of 207 irreducible four-gluon diagrams, the gauge
conditions ↵G = ↵W = ↵B = 1 leaves only 21 gauge-boson loops, 21 WBG loops, and 42 ghost loops.
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•Match with vectors in the loops:
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 17SU(N) effective interactions
•QCD case extended to arbitrary representations of other Lie groups :

vacuum polarization :

coe�cients of Table 2. With the non-linear gauge, the ghosts behave exactly like scalar particles, but
for the fermi statistics.

• As a check, we computed the full physical gluon-gluon scattering amplitude keeping the gauge pa-
rameter ↵G arbitrary. On-shell and when both 1PI and non-1PI topologies are included, the only
remaining ↵G dependence can be absorbed into a wavefunction correction. In other words, the inverse-
mass expansion of the full amplitude matches onto the non-EOM operators, and except for ↵0, their
coe�cients are gauge-independent and physical, as they should.

• To further check our results, we computed the 1PI diagrams with two, three, and four external SU(2)L
bosons. Since SU(2)L is kept unbroken, and since (X,Y ) form an SU(2)L doublet, we can use the same
operator basis as for gluons, up to obvious substitutions, and found again the coe�cients in Table 2.

• Finally, we also computed the e↵ective operators involving two and four U(1)Y gauge bosons, and
recover the same results as in Table 1 for the W± contribution in the non-linear gauge to photon
e↵ective operators.

To close this section, the same cautionary remark as for the Uehling operator should be repeated here
for EOM gluonic operators. Those play no role for on-shell gluon processes, but do contribute when other
fields like light quarks remain active. However, in that case, it is compulsory to include also all the e↵ective
operators involving quark fields. Though the EOM operators are gauge invariant by construction, their
coe�cients are not gauge invariant by themselves. For instance, the gauge chosen for the Xk

µ and Y k
µ fields

does a↵ect their values (Eq. (17) remains valid for the gluonic vacuum polarization). In a phenomenological
study, it would thus make no sense to consider for example the D⌫Ga

⌫µD⇢Ga,⇢µ operator without including

all the four-quark operators. Taking again SU(5), it is clear that Xk
µ and Y k

µ loops would contribute
to both D⌫Ga

⌫µD⇢Ga,⇢µ and four-quark operators, and only their combination would result in a gauge-
invariant physical result at the dimension-six level. As an aside, it should be mentioned also that the
gauge-dependent coe�cient of the D⌫Ga

⌫µD⇢Ga,⇢µ operator quoted in Table 2 agrees with that in Ref. [28];
the CDE computation being done in the same non-linear gauge.

4 SU(N) e↵ective interactions

The computation done in the case of QCD can be extended to arbitrary representations of other Lie groups.
For that, it su�ces to replace the traces over the fundamental generators of SU(3) occurring for each
of the 1PI diagrams of the previous section by traces over generators in some generic representation R.
Our notations along with various group-theoretic results are collected in Appendix B. In this section, for
definiteness, we refer to SU(N) gauge group, but the results are trivially extended to other Lie algebras.

Specifically, the vacuum polarization is tuned by Tr(T a
RT b

R) = I2(R)�ab with I2(R) the quadratic invari-
ant, so the ↵i coe�cients are simply I2(R)/I2(F) = 2I2(R) times those in Table 2. Similarly, the three-boson
diagrams are proportional to

Tr(T a
R[T b

R, T c
R]) = iI2(R)fabc . (31)

The fact that both the two and three-boson amplitudes are proportional to the same I2(R) coe�cient ensures
a proper matching. In particular, the divergence of the three-boson diagrams is correctly accounted for by

the L(2)

eff couplings.
The situation is more involved for the four-boson amplitude. The 1PI loops in either the fermion, scalar,

or vector case are equivalent two-by-two under the reversing of the loop momentum, so the total amplitudes
can always be brought to the form

M
abcd = Cabcd

1
M1 + Cabcd

2
M2 + Cabcd

3
M3 ,

8
<

:

Cabcd
1

= Tr(T a
RT b

RT d
RT c

R) + Tr(T a
RT c

RT d
RT b

R) ,
Cabcd

2
= Tr(T a

RT b
RT c

RT d
R) + Tr(T a

RT d
RT c

RT b
R) ,

Cabcd
3

= Tr(T a
RT c

RT b
RT d

R) + Tr(T a
RT d

RT b
RT c

R) .
(32)

Expanding M
abcd in the mass of the heavy particle circulating within the loop, only two independent

combinations of traces occur at O(m0) and O(m�2), which can be expressed entirely in terms of the quadratic
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quadratic invariant
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operator basis as for gluons, up to obvious substitutions, and found again the coe�cients in Table 2.

• Finally, we also computed the e↵ective operators involving two and four U(1)Y gauge bosons, and
recover the same results as in Table 1 for the W± contribution in the non-linear gauge to photon
e↵ective operators.

To close this section, the same cautionary remark as for the Uehling operator should be repeated here
for EOM gluonic operators. Those play no role for on-shell gluon processes, but do contribute when other
fields like light quarks remain active. However, in that case, it is compulsory to include also all the e↵ective
operators involving quark fields. Though the EOM operators are gauge invariant by construction, their
coe�cients are not gauge invariant by themselves. For instance, the gauge chosen for the Xk

µ and Y k
µ fields

does a↵ect their values (Eq. (17) remains valid for the gluonic vacuum polarization). In a phenomenological
study, it would thus make no sense to consider for example the D⌫Ga

⌫µD⇢Ga,⇢µ operator without including

all the four-quark operators. Taking again SU(5), it is clear that Xk
µ and Y k

µ loops would contribute
to both D⌫Ga

⌫µD⇢Ga,⇢µ and four-quark operators, and only their combination would result in a gauge-
invariant physical result at the dimension-six level. As an aside, it should be mentioned also that the
gauge-dependent coe�cient of the D⌫Ga

⌫µD⇢Ga,⇢µ operator quoted in Table 2 agrees with that in Ref. [28];
the CDE computation being done in the same non-linear gauge.

4 SU(N) e↵ective interactions

The computation done in the case of QCD can be extended to arbitrary representations of other Lie groups.
For that, it su�ces to replace the traces over the fundamental generators of SU(3) occurring for each
of the 1PI diagrams of the previous section by traces over generators in some generic representation R.
Our notations along with various group-theoretic results are collected in Appendix B. In this section, for
definiteness, we refer to SU(N) gauge group, but the results are trivially extended to other Lie algebras.

Specifically, the vacuum polarization is tuned by Tr(T a
RT b

R) = I2(R)�ab with I2(R) the quadratic invari-
ant, so the ↵i coe�cients are simply I2(R)/I2(F) = 2I2(R) times those in Table 2. Similarly, the three-boson
diagrams are proportional to

Tr(T a
R[T b

R, T c
R]) = iI2(R)fabc . (31)

The fact that both the two and three-boson amplitudes are proportional to the same I2(R) coe�cient ensures
a proper matching. In particular, the divergence of the three-boson diagrams is correctly accounted for by

the L(2)

eff couplings.
The situation is more involved for the four-boson amplitude. The 1PI loops in either the fermion, scalar,

or vector case are equivalent two-by-two under the reversing of the loop momentum, so the total amplitudes
can always be brought to the form

M
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2
M2 + Cabcd

3
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8
<
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3

= Tr(T a
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R) + Tr(T a
RT d

RT b
RT c

R) .
(32)

Expanding M
abcd in the mass of the heavy particle circulating within the loop, only two independent

combinations of traces occur at O(m0) and O(m�2), which can be expressed entirely in terms of the quadratic
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coe�cients of Table 2. With the non-linear gauge, the ghosts behave exactly like scalar particles, but
for the fermi statistics.

• As a check, we computed the full physical gluon-gluon scattering amplitude keeping the gauge pa-
rameter ↵G arbitrary. On-shell and when both 1PI and non-1PI topologies are included, the only
remaining ↵G dependence can be absorbed into a wavefunction correction. In other words, the inverse-
mass expansion of the full amplitude matches onto the non-EOM operators, and except for ↵0, their
coe�cients are gauge-independent and physical, as they should.

• To further check our results, we computed the 1PI diagrams with two, three, and four external SU(2)L
bosons. Since SU(2)L is kept unbroken, and since (X,Y ) form an SU(2)L doublet, we can use the same
operator basis as for gluons, up to obvious substitutions, and found again the coe�cients in Table 2.

• Finally, we also computed the e↵ective operators involving two and four U(1)Y gauge bosons, and
recover the same results as in Table 1 for the W± contribution in the non-linear gauge to photon
e↵ective operators.

To close this section, the same cautionary remark as for the Uehling operator should be repeated here
for EOM gluonic operators. Those play no role for on-shell gluon processes, but do contribute when other
fields like light quarks remain active. However, in that case, it is compulsory to include also all the e↵ective
operators involving quark fields. Though the EOM operators are gauge invariant by construction, their
coe�cients are not gauge invariant by themselves. For instance, the gauge chosen for the Xk

µ and Y k
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does a↵ect their values (Eq. (17) remains valid for the gluonic vacuum polarization). In a phenomenological
study, it would thus make no sense to consider for example the D⌫Ga

⌫µD⇢Ga,⇢µ operator without including
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invariant physical result at the dimension-six level. As an aside, it should be mentioned also that the
gauge-dependent coe�cient of the D⌫Ga

⌫µD⇢Ga,⇢µ operator quoted in Table 2 agrees with that in Ref. [28];
the CDE computation being done in the same non-linear gauge.

4 SU(N) e↵ective interactions

The computation done in the case of QCD can be extended to arbitrary representations of other Lie groups.
For that, it su�ces to replace the traces over the fundamental generators of SU(3) occurring for each
of the 1PI diagrams of the previous section by traces over generators in some generic representation R.
Our notations along with various group-theoretic results are collected in Appendix B. In this section, for
definiteness, we refer to SU(N) gauge group, but the results are trivially extended to other Lie algebras.

Specifically, the vacuum polarization is tuned by Tr(T a
RT b

R) = I2(R)�ab with I2(R) the quadratic invari-
ant, so the ↵i coe�cients are simply I2(R)/I2(F) = 2I2(R) times those in Table 2. Similarly, the three-boson
diagrams are proportional to
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The fact that both the two and three-boson amplitudes are proportional to the same I2(R) coe�cient ensures
a proper matching. In particular, the divergence of the three-boson diagrams is correctly accounted for by
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The situation is more involved for the four-boson amplitude. The 1PI loops in either the fermion, scalar,

or vector case are equivalent two-by-two under the reversing of the loop momentum, so the total amplitudes
can always be brought to the form
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Expanding M
abcd in the mass of the heavy particle circulating within the loop, only two independent

combinations of traces occur at O(m0) and O(m�2), which can be expressed entirely in terms of the quadratic
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coe�cients of Table 2. With the non-linear gauge, the ghosts behave exactly like scalar particles, but
for the fermi statistics.

• As a check, we computed the full physical gluon-gluon scattering amplitude keeping the gauge pa-
rameter ↵G arbitrary. On-shell and when both 1PI and non-1PI topologies are included, the only
remaining ↵G dependence can be absorbed into a wavefunction correction. In other words, the inverse-
mass expansion of the full amplitude matches onto the non-EOM operators, and except for ↵0, their
coe�cients are gauge-independent and physical, as they should.

• To further check our results, we computed the 1PI diagrams with two, three, and four external SU(2)L
bosons. Since SU(2)L is kept unbroken, and since (X,Y ) form an SU(2)L doublet, we can use the same
operator basis as for gluons, up to obvious substitutions, and found again the coe�cients in Table 2.

• Finally, we also computed the e↵ective operators involving two and four U(1)Y gauge bosons, and
recover the same results as in Table 1 for the W± contribution in the non-linear gauge to photon
e↵ective operators.

To close this section, the same cautionary remark as for the Uehling operator should be repeated here
for EOM gluonic operators. Those play no role for on-shell gluon processes, but do contribute when other
fields like light quarks remain active. However, in that case, it is compulsory to include also all the e↵ective
operators involving quark fields. Though the EOM operators are gauge invariant by construction, their
coe�cients are not gauge invariant by themselves. For instance, the gauge chosen for the Xk

µ and Y k
µ fields

does a↵ect their values (Eq. (17) remains valid for the gluonic vacuum polarization). In a phenomenological
study, it would thus make no sense to consider for example the D⌫Ga

⌫µD⇢Ga,⇢µ operator without including

all the four-quark operators. Taking again SU(5), it is clear that Xk
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µ loops would contribute
to both D⌫Ga

⌫µD⇢Ga,⇢µ and four-quark operators, and only their combination would result in a gauge-
invariant physical result at the dimension-six level. As an aside, it should be mentioned also that the
gauge-dependent coe�cient of the D⌫Ga

⌫µD⇢Ga,⇢µ operator quoted in Table 2 agrees with that in Ref. [28];
the CDE computation being done in the same non-linear gauge.

4 SU(N) e↵ective interactions

The computation done in the case of QCD can be extended to arbitrary representations of other Lie groups.
For that, it su�ces to replace the traces over the fundamental generators of SU(3) occurring for each
of the 1PI diagrams of the previous section by traces over generators in some generic representation R.
Our notations along with various group-theoretic results are collected in Appendix B. In this section, for
definiteness, we refer to SU(N) gauge group, but the results are trivially extended to other Lie algebras.
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ant, so the ↵i coe�cients are simply I2(R)/I2(F) = 2I2(R) times those in Table 2. Similarly, the three-boson
diagrams are proportional to
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The fact that both the two and three-boson amplitudes are proportional to the same I2(R) coe�cient ensures
a proper matching. In particular, the divergence of the three-boson diagrams is correctly accounted for by
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The situation is more involved for the four-boson amplitude. The 1PI loops in either the fermion, scalar,

or vector case are equivalent two-by-two under the reversing of the loop momentum, so the total amplitudes
can always be brought to the form
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Expanding M
abcd in the mass of the heavy particle circulating within the loop, only two independent

combinations of traces occur at O(m0) and O(m�2), which can be expressed entirely in terms of the quadratic
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invariants as

Dabcd
1

= 2Cabcd
1

� Cabcd
2

� Cabcd
3

= I2(R)(2facef bde
� fadef bce) , (33a)

Dabcd
2

= 2Cabcd
2

� Cabcd
1

� Cabcd
3

= I2(R)(2fadef bce
� facef bde) , (33b)

Dabcd
3

= 2Cabcd
3

� Cabcd
1

� Cabcd
2

= I2(R)(�fadef bce
� facef bde) = �Dabcd

1
�Dabcd

2
, (33c)

where we used [T a
R, T b

R] = ifabcT c
R together with Eq. (31) and imposed the Jacobi identity fabef cde =

facef bde
� fadef bce. Thanks to this reduction, Mabcd matches the four-boson amplitude obtained from the

L(2)

eff and L(3)

eff couplings at the O(m0) and O(m�2).

At O(m�4), these same combinations Dabcd
1,2,3 induce the operators tuned by �4,5 and �4,6, which involve

the structure constants. The rest is proportional to the fully symmetrized trace

Dabcd
0

= Cabcd
1

+ Cabcd
2

+ Cabcd
3

=
1

4
S Tr(T a

RT b
RT c

RT d
R) . (34)

As detailed in Appendix B, for a general SU(N) algebra, the fully symmetrized trace decomposes into
quadratic and quartic invariants. Plugging Eq. (91) in Eq. (34),

Dabcd
0

= 6I4(R)dabcd + 6⇤(R)(�ab�cd + �ac�bd + �ad�bc) , (35)

where dabcd is the fully symmetric fourth-order symbol normalized such that I4(F) = 1 for the defining
representation, and

⇤(R) =

✓
N(A)I2(R)

N(R)
�

I2(A)

6

◆
I2(R)

2 +N(A)
, (36)

where A denotes the adjoint representation and N(R) the dimension of the representation R. The term
proportional to ⇤(R) matches onto the operators tuned by �4,1 to �4,4, while that proportional to dabcd

requires to extend L(4)

eff of Eq. (25) with two extra operators. The total e↵ective Lagrangian is then:

L(4)

eff = �4,1
g4S

6!⇡2m4
Ga

µ⌫G
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⇢�G
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⇢�G̃

b,⇢�
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⇢�G̃

d,⇢� . (37)

The need of a total of eight operators for SU(N) and their connection with the quartic tensor structure
is in agreement with Ref. [25]. Note, however, that the definition of ⇤(R) is a matter of convention, and
it indirectly a↵ects the definition of all the operators but those tuned by �4,3 and �4,6. Yet, adopting
the convention in Eq. (36) for ⇤(R) looks optimal since it ensures I4(R) = 0 for all SU(2) and SU(3)
representations, as it should since these algebras have no irreducible invariant tensor of rank four. As
said before, all these results stay valid for SO(N) algebras, but for a single exception. As explained in
Appendix B, SO(8) has the unique feature of having two quartic symbols, and an additional term occurs in
Eq. (35). In that case, two extra operators are required, tuned by the second quartic symbol of Eq. (96).

Now, even if a total of eight (or ten for SO(8)) independent operators can be constructed in general,
our specific computations show that at one loop, most of these operators derive from a single symmetrized
trace and are thus always correlated. In particular, no matter the representation or spin of the particle in
the loop:
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2
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2
�4,4 . (38b)
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where we used [T a
R, T b

R] = ifabcT c
R together with Eq. (31) and imposed the Jacobi identity fabef cde =

facef bde
� fadef bce. Thanks to this reduction, Mabcd matches the four-boson amplitude obtained from the

L(2)

eff and L(3)

eff couplings at the O(m0) and O(m�2).
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the structure constants. The rest is proportional to the fully symmetrized trace
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As detailed in Appendix B, for a general SU(N) algebra, the fully symmetrized trace decomposes into
quadratic and quartic invariants. Plugging Eq. (91) in Eq. (34),

Dabcd
0

= 6I4(R)dabcd + 6⇤(R)(�ab�cd + �ac�bd + �ad�bc) , (35)

where dabcd is the fully symmetric fourth-order symbol normalized such that I4(F) = 1 for the defining
representation, and
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where A denotes the adjoint representation and N(R) the dimension of the representation R. The term
proportional to ⇤(R) matches onto the operators tuned by �4,1 to �4,4, while that proportional to dabcd

requires to extend L(4)

eff of Eq. (25) with two extra operators. The total e↵ective Lagrangian is then:
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The need of a total of eight operators for SU(N) and their connection with the quartic tensor structure
is in agreement with Ref. [25]. Note, however, that the definition of ⇤(R) is a matter of convention, and
it indirectly a↵ects the definition of all the operators but those tuned by �4,3 and �4,6. Yet, adopting
the convention in Eq. (36) for ⇤(R) looks optimal since it ensures I4(R) = 0 for all SU(2) and SU(3)
representations, as it should since these algebras have no irreducible invariant tensor of rank four. As
said before, all these results stay valid for SO(N) algebras, but for a single exception. As explained in
Appendix B, SO(8) has the unique feature of having two quartic symbols, and an additional term occurs in
Eq. (35). In that case, two extra operators are required, tuned by the second quartic symbol of Eq. (96).

Now, even if a total of eight (or ten for SO(8)) independent operators can be constructed in general,
our specific computations show that at one loop, most of these operators derive from a single symmetrized
trace and are thus always correlated. In particular, no matter the representation or spin of the particle in
the loop:
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where we used [T a
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R] = ifabcT c
R together with Eq. (31) and imposed the Jacobi identity fabef cde =
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� fadef bce. Thanks to this reduction, Mabcd matches the four-boson amplitude obtained from the
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As detailed in Appendix B, for a general SU(N) algebra, the fully symmetrized trace decomposes into
quadratic and quartic invariants. Plugging Eq. (91) in Eq. (34),
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where dabcd is the fully symmetric fourth-order symbol normalized such that I4(F) = 1 for the defining
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where A denotes the adjoint representation and N(R) the dimension of the representation R. The term
proportional to ⇤(R) matches onto the operators tuned by �4,1 to �4,4, while that proportional to dabcd

requires to extend L(4)

eff of Eq. (25) with two extra operators. The total e↵ective Lagrangian is then:
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The need of a total of eight operators for SU(N) and their connection with the quartic tensor structure
is in agreement with Ref. [25]. Note, however, that the definition of ⇤(R) is a matter of convention, and
it indirectly a↵ects the definition of all the operators but those tuned by �4,3 and �4,6. Yet, adopting
the convention in Eq. (36) for ⇤(R) looks optimal since it ensures I4(R) = 0 for all SU(2) and SU(3)
representations, as it should since these algebras have no irreducible invariant tensor of rank four. As
said before, all these results stay valid for SO(N) algebras, but for a single exception. As explained in
Appendix B, SO(8) has the unique feature of having two quartic symbols, and an additional term occurs in
Eq. (35). In that case, two extra operators are required, tuned by the second quartic symbol of Eq. (96).

Now, even if a total of eight (or ten for SO(8)) independent operators can be constructed in general,
our specific computations show that at one loop, most of these operators derive from a single symmetrized
trace and are thus always correlated. In particular, no matter the representation or spin of the particle in
the loop:
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where we used [T a
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R] = ifabcT c
R together with Eq. (31) and imposed the Jacobi identity fabef cde =
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As detailed in Appendix B, for a general SU(N) algebra, the fully symmetrized trace decomposes into
quadratic and quartic invariants. Plugging Eq. (91) in Eq. (34),

Dabcd
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= 6I4(R)dabcd + 6⇤(R)(�ab�cd + �ac�bd + �ad�bc) , (35)

where dabcd is the fully symmetric fourth-order symbol normalized such that I4(F) = 1 for the defining
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where A denotes the adjoint representation and N(R) the dimension of the representation R. The term
proportional to ⇤(R) matches onto the operators tuned by �4,1 to �4,4, while that proportional to dabcd

requires to extend L(4)

eff of Eq. (25) with two extra operators. The total e↵ective Lagrangian is then:
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The need of a total of eight operators for SU(N) and their connection with the quartic tensor structure
is in agreement with Ref. [25]. Note, however, that the definition of ⇤(R) is a matter of convention, and
it indirectly a↵ects the definition of all the operators but those tuned by �4,3 and �4,6. Yet, adopting
the convention in Eq. (36) for ⇤(R) looks optimal since it ensures I4(R) = 0 for all SU(2) and SU(3)
representations, as it should since these algebras have no irreducible invariant tensor of rank four. As
said before, all these results stay valid for SO(N) algebras, but for a single exception. As explained in
Appendix B, SO(8) has the unique feature of having two quartic symbols, and an additional term occurs in
Eq. (35). In that case, two extra operators are required, tuned by the second quartic symbol of Eq. (96).

Now, even if a total of eight (or ten for SO(8)) independent operators can be constructed in general,
our specific computations show that at one loop, most of these operators derive from a single symmetrized
trace and are thus always correlated. In particular, no matter the representation or spin of the particle in
the loop:
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where we used [T a
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As detailed in Appendix B, for a general SU(N) algebra, the fully symmetrized trace decomposes into
quadratic and quartic invariants. Plugging Eq. (91) in Eq. (34),
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where dabcd is the fully symmetric fourth-order symbol normalized such that I4(F) = 1 for the defining
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where A denotes the adjoint representation and N(R) the dimension of the representation R. The term
proportional to ⇤(R) matches onto the operators tuned by �4,1 to �4,4, while that proportional to dabcd
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eff of Eq. (25) with two extra operators. The total e↵ective Lagrangian is then:
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The need of a total of eight operators for SU(N) and their connection with the quartic tensor structure
is in agreement with Ref. [25]. Note, however, that the definition of ⇤(R) is a matter of convention, and
it indirectly a↵ects the definition of all the operators but those tuned by �4,3 and �4,6. Yet, adopting
the convention in Eq. (36) for ⇤(R) looks optimal since it ensures I4(R) = 0 for all SU(2) and SU(3)
representations, as it should since these algebras have no irreducible invariant tensor of rank four. As
said before, all these results stay valid for SO(N) algebras, but for a single exception. As explained in
Appendix B, SO(8) has the unique feature of having two quartic symbols, and an additional term occurs in
Eq. (35). In that case, two extra operators are required, tuned by the second quartic symbol of Eq. (96).

Now, even if a total of eight (or ten for SO(8)) independent operators can be constructed in general,
our specific computations show that at one loop, most of these operators derive from a single symmetrized
trace and are thus always correlated. In particular, no matter the representation or spin of the particle in
the loop:
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where we used [T a
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R] = ifabcT c
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the structure constants. The rest is proportional to the fully symmetrized trace

Dabcd
0

= Cabcd
1

+ Cabcd
2

+ Cabcd
3

=
1

4
S Tr(T a

RT b
RT c

RT d
R) . (34)

As detailed in Appendix B, for a general SU(N) algebra, the fully symmetrized trace decomposes into
quadratic and quartic invariants. Plugging Eq. (91) in Eq. (34),

Dabcd
0

= 6I4(R)dabcd + 6⇤(R)(�ab�cd + �ac�bd + �ad�bc) , (35)

where dabcd is the fully symmetric fourth-order symbol normalized such that I4(F) = 1 for the defining
representation, and
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where A denotes the adjoint representation and N(R) the dimension of the representation R. The term
proportional to ⇤(R) matches onto the operators tuned by �4,1 to �4,4, while that proportional to dabcd

requires to extend L(4)

eff of Eq. (25) with two extra operators. The total e↵ective Lagrangian is then:
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The need of a total of eight operators for SU(N) and their connection with the quartic tensor structure
is in agreement with Ref. [25]. Note, however, that the definition of ⇤(R) is a matter of convention, and
it indirectly a↵ects the definition of all the operators but those tuned by �4,3 and �4,6. Yet, adopting
the convention in Eq. (36) for ⇤(R) looks optimal since it ensures I4(R) = 0 for all SU(2) and SU(3)
representations, as it should since these algebras have no irreducible invariant tensor of rank four. As
said before, all these results stay valid for SO(N) algebras, but for a single exception. As explained in
Appendix B, SO(8) has the unique feature of having two quartic symbols, and an additional term occurs in
Eq. (35). In that case, two extra operators are required, tuned by the second quartic symbol of Eq. (96).

Now, even if a total of eight (or ten for SO(8)) independent operators can be constructed in general,
our specific computations show that at one loop, most of these operators derive from a single symmetrized
trace and are thus always correlated. In particular, no matter the representation or spin of the particle in
the loop:
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where we used [T a
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R together with Eq. (31) and imposed the Jacobi identity fabef cde =

facef bde
� fadef bce. Thanks to this reduction, Mabcd matches the four-boson amplitude obtained from the

L(2)

eff and L(3)

eff couplings at the O(m0) and O(m�2).

At O(m�4), these same combinations Dabcd
1,2,3 induce the operators tuned by �4,5 and �4,6, which involve

the structure constants. The rest is proportional to the fully symmetrized trace

Dabcd
0

= Cabcd
1

+ Cabcd
2

+ Cabcd
3

=
1

4
S Tr(T a

RT b
RT c

RT d
R) . (34)

As detailed in Appendix B, for a general SU(N) algebra, the fully symmetrized trace decomposes into
quadratic and quartic invariants. Plugging Eq. (91) in Eq. (34),
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where dabcd is the fully symmetric fourth-order symbol normalized such that I4(F) = 1 for the defining
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where A denotes the adjoint representation and N(R) the dimension of the representation R. The term
proportional to ⇤(R) matches onto the operators tuned by �4,1 to �4,4, while that proportional to dabcd

requires to extend L(4)

eff of Eq. (25) with two extra operators. The total e↵ective Lagrangian is then:
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The need of a total of eight operators for SU(N) and their connection with the quartic tensor structure
is in agreement with Ref. [25]. Note, however, that the definition of ⇤(R) is a matter of convention, and
it indirectly a↵ects the definition of all the operators but those tuned by �4,3 and �4,6. Yet, adopting
the convention in Eq. (36) for ⇤(R) looks optimal since it ensures I4(R) = 0 for all SU(2) and SU(3)
representations, as it should since these algebras have no irreducible invariant tensor of rank four. As
said before, all these results stay valid for SO(N) algebras, but for a single exception. As explained in
Appendix B, SO(8) has the unique feature of having two quartic symbols, and an additional term occurs in
Eq. (35). In that case, two extra operators are required, tuned by the second quartic symbol of Eq. (96).

Now, even if a total of eight (or ten for SO(8)) independent operators can be constructed in general,
our specific computations show that at one loop, most of these operators derive from a single symmetrized
trace and are thus always correlated. In particular, no matter the representation or spin of the particle in
the loop:
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where we used [T a
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As detailed in Appendix B, for a general SU(N) algebra, the fully symmetrized trace decomposes into
quadratic and quartic invariants. Plugging Eq. (91) in Eq. (34),
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where dabcd is the fully symmetric fourth-order symbol normalized such that I4(F) = 1 for the defining
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where A denotes the adjoint representation and N(R) the dimension of the representation R. The term
proportional to ⇤(R) matches onto the operators tuned by �4,1 to �4,4, while that proportional to dabcd

requires to extend L(4)

eff of Eq. (25) with two extra operators. The total e↵ective Lagrangian is then:
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The need of a total of eight operators for SU(N) and their connection with the quartic tensor structure
is in agreement with Ref. [25]. Note, however, that the definition of ⇤(R) is a matter of convention, and
it indirectly a↵ects the definition of all the operators but those tuned by �4,3 and �4,6. Yet, adopting
the convention in Eq. (36) for ⇤(R) looks optimal since it ensures I4(R) = 0 for all SU(2) and SU(3)
representations, as it should since these algebras have no irreducible invariant tensor of rank four. As
said before, all these results stay valid for SO(N) algebras, but for a single exception. As explained in
Appendix B, SO(8) has the unique feature of having two quartic symbols, and an additional term occurs in
Eq. (35). In that case, two extra operators are required, tuned by the second quartic symbol of Eq. (96).

Now, even if a total of eight (or ten for SO(8)) independent operators can be constructed in general,
our specific computations show that at one loop, most of these operators derive from a single symmetrized
trace and are thus always correlated. In particular, no matter the representation or spin of the particle in
the loop:
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L(2)

eff and L(3)

eff couplings at the O(m0) and O(m�2).

At O(m�4), these same combinations Dabcd
1,2,3 induce the operators tuned by �4,5 and �4,6, which involve

the structure constants. The rest is proportional to the fully symmetrized trace
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As detailed in Appendix B, for a general SU(N) algebra, the fully symmetrized trace decomposes into
quadratic and quartic invariants. Plugging Eq. (91) in Eq. (34),
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0

= 6I4(R)dabcd + 6⇤(R)(�ab�cd + �ac�bd + �ad�bc) , (35)

where dabcd is the fully symmetric fourth-order symbol normalized such that I4(F) = 1 for the defining
representation, and
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where A denotes the adjoint representation and N(R) the dimension of the representation R. The term
proportional to ⇤(R) matches onto the operators tuned by �4,1 to �4,4, while that proportional to dabcd

requires to extend L(4)

eff of Eq. (25) with two extra operators. The total e↵ective Lagrangian is then:
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The need of a total of eight operators for SU(N) and their connection with the quartic tensor structure
is in agreement with Ref. [25]. Note, however, that the definition of ⇤(R) is a matter of convention, and
it indirectly a↵ects the definition of all the operators but those tuned by �4,3 and �4,6. Yet, adopting
the convention in Eq. (36) for ⇤(R) looks optimal since it ensures I4(R) = 0 for all SU(2) and SU(3)
representations, as it should since these algebras have no irreducible invariant tensor of rank four. As
said before, all these results stay valid for SO(N) algebras, but for a single exception. As explained in
Appendix B, SO(8) has the unique feature of having two quartic symbols, and an additional term occurs in
Eq. (35). In that case, two extra operators are required, tuned by the second quartic symbol of Eq. (96).

Now, even if a total of eight (or ten for SO(8)) independent operators can be constructed in general,
our specific computations show that at one loop, most of these operators derive from a single symmetrized
trace and are thus always correlated. In particular, no matter the representation or spin of the particle in
the loop:
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where we used [T a
R, T b

R] = ifabcT c
R together with Eq. (31) and imposed the Jacobi identity fabef cde =

facef bde
� fadef bce. Thanks to this reduction, Mabcd matches the four-boson amplitude obtained from the
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At O(m�4), these same combinations Dabcd
1,2,3 induce the operators tuned by �4,5 and �4,6, which involve

the structure constants. The rest is proportional to the fully symmetrized trace
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As detailed in Appendix B, for a general SU(N) algebra, the fully symmetrized trace decomposes into
quadratic and quartic invariants. Plugging Eq. (91) in Eq. (34),

Dabcd
0

= 6I4(R)dabcd + 6⇤(R)(�ab�cd + �ac�bd + �ad�bc) , (35)

where dabcd is the fully symmetric fourth-order symbol normalized such that I4(F) = 1 for the defining
representation, and
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where A denotes the adjoint representation and N(R) the dimension of the representation R. The term
proportional to ⇤(R) matches onto the operators tuned by �4,1 to �4,4, while that proportional to dabcd

requires to extend L(4)

eff of Eq. (25) with two extra operators. The total e↵ective Lagrangian is then:
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The need of a total of eight operators for SU(N) and their connection with the quartic tensor structure
is in agreement with Ref. [25]. Note, however, that the definition of ⇤(R) is a matter of convention, and
it indirectly a↵ects the definition of all the operators but those tuned by �4,3 and �4,6. Yet, adopting
the convention in Eq. (36) for ⇤(R) looks optimal since it ensures I4(R) = 0 for all SU(2) and SU(3)
representations, as it should since these algebras have no irreducible invariant tensor of rank four. As
said before, all these results stay valid for SO(N) algebras, but for a single exception. As explained in
Appendix B, SO(8) has the unique feature of having two quartic symbols, and an additional term occurs in
Eq. (35). In that case, two extra operators are required, tuned by the second quartic symbol of Eq. (96).

Now, even if a total of eight (or ten for SO(8)) independent operators can be constructed in general,
our specific computations show that at one loop, most of these operators derive from a single symmetrized
trace and are thus always correlated. In particular, no matter the representation or spin of the particle in
the loop:
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where we used [T a
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R] = ifabcT c
R together with Eq. (31) and imposed the Jacobi identity fabef cde =

facef bde
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L(2)

eff and L(3)

eff couplings at the O(m0) and O(m�2).
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As detailed in Appendix B, for a general SU(N) algebra, the fully symmetrized trace decomposes into
quadratic and quartic invariants. Plugging Eq. (91) in Eq. (34),

Dabcd
0

= 6I4(R)dabcd + 6⇤(R)(�ab�cd + �ac�bd + �ad�bc) , (35)

where dabcd is the fully symmetric fourth-order symbol normalized such that I4(F) = 1 for the defining
representation, and
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where A denotes the adjoint representation and N(R) the dimension of the representation R. The term
proportional to ⇤(R) matches onto the operators tuned by �4,1 to �4,4, while that proportional to dabcd

requires to extend L(4)

eff of Eq. (25) with two extra operators. The total e↵ective Lagrangian is then:
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The need of a total of eight operators for SU(N) and their connection with the quartic tensor structure
is in agreement with Ref. [25]. Note, however, that the definition of ⇤(R) is a matter of convention, and
it indirectly a↵ects the definition of all the operators but those tuned by �4,3 and �4,6. Yet, adopting
the convention in Eq. (36) for ⇤(R) looks optimal since it ensures I4(R) = 0 for all SU(2) and SU(3)
representations, as it should since these algebras have no irreducible invariant tensor of rank four. As
said before, all these results stay valid for SO(N) algebras, but for a single exception. As explained in
Appendix B, SO(8) has the unique feature of having two quartic symbols, and an additional term occurs in
Eq. (35). In that case, two extra operators are required, tuned by the second quartic symbol of Eq. (96).

Now, even if a total of eight (or ten for SO(8)) independent operators can be constructed in general,
our specific computations show that at one loop, most of these operators derive from a single symmetrized
trace and are thus always correlated. In particular, no matter the representation or spin of the particle in
the loop:
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As detailed in Appendix B, for a general SU(N) algebra, the fully symmetrized trace decomposes into
quadratic and quartic invariants. Plugging Eq. (91) in Eq. (34),
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where dabcd is the fully symmetric fourth-order symbol normalized such that I4(F) = 1 for the defining
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where A denotes the adjoint representation and N(R) the dimension of the representation R. The term
proportional to ⇤(R) matches onto the operators tuned by �4,1 to �4,4, while that proportional to dabcd
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The need of a total of eight operators for SU(N) and their connection with the quartic tensor structure
is in agreement with Ref. [25]. Note, however, that the definition of ⇤(R) is a matter of convention, and
it indirectly a↵ects the definition of all the operators but those tuned by �4,3 and �4,6. Yet, adopting
the convention in Eq. (36) for ⇤(R) looks optimal since it ensures I4(R) = 0 for all SU(2) and SU(3)
representations, as it should since these algebras have no irreducible invariant tensor of rank four. As
said before, all these results stay valid for SO(N) algebras, but for a single exception. As explained in
Appendix B, SO(8) has the unique feature of having two quartic symbols, and an additional term occurs in
Eq. (35). In that case, two extra operators are required, tuned by the second quartic symbol of Eq. (96).

Now, even if a total of eight (or ten for SO(8)) independent operators can be constructed in general,
our specific computations show that at one loop, most of these operators derive from a single symmetrized
trace and are thus always correlated. In particular, no matter the representation or spin of the particle in
the loop:
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Figure 5: Examples of two-loop diagrams in the SM that preserves (a) or violate (b) the one-loop predictions
Eq. (38) among the gluonic operators. The particle circulating in the loops are heavy quarks, and the dashed
lines denote the Higgs boson.
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Table 3: Wilson coe�cients of the e↵ective operators for SU(N) or SO(N 6= 8) gauge bosons, as induced
by a set of complex fields of spin 0, 1/2, and 1 transforming under the representation R. For real fields, all
the coe�cients should be halved.

There are thus two operator combinations that never occur in the one-loop e↵ective action. From an
e↵ective theory point of view, this should remain true in most cases since it derives from the symmetry of
the amplitude. A necessary condition beyond one-loop is the absence of diagrams where the color flow is
disconnected, that is, where a product of traces over the generators occurs instead of a single trace. This
never happens if only one heavy state is integrated out, but could arise in more general settings. For example,
in the SM, integrating out heavy quarks together with the Higgs boson, the diagrams in Fig. 5 arise at two
loops. Since the CP-conserving e↵ective Higgs coupling to two gluons is of the form h0Ga

µ⌫G
a,µ⌫ , it is clear

that the Higgs boson exchange in Fig. 5b contribute to �4,1 but not to �4,3.
The coe�cients for a complex field (fermion, scalar, vector particle) circulating in the loops are given in

Table 3. Those for a self-conjugate particle are half of those quoted there. Indeed, when the propagator is not
oriented, some Feynman diagrams get an extra symmetry factor 1/2, while for others, the loop momentum
cannot be reversed and runs in only one direction. This latter situation also brings a factor 1/2 because
(T a

R)T = �T a
R for a real representation. For example, instead of Eq. (31), the triangle diagrams are now

tuned by

Tr(T a
RT b

RT c
R)

��
self�conjugate

=
1

2
Tr(T a

R[T b
R, T c

R]) =
1

2
iI2(R)fabc . (39)
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Figure 6: Evolution of ⇤(R) as a function of the dimension N(R) for SU(2) and SU(3). In the former case,
we denote the first few representations by the corresponding isospin. In the SU(3) case, several branches are
apparent, each starting with a real representation. The horizontal dashed lines depict the Euler-Heisenberg
value, identified as ⇤(1) = 1/3 for a charge-one loop particle from Eq. (48).

Similarly, the coe�cients for the four-point amplitude satisfy

Cabcd
1
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self�conjugate

= Tr(T a
RT b

RT d
RT c

R) =
1

2
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1

2
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1
. (40)

We checked this property of the coe�cients for two physically relevant cases: the contribution to the gluon
coe�cients of the SU(5) Higgs bosons Ha

G and of the MSSM gluinos, both self-conjugate fields transforming
in the adjoint representation of SU(3)C .

4.1 Reduction to SU(3) and SU(2)

The general basis of e↵ective operators reduces immediately to SU(3) by removing the quartic invariant

operators, i.e., by setting �4,7 and �4,8 to zero. For the fundamental representation, ISU(3)

2
(F) = 1/2 and

⇤SU(3)(F) = 1/24, and we recover the results of Table 2. But, an interesting feature appears for more
general representations. A priori, as the representation get larger, one would expect the strength of the
e↵ective interactions to increase mechanically due to the increased number of particles circulating in the
loop. However, we show in Fig. 6 that ⇤(R) grows much faster than N(R). The fastest growth happens
for representations which are the symmetric tensor products of the fundamental representations, for which
⇤(R) ⇠ N(R)3. For instance, ⇤(3) = 1/24 but ⇤(6 = 3 ⌦S 3) = 17/24, ⇤(10 = 3 ⌦S 3 ⌦S 3) = 99/24,
and ⇤(15 = 3⌦S 3⌦S 3⌦S 3) = 371/24. The adjoint representation is not on this series, but the e↵ective
interactions are nevertheless stronger than naively expected from the dimension since ⇤SU(3)(8) = 3/4 =
18⇥⇤SU(3)(3). Interestingly, this corresponds to physically sensible scenarios, for example that of the gluinos
in the MSSM for which (including the 1/2 factor for self-conjugate particles):
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18
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10m4
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, (41)

which is an order of magnitude larger than the coe�cient of the e↵ective photon interactions of the Euler-
Heisenberg Lagrangian.

For SU(2), the e↵ective Lagrangian gets simpler thanks to the identity

fabef cde
! "abe"cde = �ac�bd � �ad�bc , (42)

which permits to get rid of two operators. Expressing the remaining four operators explicitly in terms of the
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3,µ⌫)2

+
4(�4,1 + �4,5)g4

6!⇡2m4
W 3

µ⌫W
3,µ⌫W+

⇢�W
�,⇢� +

4(�4,2 + �4,6)g4

6!⇡2m4
W 3

µ⌫W̃
3,µ⌫W+

⇢�W̃
�,⇢�

+
4(�4,3 � �4,5)g4

6!⇡2m4
|W 3

µ⌫W
+,µ⌫

|
2 +

4(�4,4 � �4,6)g4

6!⇡2m4
|W 3

µ⌫W̃
+,µ⌫

|
2

+
2(2�4,1 + �4,3 + �4,5)g4

6!⇡2m4
(W+

µ⌫W
�,µ⌫)2 +

2(�4,4 � �4,6)g4

6!⇡2m4
|W+

µ⌫W̃
+,µ⌫

|
2

+
2(�4,3 � �4,5)g4

6!⇡2m4
|W+

µ⌫W
+,µ⌫

|
2 +

2(2�4,2 + �4,4 + �4,6)g4

6!⇡2m4
(W+

µ⌫W̃
�,µ⌫)2 . (43)

These operators and coe�cients are obtained from the e↵ective action, and are independent of the invariant
mass of the external states. Thus, they remain valid for massive external weak bosons, at least as long as
m is su�ciently large compared to MZ,W . An important caveat though, of relevance for the SM, is the
presence of chiral fermions. Those cannot be massive without breaking the gauge symmetry, so the inverse
mass expansion is defined only in the broken phase. Non-gauge invariant operators can then arise, at both
the O(m0) and O(m�2) level.

Concerning the strength of the e↵ective interactions, here also ⇤(R) grows much faster than N(R). Ac-
tually, as the SU(2) representations are smaller than those of SU(3), the increase is much more pronounced,
with ⇤(R) ⇠ N(R)5, see Fig. 6. So, while ⇤(F) = 1/24, it is already an order of magnitude stronger for the
adjoint representation, ⇤(3) = 2/3 = 16⇥ ⇤(2).

To close this section, it is instructive to look at the application of the SU(N) result from a group-theoretic
perspective. Up to now, the SU(2) and SU(3) e↵ective Lagrangians are obtained simply by setting N = 2
or N = 3 in the general result. But, if SU(N) is large enough to contain an SU(2) or SU(3) subalgebra,
we could also ask where these pieces are in the general SU(N) Lagrangian. More generally, consider the
e↵ective Lagrangian for a representation RM of SU(M). These N(RM ) states organize themselves into
representations of SU(N) ⇢ SU(M), that is, RM branches into a direct sum of SU(N) representations RN .
So, from the SU(N) perspective, the SU(M) coe�cients encode the circulation of a collection of states in
the loop. Since these contributions simply add up, the SU(M) coe�cients must be the sum over the SU(N)
coe�cients for all the RN representations present in the representation RM . Going back to Eq. (35), we
must thus have

1

6
Dabcd

0
= I4(RM )dabcdM + ⇤N (RM )(�ab�cd + �ac�bd + �ad�bc)

=
X

RN⇢RM

I4(RN )dabcdN +
X

RN⇢RM

⇤N (RN )(�ab�cd + �ac�bd + �ad�bc) , (44)

where the indices a, b, c, d are understood to denote those SU(M) generators that correspond to the SU(N)
subalgebra. The main di�culty though is that even restricted to those particular generators, dabcdM 6= dabcdN
because the definition of the quartic invariant involves di↵erent functions ⇤N and ⇤M . To proceed, let us
assume that the fundamental representation has the branching rule FM ! FN . Knowing that by definition,
I4(FM ) = I4(FN ) = 1, we find

I4(RM ) =
X

RN⇢RM

I4(RN ) , (45a)

I4(RM )(⇤N (FN )� ⇤M (FM )) + ⇤M (RM ) =
X

RN⇢RM

⇤N (RN ) . (45b)

Using the numbers quoted in Appendix B and the branching rules in Ref. [60], one can check that the two
formulas are valid for SU(3) ⇢ SU(4) and SU(4) ⇢ SU(5). The second one also applies to SU(2) ⇢ SU(3)
in which case it becomes a sum rule for the ⇤ functions since I4(R) = 0 in SU(3). From a calculation point
of view, once the branching rules of the SU(M) representations are known, these equations are particularly
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powerful, with the second one even allowing to compute I4(RM ) in terms of ⇤N and ⇤M , that is, entirely
in terms of the quadratic invariants I2(RN ) and I2(RM ).

Thanks to the convention Eq. (36), the branching rule for the I4 invariant is very simple [34], but there is
a price to pay. Some part of the �4,7 and �4,8 operators of SU(M) are moved into the �4,1 to �4,4 operators
of SU(N < M). This is due to the very definition of the operators in terms of di↵erent quartic symbols, and
not related to the loop structure of the amplitude or the specific branching rules. For example, if for some
unification group a specific mechanism is found that generates only �4,7 and �4,8, the four operators tuned
by �4,1 to �4,4 are in general present once the symmetry is spontaneously broken simply because the dabcd

symbol is defined di↵erently within the surviving subalgebra.

4.2 Reduction to U(1)

Comparing the SU(N) coe�cients �4,i in Table 3 with the Euler-Heisenberg results in Table 1, the two clearly
appear related. Heuristically, it is simple to understand this relationship by adapting the decomposition
Eq. (32) to the U(1) case. When only a single generator occurs, C1 = C2 = C3 = 2Q4. This ensures the
cancellation of the UV divergence, and more generally the absence of all the operators tuned by the structure
constants. The whole amplitude is then proportional to

D0 ⌘ C1 + C2 + C3 = 6Q4 . (46)

Since the same factor of 6 occurs in the SU(N) result in Eq. (35), it is clear that �EH
4,1 and �EH

4,2 can be obtained

equivalently from �SU(N)

4,1 , �SU(N)

4,2 with ⇤(R) ! Q4 or from �SU(N)

4,7 , �SU(N)

4,8 with I4(R) ! Q4, in agreement
with Table 3 and Table 1. Obviously, this line of reasoning is a naive identification of the coe�cients of the
loop functions, not a group-theoretic reduction of SU(N) down to one of its U(1) subgroup.

To perform a true reduction, let us denote T a one of the diagonal generators of the Cartan algebra of
SU(N). This generator induces a U(1)↵ ⇢ SU(N) for which the SU(N) e↵ective Lagrangian reduces to

L(4)

eff (U(1)↵ ⇢ SU(N)) = (�4,1 + �4,3 + d↵↵↵↵�4,7)
g4S

6!⇡2m4
G↵

µ⌫G
↵,µ⌫G↵

⇢�G
↵,⇢�

+ (�4,2 + �4,4 + d↵↵↵↵�4,8)
g4S

6!⇡2m4
G↵

µ⌫G̃
↵,µ⌫G↵

⇢�G̃
↵,⇢� . (47)

The Euler-Heisenberg result must arise from a combination of six of the eight SU(N) operators, including
those involving the quartic invariant. Looking back at their values in Table 3 for a given representation R,
this reduction matches the results in Table 1 for scalar, fermion, and vector provided a single condition is
satisfied:

3⇤(R) + d↵↵↵↵I4(R) =
X

q↵2R

q4↵ . (48)

The sum on the right-hand side is carried over all the states in the representation R. To see that this
condition holds in general, it su�ces to go back to the very definition of the quartic invariant, Eq. (91),
which becomes for a single generator:

1

4!
S Tr(T↵

RT↵
RT↵

RT↵
R) = Tr((T↵

R)4) = I4(R)d↵↵↵↵ + 3⇤(R) . (49)

Since T↵
R is diagonal, the trace collapses to a sum over the quartic power of its eigenvalues, i.e., over the

quartic power of the U(1)↵ charges of the states of the representation R. The final step to match Table 1 is
to rescale the generator T↵

R to properly normalize the U(1)↵ charge in units of Q. Note that this relation can
be trivially generalized to other Casimir invariants. In particular, for the dimension-four and six operators,
I2(R) = Tr((T↵

R)2) =
P

q↵2R q2↵, showing that the ↵i coe�cients for SU(N) reduce to those for QED under

the naive substitution I2(R) ! Q2 in Table 3.
Numerical applications to illustrate this formula are in Appendix B. Note that for both SU(2) and SU(3),

there is no quartic invariant and the Euler-Heisenberg coe�cients for a single unit charge state are formally
obtained setting ⇤(1) = 1/3 in Eq. (48). This value is plotted in Fig. 6 for comparison.
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An axionic toy model: simple QED extension

L = �1

4
Fµ⌫F

µ⌫ +  ̄L(iD) L+  ̄R(iD) R+(y� ̄L R+h.c.)+@µ�
†@µ��V (�)

U(1)em

U(1)PQ

�

�! exp(�i✓)� ,  L ! exp(i↵✓) L ,  R ! exp(i(↵+ 1)✓) R .

•local

global fermion number

Goldstone boson (axion) remnant of                 S.S.B.

�(x) = 1p
2
(v + �0(x))e�ia0(x)/v

�(x) = �0(x) + ia0(x) + vLinear representation:

Polar representation:

U(1)PQ

chiral anomaly
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Linear representation
�(x) = �0(x) + ia0(x) + v

LLinear � 1
2@µa

0@µa0 + m
v a

0 ̄i�5 

Figure 1: Triangle graphs inducing the a
0
! �� decay.

Since � is not charged under U(1)em, a0 does not directly couple to photons. However, this coupling
arises through one-loop triangle graphs, see Fig. 1. Adopting the Pauli-Villars procedure to regulate
the loop amplitude in intermediate steps, we compute

T
↵�

PV V
=

Z
d
4
k

(2⇡)4
(�1)Tr

"
i

/k � /q1
�m

�
↵

i

/k �m
�
�

i

/k + /q2
�m

�5

#
+ (1,↵ $ 2,�) + (m ! M)

= �i
1

2⇡2
"
↵�⇢�

q1,⇢q2,�(mC0(m
2)�MC0(M

2)) . (7)

The three-point scalar function C0(m2) ⌘ C0(q21, q
2
2, (q1 + q2)2;m2

,m
2
,m

2) obeys1

lim
m!1

C0(m
2) =

�1

2m2
, lim

m!0
m

2
C0(m

2) = 0 . (8)

The regulator M can thus safely be sent to infinity, and the decay amplitude in the linear repre-
sentation for the scalar field is

M(a0 ! ��)Linear = �i
m

v
e
2
T

↵�

PV V
"(q1)

⇤
↵"(q2)

⇤
�
= �

e
2

2⇡2v
m

2
C0(m

2)"↵�⇢�"(q1)
⇤
↵"(q2)

⇤
�
q1,⇢q2,� . (9)

In the m ! 1 limit, this amplitude corresponds to the local interaction

L
e↵
Linear = �

e
2

16⇡2v
a
0
Fµ⌫F̃

µ⌫
. (10)

It is interesting to remark that this term is not decoupling, even though T
↵�

PV V
! 0 as m ! 1,

thanks to the m factor coming from the a
0 coupling to the fermion. Still, at the level of the

linearly-realized theory, anomalies do not show up and the loop amplitude can be safely computed
using a naive regularization procedure, even if we know from the fermion charges in Eq. (4) that
U(1)PQ is anomalous.

2.2 Polar representation

Instead of the linear representation for the scalar field, there is another representation more suited
to the circular geometry of the vacuum. The polar or exponential representation is

�(x) =
1
p
2
(v + �

0(x))e�ia
0(x)/v

. (11)

1We use the notations and conventions of Ref. [4]

3

Le↵
Linear = � e2

16⇡2v
a0Fµ⌫ F̃

µ⌫
m ! 1

loop amplitude can safely be computed using a naive 
regularization procedure even if                 is anomalousU(1)PQ

Pauli-Villars regulator

Anomalies do no show up :



reparametrize fermion fields (invariant under               ):

 22

Polar representation
�(x) = 1p

2
(v + �0(x))e�ia0(x)/v

 L(x) ! exp(i↵a0(x)/v) L(x) ,  R(x) ! exp(i(↵+ 1)a0(x)/v) R(x)

�LDer = �@µa
0

v
(↵ ̄L�

µ L+(↵+1) ̄R�
µ R) = �@µa

0

2v
((2↵+1) ̄�µ + ̄�µ�5 )

�LJac =
e2

16⇡2v
a0(↵� (↵+ 1))Fµ⌫ F̃

µ⌫ = � e2

16⇡2v
a0Fµ⌫ F̃

µ⌫

LPolar � 1
2@µa

0@µa0 + �LDer + �LJac

U(1)PQ

•      disapears from the Yukawaa0

•Fermion kinetic term induce derivative interactions

•Fermionic path integral measure is not invariant: 

L = �1

4
Fµ⌫F

µ⌫ +  ̄L(iD) L+  ̄R(iD) R+(y� ̄L R+h.c.)+@µ�
†@µ��V (�)

L = �1

4
Fµ⌫F

µ⌫ +  ̄L(iD) L+  ̄R(iD) R+(y� ̄L R+h.c.)+@µ�
†@µ��V (�)

new local interaction (Jacobian of the transformation)
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Polar representation

Then, under the action of a U(1)PQ rotation of parameter ✓, the component fields have simple
(though non-linear) transformation properties: the � field is constant, �0 ! �

0, while the axion is
shifted by a constant, a0 ! a

0 + v✓. Importantly, and even if we are using the same notations a0

and �0, these fields are not the same ones as in Eq. (5). In particular, the a
0 couples di↵erently to

fermions. Clearly, expanding the exponential, couplings of arbitrarily high dimensions are present,
and the theory is no longer manifestly renormalizable.

As a next step, after plugging the polar representation of � in the Lagrangian, we perform a
reparametrization of the fermion fields to make them invariant under U(1)PQ:

 L(x) ! exp(i↵a0(x)/v) L(x) ,  R(x) ! exp(i(↵+ 1)a0(x)/v) R(x) . (12)

This has three e↵ects. First, the Goldstone field disappears from the Yukawa coupling. Second,
the fermion kinetic terms induce derivative interactions,

�LDer = �
@µa

0

v
(↵ ̄L�

µ
 L + (↵+ 1) ̄R�

µ
 R) = �

@µa
0

2v
((2↵+ 1) ̄�µ +  ̄�

µ
�5 ) , (13)

where one can recognize the fermionic current associated to the U(1)PQ symmetry. Third, the
fermionic path integral measure is not invariant, and the Jacobian of the transformation has to be
included as a new local interaction:

�LJac =
e
2

16⇡2v
a
0(↵� (↵+ 1))Fµ⌫F̃

µ⌫ = �
e
2

16⇡2v
a
0
Fµ⌫F̃

µ⌫
. (14)

The whole non-linear Lagrangian is thus

LPolar = �
1

4
Fµ⌫F

µ⌫ +  ̄(i /D) +m ̄ 

✓
1 +

�
0

v

◆

+
1

2
@µa

0
@
µ
a
0

✓
1 +

�
0

v

◆2

�
@µa

0

2v
((2↵+ 1) ̄�µ +  ̄�

µ
�5 )�

e
2

16⇡2v
a
0
Fµ⌫F̃

µ⌫

+
1

2
(@µ�

0
@
µ
�
0
� 2�v2(�0)2)� �v(�0)3 �

�

4
(�0)4 �

�v
4

4
. (15)

Under this form, the Lagrangian is manifestly U(1)PQ-symmetric but for the local Jacobian term
a
0
Fµ⌫F̃

µ⌫ since �0,  L,R, and A
µ are invariant but a

0 is shifted by a constant. This permits to
get rid of any pre-existing ✓emFµ⌫F̃

µ⌫ term in the Lagrangian, by shifting a
0
! a

0 + v✓em. Of
course, for an abelian theory, Fµ⌫F̃

µ⌫ is a total derivative that can be safely discarded, but this
toy model can easily be adapted to the non-abelian case, and closely resembles the KSVZ invisible
axion model [12] when applied to QCD.

Let us now compute a
0
! �� within the non-linearly realized theory. Together with the

local amplitude from �LJac, we must include the triangle graphs arising from �LDer, which have
both a vector and axial component. The vector current V µ =  ̄�

µ
 does not contribute since the

photon couplings are also vectorial, and the corresponding triangle graph vanishes thanks to Furry’s
theorem. The axial current Aµ = i ̄�

µ
�5 , on the other hand, gives a non-zero contribution. We

recognize the well-known AV V triangle graph:

T
�↵�

AV V
=

Z
d
4
k

(2⇡)4
(�1)Tr

"
i

/k � /q1
�m

�
↵

i

/k �m
�
�

i

/k + /q2
�m

�
�
�5

#
+ (1,↵$ 2,�) . (16)

4
no « VVV » diagram (Furry theorem)

Adopting a Pauli-Villars regularization, we add to this a second term with m ! M , and proceed
with the calculation in d = 4 dimensions. With the derivative from @µa

0 amounting to taking the
divergence, we find

M(a0 ! ��)Der =
�e

2

2v
i(q1 + q2)�T

�↵�

AV V
"(q1)

⇤
↵"(q2)

⇤
�

=
�e

2

4⇡2v
(2m2

C0(m
2)� 2M2

C0(M
2))"↵�⇢�"(q1)

⇤
↵"(q2)

⇤
�
q1,⇢q2,� . (17)

The regulator term does not decouple in the M ! 1 limit but gives a finite local contribution.
Interestingly, this contribution precisely cancel with the local term from �LJac, so altogether, we
recover precisely the result obtained in the linear case, see Eq. (9):

M(a0 ! ��)Polar = M(a0 ! ��)Der +M(a0 ! ��)Jac (18)

= �
e
2

2⇡2v
m

2
C0(m

2)"↵�⇢�"(q1)
⇤
↵"(q2)

⇤
�
q1,⇢q2,� = M(a0 ! ��)Linear . (19)

This exercise illustrates a number of important features:

• In the polar representation, the appearance of the anomalous local term a
0
Fµ⌫F̃

µ⌫ is spurious.
When computing specific amplitudes, it only serves to cancel out the anomalous term arising
from the derivative interaction @µa0 ̄�µ�5 . At the end, this is nothing but an application
of the well-known axial current Ward identity:

@µA
µ
�

e
2

8⇡2
Fµ⌫F̃

µ⌫ = 2imP , (20)

where P =  ̄�5 , Aµ =  ̄�
µ
�5 . The right-hand side corresponds to the amplitude in the

linear representation, and the left-hand side to the two contributions arising in the polar
representation. It is thus clear that it would be wrong to understand the a

0
! �� coupling

as induced by the anomaly. The anomalous interaction of Eq. (14) only arises because of the
reparametrization in Eq. (12), and necessarily comes together with the appropriate derivative
interactions.

• In the m ! 0 limit, the a
0
! �� amplitude vanishes exactly,

M(a0 ! ��)Linear = M(a0 ! ��)Polar

m!0
= 0 . (21)

In the linear representation, this trivially follows from the vanishing of the coupling of a0

to fermions, see Eq. (6). In the polar representation, it requires an exact cancellation of
the local anomalous contribution with the non-local triangle amplitudes. Again, this can be
understood in terms of the axial current Ward identity. In this limit, the spurious nature of
the contact interaction is manifest.

• The reason why a
0
! �� is often misinterpreted as induced by the anomaly can be understood

looking at the m ! 1 limit. Indeed, the contribution of the derivative term vanishes,

M(a0 ! ��)Der
m!1
= 0 , (22)

as can be trivially seen in Eq. (17). Since then all that remains in the non-linear theory is the
local term from �LJac, it necessarily corresponds to the contribution surviving in the m ! 1
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The regulator term does not decouple in the M ! 1 limit but gives a finite local contribution.
Interestingly, this contribution precisely cancel with the local term from �LJac, so altogether, we
recover precisely the result obtained in the linear case, see Eq. (9):
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This exercise illustrates a number of important features:

• In the polar representation, the appearance of the anomalous local term a
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Fµ⌫F̃
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When computing specific amplitudes, it only serves to cancel out the anomalous term arising
from the derivative interaction @µa0 ̄�µ�5 . At the end, this is nothing but an application
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as induced by the anomaly. The anomalous interaction of Eq. (14) only arises because of the
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In the linear representation, this trivially follows from the vanishing of the coupling of a0
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the local anomalous contribution with the non-local triangle amplitudes. Again, this can be
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The regulator term does not decouple in the M ! 1 limit but gives a finite local contribution.
Interestingly, this contribution precisely cancel with the local term from �LJac, so altogether, we
recover precisely the result obtained in the linear case, see Eq. (9):
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This exercise illustrates a number of important features:

• In the polar representation, the appearance of the anomalous local term a
0
Fµ⌫F̃

µ⌫ is spurious.
When computing specific amplitudes, it only serves to cancel out the anomalous term arising
from the derivative interaction @µa0 ̄�µ�5 . At the end, this is nothing but an application
of the well-known axial current Ward identity:
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where P =  ̄�5 , Aµ =  ̄�
µ
�5 . The right-hand side corresponds to the amplitude in the

linear representation, and the left-hand side to the two contributions arising in the polar
representation. It is thus clear that it would be wrong to understand the a

0
! �� coupling

as induced by the anomaly. The anomalous interaction of Eq. (14) only arises because of the
reparametrization in Eq. (12), and necessarily comes together with the appropriate derivative
interactions.

• In the m ! 0 limit, the a
0
! �� amplitude vanishes exactly,

M(a0 ! ��)Linear = M(a0 ! ��)Polar

m!0
= 0 . (21)

In the linear representation, this trivially follows from the vanishing of the coupling of a0

to fermions, see Eq. (6). In the polar representation, it requires an exact cancellation of
the local anomalous contribution with the non-local triangle amplitudes. Again, this can be
understood in terms of the axial current Ward identity. In this limit, the spurious nature of
the contact interaction is manifest.

• The reason why a
0
! �� is often misinterpreted as induced by the anomaly can be understood

looking at the m ! 1 limit. Indeed, the contribution of the derivative term vanishes,

M(a0 ! ��)Der
m!1
= 0 , (22)

as can be trivially seen in Eq. (17). Since then all that remains in the non-linear theory is the
local term from �LJac, it necessarily corresponds to the contribution surviving in the m ! 1
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limit in the linear theory, Eq. (10). Yet, this is only a parametric correspondence, and certainly
not a physical identification. The anomaly still cancels in M(a0 ! ��)Der+M(a0 ! ��)Jac,
and the only surviving contribution is actually the first term of Eq. (17). Ultimately, the
local anomalous term �LJac in Eq. (14) is no more than a convenient book-keeping device
tracking all the fields that have been integrated out [9, 10].

• Furry’s theorem together with the vector current Ward identity ensures the absence of any
dependence on the free parameter ↵ in the non-linear theory, in agreement with the absence
of this parameter in the corresponding linear representation.

• As an aside, it should be clear that though the anomalous couplings in Eq. (14) is not
a↵ected by radiative corrections [13], neither are the anomalous part of the triangle graph
in Eq. (17). So, the two exactly cancel at all orders, but the a

0
! �� amplitude do get

corrected by higher order e↵ects since it is actually not induced by the anomaly. Further,
note that the theory in Eq. (3) is obviously renormalizable, so radiative corrections can be
calculated perturbatively using standard techniques. In this respect, if the photons are also
coupled to some other fermions �, the two-loop process a

0
! �� ! �̄� is even UV finite in

the linear representation [14]. This fact would clearly be di�cult to guess using the polar
representation, where the local a0 ! �� vertex from �LJac leads to a UV divergent diagram.

• As said earlier, the present toy model can be generalized to more complicated, and more
realistic KSVZ-like axion models [12]. Consider for instance the SM, to which a gauge-singlet
scalar � and a set of vector-like fermions  are added:

LKSVZ = LSM +  ̄L(i /D) L +  ̄R(i /D) R + (y� ̄L R + h.c.) + @µ�
†
@
µ
�� V (�) , (23)

with the same scalar potential as in Eq. (3). A priori, the covariant derivative can include all
three SM interactions,

D
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� igsG
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aT
a
� igW

µ

i
T
i
� ig

0Y

2
B

µ
, (24)

where T
a and T

i are the SU(3)C and SU(2)L generators in the representation carried by
 , and Y its hypercharge. Then, if yv � v � vEW , with vEW the electroweak vacuum
expectation value, the e↵ect of the heavy fermion is to induce (see Eq. (10))

L
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with the quadratic invariants C
 

C
�
ab = Tr[T a

T
b], C 

L
�
ij = Tr[T i

T
j ], and C

 

Y
= Y

2
/4, and

d
 

C,L
the corresponding dimensions of the SU(3)C and SU(2)L representations. Yet, several

points must be clear: (1) These couplings are not anomalous, but result from the appropriately
generalized Eq. (9) in the y ! 1 limit. (2) The integrated fermion must have vector couplings
to gauge fields, otherwise the free parameter ↵ corresponding to fermion number does not
cancel in Eq. (14). We will see later on how to deal with chiral theories. (3) Even if vector-
like, no mass term is allowed for  because it would explicitly break the U(1)PQ symmetry.

(4) The couplings in L
e↵,KSVZ
Linear are not protected from radiative corrections since they are

not anomalous. (5) Finally, the nature of the divergence arising when using this e↵ective
Lagrangian to compute e.g. the couplings of a0 to SM fermions is clear. In the UV complete
theory, Eq. (23), the a0 ! ��, WW , and gg vertices are never local. Instead, the pseudoscalar
triangle of Eq. (9) acts as a form factor and is su�cient to regulate the UV behavior of the
vector boson loops, making them finite.
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 24Consistent use of anomalies

3 On the consistent use of anomalies

In the course of the previous section, the anomaly appeared several times, and there is a number
of peculiarities that are worth detailing. First, consider the calculation of the local term �LJac,
see Eq. (14). The simplest way to compute the Jacobian of the transformation is to compute a
triangle graph, this time with three left-(or right-)handed currents (the momentum flow is defined
as in Fig. 1):

T
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Z
d
4
k

(2⇡)4
(�1)Tr

"
i

/k � /q1

�
�
PL

i

/k
�
�
PL

i

/k + /q2

�
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#
+ (1,� $ 2, �) , (26)

with PL = (1 � �5)/2. Following Ref. [15], the divergences of this amplitude are calculated by
first keeping track of the ambiguities in the loop momentum routing, and then from the surviving
surface terms, and one finds:
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=
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8⇡2
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=

1

8⇡2
(1� a) "↵�µ⌫q1µq2⌫ , (27c)

where a and b are free parameters, such that no choice can force all three divergences to vanish
simultaneously. For the purpose of deriving the �LJac term (Eq. (14)), since two currents have to
be conserved to preserve the U(1)em invariance (see Eq. (3)), we can choose a = �b = 1. Eq. (14)
is then recovered including both  L and  R, accounting for the fact that the anomalous terms are
opposite for T ↵��

LLL
and T

↵��

RRR
.

Yet, it is worth stressing that this choice a = �b = 1 is not the one usually adopted, as
it breaks the Bose symmetry of the amplitude under the exchange of the three currents. The
consistent anomaly is that with a = �b = 1/3, which restores the Bose symmetry as

i(q1 + q2)↵T
↵��

LLL
|Bose = �i(q1)↵T

�↵�
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|Bose = �i(q2)↵T
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q1µq2⌫ . (28)

Importantly, this choice is not always explicit. For example, using the Pauli-Villars regularization,
one immediately arrives at the Bose symmetric result (see Ref. [16]).

In terms of vector and axial currents, the V V V and V AA triangle amplitudes cancel out because
of Furry’s theorem. Remain the AV V and AAA diagrams, for which we obtain using the same
method as in Ref. [15]:

i(q1 + q2)↵T
↵��

AV V
|m=0 = i(q1 + q2)↵T

↵��
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|m=0 =

1

4⇡2
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1
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AAA
|m=0 =

1

4⇡2
(1� a) "↵�µ⌫q1µq2⌫ . (29c)

These results are valid in the massless limit for the fermions. As for the consistent anomaly, the
usual conventions are a = �b = 1 for the AV V triangle to keep the vector currents conserved,
and a = �b = 1/3 for the AAA triangle to enforce the Bose symmetry. The former case is the
basis for Eq. (17). These conventions are automatically enforced when using simple regularization
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Jacobian of the transformation: triangle graph with left handed currents

•a and b are free parameters :needed to keep track of the anomalies
Figure 1: Triangle graphs inducing the a

0
! �� decay.

Since � is not charged under U(1)em, a0 does not directly couple to photons. However, this coupling
arises through one-loop triangle graphs, see Fig. 1. Adopting the Pauli-Villars procedure to regulate
the loop amplitude in intermediate steps, we compute
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The three-point scalar function C0(m2) ⌘ C0(q21, q
2
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The regulator M can thus safely be sent to infinity, and the decay amplitude in the linear repre-
sentation for the scalar field is

M(a0 ! ��)Linear = �i
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v
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In the m ! 1 limit, this amplitude corresponds to the local interaction

L
e↵
Linear = �

e
2

16⇡2v
a
0
Fµ⌫F̃

µ⌫
. (10)

It is interesting to remark that this term is not decoupling, even though T
↵�

PV V
! 0 as m ! 1,

thanks to the m factor coming from the a
0 coupling to the fermion. Still, at the level of the

linearly-realized theory, anomalies do not show up and the loop amplitude can be safely computed
using a naive regularization procedure, even if we know from the fermion charges in Eq. (4) that
U(1)PQ is anomalous.

2.2 Polar representation

Instead of the linear representation for the scalar field, there is another representation more suited
to the circular geometry of the vacuum. The polar or exponential representation is

�(x) =
1
p
2
(v + �

0(x))e�ia
0(x)/v

. (11)

1We use the notations and conventions of Ref. [4]
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Importantly, this choice is not always explicit. For example, using the Pauli-Villars regularization,
one immediately arrives at the Bose symmetric result (see Ref. [16]).

In terms of vector and axial currents, the V V V and V AA triangle amplitudes cancel out because
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These results are valid in the massless limit for the fermions. As for the consistent anomaly, the
usual conventions are a = �b = 1 for the AV V triangle to keep the vector currents conserved,
and a = �b = 1/3 for the AAA triangle to enforce the Bose symmetry. The former case is the
basis for Eq. (17). These conventions are automatically enforced when using simple regularization
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Importantly, this choice is not always explicit. For example, using the Pauli-Villars regularization,
one immediately arrives at the Bose symmetric result (see Ref. [16]).

In terms of vector and axial currents, the V V V and V AA triangle amplitudes cancel out because
of Furry’s theorem. Remain the AV V and AAA diagrams, for which we obtain using the same
method as in Ref. [15]:
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These results are valid in the massless limit for the fermions. As for the consistent anomaly, the
usual conventions are a = �b = 1 for the AV V triangle to keep the vector currents conserved,
and a = �b = 1/3 for the AAA triangle to enforce the Bose symmetry. The former case is the
basis for Eq. (17). These conventions are automatically enforced when using simple regularization
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with PL = (1 � �5)/2. Following Ref. [15], the divergences of this amplitude are calculated by
first keeping track of the ambiguities in the loop momentum routing, and then from the surviving
surface terms, and one finds:

i(q1 + q2)↵T
↵��

LLL
=

1

8⇡2
(a� b) "��µ⌫q1µq2⌫ , (27a)

�i(q1)�T
↵��

LLL
=

1

8⇡2
(1 + b) "�↵µ⌫q1µq2⌫ , (27b)

�i(q2)�T
↵��

LLL
=

1

8⇡2
(1� a) "↵�µ⌫q1µq2⌫ , (27c)

where a and b are free parameters, such that no choice can force all three divergences to vanish
simultaneously. For the purpose of deriving the �LJac term (Eq. (14)), since two currents have to
be conserved to preserve the U(1)em invariance (see Eq. (3)), we can choose a = �b = 1. Eq. (14)
is then recovered including both  L and  R, accounting for the fact that the anomalous terms are
opposite for T ↵��

LLL
and T

↵��

RRR
.

Yet, it is worth stressing that this choice a = �b = 1 is not the one usually adopted, as
it breaks the Bose symmetry of the amplitude under the exchange of the three currents. The
consistent anomaly is that with a = �b = 1/3, which restores the Bose symmetry as

i(q1 + q2)↵T
↵��

LLL
|Bose = �i(q1)↵T

�↵�

LLL
|Bose = �i(q2)↵T

��↵

LLL
|Bose =

1

12⇡2
"
��µ⌫

q1µq2⌫ . (28)

Importantly, this choice is not always explicit. For example, using the Pauli-Villars regularization,
one immediately arrives at the Bose symmetric result (see Ref. [16]).

In terms of vector and axial currents, the V V V and V AA triangle amplitudes cancel out because
of Furry’s theorem. Remain the AV V and AAA diagrams, for which we obtain using the same
method as in Ref. [15]:

i(q1 + q2)↵T
↵��

AV V
|m=0 = i(q1 + q2)↵T

↵��

AAA
|m=0 =

1

4⇡2
(a� b) "��µ⌫q1µq2⌫ , (29a)

�i(q1)�T
↵��

AV V
|m=0 = �i(q1)�T

↵��

AAA
|m=0 =

1

4⇡2
(1 + b) "�↵µ⌫q1µq2⌫ , (29b)

�i(q2)�T
↵��

AV V
|m=0 = �i(q2)�T

↵��

AAA
|m=0 =

1

4⇡2
(1� a) "↵�µ⌫q1µq2⌫ . (29c)

These results are valid in the massless limit for the fermions. As for the consistent anomaly, the
usual conventions are a = �b = 1 for the AV V triangle to keep the vector currents conserved,
and a = �b = 1/3 for the AAA triangle to enforce the Bose symmetry. The former case is the
basis for Eq. (17). These conventions are automatically enforced when using simple regularization

7

•anomaly equally distributed (Bose symmetry) with

•careful to the regularization procedure: Pauli-Villars or dim. reg. enforce 
automatically a and b (AVV:                     ; AAA:                          ) *we do not want that!*

Figure 4: Contributions to the axion decay into �Z in the polar (left) and linear (right) represen-
tations, using the same notations as in Fig. 3. All the SM fermions but the neutrinos circulate in
the loops.

coupling is vectorial. However, this time we have two possible contributions, depending on which
current is carrying the anomaly, see Fig. 4. First, there are the usual A(@µa0) � V (�) � V (Z)
triangles, for which the anomaly is in the axial current. Using Eq. (30) with a = �b = 1, we find
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new contributions from the V (@µa0) � V (�) � A(Z) triangles, with the axion vector couplings of
Eq. (55). Using again Eq. (30) but this time with a = b = 1 to preserve SU(2)L ⌦ U(1)Y , and

noting that �i(q1)�T
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As explained in Section 3, this contribution is free of any mass-dependent term because the naive
vector current conservation must hold, up to the anomaly.

These two contributions from the derivative interactions combine with the Jacobian term from
Eq. (61),
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to give the total decay amplitude in the polar representation:

M(a0 ! �Z)Polar = M(a0 ! �Z)AV V

Der +M(a0 ! �Z)V AV

Der +M(a0 ! �Z)Jac

= M(A0
! �Z)Linear , (69)

as it should. We can now understand why M(a0 ! �Z)Jac does not match M(A0
! �Z)Linear

in the mu,d,e ! 1 limit. Indeed, while M(a0 ! �Z)AV V

Der vanishes in the mu,d,e ! 1 limit,
M(a0 ! �Z)V AV

Der obviously does not since it is independent of mu,d,e. In that limit, we should
write

M(A0
! �Z)Linear

��
mu,d,e!1 = M(a0 ! �Z)V AV

Der +M(a0 ! �Z)Jac , (70)

in which the parameters ↵ and � cancel out. So, for a chiral gauge theory, the local terms coming
from �LJac are no longer reliable book-keeping of the e↵ect of heavy fermions, because part of the
anomaly is hidden in the V AV triangle.
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Figure 4: Contributions to the axion decay into �Z in the polar (left) and linear (right) represen-
tations, using the same notations as in Fig. 3. All the SM fermions but the neutrinos circulate in
the loops.
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As explained in Section 3, this contribution is free of any mass-dependent term because the naive
vector current conservation must hold, up to the anomaly.
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write
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mu,d,e!1 = M(a0 ! �Z)V AV

Der +M(a0 ! �Z)Jac , (70)

in which the parameters ↵ and � cancel out. So, for a chiral gauge theory, the local terms coming
from �LJac are no longer reliable book-keeping of the e↵ect of heavy fermions, because part of the
anomaly is hidden in the V AV triangle.
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Figure 5: Contributions to the axion decay into ZZ andW
+
W

� in the polar (left) and linear (right)
representations, using the same notations as in Fig. 3. For ZZ, all the SM fermions circulate in
the loops in the non-linear theory, but the neutrino is absent in the linear one since we take it as
massless. For W

+
W

�, it is understood that in between the two W s, the SU(2)L partner of the
indicated fermion propagates.

Actually, the reason why the V AV triangle plays a role can be understood directly from the
fermion reparametrization, given the charges in Eq. (53). When ↵ and/or � are di↵erent from
zero, the fermionic current associated to U(1)PQ has a component aligned with baryon and/or
lepton number, respectively. The fermionic reparametrization thus generates the anomalous B+L

interactions: those correspond to the NC↵+� terms of NL and NY in Eq. (57). But as for the toy
model, these interactions are spurious and must cancel with the anomalies present in the triangle
graphs induced by the derivative interactions �LDer. This must necessarily come from a breakdown
of the vector Ward identity for the V AV triangle since B and L are purely vectorial symmetries [22].

4.3.3 The a
0
! ZZ and a

0
! W

+
W

� decays

Turning first to the a
0
! ZZ amplitude, the derivative interactions induce new types of diagrams:

the AAA triangles and graphs with neutrinos circulating in the loop, see Fig. 5.
Proceeding with the calculation, the three contributions from the derivative terms are
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where M(A0
! ZZ)PV V

Linear is the part of Eq. (44) proportional to T
↵�

PV V
. The neutrino contribution

is absent from that term since the loop function in Eq. (32) vanishes for massless fermions. The
next piece comes from the divergence of the axionic vector current,
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M(a0 ! �Z)AV V
��
m!1 = 0 M(a0 ! �Z)V AV

��
m!1 6= 0 M(a0 ! �Z)AAA

��
m!1 6= 0

•examples: impose which are the anomalous currents

•In terms of vector and axial currents only « AVVs » and « AAA » do not cancel (Furry)

Adopting a Pauli-Villars regularization, we add to this a second term with m ! M , and proceed
with the calculation in d = 4 dimensions. With the derivative from @µa

0 amounting to taking the
divergence, we find
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The regulator term does not decouple in the M ! 1 limit but gives a finite local contribution.
Interestingly, this contribution precisely cancel with the local term from �LJac, so altogether, we
recover precisely the result obtained in the linear case, see Eq. (9):

M(a0 ! ��)Polar = M(a0 ! ��)Der +M(a0 ! ��)Jac (18)

= �
e
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q1,⇢q2,� = M(a0 ! ��)Linear . (19)

This exercise illustrates a number of important features:

• In the polar representation, the appearance of the anomalous local term a
0
Fµ⌫F̃

µ⌫ is spurious.
When computing specific amplitudes, it only serves to cancel out the anomalous term arising
from the derivative interaction @µa0 ̄�µ�5 . At the end, this is nothing but an application
of the well-known axial current Ward identity:

@µA
µ
�

e
2

8⇡2
Fµ⌫F̃

µ⌫ = 2imP , (20)

where P =  ̄�5 , Aµ =  ̄�
µ
�5 . The right-hand side corresponds to the amplitude in the

linear representation, and the left-hand side to the two contributions arising in the polar
representation. It is thus clear that it would be wrong to understand the a

0
! �� coupling

as induced by the anomaly. The anomalous interaction of Eq. (14) only arises because of the
reparametrization in Eq. (12), and necessarily comes together with the appropriate derivative
interactions.

• In the m ! 0 limit, the a
0
! �� amplitude vanishes exactly,

M(a0 ! ��)Linear = M(a0 ! ��)Polar

m!0
= 0 . (21)

In the linear representation, this trivially follows from the vanishing of the coupling of a0

to fermions, see Eq. (6). In the polar representation, it requires an exact cancellation of
the local anomalous contribution with the non-local triangle amplitudes. Again, this can be
understood in terms of the axial current Ward identity. In this limit, the spurious nature of
the contact interaction is manifest.

• The reason why a
0
! �� is often misinterpreted as induced by the anomaly can be understood

looking at the m ! 1 limit. Indeed, the contribution of the derivative term vanishes,

M(a0 ! ��)Der
m!1
= 0 , (22)

as can be trivially seen in Eq. (17). Since then all that remains in the non-linear theory is the
local term from �LJac, it necessarily corresponds to the contribution surviving in the m ! 1

5

U(1)em non anomalous ) a = 1

= 0 since a = �b = 1

U(1)em non anomalous ) b = �1

a = �b = 1/3

a = �b = 1 a = �b = 1/3
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Couplings of the PQ axion: Matching the polar and linear rep.

a0 ! ��, gg

M(a0 ! ��, gg)Polar = M(a0 ! ��, gg)AV V
Der +M(a0 ! ��, gg)Jac

M(a0 ! ��, gg)AV V
Der = �M(a0 ! ��, gg)Jac +M(A0 ! ��, gg)Linear

M(a0 ! ��, gg)Polar = M(A0 ! ��, gg)Linear

Figure 3: Representation of the contributions to a
0
! ��, gg in the polar representation, and their

matching with the A
0
! ��, gg amplitude of the linearly realized theory. The notation P, V,A

denotes pseudoscalar, vector, and axial vertices, that is, �5, �µ, and �
µ
�5 Dirac structures. The

green disk depicts the local anomalous vertex derived from Eq. (57). All the SM fermions but the
neutrinos circulate in the �� loops, while only quarks occur for the gg loops.

Setting a = �b = 1 in Eq. (30), we find
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where du,d
C

= NC , d
e,⌫

C
= 1, Qf is the electric charge of f , and C

u,d

C
= 1/2, Ce,⌫

C
= 0. The amplitudes

in the polar representation thus trivially match that in the linear case, see Fig. 3,

M(a0 ! ��, gg)Polar = M(a0 ! ��, gg)AV V

Der +M(a0 ! ��, gg)Jac = M(A0
! ��, gg)Linear . (65)

In other words, the anomalous contact interactions do cancel out systematically with the anomalous
part of the triangle graphs.

As for the toy model, the polar representation is thus interesting only to make the shift symmetry
manifest, and because the contact a

0
�� and a

0
gg interactions read o↵ �LJac are reliable book-

keeping of the e↵ects of heavy fermions. Specifically, M(a0 ! ��, gg)AV V

Der
m!1
= 0 implies that

M(A0
! ��, gg)Linear

m!1
= M(a0 ! ��, gg)Jac. Finally, remark that the cancellation of the

local anomalous terms ensures M(a0 ! ��, gg)Polar = 0 in the mu,d,e ! 0 limit. So, though
interpreting the axion coupling to photons or gluons as induced by the anomaly is incorrect, this
misidentification does not lead to serious consequences for those final states. For heavy fermions,
the coupling to gluons is tuned by NC , and that to photons by Nem, and their ratio, when restricted
to quarks, give back the usual N q

em/NC = 8/3. However, as we will see in the next subsection,
interpreting the axion coupling involving at least one electroweak gauge boson as induced by the
anomaly is not only wrong in principle but also leads to incorrect couplings.

4.3.2 The a
0
! �Z decay

For electroweak gauge bosons in the final state, the situation is less simple. Consider first the �Z

final state. The derivative interactions induce again only the AV V triangle graphs since the photon
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The anomalous contact int. do cancel out systematically with the anomalous part 
to the triangle graphs

M(a0 ! ��, gg)AV V
Der

m!1
= 0 M(A0 ! ��, gg)Linear

m!1
= M(a0 ! ��, gg)Jac)

though interpreting the axion coupling as induced by the anomaly is incorrect!

simple usual 2HDM
•                               :
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linear representations

a0 ! �Z

Figure 4: Contributions to the axion decay into �Z in the polar (left) and linear (right) represen-
tations, using the same notations as in Fig. 3. All the SM fermions but the neutrinos circulate in
the loops.

coupling is vectorial. However, this time we have two possible contributions, depending on which
current is carrying the anomaly, see Fig. 4. First, there are the usual A(@µa0) � V (�) � V (Z)
triangles, for which the anomaly is in the axial current. Using Eq. (30) with a = �b = 1, we find
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As explained in Section 3, this contribution is free of any mass-dependent term because the naive
vector current conservation must hold, up to the anomaly.

These two contributions from the derivative interactions combine with the Jacobian term from
Eq. (61),
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⇤
2q1q2 , (68)

to give the total decay amplitude in the polar representation:

M(a0 ! �Z)Polar = M(a0 ! �Z)AV V

Der +M(a0 ! �Z)V AV

Der +M(a0 ! �Z)Jac

= M(A0
! �Z)Linear , (69)

as it should. We can now understand why M(a0 ! �Z)Jac does not match M(A0
! �Z)Linear

in the mu,d,e ! 1 limit. Indeed, while M(a0 ! �Z)AV V

Der vanishes in the mu,d,e ! 1 limit,
M(a0 ! �Z)V AV

Der obviously does not since it is independent of mu,d,e. In that limit, we should
write

M(A0
! �Z)Linear

��
mu,d,e!1 = M(a0 ! �Z)V AV

Der +M(a0 ! �Z)Jac , (70)

in which the parameters ↵ and � cancel out. So, for a chiral gauge theory, the local terms coming
from �LJac are no longer reliable book-keeping of the e↵ect of heavy fermions, because part of the
anomaly is hidden in the V AV triangle.
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VAV triangle

�LJac
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Der +M(a0 ! V V )V AV

Der

+M(a0 ! V V )AAA
Der +M(a0 ! V V )Jac = M(A0 ! V V )Linear

Figure 5: Contributions to the axion decay into ZZ andW
+
W

� in the polar (left) and linear (right)
representations, using the same notations as in Fig. 3. For ZZ, all the SM fermions circulate in
the loops in the non-linear theory, but the neutrino is absent in the linear one since we take it as
massless. For W

+
W

�, it is understood that in between the two W s, the SU(2)L partner of the
indicated fermion propagates.

Actually, the reason why the V AV triangle plays a role can be understood directly from the
fermion reparametrization, given the charges in Eq. (53). When ↵ and/or � are di↵erent from
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interactions: those correspond to the NC↵+� terms of NL and NY in Eq. (57). But as for the toy
model, these interactions are spurious and must cancel with the anomalies present in the triangle
graphs induced by the derivative interactions �LDer. This must necessarily come from a breakdown
of the vector Ward identity for the V AV triangle since B and L are purely vectorial symmetries [22].
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Linear is the part of Eq. (44) proportional to T
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. The neutrino contribution

is absent from that term since the loop function in Eq. (32) vanishes for massless fermions. The
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same conclusion: all  the local anomalous contributions cancel exactly

M(a0 ! �Z)V AV
��
m!1 6= 0

M(a0 ! �Z)V AV
��
m!1 6= 0
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Conclusion

•Construct EFTs for gauge bosons up to dim. 8 interactions (loop of spin 0, 1/2, 1)
•Spin 1:  usual diagrammatic procedure to build effective action breaks down

quantized the SM in the non-linear gauge: matching consistent off-shell 
 (closely parallels the CDE path integral method)

•Generalization to QCD gluon and SU(N),                         ,                             boson EFTs
•At one-loop some operators are redundant! no matter the rep. or spin of 

particle circulating in the loops

•All decoupled new physics is a non zero Wilson coefficient:
The One-Loop Universal Action  is a simplified way to express collider constraints on 
realistic BSM theories

•Match the axion decay modes computed using either a linear or a polar representation 
for the scalar field breaking the                symmetry

•we derived the couplings of axions to gauge bosons, they are not induced by the anomaly

•Could have consequences for ALP searches

U(1)⌦ SU(N) SU(N)⌦ SU(M)

U(1)PQ
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spare slides
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Euler-Heisenberg Effective Action

•Dirac’s theory: an E.M. field create pairs of particles which change Maxwell’s 
equations in the vacuum

•Classical field theory: Lagrangian encapsulates the relevant E.O.M and the 
symmetries of the system

•QFT: effective Lagrangian encodes quantum corrections to the classical Lagrangian 
(ex: vacuum polarization)

•E.H. (1936): compute nonperturbative, renormalized, one-loop effective (no e+,e-) 
action for QED in a classical E.M. background of constant field strength

integrate out electron from path integral:

Side remark: integrating out the electron
In this simple example, we could integrate out the electron 
directly from the path integral, which yields a fermion 
determinant.  

Diagrammatically, at one-loop order 

  

At low energies, we can then expand the effective action in 
terms of local operators. 

Not efficient as a general method. We will instead write down 
the most general Leff(Aμ) and then match it to the full theory. 
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1. Introduction: the Heisenberg-Euler Effective Lagrangian

1.1. The Spinor and Scalar QED one loop results

In classical field theory the Lagrangian encapsulates the relevant classical
equations of motion and the symmetries of the system. In quantum field
theory the effective Lagrangian encodes quantum corrections to the classical
Lagrangian, corrections that are induced by quantum effects such as vac-
uum polarization. This can be used as a semi-phenomenological device, as
in effective field theory, or as a fundamental approach in which one uses
an external classical field as a direct probe of the vacuum structure of the
quantum theory. The seminal work of Heisenberg and Euler [1], and Weis-
skopf [2] produced the paradigm for the entire field of effective Lagrangians
by computing the nonperturbative, renormalized, one-loop effective action
for quantum electrodynamics (QED) in a classical electromagnetic back-
ground of constant field strength. This special soluble case of a constant
field strength leads immediately to several important insights and applica-
tions.

In spinor QED, the one-loop effective action for electrons in the presence
of a background electromagnetic field is

S(1) = −i ln det(iD/ − m) = − i

2
ln det(D/2 + m2) (1.1)

where the Dirac operator is D/ = γν (∂ν + ieAν), Aν is a fixed classical gauge
potential with field strength tensor Fµν = ∂µAν−∂νAµ, and m is the electron
mass. This one-loop effective action has a natural perturbative expansion
in powers of the external photon field Aµ, as illustrated diagrammatically in
Figure 1. By Furry’s theorem (charge conjugation symmetry of QED), the
expansion is in terms of even numbers of external photon lines. Heisenberg

+ + + . . .

Figure 1. The diagrammatic perturbative expansion of the one loop effective action (1.1).

and Euler, and Weisskopf, showed that in the low energy limit for the ex-
ternal photon lines, in which case the background field strength Fµν could
be taken to be constant, it is possible to compute a relatively simple closed-

2012

Matthew Schwartz

IV-9: Effective actions

1 Introduction

We have mentioned effective actions a few times already. For example, the effective action for
the 4-Fermi theory is derived from the standard model by integrating out the W and Z bosons.
It is an effective action since it is valid only in some regime, in this case for p2<mW

2 . More gen-
erally, an effective action is one which gives the same results as a given action but has different
degrees of freedom. For the 4-Fermi theory, the effective action does not have the W and Z
bosons. In this lecture we will develop powerful tools to calculate effective actions more gener-
ally. We will discuss 3 ways to calculate effective actions: through matching (or the operator
product expansion), through field-dependent expectation values using Schwinger proper time,
and with functional determinants coming from Feynman path integrals.

The first step is to define what we mean by an effective action. The term effective action,
denoted by Γ, generally refers to a functional of fields (like any action) defined to give the same
Green’s functions and S-matrix elements as a given action S, which is often called the action for
the full theory. We write Γ =

∫

d4x Leff(x), where Leff is called the effective Lagrangian.
Differences between Γ and S include that Γ often has fewer fields, is non-renormalizable, and
only has a limited range of validity. When a field is in the full theory but not in the effective
action, we say it has been integrated out.

The advantage of using effective actions over full theory actions is that by focusing only on
the relevant degrees of freedom for a given problem calculations are often easier. For example, in
Lecture IV-6 we saw that in the 4-Fermi theory large logarithmic corrections to b→ cd̄u decays
of the form αs

nlnnmW

mb
could be summed to all orders in perturbation theory. The analogous cal-

culation in the full standard model would have been a nightmare.

The effective action we will focus on for the majority of this lecture is the one arising from
integrating out a fermion of mass m in QED. We can define this effective action Γ[Aµ] by

∫

DA exp (iΓ[Aµ])≡
∫

DADψ̄Dψexp
[

i

∫

d4x

(

−1
4
Fµν + ψ̄ (iD−m)ψ

)]

(1)

When Aµ corresponds to a constant electromagnetic field Leff[A] is called the Euler-Heisenberg
Lagrangian. The Euler-Heisenberg Lagrangian is amazing: it gives us the QED β-function,
Schwinger pair creation, scalar and pseudoscalar decay rates, the chiral anomaly, and the low-
energy limit for scattering n photons, including the light-by-light scattering cross section. As we
will see, the Euler-Heisenberg Lagrangian can be calculated to all orders in αe using techniques
from non-relativistic quantum mechanics.

Techniques developed in this lecture, in particular the evaluation and interpretation of func-
tional determinants, will be applied in Lecture IV-9 and IV-10.

2 Effective actions from matching

So far, we have only discussed how effective actions can be calculated through matching. This
approach requires that matrix elements of states agree in the full and effective theories. For
example, in the 4-Fermi theory, we asked that

⟨Ω|T {ψ̄ψψ̄ψ}|Ω⟩S= ⟨Ω|T {ψ̄ψψ̄ψ}|Ω⟩Γ (2)

1

2

one-loop effective action of QED:
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Figure 1. The diagrammatic perturbative expansion of the one loop effective action (1.1).

and Euler, and Weisskopf, showed that in the low energy limit for the ex-
ternal photon lines, in which case the background field strength Fµν could
be taken to be constant, it is possible to compute a relatively simple closed-

Perturbative expansion in powers of the external photon field:
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and Euler, and Weisskopf, showed that in the low energy limit for the ex-
ternal photon lines, in which case the background field strength Fµν could
be taken to be constant, it is possible to compute a relatively simple closed-

at low energies: effective action in terms of local operators

low energy limit:  closed form which generates all the perturbative diagrams for the effective action

Heisenberg-Euler Effective Lagrangians 5

form expression for the effective action, which generates all the perturbative
diagrams in Figure 1. Heisenberg and Euler [1] expressed their final answer
for spinor QED in several equivalent ways:

L(1)
sp =

1

hc

∫ ∞

0

dη

η3
e−ηeEc

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ie2η2(E⃗.B⃗)

[

cos

(

ηe
√

E⃗2 − B⃗2 + 2i(E⃗.B⃗)

)

+ c.c.

]

[

cos

(

ηe
√

E⃗2 − B⃗2 + 2i(E⃗.B⃗)

)

− c.c.

]

+1 +
e2η2

3
(B⃗2 − E⃗2)

}

=
1

hc

∫ ∞

0

dη

η3
e−η eEc

{

−i e2a b η2

[

cosh[(b + ia)eη] + cosh[(b − ia)eη]

cosh[(b + ia)eη] − cosh[(b − ia)eη]

]

+1 +
e2η2

3
(b2 − a2)

}

= − 1

hc

∫ ∞

0

dη

η3
e−η eEc

{

e2a b η2

tanh(ebη) tan(eaη)
− 1 − e2η2

3
(b2 − a2)

}

.

(1.2)

Here Ec is the critical field strength

Ec =
m2c3

e!
, (1.3)

and a and b are related to the Lorentz invariants a characterizing the back-
ground electromagnetic field strength [1]:

a2 − b2 = E⃗2 − B⃗2 = −1

2
FµνFµν ≡ −2F , (1.4)

a b = E⃗ · B⃗ = −1

4
Fµν F̃µν ≡ −G . (1.5)

Thus

a =

√

√

F2 + G2 − F , b =

√

√

F2 + G2 + F . (1.6)

If G ≠ 0, it is possible to transform to a Lorentz frame in which the elec-
tric and magnetic fields are parallel or antiparallel, depending on the sign

a There has been a notational reversal [3, 8, 62] of a ↔ b since the original Heisenberg-Euler

paper [1]. I stick here with Heisenberg’s original notation since in a frame in which B⃗ and E⃗ are

parallel, we associate b ↔ B and a ↔ E, which seems more natural. Also, modern formulations

have adopted Schwinger’s choice [12] of units in which the fine structure constant α = e2

!c → e2

4π ,

in which case the prefactor in (1.2) is 1
hc → 1

8π2 .
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« Consequences of Dirac’s Theory of the Positron », W. Heisenberg & H. Euler (1936)

leads to several insights and applications
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and Euler, and Weisskopf, showed that in the low energy limit for the ex-
ternal photon lines, in which case the background field strength Fµν could
be taken to be constant, it is possible to compute a relatively simple closed-
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•nonlinear QED processes:

Euler-Heisenberg Effective Action
insights and applications

Heisenberg-Euler Effective Lagrangians 7

1.2.1. Nonlinear QED Processes : Light-Light scattering

The Euler-Heisenberg effective Lagrangian (1.2) is nonlinear in the elec-
tromagnetic fields, the quartic and higher terms representing new nonlinear
interactions, which do not occur in the tree level Maxwell action. The first of
these new interactions is light-light scattering, represented diagrammatically
by the second Feynman diagram in the expansion in Figure 1. Expanding
the Euler-Heisenberg answer to quartic order we find

S(1) =
e4

360π2m4

∫

d4x
[

(E⃗2 − B⃗2)2 + 7(E⃗ · B⃗)2
]

+ . . . (1.9)

which gives the low energy limit (since the field strength was constant) of the
amplitude for light-light scattering. As first discussed by Euler and Köckel
[9], these nonlinearities can be viewed as dielectric effects, with the quantum
vacuum behaving as a polarizable medium. In Weisskopf’s words [2]:

“When passing through electromagnetic fields, light will behave as if

the vacuum, under the action of the fields, were to acquire a dielectric

constant different from unity.”

The full light-light scattering process in QED was not solved until 1951 by
Karplus and Neuman [10].

1.2.2. Pair-production from vacuum in an electric field.

The presence of a background electric field accelerates and splits virtual
vacuum dipole pairs, leading to e+e− particle production: see Figure 2.
This instability of the vacuum was realized already by Heisenberg and Euler
[1], motivated in part by earlier work of Sauter on the Klein paradox [11].
This pair production process was later formalized in the language of QED
by Schwinger [12, 13]. Heisenberg and Euler [1] deduced the leading pair
production rate in a weak electric field to be

Γ ∼ e2E2

4π3
exp

[

−m2π

eE

]

. (1.10)

This rate is deduced from the imaginary part of the effective Lagrangian
(1.2) when the background is purely electric

Γ = 2 ImL . (1.11)

In modern language, this imaginary part gives the rate of vacuum non-
persistence due to pair production [12, 13]. The rate is extremely small for
typical electric field strengths, becoming more appreciable when the E field

expanding E.H. to quartic order:
low energy limit of  

light by light scattering
full QED process solved in 1951

nonlinearities        dielectric effects, the quantum vacuum behaving as a polarizable medium8 Gerald V. Dunne

E⃗

e− e+

e+ e−

B⃗

Figure 2. A static electric field can tear apart a virtual e+e− pair from the vacuum, producing

an asymptotic electron and positron, as shown on the left. On the other hand, a static magnetic

field does not break this virtual dipole apart, as shown on the right for a magnetic field directed

out of the page.

approaches a critical value Ec ∼ m2c3

e!
∼ 1016 Vcm−1, where the work done

accelerating a virtual pair apart by a Compton wavelength is of the order
of the rest mass energy for the pair. Such electric field strengths are well
beyond current technological capabilities, even in the most intense lasers.
For an excellent recent review of the search for this remarkable phenomenon
of vacuum pair production, see [14]. Even though the condition of a con-
stant electric field is rather unrealistic, Heisenberg and Euler’s result (1.10)
provides the starting point for more detailed analyses which incorporate
time-dependent electric fields, as is discussed below in Section 2.

1.2.3. Charge renormalization, β-functions and the strong-field limit.

Another remarkable thing about Heisenberg and Euler’s result (1.2) is that
they correctly anticipated charge renormalization. The first term (on each
line) on the the RHS of (1.2) is the bare result, the second term is the
subtraction of a field-free infinite term, and the third term is the subtraction
of a logarithmically divergent term which has the same form as the classical
Maxwell Lagrangian. This last subtraction corresponds precisely to what
we now call charge renormalization, as was later formalized by Schwinger
[12, 13]. Indeed, the study of such logarithmically divergent terms was a
major focus of the early quantum field theory work of both Heisenberg and
Weisskopf. Weisskopf [2] noted the characteristic strong-field limit behavior
of the Heisenberg-Euler result (1.2), for example for spinor QED in a strong
magnetic background:

L(1)
spinor

LMaxwell
∼ − e2

12π2
log

(

eB

m2

)

, B → ∞ . (1.12)

In modern language, the coefficient of the logarithmic dependence of this
ratio is known as the one-loop QED β-function, and Weisskopf anticipated
the importance of such logarithmic behavior. In later work [15] he showed

•pair-production from vacuum in E-field:

E field accelerates and splits virtual vacuum dipole pairs, leading to e+e- particle production
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1.2.1. Nonlinear QED Processes : Light-Light scattering

The Euler-Heisenberg effective Lagrangian (1.2) is nonlinear in the elec-
tromagnetic fields, the quartic and higher terms representing new nonlinear
interactions, which do not occur in the tree level Maxwell action. The first of
these new interactions is light-light scattering, represented diagrammatically
by the second Feynman diagram in the expansion in Figure 1. Expanding
the Euler-Heisenberg answer to quartic order we find

S(1) =
e4

360π2m4

∫

d4x
[

(E⃗2 − B⃗2)2 + 7(E⃗ · B⃗)2
]

+ . . . (1.9)

which gives the low energy limit (since the field strength was constant) of the
amplitude for light-light scattering. As first discussed by Euler and Köckel
[9], these nonlinearities can be viewed as dielectric effects, with the quantum
vacuum behaving as a polarizable medium. In Weisskopf’s words [2]:

“When passing through electromagnetic fields, light will behave as if

the vacuum, under the action of the fields, were to acquire a dielectric

constant different from unity.”

The full light-light scattering process in QED was not solved until 1951 by
Karplus and Neuman [10].

1.2.2. Pair-production from vacuum in an electric field.

The presence of a background electric field accelerates and splits virtual
vacuum dipole pairs, leading to e+e− particle production: see Figure 2.
This instability of the vacuum was realized already by Heisenberg and Euler
[1], motivated in part by earlier work of Sauter on the Klein paradox [11].
This pair production process was later formalized in the language of QED
by Schwinger [12, 13]. Heisenberg and Euler [1] deduced the leading pair
production rate in a weak electric field to be

Γ ∼ e2E2

4π3
exp

[

−m2π

eE

]

. (1.10)

This rate is deduced from the imaginary part of the effective Lagrangian
(1.2) when the background is purely electric

Γ = 2 ImL . (1.11)

In modern language, this imaginary part gives the rate of vacuum non-
persistence due to pair production [12, 13]. The rate is extremely small for
typical electric field strengths, becoming more appreciable when the E field
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rate of vacuum non persistence due to pair production

•charge renormalization,    -function:
E.H.’s result correctly anticipated charge renormalization

bare result

subtraction of a log divergent term

8 Gerald V. Dunne

E⃗

e− e+

e+ e−

B⃗

Figure 2. A static electric field can tear apart a virtual e+e− pair from the vacuum, producing

an asymptotic electron and positron, as shown on the left. On the other hand, a static magnetic

field does not break this virtual dipole apart, as shown on the right for a magnetic field directed

out of the page.

approaches a critical value Ec ∼ m2c3

e!
∼ 1016 Vcm−1, where the work done

accelerating a virtual pair apart by a Compton wavelength is of the order
of the rest mass energy for the pair. Such electric field strengths are well
beyond current technological capabilities, even in the most intense lasers.
For an excellent recent review of the search for this remarkable phenomenon
of vacuum pair production, see [14]. Even though the condition of a con-
stant electric field is rather unrealistic, Heisenberg and Euler’s result (1.10)
provides the starting point for more detailed analyses which incorporate
time-dependent electric fields, as is discussed below in Section 2.
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In modern language, the coefficient of the logarithmic dependence of this
ratio is known as the one-loop QED β-function, and Weisskopf anticipated
the importance of such logarithmic behavior. In later work [15] he showed

: one-loop QED     -function

•paradigm of what is now called « low energy EFT »:
describes the physics of light d.o.f at energies much lower than some energy scale (heavy d.o.f.  are integrated out)
Lagrangian expanded in terms of gauge and Lorentz invariant operators for the light fields
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that for n ≥ 2 loop order in perturbation theory, the divergence was at most
logn−1, a fact that was important for the work of Gell-Mann and Low [16] and
the development of the renormalization group. This connection between the
strong field limit of effective Lagrangians and β-functions will be discussed
in more detail below in Section 5.

1.2.4. Low-energy effective field theory

The Heisenberg-Euler result (1.2) is the paradigm of what is now called ”low
energy effective field theory” [17, 18]. In this approach one describes the
physics of some light degrees of freedom (here the photon field) at energies
much lower than some energy scale above which one has integrated out the
heavy degrees of freedom (here the electron field). Generically, the effective
Lagrangian is expanded in terms of gauge and Lorentz invariant operators
O(n) for the light fields, respecting the relevant remaining symmetries:

Leff = m4
∑

n

an
O(n)

mn
. (1.13)

By power counting, the operators O(n) are balanced by appropriate pow-
ers of the heavy mass scale m. We can see this structure directly in the
Heisenberg-Euler result (1.2), for example in the first nontrivial term, the
light-light scattering term (1.9). The full expansion is given below in (1.15)
and (1.17). The light photon field is described in terms of gauge and Lorentz
invariant operators constructed from the field strength Fµν , and having mass
dimension n. At mass dimension 8, we can have (FµνFµν)2 or (Fµν F̃µν)2, as
in (1.9). At mass dimension 10, we could have terms involving derivatives
of the field strength, such as (∂µFνρ∂µF νρ)(FαβFαβ), which do not show
up in the Heisenberg-Euler result, but which can be found in a derivative
expansion about the constant field result, as discussed below in section 2.
The effective field theory interpretation of the Heisenberg-Euler Lagrangian
also makes connection with the operator-product-expansion (OPE), where
the polarization tensor is expanded as

Πµν = (qµqν − q2gµν)
∑

n

cn(Q2) ⟨O(n)⟩ (1.14)

as is discussed in detail in [19–21].

1.3. Weak-field expansions of Heisenberg-Euler

In this section I present some results for various weak-field expansions of the
Heisenberg-Euler spinor QED effective Lagrangian (1.2), as well as for the
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form expression for the effective action, which generates all the perturbative
diagrams in Figure 1. Heisenberg and Euler [1] expressed their final answer
for spinor QED in several equivalent ways:

L(1)
sp =

1

hc

∫ ∞

0

dη

η3
e−ηeEc

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ie2η2(E⃗.B⃗)

[

cos

(

ηe
√

E⃗2 − B⃗2 + 2i(E⃗.B⃗)

)

+ c.c.

]

[

cos

(

ηe
√

E⃗2 − B⃗2 + 2i(E⃗.B⃗)

)

− c.c.

]

+1 +
e2η2

3
(B⃗2 − E⃗2)

}

=
1

hc

∫ ∞

0

dη

η3
e−η eEc

{

−i e2a b η2

[

cosh[(b + ia)eη] + cosh[(b − ia)eη]

cosh[(b + ia)eη] − cosh[(b − ia)eη]

]

+1 +
e2η2

3
(b2 − a2)

}

= − 1

hc

∫ ∞

0

dη

η3
e−η eEc

{

e2a b η2

tanh(ebη) tan(eaη)
− 1 − e2η2

3
(b2 − a2)

}

.

(1.2)

Here Ec is the critical field strength

Ec =
m2c3

e!
, (1.3)

and a and b are related to the Lorentz invariants a characterizing the back-
ground electromagnetic field strength [1]:

a2 − b2 = E⃗2 − B⃗2 = −1

2
FµνFµν ≡ −2F , (1.4)

a b = E⃗ · B⃗ = −1

4
Fµν F̃µν ≡ −G . (1.5)

Thus

a =

√

√

F2 + G2 − F , b =

√

√

F2 + G2 + F . (1.6)

If G ≠ 0, it is possible to transform to a Lorentz frame in which the elec-
tric and magnetic fields are parallel or antiparallel, depending on the sign

a There has been a notational reversal [3, 8, 62] of a ↔ b since the original Heisenberg-Euler

paper [1]. I stick here with Heisenberg’s original notation since in a frame in which B⃗ and E⃗ are

parallel, we associate b ↔ B and a ↔ E, which seems more natural. Also, modern formulations

have adopted Schwinger’s choice [12] of units in which the fine structure constant α = e2

!c → e2

4π ,

in which case the prefactor in (1.2) is 1
hc → 1

8π2 .
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1. Introduction: the Heisenberg-Euler Effective Lagrangian

1.1. The Spinor and Scalar QED one loop results

In classical field theory the Lagrangian encapsulates the relevant classical
equations of motion and the symmetries of the system. In quantum field
theory the effective Lagrangian encodes quantum corrections to the classical
Lagrangian, corrections that are induced by quantum effects such as vac-
uum polarization. This can be used as a semi-phenomenological device, as
in effective field theory, or as a fundamental approach in which one uses
an external classical field as a direct probe of the vacuum structure of the
quantum theory. The seminal work of Heisenberg and Euler [1], and Weis-
skopf [2] produced the paradigm for the entire field of effective Lagrangians
by computing the nonperturbative, renormalized, one-loop effective action
for quantum electrodynamics (QED) in a classical electromagnetic back-
ground of constant field strength. This special soluble case of a constant
field strength leads immediately to several important insights and applica-
tions.

In spinor QED, the one-loop effective action for electrons in the presence
of a background electromagnetic field is

S(1) = −i ln det(iD/ − m) = − i

2
ln det(D/2 + m2) (1.1)

where the Dirac operator is D/ = γν (∂ν + ieAν), Aν is a fixed classical gauge
potential with field strength tensor Fµν = ∂µAν−∂νAµ, and m is the electron
mass. This one-loop effective action has a natural perturbative expansion
in powers of the external photon field Aµ, as illustrated diagrammatically in
Figure 1. By Furry’s theorem (charge conjugation symmetry of QED), the
expansion is in terms of even numbers of external photon lines. Heisenberg

+ + + . . .

Figure 1. The diagrammatic perturbative expansion of the one loop effective action (1.1).

and Euler, and Weisskopf, showed that in the low energy limit for the ex-
ternal photon lines, in which case the background field strength Fµν could
be taken to be constant, it is possible to compute a relatively simple closed-
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�
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Figure 7: Quark loops generating the e↵ective dimension-eight photon-gluon interactions.

4.3 Reduction to factor groups

The general result also reduces to mixed interactions, involving the gauge bosons of two di↵erent algebras.
Before investigating this reduction, let us directly compute them using FeynArts models. For that, we
consider the photon-gluon interactions induced by quark, squark, or SU(5) leptoquark loops in the non-
linear gauge (see Fig. 7). It is then a simple matter to generalize the results obtained for the fundamental
SU(3)C representation to that for generic SU(N) representations. The loops are finite and the e↵ective
interactions start at the dimension-eight level,

L(4)

eff (U(1)⌦ SU(N)) = ↵1

g2
1
g2n

6!⇡2m4
Fµ⌫F

µ⌫Ga
⇢�G

a,⇢� + ↵2

g2
1
g2n

6!⇡2m4
Fµ⌫ F̃

µ⌫Ga
⇢�G̃

a,⇢�

+ ↵3

g2
1
g2n

6!⇡2m4
Fµ⌫G

a,µ⌫F⇢�G
a,⇢� + ↵4

g2
1
g2n

6!⇡2m4
Fµ⌫G̃

a,µ⌫F⇢�G̃
a,⇢�

+ �1

g1g3n
6!⇡2m4

dabcFµ⌫G
a,µ⌫Gb

⇢�G
c,⇢� + �2

g1g3n
6!⇡2m4

dabcFµ⌫G̃
a,µ⌫Gb

⇢�G̃
c,⇢� , (50)

where g1 and gn denote the U(1) and SU(N) coupling constants, respectively. The numerical values of the
Wilson coe�cients are in Table 4. They are invariant under charge conjugation since Q(R⇤) = �Q(R),
I2(R⇤) = +I2(R), and I3(R⇤) = �I3(R), and they obviously vanish for a real representation. Note in
particular that the SU(5) leptoquarks give �i < 0 since the electric charge of the antitriplet is positive,
Q(3̄) = +

p
5/12.

The first four interactions are immediately extended to the case of two SU(N) and two SU(M) gauge
bosons. Specifically, the operators are then

L(4)

eff (SU(M)⌦ SU(N)) = ↵1

g2mg2n
6!⇡2m4

W i
µ⌫W

i,µ⌫Ga
⇢�G

a,⇢� + ↵2

g2mg2n
6!⇡2m4

W i
µ⌫W̃

i,µ⌫Ga
⇢�G̃

a,⇢�

+ ↵3

g2mg2n
6!⇡2m4

W i
µ⌫G

a,µ⌫W i
⇢�G

a,⇢� + ↵4

g2mg2n
6!⇡2m4

W i
µ⌫G̃

a,µ⌫W i
⇢�G̃

a,⇢� , (51)

where gm and gn denote the SU(M) and SU(N) coupling constants, respectively. Looking at Fig. 7a, it is
easy to realize that the coe�cients are obtained from those for U(1) in Table 4 by replacing Q(R)2I2(R) !
IM
2
(RM )IN

2
(RN ) when the particles in the loop are in the (RM ,RN ) representation of SU(M)⌦ SU(N).

For the SM, the case SU(2)L⌦SU(3)C is immediately obtained in the {W�
µ ,W 3

µ ,W
+

µ } basis by replacing
W i

µ⌫W
i,µ⌫ = W 3

µ⌫W
3,µ⌫ +2W+

µ⌫W
�,µ⌫ and gn ! g, gm ! gS . Note however that the same caveat as for the

e↵ective interactions in Eq. (43) applies. In the presence of chiral fermions, these interactions are not leading
and dimension-six operators of O(m�2) appear, like for example G̃a

µ⌫G
a,⌫⇢Zµ⇢ or ZµZ⇢Ga

µ⌫G
a,⇢⌫ inducing

Z ! ggg [61] and gg ! ZZ [62]. The only exceptions are the Z ! gg� [63] and Z ! ��� [64] interactions
for on-shell gluons and photons, which still start at O(m�4) for chiral fermions because the �5 term of the Z
boson coupling to fermions cancels out. On-shell, these e↵ective interactions are simply obtained from the
�� ! gg and �� ! �� results by rescaling of one photon couplings to match that of the Z boson.

Because U(1) ⌦ SU(N) ⇢ SU(M > N + 1), the ↵i, �i coe�cients in Table 4 are directly related
to the �4,i in Table 3, which is not very surprising comparing their values. As for the reduction down
to U(1) in the previous section, this can be understood looking at the coe�cients of the loop functions.
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Before investigating this reduction, let us directly compute them using FeynArts models. For that, we
consider the photon-gluon interactions induced by quark, squark, or SU(5) leptoquark loops in the non-
linear gauge (see Fig. 7). It is then a simple matter to generalize the results obtained for the fundamental
SU(3)C representation to that for generic SU(N) representations. The loops are finite and the e↵ective
interactions start at the dimension-eight level,

L(4)

eff (U(1)⌦ SU(N)) = ↵1

g2
1
g2n

6!⇡2m4
Fµ⌫F

µ⌫Ga
⇢�G

a,⇢� + ↵2

g2
1
g2n

6!⇡2m4
Fµ⌫ F̃

µ⌫Ga
⇢�G̃

a,⇢�

+ ↵3

g2
1
g2n

6!⇡2m4
Fµ⌫G

a,µ⌫F⇢�G
a,⇢� + ↵4

g2
1
g2n

6!⇡2m4
Fµ⌫G̃

a,µ⌫F⇢�G̃
a,⇢�

+ �1

g1g3n
6!⇡2m4

dabcFµ⌫G
a,µ⌫Gb

⇢�G
c,⇢� + �2

g1g3n
6!⇡2m4

dabcFµ⌫G̃
a,µ⌫Gb

⇢�G̃
c,⇢� , (50)

where g1 and gn denote the U(1) and SU(N) coupling constants, respectively. The numerical values of the
Wilson coe�cients are in Table 4. They are invariant under charge conjugation since Q(R⇤) = �Q(R),
I2(R⇤) = +I2(R), and I3(R⇤) = �I3(R), and they obviously vanish for a real representation. Note in
particular that the SU(5) leptoquarks give �i < 0 since the electric charge of the antitriplet is positive,
Q(3̄) = +

p
5/12.

The first four interactions are immediately extended to the case of two SU(N) and two SU(M) gauge
bosons. Specifically, the operators are then

L(4)

eff (SU(M)⌦ SU(N)) = ↵1

g2mg2n
6!⇡2m4

W i
µ⌫W

i,µ⌫Ga
⇢�G

a,⇢� + ↵2

g2mg2n
6!⇡2m4

W i
µ⌫W̃

i,µ⌫Ga
⇢�G̃

a,⇢�

+ ↵3

g2mg2n
6!⇡2m4

W i
µ⌫G

a,µ⌫W i
⇢�G

a,⇢� + ↵4

g2mg2n
6!⇡2m4

W i
µ⌫G̃

a,µ⌫W i
⇢�G̃

a,⇢� , (51)

where gm and gn denote the SU(M) and SU(N) coupling constants, respectively. Looking at Fig. 7a, it is
easy to realize that the coe�cients are obtained from those for U(1) in Table 4 by replacing Q(R)2I2(R) !
IM
2
(RM )IN

2
(RN ) when the particles in the loop are in the (RM ,RN ) representation of SU(M)⌦ SU(N).

For the SM, the case SU(2)L⌦SU(3)C is immediately obtained in the {W�
µ ,W 3

µ ,W
+

µ } basis by replacing
W i

µ⌫W
i,µ⌫ = W 3

µ⌫W
3,µ⌫ +2W+

µ⌫W
�,µ⌫ and gn ! g, gm ! gS . Note however that the same caveat as for the

e↵ective interactions in Eq. (43) applies. In the presence of chiral fermions, these interactions are not leading
and dimension-six operators of O(m�2) appear, like for example G̃a

µ⌫G
a,⌫⇢Zµ⇢ or ZµZ⇢Ga

µ⌫G
a,⇢⌫ inducing

Z ! ggg [61] and gg ! ZZ [62]. The only exceptions are the Z ! gg� [63] and Z ! ��� [64] interactions
for on-shell gluons and photons, which still start at O(m�4) for chiral fermions because the �5 term of the Z
boson coupling to fermions cancels out. On-shell, these e↵ective interactions are simply obtained from the
�� ! gg and �� ! �� results by rescaling of one photon couplings to match that of the Z boson.

Because U(1) ⌦ SU(N) ⇢ SU(M > N + 1), the ↵i, �i coe�cients in Table 4 are directly related
to the �4,i in Table 3, which is not very surprising comparing their values. As for the reduction down
to U(1) in the previous section, this can be understood looking at the coe�cients of the loop functions.
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↵1 = ↵3/2 ↵2 = ↵4/2 �1 �2

Scalar
7

16
Q(R)2I2(R)

1

16
Q(R)2I2(R)

7

32
Q(R)I3(R)

1

32
Q(R)I3(R)

Fermion Q(R)2I2(R)
7

4
Q(R)2I2(R)

1

2
Q(R)I3(R)

7

8
Q(R)I3(R)

Vector
261

16
Q(R)2I2(R)

243

16
Q(R)2I2(R)

261

32
Q(R)I3(R)

243

32
Q(R)I3(R)

Table 4: Wilson coe�cients of the e↵ective operators for the mixed operators, as induced by a complex field
(scalar, fermion, vector boson) in the representation R of SU(N) with U(1) charge Q(R). The ↵i coe�cients
for two SU(N) and two SU(M) gauge bosons are obtained by replacing Q(R)2I2(R) ! IM

2
(RM )IN

2
(RN ).

For the ↵i coe�cients, the decomposition Eq. (32) becomes Cab
1

= Cab
2

= Cab
3

= 2I2(R)Q2�ab, hence
Dab

0
= 6I2(R)Q2�ab. Comparing with Eq. (35), we see that ↵i = 2�4,i with the replacement ⇤(RM ) !

Q(RN )2I2(RN ) in Table 3. The factor of two comes from the two ways of identifying the U(1) and SU(N)
gauge bosons, e.g. (Ga

µ⌫G
a,µ⌫)2M ! 2(F⇢�F ⇢�)(Ga

µ⌫G
a,µ⌫)N . A similar reasoning can be done for the �i

coe�cients.
To go beyond a naive identification of the loop functions, let us denote T a the Cartan generator of SU(M)

generating U(1) and T i, i = 2, ..., N2
� 1 those generating SU(N). Because [T↵, T i] = 0 implies f↵ia = 0,

the UV divergent contributions disappear and the �SU(M)

4,5 and �SU(M)

4,6 operators do not contribute to the
U(1) ⌦ SU(N) e↵ective operators. For the other coe�cients, consider a specific representation of SU(M)
with branching rule RM !

P
RN , and denote q↵(RN ) the U(1)↵ charge of the states of the representation

RN . Mathematically, this branching rule means N2 of the TRM generators of SU(M) can be brought to a
block diagonal form. Those corresponding to SU(N) have blocks containing the SU(N) generators in the
representation RN , while the T↵ generator is a diagonal matrix containing all the q↵(RN ) charges, which
are constant over each block since [T↵, T i] = 0. The fully symmetrized trace with two or three SU(N)
generators then necessarily take the form

1

4!
S Tr(T↵

RT↵
RT i

RT j
R) = ⇤(RM )�ij + d↵↵ijI4(RM ) =

X

RN⇢RM

q↵(RN )2I2(RN )�ij , (52)

1

4!
S Tr(T↵

RT i
RT j

RT k
R) = d↵ijkI4(RM ) =

1

4

X

RN⇢RM

q↵(RN )I3(RN )dijk . (53)

This shows how the ↵i and �i coe�cients of U(1) ⌦ SU(N) arise from the �4,i coe�cients of the general
SU(M > N + 1) e↵ective Lagrangian. Computationally, to check these identities requires first to work out
the relationship between the symmetric symbols. In general, all we can say from the block-diagonal structure
of the generators is that d↵↵ijM = ⌘1�ij and d↵ijkM = ⌘2d

ijk
N (see Eq. (106)), but the proportionality constants

⌘1 and ⌘2 depend on how U(1)⌦SU(N) is embedded into SU(M). This is illustrated in Appendix B, where
Eq. (53) is used to derive the quartic Casimir invariant I4 of SU(5) out of the anomaly coe�cients I3 of
SU(3).

As an interesting corrolary of this exact reduction, the identities in Eq. (38) remain valid and imply
↵1,2 = ↵3,4/2. So, there are only two indepedent operators at the one loop level, no matter the spin and
representation of the particle in the loop. As before, this is not true in general if more than a single field is
integrated out. For example, the analogue of the Higgs boson exchange shown in Fig. 5b contributes to ↵1

only since the e↵ective Higgs boson couplings to photons and gluons are h0Fµ⌫Fµ⌫ and h0Ga
µ⌫G

a,µ⌫ .

5 Conclusion

In this paper, the e↵ective action for gauge theories is revisited. Integrating out some heavy charged fields,
self-interactions among gauge bosons are encoded into e↵ective operators. Using the diagrammatic approach,
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function amplitudes. It had also previously been noticed that this one-loop path-integral
expansion can be evaluated model-independently up to any finite order to give a universal
expression – the UOLEA [20,21]. The obvious step is then to do this once-and-for-all.

In this work we have further developed the UOLEA by including the universal terms
necessary for matching with heavy-light loops. Our key results are the universal coef-
ficients presented in Tables 1, 2, 3, 4, 5. Their explicit expressions in terms of heavy
particle masses can be found in a Mathematica notebook in the arXiv submission, whose
degenerate limits are collected in Appendix B. We have demonstrated how to use these
universal results to e�ciently compute EFT operator coe�cients with a singlet scalar
model example. In future work [30] we plan to complete the UOLEA by including all
possible structures one may encounter in evaluating the covariant derivative expansion,
to provide a standard set of results that can serve as a reference for one-loop matching.
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A Master integrals

The universal coe�cients fN presented in this paper are written in terms of master
integrals I, defined by

Z
d
d
q

(2⇡)d
q
µ1 · · · q

µ2nc

(q2 �M
2

i
)ni(q2 �M

2

j
)nj · · · (q2)nL

⌘ g
µ1...µ2nc I[q2nc ]

ninj ...nL

ij...0
. (A.1)

With the following reduction formulas,

I[q2nc ]
ninj ...nL

ij...0
=

1

�2

ij

�
I[q2nc ]

ni,nj�1,...nL

ij...0
� I[q2nc ]

ni�1,nj ...nL

ij...0

�
, (A.2)
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ninj ...nL

ij...0
=

1

M
2

i

�
I[q2nc ]
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ij...0
� I[q2nc ]

ni�1,nj ...nL

ij...0

�
, (A.3)
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I[q2nc ]
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ij...0
, (A.4)

where �2

ij
⌘ M

2

i
�M

2

j
, it can be shown that

I[q2nc ]
ninj ...nL

ij...0
=

ni�1X

pi=0


1

pi!

✓
@

@M
2

i

◆pi 1

(M2

i
)nL(�2

ij
)nj(�2

ik
)nk . . .

�
I[q2nc ]ni�pi
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nj�1X
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nj�pj

j
+ . . .

(A.5)
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Universality of the One-Loop Effective Action

• Universal coefficients in terms of standard master integrals:

Tevong You (University of Cambridge) 19

Drozd, J. Ellis, Quevillon, TY, 1512.03003;

Simplified form by covariant diagram computation 
shown here from Z. Zhang, 1610.00710. 

for degenerate mass heavy fields
B. Henning, X. Lu and H. Murayama arXiv:1412.1837

http://arxiv.org/abs/arXiv:1412.1837
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Functional methods: Heavy-Light loops?

• Linear coupling = tree-level, quadratic coupling = heavy-only one-loop

• What about loops involving both heavy and light fields?
• Naively not accounted for in functional method

• Solution: apply background field method to both heavy and light fields

Tevong You (University of Cambridge) 12

See e.g. Bilenky & Santamaria, hep-ph/9310302; Del Aguila, Kunszt, Santiago, 1602.00126.
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Functional methods: Heavy-Light loops?

• Just apply background field method to both heavy and light fields?

• Actually, this gives the one-loop 1PI effective action and not

• Feynman diagram intuition: Heavy-light loops in UV theory match onto both 
tree-level-generated EFT operators inserted at one-loop, and one-loop-
generated EFT operators inserted at tree-level

• The former is not part of           , must be subtracted to keep only the latter

Tevong You (University of Cambridge) 13

(hard part)(soft part)
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Functional methods: Heavy-Light subtractions
• Various subtraction procedures proposed

• Simplification of evaluating CDE from these developments 
lead to a Covariant Diagram formulation

• But Universality of CDE results means evaluation via all these different methods gives 
same model-independent expression

See e.g.
B. Henning, X. Lu and H. Murayama arXiv:1604.01019
Boggia, Gomez-Ambrisio, Passarino arXiv:1603.03660

S.A.R. Ellis, JQ, T. You, Z. Zhang arXiv:1604.02445

Fuentes-Martin, Portoles, Ruiz-Femenia arXiv:1607.02142

B. Henning, X. Lu and H. Murayama arXiv:1412.1837

S.A.R. Ellis, JQ, T. You, Z. Zhang arXiv:1706.07765

Integration by regions 
method avoids 
subtraction, separates 
hard and soft part in 
integral, greatly 
simplifies heavy-light 
treatment

Universality properties also 
applies to heavy-light case

§ After careful functional manipulations, 
we can show (ZZ [1610.00710]):

§ Previously argued in Fuentes-
Martin, Portoles, Ruiz-Femenia [1607.02142].

§ Intuition:
§ 1PI effective actions encode quantum 

fluctuations at all scales.
§ Extract short-distance fluctuations => 

local operators in EFT Lagrangian.

HKUST, Jan 2018Zhengkang (Kevin) Zhang (U. Michigan)               Covariant diagrams for one-loop matching 15

Z
ddxL1-loop

EFT ['L] = �1-loop
L,UV ['L]

���
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q
(loop momentum)

m'H

m'L

|q2| ⇠ m2
'H

� |m2
'L

|
hard region

|q2| ⇠ |m2
'L

| ⌧ m2
'H

soft region

§ After careful functional manipulations, 
we can show (ZZ [1610.00710]):

§ Previously argued in Fuentes-
Martin, Portoles, Ruiz-Femenia [1607.02142].

§ Intuition:
§ 1PI effective actions encode quantum 

fluctuations at all scales.
§ Extract short-distance fluctuations => 

local operators in EFT Lagrangian.

HKUST, Jan 2018Zhengkang (Kevin) Zhang (U. Michigan)               Covariant diagrams for one-loop matching 15

Z
ddxL1-loop

EFT ['L] = �1-loop
L,UV ['L]

���
hard

q
(loop momentum)

m'H

m'L

|q2| ⇠ m2
'H

� |m2
'L

|
hard region

|q2| ⇠ |m2
'L

| ⌧ m2
'H

soft region

• Extract short-distance fluctuations 
->local operators in EFT Lagrangian

§ This is what we would do if we were to compute the 1LPI 
effective action (Legendre transform of the path integral):

§ cs is spin factor (= +1/2 for real scalar, -1/2 for Weyl fermion).

§ Notation:              (“kinetic momentum operator,” hermitian). 

§ But we are interested in a different quantity:

HKUST, Jan 2018Zhengkang (Kevin) Zhang (U. Michigan)               Covariant diagrams for one-loop matching 13

Z
ddxL1-loop

EFT ['L] 6= �1-loop
L,UV ['L]

Pµ ⌘ iDµ

�1-loop
L,UV ['L,b] = i cs log detQUV

⇥
'H,c['L,b],'L,b

⇤

= i cs Tr logQUV = i cs

Z
ddx

Z
ddq

(2⇡)d
tr log QUV|Pµ!Pµ�qµ

• 1PI effective actions include 
quantum fluctuations at all scales

A. Drozd, J. Ellis, JQ and T. You arXiv:1504.02409

http://arxiv.org/abs/arXiv:1412.1837
http://arxiv.org/abs/arXiv:1412.1837
http://arxiv.org/abs/arXiv:1412.1837
http://arxiv.org/abs/arXiv:arXiv:1607.02142
http://arxiv.org/abs/arXiv:1412.1837
http://arxiv.org/abs/arXiv:.1837
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Universal One-Loop Effective Action
• with Heavy-Light extension S.A.R. Ellis, JQ, T. You, Z. Zhang arXiv:1706.07765

Universality of the One-Loop Effective Action

• Heavy-light extension also done:

Tevong You (University of Cambridge) 21

(S.A.R. Ellis, Quevillon, TY,  Z. Zhang, 1706.07765) 

http://arxiv.org/abs/arXiv:.1837


Application: matching SM-EFT vs UV model
SUSY first…

L = LSM +
X

i

ci
Oi

⇤2

Let’s match dim6-EFT and the MSSM :

mstop

O� = OBB +OWW �OWB

B. Henning, X. Lu and H. Murayama 
arXiv:1412.1837 

Wilson coef. for degenerate stops

A. Drozd, J. Ellis, JQ and T. You 
arXiv:1504.02409 

Wilson coef. for non-degenerate stops  37



EFT vs Loop Calculation
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+ EFT vs full MSSM calculation agrees well (non trivial check!)

+ Operators > dim-6 become important when EFT cut-off (stop mass) is too low

A. Drozd, J. Ellis, JQ and T. You arXiv:1504.02409  38



Indirect Constraints on Stops
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Indirect Constraints on Stops
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The current sensitivity is already comparable to that of direct LHC searches

LHC Run I
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Indirect Constraints on Stops
Future colliders
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+ Future FCC-ee measurements could 
be sensitive to stop masses above a TeV 

A. Drozd, J. Ellis, JQ and T. You arXiv:1504.02409
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