One-Loop Effective Actions

Jérémie Quevillon

LPSC, Grenoble

Louvain-la-Neuve, 16th April 2019

Overview

1. Universal One-Loop Effective Action

2. Effective action for gauge bosons

3. Effective action and anomalies (axion)

How far is new physics from the weak scale?

Program: Matching-Running-Mapping

Program: Matching-Running-Mapping

Effective Action by the path integral method

$$e^{iS_{\text{eff}}}[\phi_{\text{SM}}](\mu) = \int \mathcal{D}\Phi_{\text{heavy}} e^{iS[\phi_{\text{SM}}, \Phi_{\text{heavy}}](\mu)}$$

Eq. of Motion : $\frac{\delta S[\phi_{\rm SM}, \Phi]}{\delta \Phi} = 0 \Rightarrow \Phi_c(\phi_{\rm SM})$

Expand action around minimum : Taylor exp.: $S[\Phi] = S[\Phi_c + \eta] = S[\Phi_c] + \frac{1}{2} \frac{\delta^2 S}{\delta \Phi^2} (\Phi_c) \eta^2 + \mathcal{O}(\eta^3)$

Write Gaussian integral as determinant:

$$\Rightarrow e^{iS_{\text{eff}}[\phi_{\text{SM}}]} = e^{iS[\Phi_c]} \left[\det \left(-\frac{\delta^2 S}{\delta \Phi^2} (\Phi_c) \right) \right]^{-1/2}$$

Write determinant as trace of log in exponent :

$$S_{\text{eff}} = S[\Phi_c] + \frac{i}{2} \text{Tr} \ln \left[-\frac{\delta^2 S}{\delta \Phi^2} (\Phi_c) \right]$$

tree level

1-loop level

One-loop Effective Action

So covariant derivatives are explicitly in commutators from beginning : gauge invariance manifest through the computation

$$\tilde{G}_{\nu\mu} \equiv \sum_{n=0}^{\infty} \frac{n+1}{(n+2)!} \left[P_{\alpha_1}, \left[\dots \left[P_{\alpha_n}, G'_{\nu\mu} \right] \right] \right] \frac{\partial^n}{\partial q_{\alpha_1} \dots q_{\alpha_n}} \qquad \tilde{U} \equiv \sum_{n=0}^{\infty} \frac{1}{n!} \left[P_{\alpha_1}, \left[\dots \left[P_{\alpha_n}, U \right] \right] \right] \frac{\partial^n}{\partial q_{\alpha_1} \dots q_{\alpha_n}}$$

contain dim-6 operators & independent of momentum q! íntegratíon on q can be done once for all!!!

- q-integrals factorize give usual & simple Feynman Integrals
- traces give Higher Dimensional Operators

- M.K. Gaillard, Nucl. Phys. B 268 669 (1986)
- 0. Cheyette, Nucl. Phys. B 297 183 (1988)
- B. Henning, X. Lu and H. Murayama arXiv:1412.1837

One-Loop Effective Action

assuming degenerate mass matrix

B. Henning, X. Lu and H. Murayama arXiv:1412.1837

$$\begin{aligned} \Delta \mathcal{L}_{\text{eff,1-loop}} &= \frac{c_s}{(4\pi)^2} \operatorname{tr} \left\{ \mathcal{L}_{1-\text{loop}} &= \Phi^{\dagger} \left(-D^2 - m^2 - U \right) \Phi \\ &+ m^4 \left[-\frac{1}{2} \left(\log \frac{m^2}{\mu^2} - \frac{3}{2} \right) \right] \\ &+ m^2 \left[- \left(\log \frac{m^2}{\mu^2} - 1 \right) U \right] \\ &+ m^0 \left[-\frac{1}{12} \left(\log \frac{m^2}{\mu^2} - 1 \right) G'_{\mu\nu} - \frac{1}{2} \log \frac{m^2}{\mu^2} U^2 \right] \\ &+ \frac{1}{m^2} \left[-\frac{1}{60} \left(P_{\mu} G'_{\mu\nu} \right)^2 - \frac{1}{90} G'_{\mu\nu} G'_{\nu\sigma} G'_{\sigma\mu} - \frac{1}{12} \left(P_{\mu} U \right)^2 - \frac{1}{6} U^3 - \frac{1}{12} U G'_{\mu\nu} G'_{\mu\nu} \right] \\ &+ \frac{1}{m^4} \left[\frac{1}{24} U^4 + \frac{1}{12} U \left(P_{\mu} U \right)^2 + \frac{1}{120} \left(P^2 U \right)^2 + \frac{1}{24} \left(U^2 G'_{\mu\nu} G'_{\mu\nu} \right) \\ &- \frac{1}{120} \left[\left(P_{\mu} U \right), \left(P_{\nu} U \right) \right] G'_{\mu\nu} - \frac{1}{120} \left[U [U, G'_{\mu\nu}] \right] G'_{\mu\nu} \right] \\ &+ \frac{1}{m^6} \left[-\frac{1}{60} U^5 - \frac{1}{20} U^2 \left(P_{\mu} U \right)^2 - \frac{1}{30} \left(U P_{\mu} U \right)^2 \right] \\ &+ \frac{1}{m^8} \left[\frac{1}{120} U^6 \right] \right\}. \end{aligned}$$

Universality of the One-Loop Effective Action

- No need to reinvent the wheel, every slide up to here can be ignored
- Universality of CDE expansion results first noticed in the **simplified** case of **degenerate mass** for heavy fields B. Henning, X. Lu and H. Murayama arXiv:1412.1837
- The general Universal One-Loop Effective Action (UOLEA) subsequently derived without such assumption A. Drozd, J. Ellis, JQ and T. You arXiv:1504.02409
- However, extra structures (heavy-light terms, « open »covariant derivatives, momentum-shifted-gamma matrices) in CDE expansion not included in initial UOLEA
 S.A.R. Ellis, JQ, T. You, Z. Zhang arXiv:1604.02445
- Universal heavy-light terms now done S.A.R. Ellis, JQ, T. You, Z. Zhang arXiv:1706.07765
- A complete UOLEA, including all possible CDE structures, is in sight...

Universal One-Loop Effective Action

for non degenerate mass heavy fields

A. Drozd, J. Ellis, JQ and T. You arXiv:1512.03003

$$\mathcal{L}_{1\text{-loop}} = \Phi^{\dagger} \left(-D^2 - m^2 - U \right) \Phi$$

f3 universal term calculated by 't Gooft '73 $\mathcal{L}_{1\text{-loop}}^{\text{eff}}[\phi] \supset -ic_s \left\{ f_1^i + f_2^i U_{ii} + f_3^i G_{\mu\nu,ij}^{\prime 2} + f_4^{ij} U_{ij}^2 \right\}$ $+ f_5^{ij} (P_{\mu}G'_{\mu\nu,ij})^2 + f_6^{ij} (G'_{\mu\nu,ij}) (G'_{\nu\sigma,ik}) (G'_{\sigma\mu,ki}) + f_7^{ij} [P_{\mu}, U_{ij}]^2$ $+ f_8^{ijk} (U_{ij} U_{jk} U_{ki}) + f_9^{ij} (U_{ij} G'_{\mu\nu, ik} G'_{\mu\nu, ki})$ $+ f_{10}^{ijkl} (U_{ij}U_{jk}U_{kl}U_{li}) + f_{11}^{ijk}U_{ij}[P_{\mu}, U_{jk}][P_{\mu}, U_{ki}]$ Universal coefficients f + $f_{12.a}^{ij} \left[P_{\mu}, \left[P_{\nu}, U_{ij} \right] \right] \left[P_{\mu}, \left[P_{\nu}, U_{ji} \right] \right] + f_{12.b}^{ij} \left[P_{\mu}, \left[P_{\nu}, U_{ij} \right] \right] \left[P_{\nu}, \left[P_{\mu}, U_{ji} \right] \right]$ encapsulate $+ f_{12,c}^{ij} \left[P_{\mu}, \left[P_{\mu}, U_{ij} \right] \right] \left[P_{\nu}, \left[P_{\nu}, U_{ji} \right] \right]$ dependence on dim-6 combinations of $+ f_{13}^{ijk} U_{ij} U_{jk} G'_{\mu\nu,kl} G'_{\mu\nu,li} + f_{14}^{ijk} \left[P_{\mu}, U_{ij} \right] \left[P_{\nu}, U_{jk} \right] G'_{\nu\mu,ki}$ Operators momentum + $\left(f_{15a}^{ijk}U_{i,j}[P_{\mu}, U_{j,k}] - f_{15b}^{ijk}[P_{\mu}, U_{i,j}]U_{j,k}\right)[P_{\nu}, G'_{\nu\mu,ki}]$ master integrals $+ f_{16}^{ijklm}(U_{ij}U_{jk}U_{kl}U_{lm}U_{mi}) + f_{17}^{ijkl}U_{ij}U_{jk}[P_{\mu}, U_{kl}][P_{\mu}, U_{li}]$ $+ f_{18}^{ijkl} U_{ij}[P_{\mu}, U_{jk}] U_{kl}[P_{\mu}, U_{li}] + f_{19}^{ijklmn} (U_{ij}U_{jk}U_{kl}U_{lm}U_{mn}U_{ni}) \bigg\} .$

Application of the UOLEA: MSSM stops

• Write UV Lagrangian for heavy multiplet in appropriate form to extract U matrix, mass matrix and covariant derivative

• Example:
$$\mathcal{O}_{GG} = g_s^2 |H|^2 G_{\mu\nu}^a G^{a,\mu\nu}$$

 $\mathcal{L}_{1-loop}^{\text{eff.}} = -ic_s \left\{ f_1^i + f_2^{i}U_{ii} + f_3^{ij}G_{\mu\nu,ij}^{'2} + f_4^{ij}U_{ij}^2 + f_6^{ij}(G_{\mu\nu,ij})(G_{\nu\sigma,jk})(G_{\sigma\mu,ki}) + f_7^i(P_{\mu}U_{ij})^2 + f_8^{ijk}(U_{ij}U_{jk}U_{ki}) + f_9^{ij}(U_{ij}G_{\mu\nu,kj})^2 + f_6^{ijk}(G_{\mu\nu,ij})(G_{\nu\sigma,jk})(G_{\sigma\mu,ki}) + f_7^i(P_{\mu}U_{ij})^2 + f_8^{ijk}(U_{ij}U_{jk}U_{ki}) + f_{10}^{ijk}(U_{ij}G_{\mu\nu,ki}G_{\mu\nu,ki}) + f_{10}^{ijk}(U_{ij}G_{\mu\nu,ki}G_{\mu\nu,ki}) + f_{12,a}^{ij}(P_{\mu}(P_{\nu}, U_{ji}))(P_{\mu}(P_{\nu}, U_{ji})) + f_{12,b}^{ijk}(P_{\mu}(P_{\nu}, U_{ij}))(P_{\nu}(P_{\mu}, U_{ji})) + f_{12,c}^{ijk}(P_{\mu}(P_{\nu}, U_{ij}))(P_{\nu}(P_{\nu}, U_{ji})) + f_{12,c}^{ijk}(P_{\mu}(P_{\nu}, U_{ij}))(P_{\nu}(P_{\nu}, U_{ji})) + f_{12,c}^{ijk}(P_{\mu}, U_{ij})(P_{\nu}(P_{\nu}, U_{ij}))(P_{\nu}(P_{\nu}, U_{ji})) + f_{12,c}^{ijk}(P_{\mu}, U_{ij})(P_{\nu}(P_{\nu}, U_{ij}))(P_{\nu}(P_{\nu}, U_{ji})) + f_{12,c}^{ijk}(P_{\mu}, U_{ij})(P_{\nu}, U_{jk})G_{\nu\mu,ki} + (f_{13}^{ijk}U_{ij}U_{jk}G_{\mu\nu,ki}G_{\mu\nu,ki}) + f_{14}^{ijkl}(P_{\mu}, U_{ij})(P_{\nu}, U_{jk})G_{\nu\mu,ki} + (f_{13}^{ijk}U_{ij}U_{ij}U_{\mu}, U_{ij}) - f_{15b}^{ijkl}(P_{\mu}, U_{ij})(P_{\mu}, U_{ij})(P_{\mu}, U_{ij}) + f_{16}^{ijkl}U_{ij}U_{jk}U_{kl}U_{lm}U_{m}) + f_{17}^{ijkl}U_{ij}U_{jk}(P_{\mu}, U_{kl})[P_{\mu}, U_{kl}] + f_{16}^{ijklimn}(U_{ij}U_{jk}U_{kl}U_{lm}U_{mn}U_{ni}) \right\},$
(3.1)

Effective action for gauge bosons (Euler-Heisenberg generalisation)

J.Q., C. Smith and S. Touati, Phys.Rev. D99 (2019) no.1, 013003

Photon effective interactions

$$Z_{QED}\left[J^{\mu},\eta,\overline{\eta}\right] = \int DA^{\mu}D\psi D\overline{\psi} \exp i \int dx (\mathcal{L}_{QED} + \overline{\eta}\psi + \overline{\psi}\eta + J^{\mu}A_{\mu}) \qquad \qquad \mathcal{L}_{QED} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \overline{\psi}(i\not\!\!D - m)\psi$$

• Construct EFT (integrate out fermion):

$$Z_{QED} [J^{\mu}, 0, 0] = \int DA^{\mu} \exp i \int dx \left\{ -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + J^{\mu} A_{\mu} \right\} \times \det(i \not D - m)$$

$$\equiv \int DA^{\mu} \exp i \int dx (\mathcal{L}_{eff} + J^{\mu} A_{\mu}) . \qquad \qquad \mathcal{L}_{eff} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - i Tr \ln(i \not D - m)$$

all about perturbatively
expand the « det »

$$\mathcal{L}_{eff} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i \sum_{n=1}^{\infty} \frac{e^n}{n} Tr \left(\frac{1}{i \not \partial - m} A\right)^n \qquad \qquad \dots : \text{one-loop 1PI diagrams}$$

• <u>Match QED to EFT:</u> light fields are not assumed on-shell!

$$\begin{split} \mathfrak{L}_{eff} &= -\frac{1}{4} \left\{ 1 + \alpha_0 \frac{e^2}{4!\pi^2} \right\} F_{\mu\nu} F^{\mu\nu} + \alpha_2 \frac{e^2}{5!\pi^2 m^2} \partial^{\mu} F_{\mu\nu} \partial_{\rho} F^{\rho\nu} + \alpha_4 \frac{e^2}{6!\pi^2 m^4} \partial^{\mu} F_{\mu\nu} \Box \partial_{\rho} F^{\rho\nu} \\ &+ \left(\gamma_{4,1} \frac{e^4}{6!\pi^2 m^4} (F_{\mu\nu} F^{\mu\nu})^2 + \left(\gamma_{4,2} \frac{e^4}{6!\pi^2 m^4} (F_{\mu\nu} \tilde{F}^{\mu\nu})^2 + \mathcal{O}(m^{-6}) \right) \right\} \\ &\frac{\alpha_0 \qquad \alpha_2 \qquad \alpha_4 \qquad \gamma_{4,1} \qquad \gamma_{4,2}}{Fermion \qquad 2D_{\varepsilon} Q^2 \qquad -Q^2 \qquad \frac{9}{14} Q^2 \qquad \left(\frac{1}{2} Q^4 \qquad \frac{7}{8} Q^4 \right) \mathbf{E.H.} \\ &\text{Scalar} \qquad \frac{1}{2} D_{\varepsilon} Q^2 \qquad -\frac{1}{8} Q^2 \qquad \frac{3}{56} Q^2 \qquad \frac{7}{32} Q^4 \qquad \frac{1}{32} Q^4 \end{split}$$

J.Q., C. Smith and S. Touati, Phys.Rev. D99 (2019) no.1, 013003

Photon effective interactions

- in 't Hooft-Feynman gauge: does not satisfy QED ward identities when photons are off-shell
 - → 4 photons amplitude matches onto effective operators only for on-shell photons usual prescription to construct effective action breaks down
- the problem: the gauge fixing procedure

 $\mathfrak{L}_{gauge-fixing}^{R_{\xi},linear} = -\frac{1}{\xi} |\partial^{\mu}W_{\mu}^{+} + \xi M_{W}\phi^{+}|^{2} \quad \text{this explicitly breaks } U(1)_{QED}$ unitary gauge? $\mathcal{L}_{U-gauge} = -\frac{1}{2} (D_{\mu}W_{\nu}^{+} - D_{\nu}W_{\nu}^{+}) (D^{\mu}W^{-\nu} - D^{\nu}W^{-\mu}) + ieF^{\mu\nu}W_{\mu}^{+}W_{\nu}^{-} + M_{W}^{2}W_{\mu}^{+}W^{-\mu} \longrightarrow \text{ matching fails again!}$

• the non-linear gauge: $\partial^{\mu}W^{\pm}_{\mu} \rightarrow D^{\mu}W^{\pm}_{\mu}$ $\mathfrak{L}_{gauge-fixing}^{non-linear} = -\frac{1}{\xi} |\partial^{\mu}W^{+}_{\mu} + i\kappa e A^{\mu}W^{+}_{\mu} + \xi M_{W}\phi^{+}|^{2}$ interpolate between linear ($\kappa = 0$) and the U(1) gauge invariant non linear gauge ($\kappa = 1$)

$$\begin{aligned} \text{Match QED to EFT:} \quad \mathfrak{L}_{eff} &= -\frac{1}{4} \left\{ 1 + \alpha_0 \frac{e^2}{4! \pi^2} \right\} F_{\mu\nu} F^{\mu\nu} + \alpha_2 \frac{e^2}{5! \pi^2 m^2} \partial^{\mu} F_{\mu\nu} \partial_{\rho} F^{\rho\nu} + \alpha_4 \frac{e^2}{6! \pi^2 m^4} \partial^{\mu} F_{\mu\nu} \Box \partial_{\rho} F^{\rho\nu} \\ &+ \gamma_{4,1} \frac{e^4}{6! \pi^2 m^4} (F_{\mu\nu} F^{\mu\nu})^2 + \gamma_{4,2} \frac{e^4}{6! \pi^2 m^4} (F_{\mu\nu} \tilde{F}^{\mu\nu})^2 + \mathcal{O}(m^{-6}) \;. \end{aligned}$$

$$\begin{aligned} &\frac{\alpha_0 & \alpha_2 & \alpha_4 & \gamma_{4,1} & \gamma_{4,2}}{6! \pi^2 m^4} \\ &\frac{\alpha_0 & \alpha_2 & \alpha_4 & \gamma_{4,1} & \gamma_{4,2}}{2} \\ &\frac{1}{2} Q^2 - \frac{21D_{\varepsilon} + 2}{2} Q^2 - \frac{37}{8} Q^2 - \frac{159}{56} Q^2 - \frac{261}{32} Q^4 - \frac{243}{32} Q^4 \end{aligned}$$

Gluon effective interactions

non-linear nature of field strength

Construct EFT i.e integrate out fermion :

• Match:		$lpha_0$	α_2	$lpha_4$	β_2	$\beta_{4,1}$	$\beta_{4,2}$	$\gamma_{4,1}$	$\gamma_{4,2}$	$\gamma_{4,3}$	$\gamma_{4,4}$	$\gamma_{4,5}$	$\gamma_{4,6}$	_
	Scalar	$\frac{1}{4}D_{\varepsilon}$	$-\frac{1}{16}$	$\frac{3}{112}$	$\frac{1}{48}$	$-\frac{1}{28}$	0	$\frac{7}{768}$	$\frac{1}{768}$	$\frac{7}{384}$	$\frac{1}{384}$	$\frac{1}{96}$	$\frac{1}{672}$	-
	Fermion	$D_{arepsilon}$	$-\frac{1}{2}$	$\frac{9}{28}$	$-\frac{1}{24}$	$\frac{1}{14}$	$-\frac{3}{4}$	$\frac{1}{48}$	$\frac{7}{192}$	$\frac{1}{24}$	$\frac{7}{96}$	$\frac{1}{96}$	$\frac{19}{672}$	

Gluon effective interactions

 $\underbrace{\text{X charged under unbroken}}_{\text{symmetries}} X^k_{\mu} D^{\mu} H^k_X \quad \Big)$

- calculation far more challenging!
- need to **generalize the non-linear gauge** to preserve QCD symmetry otherwise 1 PI off-shell amplitudes cannot **matched onto gauge invariant operators**
- non-linear gauge drastically reduce the number of diagrams to compute (4-gluon diagrams: 207 → 84)
- R_{ξ} gauge: get rid of mixing term like $X^k_{\mu}\partial^{\mu}H^k_X$
- non-linear gauge: no $X V_{SM} H_X$ couplings \longrightarrow all the mixed loops of vector with its WBG boson disappear (very welcome!)
- Match with vectors in the loops:

J.Q., C. Smith and S. Touati, Phys.Rev. D99 (2019) no.1, 013003

	$lpha_0$	α_2	$lpha_4$	β_2	$\beta_{4,1}$	$\beta_{4,2}$	$\gamma_{4,1}$	$\gamma_{4,2}$	$\gamma_{4,3}$	$\gamma_{4,4}$	$\gamma_{4,5}$	$\gamma_{4,6}$
Vector	$-\frac{21D_{\varepsilon}+2}{4}$	$\frac{37}{16}$	$-\frac{159}{112}$	$\frac{1}{16}$	$-\frac{3}{28}$	3	$\frac{87}{256}$	$\frac{81}{256}$	$\frac{87}{128}$	$\frac{81}{128}$	$-\frac{3}{32}$	$-rac{27}{224}$

SU(N) effective interactions

17

Tr over the fundamental generators of SU(3) — Tr over generic rep. R of SU(N)

SU(N), SO(N) effective interactions

• reduction to U(1), SU(2) and SU(3):

$$\begin{split} \mathfrak{L}_{eff,SU(2)_{L}}^{(4)} &= \frac{(\gamma_{4,1} + \gamma_{4,3})g^{4}}{6!\pi^{2}m^{4}} (W_{\mu\nu}^{3}W^{3,\mu\nu})^{2} + \frac{(\gamma_{4,2} + \gamma_{4,4})g^{4}}{6!\pi^{2}m^{4}} (W_{\mu\nu}^{3}\tilde{W}^{3,\mu\nu})^{2} \\ &+ \frac{4(\gamma_{4,1} + \gamma_{4,5})g^{4}}{6!\pi^{2}m^{4}} W_{\mu\nu}^{3}W^{3,\mu\nu}W_{\rho\sigma}^{+}W^{-,\rho\sigma} + \frac{4(\gamma_{4,2} + \gamma_{4,6})g^{4}}{6!\pi^{2}m^{4}} W_{\mu\nu}^{3}\tilde{W}^{3,\mu\nu}W_{\rho\sigma}^{+}\tilde{W}^{-,\rho\sigma} \\ &+ \frac{4(\gamma_{4,3} - \gamma_{4,5})g^{4}}{6!\pi^{2}m^{4}} |W_{\mu\nu}^{3}W^{+,\mu\nu}|^{2} + \frac{4(\gamma_{4,4} - \gamma_{4,6})g^{4}}{6!\pi^{2}m^{4}} |W_{\mu\nu}^{3}\tilde{W}^{+,\mu\nu}|^{2} \\ &+ \frac{2(2\gamma_{4,1} + \gamma_{4,3} + \gamma_{4,5})g^{4}}{6!\pi^{2}m^{4}} (W_{\mu\nu}^{+}W^{-,\mu\nu})^{2} + \frac{2(\gamma_{4,4} - \gamma_{4,6})g^{4}}{6!\pi^{2}m^{4}} |W_{\mu\nu}^{+}\tilde{W}^{+,\mu\nu}|^{2} \\ &+ \frac{2(\gamma_{4,3} - \gamma_{4,5})g^{4}}{6!\pi^{2}m^{4}} |W_{\mu\nu}^{+}W^{+,\mu\nu}|^{2} + \frac{2(2\gamma_{4,2} + \gamma_{4,4} + \gamma_{4,6})g^{4}}{6!\pi^{2}m^{4}} (W_{\mu\nu}^{+}\tilde{W}^{-,\mu\nu})^{2} \,. \end{split}$$

	α_0	α_2	$lpha_4$	β_2	$\beta_{4,1}$	$\beta_{4,2}$
Scalar	$\frac{1}{2}I_2(\mathbf{R})D_{\varepsilon}$	$-rac{1}{8}I_2({f R})$	$\frac{3}{56}I_2(\mathbf{R})$	$\frac{1}{24}I_2(\mathbf{R})$	$-\frac{1}{14}I_2(\mathbf{R})$	0
Fermion	$2I_2(\mathbf{R})D_{\varepsilon}$	$-I_2(\mathbf{R})$	$\frac{9}{14}I_2(\mathbf{R})$	$-\frac{1}{12}I_2(\mathbf{R})$	$\frac{1}{7}I_2(\mathbf{R})$	$-rac{3}{2}I_2(\mathbf{R})$
Vector	$-\frac{21D_{\varepsilon}+2}{2}I_{2}(\mathbf{R})$	$\frac{37}{8}I_2(\mathbf{R})$	$-\frac{159}{56}I_2(\mathbf{R})$	$\frac{1}{8}I_2(\mathbf{R})$	$-\frac{3}{14}I_2(\mathbf{R})$	$6I_2(\mathbf{R})$
	$\gamma_{4,1} = \gamma_{4,3}/2$	$\gamma_{4,2} = \gamma_{4,4}/2$	$\gamma_{4,5}$	$\gamma_{4,6}$	$\gamma_{4,7}$	$\gamma_{4,8}$
Scalar	$\frac{7}{32}\Lambda({\bf R})$	$\frac{1}{32}\Lambda({\bf R})$	$\frac{1}{48}I_2(\mathbf{R})$	$\frac{1}{336}I_2(\mathbf{R})$	$\frac{7}{32}I_4(\mathbf{R})$	$\frac{1}{32}I_4(\mathbf{R})$
Fermion	$\frac{1}{2}\Lambda(\mathbf{R})$	$\frac{7}{8}\Lambda({\bf R})$	$\frac{1}{48}I_2(\mathbf{R})$	$\frac{19}{336}I_2(\mathbf{R})$	$\frac{1}{2}I_4(\mathbf{R})$	$rac{7}{8}I_4(\mathbf{R})$
Vector	$\frac{261}{32}\Lambda({\bf R})$	$\frac{243}{32}\Lambda({\bf R})$	$-\frac{3}{16}I_2(\mathbf{R})$	$-\frac{27}{112}I_2(\mathbf{R})$	$\frac{261}{32}I_4(\mathbf{R})$	$\frac{243}{32}I_4(\mathbf{R}$

J.Q., C. Smith and S. Touati, Phys.Rev. D99 (2019) no.1, 013003

$$\begin{aligned} \mathfrak{L}_{eff}^{(4)}(U(1)_{\alpha} \subset SU(N)) &= (\gamma_{4,1} + \gamma_{4,3} + d^{\alpha\alpha\alpha\alpha}\gamma_{4,7}) \frac{g_{S}^{4}}{6!\pi^{2}m^{4}} G^{\alpha}_{\mu\nu} G^{\alpha,\mu\nu} G^{\alpha}_{\rho\sigma} G^{\alpha,\rho\sigma} \\ &+ (\gamma_{4,2} + \gamma_{4,4} + d^{\alpha\alpha\alpha\alpha}\gamma_{4,8}) \frac{g_{S}^{4}}{6!\pi^{2}m^{4}} G^{\alpha}_{\mu\nu} \tilde{G}^{\alpha,\mu\nu} G^{\alpha}_{\rho\sigma} \tilde{G}^{\alpha,\rho\sigma} \end{aligned}$$

Axions are blind to anomalies

J.Q. and C. Smith, arXiv:1903.12559

An axionic toy model: simple QED extension

• local $U(1)_{em}$, new scalar field ϕ :

 $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \bar{\psi}_L(iD)\psi_L + \bar{\psi}_R(iD)\psi_R + (y\phi\bar{\psi}_L\psi_R + h.c.) + \partial_\mu\phi^\dagger\partial^\mu\phi - V(\phi)$

• global $U(1)_{PQ}$: $\phi \to \exp(-i\theta)\phi$, $\psi_L \to \exp(i\alpha\theta)\psi_L$, $\psi_R \to \exp(i(\alpha+1)\theta)\psi_R$ global fermion number

→ Goldstone boson (**axion**) remnant of $U(1)_{PQ}$ S.S.B.

Linear representation:
$$\phi(x) = \sigma^0(x) + ia^0(x) + v$$

Polar representation: $\phi(x) = \frac{1}{\sqrt{2}}(v + \sigma^0(x))e^{-ia^0(x)/v}$

Linear representation $\phi(x) = \sigma^0(x) + ia^0(x) + v$

$$\mathcal{L}_{\text{Linear}} \supset \frac{1}{2} \partial_{\mu} a^{0} \partial^{\mu} a^{0} + \frac{m}{v} a^{0} \bar{\psi} i \gamma_{5} \psi$$

$$\mathcal{T}_{PVV}^{\alpha\beta} = \int \frac{d^4k}{(2\pi)^4} (-1) \operatorname{Tr} \left[\frac{i}{\not k - \not q_1 - m} \underbrace{\mathcal{P}}_{k - \not q_1}^{\alpha} \frac{i}{\not k - m} \underbrace{\mathcal{P}}_{k - \not q_2 - m}^{\beta} \underbrace{\mathcal{P}}_{k - \not q_2 - m}^{\beta} \right] + (1, \alpha \leftrightarrow 2, \beta) + (m \to M)$$

$$= -i \frac{1}{2\pi^2} \varepsilon^{\alpha\beta\rho\sigma} q_{1,\rho} q_{2,\sigma} (mC_0(m^2) - MC_0(M^2)) . \quad \text{Pauli-Villars regulator}$$

$$m \to \infty \qquad \mathcal{L}_{\text{Linear}}^{\text{eff}} = -\frac{e^2}{16\pi^2 v} a^0 F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Anomalies do no show up : loop amplitude can safely be computed using a naive regularization procedure even if $U(1)_{PQ}$ is anomalous

Polar representation $\phi(x) = \frac{1}{\sqrt{2}}(v + \sigma^0(x))e^{-ia^0(x)/v}$

reparametrize fermion fields (invariant under $U(1)_{PQ}$):

 $\psi_L(x) \to \exp(i\alpha a^0(x)/v)\psi_L(x) , \ \psi_R(x) \to \exp(i(\alpha+1)a^0(x)/v)\psi_R(x)$

- a^0 disapears from the Yukawa $(y\phi\bar{\psi}_L\psi_R+h.c.)$
- Fermion kinetic term induce **derivative interactions** $\bar{\psi}_L(iD)\psi_L + \bar{\psi}_R(iD)\psi_R$ $\delta \mathcal{L}_{\text{Der}} = -\frac{\partial_\mu a^0}{\partial t} (\alpha \bar{\psi}_L \gamma^\mu \psi_L + (\alpha + 1) \bar{\psi}_R \gamma^\mu \psi_R) = -\frac{\partial_\mu a^0}{2w} ((2\alpha + 1) \bar{\psi} \gamma^\mu \psi + \bar{\psi} \gamma^\mu \gamma_5 \psi)$
- Fermionic path integral measure is not invariant:

new local interaction (Jacobian of the transformation)

$$\delta \mathcal{L}_{\text{Jac}} = \frac{e^2}{16\pi^2 v} a^0 (\alpha - (\alpha + 1)) F_{\mu\nu} \tilde{F}^{\mu\nu} = -\frac{e^2}{16\pi^2 v} a^0 F_{\mu\nu} \tilde{F}^{\mu\nu}$$

$$\longrightarrow \mathcal{L}_{\text{Polar}} \supset \frac{1}{2} \partial_{\mu} a^{0} \partial^{\mu} a^{0} + \delta \mathcal{L}_{\text{Der}} + \delta \mathcal{L}_{\text{Jac}}$$

Polar representation

$$\mathcal{T}_{AVV}^{\gamma\alpha\beta} = \int \frac{d^4k}{(2\pi)^4} (-1) \operatorname{Tr}\left[\frac{i}{\not{k} - \not{q}_1 - m} \underbrace{\gamma^{\alpha}}_{k} \frac{i}{\not{k} - m} \underbrace{\gamma^{\gamma}\gamma_5}_{k} \frac{i}{\not{k} + \not{q}_2 - m} \underbrace{\gamma^{\gamma}\gamma_5}_{k}\right] + (1, \alpha \leftrightarrow 2, \beta)$$

$$\mathcal{M}(a^{0} \to \gamma \gamma)_{\text{Der}} = \frac{-e^{2}}{2v} i(q_{1} + q_{2})_{\gamma} \mathcal{T}_{AVV}^{\gamma \alpha \beta} \varepsilon(q_{1})_{\alpha}^{*} \varepsilon(q_{2})_{\beta}^{*} \quad \text{no "VVV " diagram (Furry theorem)}$$
$$= \frac{-e^{2}}{4\pi^{2}v} (2m^{2}C_{0}(m^{2}) - 2M^{2}C_{0}(M^{2}))\varepsilon^{\alpha\beta\rho\sigma}\varepsilon(q_{1})_{\alpha}^{*}\varepsilon(q_{2})_{\beta}^{*}q_{1,\rho}q_{2,\sigma}$$

 $\xrightarrow{M \to \infty} \text{ the regulator term precisely cancels the local term from } \delta \mathcal{L}_{\text{Jac}}$ $\mathcal{M}(a^0 \to \gamma \gamma)_{\text{Polar}} = \mathcal{M}(a^0 \to \gamma \gamma)_{\text{Der}} + \mathcal{M}(a^0 \to \gamma \gamma)_{\text{Jac}}$

$$= -\frac{e^2}{2\pi^2 v} m^2 C_0(m^2) \varepsilon^{\alpha\beta\rho\sigma} \varepsilon(q_1)^*_{\alpha} \varepsilon(q_2)^*_{\beta} q_{1,\rho} q_{2,\sigma} = \mathcal{M}(a^0 \to \gamma\gamma)_{\text{Linear}}$$

• in polar rep. : the local term $a^0 F_{\mu\nu} \tilde{F}^{\mu\nu}$ is **spurious** it only serves to cancel out the anomalous term arising from $\partial_{\mu}a^0 \bar{\psi}\gamma^{\mu}\gamma_5\psi$ nothing but axial Ward identity: $\partial_{\mu}A^{\mu} - \frac{e^2}{8\pi^2}F_{\mu\nu}\tilde{F}^{\mu\nu} = 2imP$ $A^{\mu} = \bar{\psi}\gamma^{\mu}\gamma_5\psi$ $P = \bar{\psi}\gamma_5\psi$ • $a^0 \to \gamma\gamma$ often **misinterpreted** as induced by the **anomaly** $\mathcal{M}(a^0 \to \gamma\gamma)_{\overline{\text{Der}}} \stackrel{m \to \infty}{=} 0 + \mathcal{M}(a^0 \to \gamma\gamma)_{\text{Jac}}$ $\begin{pmatrix} A & -A \end{pmatrix} + A = A \quad \text{on more than a book-keeping device}$ $A + (-A + A) = A \quad \text{physical identification!}$

Consistent use of anomalies

Jacobian of the transformation: triangle graph with left handed currents

$$\mathcal{T}_{LLL}^{\alpha\beta\gamma} = \int \frac{d^4k}{(2\pi)^4} (-1) \operatorname{Tr} \left[\frac{i}{\not k - \not q_1} \gamma^{\beta} P_L \dot{k} \gamma^{\gamma} P_L \dot{k} + \not q_2} \gamma^{\alpha} P_L \right] + (1, \beta \leftrightarrow 2, \gamma)$$

$$-i(q_1)_{\beta} \mathcal{T}_{LLL}^{\alpha\beta\gamma} = \frac{1}{8\pi^2} (1+b) \varepsilon^{\gamma\alpha\mu\nu} q_{1\mu} q_{2\nu}$$

$$i(q_1 + q_2)_{\alpha} \mathcal{T}_{LLL}^{\alpha\beta\gamma} = \frac{1}{8\pi^2} (a-b) \varepsilon^{\beta\gamma\mu\nu} q_{1\mu} q_{2\nu}$$

$$= \underline{0} \text{ since } a = -b = 1 \quad \underline{a^0}$$

$$-i(q_2)_{\gamma} \mathcal{T}_{LLL}^{\alpha\beta\gamma} = \frac{1}{8\pi^2} (1-a) \varepsilon^{\alpha\beta\mu\nu} q_{1\mu} q_{2\nu}$$

$$U(1)_{em} \text{ non anomalous} \Rightarrow a = 1$$

- a and b are free parameters :needed to **keep track of the anomalies**
- anomaly equally distributed (Bose symmetry) with a = -b = 1/3
- In terms of **vector** and **axial** currents only « **AVV**s » and « **AAA** » do not cancel (Furry)
- careful to the regularization procedure: Pauli-Villars or dim. reg. enforce automatically a and b (AVV: a = -b = 1; AAA: a = -b = 1/3) *we do not want that! *
- examples: impose which are the anomalous currents

Couplings of the PQ axion: Matching the polar and linear rep.

$$\mathcal{M}(a^0 \to \gamma\gamma, gg)_{\text{Polar}} = \mathcal{M}(A^0 \to \gamma\gamma, gg)_{\text{Linear}}$$

The anomalous contact int. do cancel out systematically with the anomalous part to the triangle graphs

$$\mathcal{M}(a^0 \to \gamma\gamma, gg)_{\mathrm{Der}}^{AVV} \stackrel{m \to \infty}{=} 0 \implies \mathcal{M}(A^0 \to \gamma\gamma, gg)_{\mathrm{Linear}} \stackrel{m \to \infty}{=} \mathcal{M}(a^0 \to \gamma\gamma, gg)_{\mathrm{Jac}}$$

though interpreting the axion coupling as induced by the anomaly is incorrect!

Couplings of the PQ axion: Matching the polar and linear representations

26

For **chiral gauge theory**: the local terms from $\delta \mathcal{L}_{Jac}$ are no longer reliable book-keeping of the effect of heavy fermions because part of the anomaly is hidden in the VAV triangle

Conclusion

• All decoupled new physics is a non zero Wilson coefficient:

The One-Loop Universal Action is a simplified way to express collider constraints on realistic BSM theories

- Construct EFTs for gauge bosons up to dim. 8 interactions (loop of spin 0, 1/2, 1)
- Spin 1: usual diagrammatic procedure to build effective action breaks down quantized the SM in the non-linear gauge: matching consistent off-shell (closely parallels the CDE path integral method)
- Generalization to QCD gluon and SU(N), $U(1) \otimes SU(N)$, $SU(N) \otimes SU(M)$ boson EFTs
- At one-loop some operators are redundant! no matter the rep. or spin of particle circulating in the loops
- Match the axion decay modes computed using either a linear or a polar representation for the scalar field breaking the $U(1)_{PQ}$ symmetry
- we derived the couplings of axions to gauge bosons, they are not induced by the anomaly
- Could have consequences for ALP searches

spare slides

Euler-Heisenberg Effective Action

« Consequences of Dirac's Theory of the Positron », W. Heisenberg & H. Euler (1936)

- <u>Classical field theory:</u> Lagrangian encapsulates the relevant E.O.M and the symmetries of the system
- <u>Dirac's theory:</u> an E.M. field create pairs of particles which change Maxwell's equations in the vacuum
- <u>QFT:</u> effective Lagrangian encodes quantum corrections to the classical Lagrangian (ex: vacuum polarization)
- <u>E.H. (1936)</u>: compute nonperturbative, renormalized, one-loop effective (no e+,e-) action for QED in a classical E.M. background of constant field strength —— leads to several insights and applications

Euler-Heisenberg Effective Action

• <u>nonlinear QED processes:</u>

 $\frac{1}{2} \frac{1}{2} \frac{1}$

nonlinearities $\,\sim\,$ dielectric effects, the quantum vacuum behaving as a polarizable medium

• pair-production from vacuum in **E**-field:

E field accelerates and splits virtual vacuum dipole pairs, leading to e+e- particle production

$$\Gamma = 2 Im \mathcal{L}$$

$$\Gamma \sim \frac{e^2 E^2}{4\pi^3} \exp\left[-\frac{m^2 \pi}{eE}\right]$$

rate of vacuum non persistence due to pair production

 $\tilde{F}^{\mu\nu})^2$

• charge renormalization, β -function:

E.H.'s result correctly anticipated charge renormalization

$$S^{(1)} = -\frac{1}{hc} \int_0^\infty \frac{d\eta}{\eta^3} e^{-\eta e \mathcal{E}_c} \left\{ \frac{e^2 a b \eta^2}{\tanh(eb\eta) \tan(ea\eta)} - 1 \underbrace{\left(-\frac{e^2 \eta^2}{3} (b^2 - a^2) \right)}_{\text{bare result}} \right\}$$

$$\frac{\mathcal{L}^{(1)}_{\text{spinor}}}{\mathcal{L}_{\text{Maxwell}}} \sim -\frac{e^2}{12\pi^2} \log\left(\frac{eB}{m^2}\right), \quad B \to \infty \quad : \text{one-loop QED } \beta\text{-function}$$

• paradigm of what is now called « low energy EFT »:

describes the physics of light d.o.f at energies much lower than some energy scale (heavy d.o.f. are integrated out) Lagrangian expanded in terms of gauge and Lorentz invariant operators for the light fields

$$\mathcal{L}_{\text{eff}} = m^4 \sum_n a_n \frac{O^{(n)}}{m^n}$$
 at mass dim. 8 : $(F_{\mu\nu}F^{\mu\nu})^2$ or $(F_{\mu\nu}F^{\mu\nu})^2$

full QED process solved in 1951

Mixed effective interactions

$$\begin{split} \mathfrak{L}_{eff}^{(4)}(\underline{U(1)} \otimes \underline{SU(N)}) &= \alpha_1 \frac{g_1^2 g_n^2}{6! \pi^2 m^4} F_{\mu\nu} F^{\mu\nu} G_{\rho\sigma}^a G^{a,\rho\sigma} + \alpha_2 \frac{g_1^2 g_n^2}{6! \pi^2 m^4} F_{\mu\nu} \tilde{F}^{\mu\nu} G_{\rho\sigma}^a \tilde{G}^{a,\rho\sigma} \\ &+ \alpha_3 \frac{g_1^2 g_n^2}{6! \pi^2 m^4} F_{\mu\nu} G^{a,\mu\nu} F_{\rho\sigma} G^{a,\rho\sigma} + \alpha_4 \frac{g_1^2 g_n^2}{6! \pi^2 m^4} F_{\mu\nu} \tilde{G}^{a,\mu\nu} F_{\rho\sigma} \tilde{G}^{a,\rho\sigma} \\ &+ \beta_1 \frac{g_1 g_n^3}{6! \pi^2 m^4} d^{abc} F_{\mu\nu} G^{a,\mu\nu} G_{\rho\sigma}^b G^{c,\rho\sigma} + \beta_2 \frac{g_1 g_n^3}{6! \pi^2 m^4} d^{abc} F_{\mu\nu} \tilde{G}^{a,\mu\nu} G_{\rho\sigma}^b \tilde{G}^{c,\rho\sigma} \end{split} \\ \mathfrak{L}_{eff}^{(4)}(\underline{SU(M)} \otimes \underline{SU(N)}) &= \alpha_1 \frac{g_m^2 g_n^2}{6! \pi^2 m^4} W_{\mu\nu}^i W^{i,\mu\nu} G_{\rho\sigma}^a G^{a,\rho\sigma} + \alpha_2 \frac{g_m^2 g_n^2}{6! \pi^2 m^4} W_{\mu\nu}^i \tilde{W}^{i,\mu\nu} G_{\rho\sigma}^a G^{a,\rho\sigma} \\ &+ \alpha_3 \frac{g_m^2 g_n^2}{6! \pi^2 m^4} W_{\mu\nu}^i G^{a,\mu\nu} G_{\rho\sigma}^a G^{a,\rho\sigma} + \alpha_4 \frac{g_n^2 g_n^2}{6! \pi^2 m^4} W_{\mu\nu}^i \tilde{G}^{a,\mu\nu} W_{\rho\sigma}^i \tilde{G}^{a,\rho\sigma} \\ &+ \beta_1 \frac{g_1 g_n^3}{6! \pi^2 m^4} d^{abc} F_{\mu\nu} G^{a,\mu\nu} G_{\rho\sigma}^b G^{c,\rho\sigma} + \beta_2 \frac{g_1 g_n^3}{6! \pi^2 m^4} d^{abc} F_{\mu\nu} \tilde{G}^{a,\mu\nu} G_{\rho\sigma}^b \tilde{G}^{c,\rho\sigma} \end{split}$$

$$\alpha_1 = \alpha_3/2$$
 $\alpha_2 = \alpha_4/2$ β_1 β_2 Scalar $\frac{7}{16}Q(\mathbf{R})^2 I_2(\mathbf{R})$ $\frac{1}{16}Q(\mathbf{R})^2 I_2(\mathbf{R})$ $\frac{7}{32}Q(\mathbf{R})I_3(\mathbf{R})$ $\frac{1}{32}Q(\mathbf{R})I_3(\mathbf{R})$ Fermion $Q(\mathbf{R})^2 I_2(\mathbf{R})$ $\frac{7}{4}Q(\mathbf{R})^2 I_2(\mathbf{R})$ $\frac{1}{2}Q(\mathbf{R})I_3(\mathbf{R})$ $\frac{7}{8}Q(\mathbf{R})I_3(\mathbf{R})$ Vector $\frac{261}{16}Q(\mathbf{R})^2 I_2(\mathbf{R})$ $\frac{243}{16}Q(\mathbf{R})^2 I_2(\mathbf{R})$ $\frac{261}{32}Q(\mathbf{R})I_3(\mathbf{R})$ $\frac{243}{32}Q(\mathbf{R})I_3(\mathbf{R})$

J.Q., C. Smith and S. Touati, Phys.Rev. D99 (2019) no.1, 013003

Universal coefficients in terms of standard master integrals

$$\int \frac{d^d q}{(2\pi)^d} \frac{q^{\mu_1} \cdots q^{\mu_{2n_c}}}{(q^2 - M_i^2)^{n_i} (q^2 - M_j^2)^{n_j} \cdots (q^2)^{n_L}} \equiv g^{\mu_1 \dots \mu_{2n_c}} \mathcal{I}[q^{2n_c}]_{ij\dots 0}^{n_i n_j \dots n_L}$$

Universal coefficient	Operator
$f_2^i = \mathcal{I}_i^1$	U _{ii}
$f_3^i = 2 \mathcal{I}[q^4]_i^4$	$G_i^{\prime\mu u}G_{\mu u,i}^\prime$
$f_4^{ij} = \frac{1}{2} \mathcal{I}_{ij}^{11}$	U _{ij} U _{ji}
$f_5^i = 16\mathcal{I}[q^6]_i^6$	$[P^{\mu}, G'_{\mu\nu,i}][P_{\rho}, G'^{\rho\nu}_i]$
$f_{6}^{i} = rac{32}{3} \mathcal{I}[q^{6}]_{i}^{6}$	$G^{\prime \mu}_{\ \nu,i} G^{\prime \nu}_{\ \rho,i} G^{\prime \rho}_{\ \mu,i}$
$f_7^{ij} = \mathcal{I}[q^2]_{ij}^{22}$	$[P^{\mu}, U_{ij}][P_{\mu}, U_{ji}]$
$f_8^{ijk} = \frac{1}{3} \mathcal{I}_{ijk}^{111}$	$U_{ij}U_{jk}U_{ki}$
$f_9^i = 8\mathcal{I}[q^4]_i^5$	$U_{ii}G_i^{\prime\mu\nu}G_{\mu\nu,i}^{\prime}$
$f_{10}^{ijkl} = rac{1}{4} \mathcal{I}_{ijkl}^{1111}$	$U_{ij}U_{jk}U_{kl}U_{li}$
$f_{11}^{ijk} = 2 \left(\mathcal{I}[q^2]_{ijk}^{122} + \mathcal{I}[q^2]_{ijk}^{212} \right)$	$U_{ij}[P^{\mu}, U_{jk}][P_{\mu}, U_{ki}]$
$f_{12}^{ij} = 4\mathcal{I}[q^4]_{ij}^{33}$	$\left[P^{\mu}, \left[P_{\mu}, U_{ij}\right]\right] \left[P^{\nu}, \left[P_{\nu}, U_{ji}\right]\right]$
$f_{13}^{ij} = 4 \big(\mathcal{I}[q^4]_{ij}^{33} \big)$	$U \cdot U \cdot C'^{\mu\nu} C'$
$+2\mathcal{I}[q^4]_{ij}^{42}+2\mathcal{I}[q^4]_{ij}^{51}\Big)$	$\mathcal{O}_{ij}\mathcal{O}_{ji}\mathcal{O}_{i} \mathcal{O}_{\mu\nu,i}$
$f_{14}^{ij} = -8\mathcal{I}[q^4]_{ij}^{33}$	$[P^{\mu}, U_{ij}][P^{\nu}, U_{ji}]G'_{\nu\mu,i}$
$f_{15}^{ij} = 4 \left(\mathcal{I}[q^4]_{ij}^{33} + \mathcal{I}[q^4]_{ij}^{42} \right)$	$(U_{ij}[P^{\mu}, U_{ji}] - [P^{\mu}, U_{ij}]U_{ji})[P^{\nu}, G'_{\nu\mu,i}]$
$f_{16}^{ijklm} = \frac{1}{5} \mathcal{I}_{ijklm}^{11111}$	$U_{ij}U_{jk}U_{kl}U_{lm}U_{mi}$
$f_{17}^{ijkl} = 2 \big(\mathcal{I}[q^2]_{ijkl}^{2112} $	$[I_{1}, I_{1}, [P^{\mu}, I_{1},][P, I_{1},]]$
$+ \mathcal{I}[q^2]^{1212}_{ijkl} + \mathcal{I}[q^2]^{1122}_{ijkl} \Big)$	$\mathcal{O}_{ij}\mathcal{O}_{jk}[I^+,\mathcal{O}_{kl}][I_{\mu},\mathcal{O}_{li}]$
$f_{18}^{ijkl} = \mathcal{I}[q^2]_{ijkl}^{2121} + \mathcal{I}[q^2]_{ijkl}^{2112}$	$II \cup [P^{\mu} II \cup]II \cup [P II \cup]$
$+ \mathcal{I}[q^2]^{1221}_{ijkl} + \mathcal{I}[q^2]^{1212}_{ijkl}$	$\mathcal{O}_{ij}[I^+,\mathcal{O}_{jk}]\mathcal{O}_{kl}[I^-\mu,\mathcal{O}_{li}]$
$f_{19}^{ijklmn} = \frac{1}{6} \mathcal{I}_{ijklmn}^{111111}$	$U_{ij}U_{jk}U_{kl}U_{lm}U_{mn}U_{ni}$

A. Drozd, J. Ellis, JQ and T. You arXiv:1512.03003

for degene B. Henning, X	Prate mass (. Lu and H. Murayam	heavy fields a arXiv:1412.1837
$f_5 = -\frac{i}{(4\pi)^2 60m^2},$	$f_{11} = \frac{i}{(4\pi)^2 12m^4},$	$f_{15a} = \frac{i}{(4\pi)^2 60m^4} ,$
$f_6 = -\frac{i}{(4\pi)^2 90m^2},$	$f_{12,a} = 0,$	$f_{15b} = \frac{i}{(4\pi)^2 60m^4} ,$
$f_7 = -\frac{i}{(4\pi)^2 12m^2},$	$f_{12,b} = 0,$	$f_{16} = -\frac{i}{(4\pi)^2 60m^6} ,$
$f_8 = -\frac{i}{(4\pi)^2 6m^2},$	$f_{12,c} = \frac{i}{(4\pi)^2 120m^4},$	$f_{17} = -\frac{i}{(4\pi)^2 20m^6} ,$
$f_9 = -\frac{i}{(4\pi)^2 12m^2},$	$f_{13} = \frac{i}{(4\pi)^2 24m^4},$	$f_{18} = -\frac{i}{(4\pi)^2 30m^6}$
$f_{10} = \frac{i}{(4\pi)^2 24m^4},$	$f_{14} = \frac{-i}{(4\pi)^2 60m^4},$	$f_{19} = \frac{i}{(4\pi)^2 120m^8} .$

Functional methods: Heavy-Light loops?

• Linear coupling = tree-level, quadratic coupling = *heavy-only* one-loop

$$\mathcal{L}_{\rm UV} = \mathcal{L}_{\rm SM} + (\Phi^{\dagger} F(x) + \text{h.c.}) + \Phi^{\dagger} (P^2 - M^2 - U(x)) \Phi + \mathcal{O}(\Phi^3),$$

- What about loops involving both heavy and light fields?
- Naively not accounted for in functional method

See e.g. Bilenky & Santamaria, hep-ph/9310302; Del Aguila, Kunszt, Santiago, 1602.00126.

Solution: apply background field method to both heavy and light fields

$$\phi \to \phi_c + \phi' \quad , \quad \Phi \to \Phi_c + \Phi'$$

$$\mathcal{L}_{\text{quad}} = \frac{1}{2} \left(\Phi', \phi' \right) \left(\begin{array}{cc} P^2 - M^2 - U_{\Phi\Phi} & -U_{\Phi\phi} \\ -U_{\phi\Phi} & P^2 - m^2 - U_{\phi\phi} \end{array} \right) \left(\begin{array}{c} \Phi' \\ \phi' \end{array} \right)$$

Functional methods: Heavy-Light loops?

Just apply background field method to both heavy and light fields?

 $\phi \to \phi_c + \phi' \quad , \quad \Phi \to \Phi_c + \Phi'$

- Actually, this gives the one-loop 1PI effective action and not $\,\mathcal{L}_{
 m eff}$
 - Feynman diagram intuition: Heavy-light loops in UV theory match onto both tree-level-generated EFT operators inserted at one-loop, and one-loopgenerated EFT operators inserted at tree-level

• The former is not part of $\,\mathcal{L}_{\mathrm{eff}}$, must be subtracted to keep only the latter

Functional methods: Heavy-Light subtractions

 $= i c_s \log \det \mathcal{Q}_{\mathrm{UV}} \big[\varphi_{H,\mathrm{c}}[\varphi_{L,\mathrm{b}}], \varphi_{L,\mathrm{b}} \big]$

- Various subtraction procedures proposed
- $= i c_{\text{See e.g.}} \prod_{i=1}^{n} \log \mathcal{Q}_{\text{HV}} = i c_s \int d^d x \int \frac{d^d y}{4} \operatorname{tr} \log \mathcal{Q}_{\text{HV}} = \frac{1}{2} c_s \int d^d x \int \frac{d^d y}{4} \operatorname{tr} \log \mathcal{Q}_{\text{HV}} = \frac{1}{2} \operatorname{tr} \log \mathcal{Q}_{\text{HV}}$ B. Henning, X. Lu and H. Murayama arXiv:1604.01019
 - S.A.R. Ellis, JQ, T. You, Z. Zhang arXiv:1604.02445 Universality properties also

 $P_{\mu} \equiv i D_{\mu}$

Fuentes-Martin, Portoles, Ruiz-Femenia arXiv:1607.02142

$$\int d^{d}x \, \mathcal{L}_{\mathrm{EFT}}^{1-\mathrm{loop}}[\varphi_{L}] \neq \Gamma_{\mathrm{L},\mathrm{UV}}^{1-\mathrm{loop}}[\varphi_{L}] = \Gamma_{\mathrm{L},\mathrm{UV}}^{1-\mathrm{loop}}[\varphi_{L}] = \Gamma_{\mathrm{L},\mathrm{UV}}^{1-\mathrm{loop}}[\varphi_{L}] = \Gamma_{\mathrm{L},\mathrm{UV}}^{1-\mathrm{loop}}[\varphi_{L}] = \Gamma_{\mathrm{L},\mathrm{UV}}^{1-\mathrm{loop}}[\varphi_{L}] \Big|_{\mathrm{hard}} m_{\varphi_{H}}$$

$$\int d^{d}x \, \mathcal{L}_{\mathrm{EFT}}^{1-\mathrm{loop}}[\varphi_{L}] = \Gamma_{\mathrm{L},\mathrm{UV}}^{1-\mathrm{loop}}[\varphi_{L}] \Big|_{\mathrm{hard}} m_{\varphi_{H}}$$

$$\cdot \operatorname{Extract} \operatorname{short-distance}_{q} \operatorname{fluctuations}_{q} \| e_{\varphi_{H}} \| e_{\varphi_{H}}^{q} \| e_{\varphi_{H}} \| e_{\varphi$$

Integration by regions method avoids subtraction, separates **hard** and **soft** part in integral, greatly simplifies heavy-light treatment

applies to heavy-light case

- Simplification of evaluating CDE from these developments lead to a **Covariant Diagram** formulation
- But **Universality** of CDE results means evaluation via all these different methods gives same model-independent expression

B. Henning, X. Lu and H. Murayama arXiv:1412.1837 A. Drozd, J. Ellis, JQ and T. You arXiv:1504.02409

S.A.R. Ellis, JQ, T. You, Z. Zhang arXiv:1706.07765

Universal One-Loop Effective Action

• with **Heavy-Light** extension S.A.R. Ellis, JQ, T. You, Z. Zhang arXiv:1706.07765

$\mathcal{O}(U_H^4 P^2)$ term	$\mathcal{O}(U_H^3 P^2)$ terms								
$f_{17}^{ijkl} = 2\left(\mathcal{I}[q^2]_{ijkl}^{2112} + \mathcal{I}[q^2]_{ijkl}^{1212} + \mathcal{I}[q^2]_{ijkl}^{1122}\right)$	$U_{Hij}U_{Hjk}[P^{\mu}, U_{Hkl}][P_{\mu}, U_{Hli}]$	$f_{11}^{ijk} = 2\left(\mathcal{I}[q^2]_{ijk}^{122} + \mathcal{I}\right)$	$[q^2]_{ijk}^{212}$ U_{Hi}	$_{ij}[P^{\mu}, U_{Hjk}][P_{\mu}, U_{Hki}]$			<i>P</i> -onl	y terms	
$f_{18}^{ijkl} = \mathcal{I}[q^2]_{iikl}^{2121} + \mathcal{I}[q^2]_{iikl}^{2112} + \mathcal{I}[q^2]_{iikl}^{1221} + \mathcal{I}[q^2]_{iikl}^{1212}$	$U_{Hij}[P^{\mu}, U_{Hjk}]U_{Hkl}[P_{\mu}, U_{Hli}]$	aii a (55 20122 - 5	$O(U_H^1 U_{HL}^1 U_{LH}^1 P^2)$ t	terms		$f_{3}^{i} =$	$2\mathcal{I}[q^4]_i^4$	$G'^{\mu u}_i G'_{\mu u_i}$	
$\mathcal{O}(U_H^2 U_{HL}^1 U_{LH}^1 P^2)$	terms	$f_{11A}^{ij} = 2 \left(\mathcal{I}[q^2]_{ij0}^{ij2} + \mathcal{I} \right)$ $f_{11A}^{ij} = 2 \left(\mathcal{I}[q^2]_{ij0}^{221} + \mathcal{I} \right)$	$ \begin{array}{c} f_{11A}^{i} = 2 \left(\mathcal{L}[q^{2}]_{ij0}^{i} + \mathcal{L}[q^{2}]_{ij0}^{i} \right) & U_{Hij}[P^{\mu}, U_{HLji'}][P_{\mu}, U_{L}] \\ f_{ij}^{ij} = 2 \left(\mathcal{I}[q^{2}]_{221}^{221} + \mathcal{I}[q^{2}]_{222}^{122} \right) & U_{LHij}[P^{\mu}, U_{Hij}][P_{\mu}, U_{Hij}][P_{\mu}, U_{Hij}] \\ \end{array} $		$[U_{I,H,t,s}][P_{u}, U_{H,s,s}]$	$f_{5}^{i} = 1$	$16\mathcal{I}[q^{6}]_{i}^{6}$	$[P^{\mu}, G'_{\mu\nu}][P_{\rho}, G'^{\rho\nu}_{i}]$	
$f^{ijk} = 2\left(\mathcal{T}[a^2]^{1122} + \mathcal{T}[a^2]^{1221} + \mathcal{T}[a^2]^{2121}\right)$	$U_{Hij}U_{HLji'}[P^{\mu}, U_{LHi'k}][P_{\mu}, U_{Hki}]$	J11B - (-11 1130 · -	$\mathcal{O}(U_L^1 U_{HL}^1 U_{LH}^1 P^2)$ t	erms		$f_{i}^{i} - (3)$	$2/3)\mathcal{T}[a^{6}]^{6}$	$\frac{C^{\mu}}{C^{\mu}}C^{\nu}C^{\rho}$	
$\int_{17A} - 2 \left(\mathcal{L}[q]_{ijk0} + \mathcal{L}[q]_{ijk0} + \mathcal{L}[q]_{ijk0} \right)$	$+U_{LHi'i}U_{Hij}[P^{\mu},U_{Hjk}][P_{\mu},U_{HLki'}]$	$f_{11C}^{ij} = 4\mathcal{I}[q^2]_{i0}^{22}$	$U_{Li'j'}$	$[P^{\mu}, U_{LHj'i}][P_{\mu}, U_{HLii'}]$,]	$J_6 - (0, 0)$	$\mathbb{Z}/\mathbb{S}/\mathbb{Z}[q_i]_i$	$\sigma_{\nu_i}\sigma_{\rho_i}\sigma_{\mu_i}$	
$f_{17B}^{ijk} = 2\left(\mathcal{I}[q^2]_{ijk0}^{1122} + \mathcal{I}[q^2]_{ijk0}^{1212} + \mathcal{I}[q^2]_{ijk0}^{2112}\right)$	$U_{Hij}U_{Hjk}[P^{\mu}, U_{HLki'}][P_{\mu}, U_{LHi'i}]$	$f_{11D}^{ij} = 2\left(\mathcal{I}[q^2]_{i0}^{14} + \mathcal{I}_{i0}^{14}\right)$	$U_{HLii'}[P^{\mu}, U_{Li'j'}][P_{\mu}, U_{Li'j'}][$	$U_{LHj'i}] + U_{LHi'i}[P^{\mu}, U_{LHi'i}]$	$U_{HLij'}][P_{\mu}, U_{Lj'i'}]$				
$f_{17C}^{ijk} = 2\left(\mathcal{I}[q^2]_{ijk0}^{1122} + \mathcal{I}[q^2]_{ijk0}^{2121} + \mathcal{I}[q^2]_{ijk0}^{1221}\right)$	$U_{HLii'}U_{LHi'j}[P^{\mu}, U_{Hjk}], [P_{\mu}, U_{Hki}]$		$O(U_H^2)$	(P^4) terms				$\mathcal{O}(U_H^2 P^2)$ terms	
$f^{ijk} = 2 \left(\tau_{[a^2]1221} + \tau_{[a^2]2121} + \tau_{[a^2]1212} + \tau_{[a^2]2112} \right)$	$U_{Hij}[P^{\mu}, U_{HLji'}]U_{LHi'k}[P_{\mu}, U_{Hki}]$	f_{12}^{ij}	$q_2 = 4\mathcal{I}[q^4]_{ij}^{33}$	$[P^{\mu}, [P_{\mu},$	$[U_{Hij}]][P^{\nu}, [P_{\nu}, U_{Hji}]]$		$f_7^{ij} = \mathcal{I}[q^i]$	$[P^{\mu}, U_{Hii}][P_{\mu}, U_{Hii}]$	
$\int_{18A}^{J} - 2 \left(\mathcal{L}[q]_{ijk0} + \mathcal{L}[q]_{ijk0} + \mathcal{L}[q]_{ijk0} + \mathcal{L}[q]_{ijk0} \right)$	$+U_{Hii}[P^{\mu}, U_{Hik}]U_{HLki'}[P_{\mu}, U_{LHi'i}]$	$f_{13}^{ij} = 4 \left(\mathcal{I}[q^4]_{ij}^3 \right)$	${}^{3}_{j} + 2\mathcal{I}[q^{4}]^{33}_{ij} + 2\mathcal{I}[q^{4}]^{51}_{ij})$	U_H	$_{ij}U_{Hji}G'_{i}^{\mu\nu}G'_{\mu\nu_{i}}$		<i>v</i> / [1		
$\mathcal{O}(U_{*}^{1}U_{*}^{1}U_{*}^{1}U_{*}^{1}U_{*}^{1}P^{2})$) terms		$= -8\mathcal{I}[q^4]_{ij}^{33}$	[P ^µ , U	$\frac{[P^{\nu}, U_{Hji}]G'_{\nu\mu_i}}{[P^{\nu}, U_{Hji}]G'_{\nu\mu_i}}$	1	C	$\mathcal{O}(U_{HL}^1 U_{LH}^1 P^2)$ terms	
$O(O_H O_L O_{HL} O_{LH} I)$ terms		$f_{15}^{\circ} = 4$ ($\frac{\mathcal{I}[q^4]_{ij}^{33} + \mathcal{I}[q^4]_{ij}^{42})}{2(M^1 + M^2)}$	$(U_{Hij}[P^{\mu}, U_{Hji}]$	$-\left[P^{\mu}, U_{Hij}\right]U_{Hji}\left[P^{\nu}, G'_{\nu_{l}}\right]$	μ _i]	$f_{\pi,\lambda}^{ij} = 2\mathcal{I}[a]$	$q^{2}]_{i0}^{22}$ $[P^{\mu}, U_{HLiii}][P_{\mu}, U_{LHiii}]$	
$f_{17D}^{ij} = 2\left(2\mathcal{I}[q^2]_{ij0}^{123} + \mathcal{I}[q^2]_{ij0}^{222}\right)$	$U_{HLii'}U_{Li'j'}[\Gamma', U_{LHj'j}][\Gamma_{\mu}, U_{Hji}]$	si	$O(U_{HL}^{i}U)$	$(L_H P^4)$ terms			JTA = L		
	$+ U_{Li'j'} U_{LHj'i} [P^{\mu}, U_{Hij}] [P_{\mu}, U_{HLji'}]$	J_{12} $f^i = -2 \left(\mathcal{T}[a^4]^{24} + 2 \right)$	$A = 8\mathcal{L}[q^{-}]_{i0}^{-}$ $\mathcal{T}[a^{4}]^{33} + 3\mathcal{T}[a^{4}]^{42} + 4\mathcal{T}[a^{4}]^{51})$	[P ⁺ , [P _µ , 0	$\frac{\mathcal{L}_{HLii'}[[P^{-}, [P_{\nu}, U_{LHi'i}]]}{\mathcal{L}_{HI}}$				
$f_{17E}^{ij} = 2\left(\mathcal{I}[q^2]_{ij0}^{114} + \mathcal{I}[q^2]_{ij0}^{123} + \mathcal{I}[q^2]_{ij0}^{213}\right)$	$U_{Hij}U_{HLji'}[P^{\mu}, U_{Li'j'}][P_{\mu}, U_{LHj'i}]$	$ \begin{aligned} f_{13A}^{i} &= 2 \left(2 \mathbb{I}[q]_{1i0}^{i} + 2 \mathbb{I}[q]_{1i0}^{i} + 3 \mathbb{I}[q]_{1i0}^{i} + 2 \mathbb{I}[q]_{1i0}^{i}$		$\frac{U_{LH_{i'}i}U_{LH_{i'}i'}G_{i'}^{\mu\nu}G_{\mu\nu_{i'}}}{[P^{\mu}, U_{HL_{ii'}}][P^{\nu}, U_{LH_{i'}i}]G_{\nu\mu_{i'}}'}$			$\mathcal{O}(U_{H}^{1}P^{4})$ terms		
	$+U_{LHi'i}U_{Hij}[P^{\mu},U_{HLjj'}][P_{\mu},U_{Lj'i'}]$								
$f_{18B}^{ij} = 2\left(\mathcal{I}[q^2]_{ij0}^{123} + \mathcal{I}[q^2]_{ij0}^{222} + \mathcal{I}[q^2]_{ij0}^{114} + \mathcal{I}[q^2]_{ij0}^{213}\right)$	$U_{HLii'}[P^{\mu}, U_{Li'j'}]U_{LHj'j}[P_{\mu}, U_{Hji}]$	$f_{14B}^{i} = 4 \left(\mathcal{I}[q^4]_{i0}^{24} - 2\mathcal{I}[q^4]_{i0}^{33} - \mathcal{I}[q^4]_{i0}^{42} \right)$		$[P^{\mu}, U_L]$	$_{LHi'i}][P^{\nu},U_{HLii'}]G'_{\nu\mu_{i'}}$		$ f_9^i = 8\mathcal{I} $	$[q^4]_i^5 \mid U_{Hij}G'^{\mu\nu}_iG'_{\mu\nu_i} \mid$	
$f_{18C}^{ij} = 4 \left(\mathcal{I}[q^2]_{ij0}^{123} + \mathcal{I}[q^2]_{ij0}^{213} \right)$	$U_{Hij}[P^{\mu}, U_{HLji'}]U_{Li'j'}[P_{\mu}, U_{LHj'i}]$	$f_{15,4}^{i} = 2\left(\mathcal{I}[q^{4}]_{i0}^{24} + 2\mathcal{I}[q^{4}]_{i0}^{33} + \mathcal{I}[q^{4}]_{i0}^{42}\right)$		$(U_{HLii'}[P^{\mu}, U_{LHi'i}]$	$(U_{HLii'}[P^{\mu}, U_{LHi'i}] - [P^{\mu}, U_{HLii'}]U_{LHi'i})[P^{\nu}, G'_{\nu\mu_i}]$		L		
$\mathcal{O}(U_L^2 U_{HL}^1 U_{LH}^1 P^2)$	terms	*10A (14)	10 14 110 14 1107	$+ (U_{LHi'i}[P^{\mu}, U_{HLi}$	$[ii'] - [P^{\mu}, U_{LHi'i}]U_{HLii'}) [P$	$[\nu,G'_{\nu\mu_{i'}}]$	_		
$f_{i} = 2 \left(2\pi f_{i}^{2} \right)^{115} + \pi f_{i}^{2} \left(2\pi f_{i}^{2} \right)^{214}$	$U_{HLii'}U_{Li'i'}[P^{\mu}, U_{Li'k'}][P_{\mu}, U_{LHk'i}]$	O(U) term		$O(U^3)$ terms					
$f_{17F}^{*} = 2\left(2\mathcal{L}[q^{2}]_{10}^{*0} + \mathcal{L}[q^{2}]_{10}^{**}\right)$	$+U_{L_{4}',4'}U_{L,H_{4}',4}[P^{\mu}, U_{H,L_{4},b'}][P_{\mu}, U_{L,b',4'}]$	$f_2^i = \mathcal{I}_i^1$	$U_{H_{ii}}$	$f_8^{ijk} = \frac{1}{3} \mathcal{I}_{ijk}^{111}$		ki	_		
$f_{i-\pi}^{i} = 2\left(2\mathcal{T}[a^{2}]^{15} + \mathcal{T}[a^{2}]^{24}\right)$	$\frac{1}{\left[U_{T,T,T} - U_{T,T,T$	$f^{ij} = \frac{1}{2}T^{11}$	Un Un	$f_{8A}^{i} = L_{ij0}^{i}$ $f_{8A}^{i} = T_{12}^{12}$	UHIULIULI	Hi'i	-		
$\frac{f_{17G}}{f_{17G}} = \frac{f_{17G}}{f_{17G}} + \frac{f_{17G}}{f_{17G}} + \frac{f_{17G}}{f_{17G}}$	$U_{L} = U_{L} = \begin{bmatrix} D^{\mu} & U_{L} & \vdots \end{bmatrix} \begin{bmatrix} D^{\mu} & U_{L} & \vdots \end{bmatrix} \begin{bmatrix} D^{\mu} & U_{L} & \vdots \end{bmatrix}$	$f_{4A}^{ij} = I_{i0}^{11}$		788 ~10	$O(U^6)$ terms	n y i	-		
$J_{17H} = 0L[q]_{i0}$	$U_{Li'j'}U_{Lj'k'}[\Gamma', U_{LHk'i}][\Gamma_{\mu}, U_{HLii'}]$		$\mathcal{O}(U^4)$ terms	$f_{19}^{ijklmn} = \frac{1}{6}\mathcal{I}_{ijklmn}^{111111}$	$U_{Hij}U_{Hjk}U_{Hkl}U_{Hlm}U$	$U_{Hmn}U_{Hni}$	1		
$f_{18D}^i = 4 \left(\mathcal{I}[q^2]_{i0}^{15} + \mathcal{I}[q^2]_{i0}^{24} \right)$	$U_{HLii'}[P^{\mu}, U_{Li'j'}]U_{Lj'k'}[P_{\mu}, U_{LHk'i}]$	$f_{10}^{ijkl} = \frac{1}{4}\mathcal{I}_{ijkl}^{1111}$	$U_{Hij}U_{Hjk}U_{Hkl}U_{Hli}$	$f_{19A}^{ijklm} = \mathcal{I}_{ijklm0}^{111111}$	$U_{Hij}U_{Hjk}U_{Hkl}U_{Hlm}U_{H}$	$U_{LHi'i}$			
	$+U_{LHi'i}[P^{\mu}, U_{HLij'}]U_{Lj'k'}[P_{\mu}, U_{Lk'i}]$	$f_{10A}^{ijk} = \mathcal{I}_{ijk0}^{1111}$	$U_{Hij}U_{Hjk}U_{HLki'}U_{LHi'i}$	$f_{19B}^{ijkl} = \mathcal{I}_{ijkl0}^{11112}$	$U_{Hij}U_{Hjk}U_{Hkl}U_{HLli'}U$	$U_{Li'j'}U_{LHj'i}$	_		
$\mathcal{O}(U_{HI}^2 U_{LH}^2 P^2)$ terms		$f_{10B}^{ij} = \mathcal{I}_{ij0}^{112}$	$U_{Hij}U_{HLji'}U_{Li'j'}U_{LHj'i}$	$f_{19C}^{ijkl} = \mathcal{I}_{ijkl0}^{11112}$	$U_{H_{ij}}U_{H_{jk}}U_{HL_{ki'}}U_{LH_{i'l}}U$	U _{HLlj} U _{LHj'i}	_		
$f_{i\pi\tau}^{ij} = 2\left(\mathcal{I}[a^2]_{124}^{114} + \mathcal{I}[a^2]_{123}^{213} + \mathcal{I}[a^2]_{123}^{123}\right) \qquad \qquad U_{HI,iii}[P^{\mu}, U_{HI,iii}][P_{\mu}, U_{HI,iii}]$		$f_{10C}^{i} = \frac{1}{2} \mathcal{I}_{ij0}^{ii}$	$U_{HLii'}U_{LHi'j}U_{HLjj'}U_{LHj'i}$	$f_{19D}^{ijkl} = \mathcal{I}_{ijk0}^{i110}$	$U_{Hij}U_{Hjk}U_{HLki'}U_{Li'j'}U_{Ii$	Lj'k'ULHk'i	_		
$\frac{f^{ij}}{f^{ij}} = 2\left(\mathcal{T}[a^2]^{222} + 2\mathcal{T}[a^2]^{123}\right)$	$\frac{1}{1} \frac{1}{1} \frac{1}$	$J_{10D} - L_{i0}$	$O(U^5)$ terms	$f_{19E}^{ijk} = \mathcal{I}_{1113}^{1113}$		ULUDULHJ'I	_		
$J_{17J} = 2 \left(2 \left[4 \right] _{ij0} + 22 \left[4 \right] _{ij0} \right)$	$U \begin{bmatrix} D\mu & II \end{bmatrix} \begin{bmatrix} I & JI & D & II \end{bmatrix}$	$f_{16}^{ijklm} = \frac{1}{5} \mathcal{I}_{ijklm}^{11111}$	$U_{H_{ij}}U_{H_{jk}}U_{H_{kl}}U_{H_{lm}}U_{H_{mi}}$	$f_{19G}^{ijk} = I_{ijk0}^{1113}$	U _{Hij} U _{HLji} ['] U _{Li'j} ['] U _{LHi'k} U	UHLkk' ULHk'i	-		
$f_{18E}^{ij} = \mathcal{I}[q^2]_{ij0}^{114} + 2\mathcal{I}[q^2]_{ij0}^{123} + \mathcal{I}[q^2]_{ij0}^{222}$	$U_{HLii'}[F^{r}, U_{LHi'j}]U_{HLjj'}[F_{\mu}, U_{LHj'i}]$	$f_{16A}^{ijkl} = \mathcal{I}_{ijkl0}^{11111}$	$U_{Hij}U_{Hjk}U_{Hkl}U_{HLli'}U_{LHi'i}$	$f_{19H}^{ij} = \mathcal{I}_{ij0}^{114}$	$U_{Hij}U_{HLji'}U_{Li'j'}U_{Lj'k'}$	$U_{Lk'l'}U_{LHl'i}$			
	$+U_{LHi'i}[P^{\mu},U_{HLij'}]U_{LHj'j}[P_{\mu},U_{HLji'}]$	$f_{16B}^{ijk} = \mathcal{I}_{ijk0}^{1112}$	$U_{H_{ij}}U_{H_{jk}}U_{HLki'}U_{Li'j'}U_{LHj'i}$	$f_{19I}^{ijk} = \frac{1}{3}\mathcal{I}_{ijk0}^{1113}$	$U_{HLii'}U_{LHi'j}U_{HLjj'}U_{LHj'k}$	$U_{HLkk'}U_{LHk'i}$	i		
		$f_{16C}^{ijk} = \mathcal{I}_{ijk0}^{1112}$	$U_{Hij}U_{HLji'}U_{LHi'k}U_{HLkj'}U_{LHj'i}$	$f_{19J}^{ij} = \mathcal{I}_{ij0}^{114}$	$U_{HLii'}U_{LHi'j}U_{HLjj'}U_{Lj'k}$	$_{k'}U_{Lk'l'}U_{LHl'i}$	_		
		$f_{16D}^{ij} = \mathcal{I}_{ij0}^{113}$	$U_{Hij}U_{HLji'}U_{Li'j'}U_{Lj'k'}U_{LHk'i}$	$f_{19K}^{ij} = \frac{1}{2} \mathcal{I}_{ij0}^{114}$	$U_{HLii'}U_{Li'j'}U_{LHj'j}U_{HLjk}$	$_{k'}U_{Lk'l'}U_{LHl'i}$			

 $U_{HLii'}U_{Li'j'}U_{Lj'k'}U_{Lk'l'}U_{LHl'i}$

 $f_{16F}^i = I_{i0}^{14}$

 $f_{16E}^{ij} = \mathcal{I}_{ij0}^{113} \qquad U_{HLii'}U_{LHi'j}U_{HLjj'}U_{Lj'k'}U_{LHk'i} \qquad f_{19L}^i = \mathcal{I}_{i0}^{15} \qquad U_{HLii'}U_{Li'j'}U_{Lj'k'}U_{Lk'l'}U_{Ll'm'}U_{LHm'i} = \mathcal{I}_{i0}^{15} = \mathcal{I}_{$

Application: matching SM-EFT vs UV model

Let's match dim6-EFT and the MSSM :

37

EFT vs Loop Calculation

- + EFT vs full MSSM calculation agrees well (non trivial check!)
- + Operators > dim-6 become important when EFT cut-off (stop mass) is too low

A. Drozd, J. Ellis, JQ and T. You arXiv:1504.02409

Indirect Constraints on Stops

A. Drozd, J. Ellis, JQ and T. You arXiv:1504.02409

Coeff.	Exper	imental constraints	$95~\%~{ m CL}~{ m limit}$	$\begin{array}{c} \text{deg.} \ m_{\tilde{t}_1}, \\ X_t = 0 \end{array}$
\bar{c}_g	LHC	marginalized	$[-4.5, 2.2] \times 10^{-5}$	$\sim 410 \text{ GeV}$
		individual	$[-3.0, 2.5] \times 10^{-5}$	$\sim 390~{\rm GeV}$
ā	LHC	marginalized	$[-6.5, 2.7] \times 10^{-4}$	$\sim 215 \text{ GeV}$
\mathcal{L}_{γ}		individual	$[-4.0, 2.3] \times 10^{-4}$	$\sim 230 \text{ GeV}$
\bar{c}_{γ} \bar{c}_{T} $\bar{c}_{W} \pm \bar{c}_{D}$	LEP	marginalized	$[-10, 10] \times 10^{-4}$	$\sim 290 { m GeV}$
		individual	$[-5,5] \times 10^{-4}$	$\sim 380 { m ~GeV}$
	IFD	marginalized	$[-7,7] \times 10^{-4}$	$\sim 185 { m GeV}$
$c_W + c_B$	LLL	individual	$[-5,5] \times 10^{-4}$	$\sim 195 \text{ GeV}$

Indirect Constraints on Stops

The current sensitivity is already comparable to that of direct LHC searches 40

Indirect Constraints on Stopsiders

A. Drozd, J. Ellis, JQ and T. You arXiv:1504.02409

Coeff.	Experimental constraints		95 % CL limit	$deg. X_t = 0$	$\begin{bmatrix} m_{\tilde{t}_1} \\ X_t = m_{\tilde{t}}/2 \end{bmatrix}$	
$ar{c}_g$ -	$TT = 0.01150 \text{ fb}^{-1}$	marginalized	$[-7.7, 7.7] \times 10^{-6}$	$\sim 675 { m ~GeV}$	$\sim 520 \text{ GeV}$	
	$\mathrm{ILC}_{250\mathrm{GeV}}^{1100\mathrm{IS}}$	individual	$[-7.5, 7.5] \times 10^{-6}$	$\sim 680~{\rm GeV}$	$\sim 545~{\rm GeV}$	
	FCC as	marginalized	$[-3.0, 3.0] \times 10^{-6}$	$\sim 1065 { m ~GeV}$	$\sim 920 { m ~GeV}$	
	гоо-ее	individual	$[-3.0, 3.0] \times 10^{-6}$	$\sim 1065 { m ~GeV}$	$\sim 915~{\rm GeV}$	Š
$ar{c}_{\gamma}$ -	$TT C^{1150 fb^{-1}}$	marginalized	$[-3.4, 3.4] \times 10^{-4}$	$\sim 200 { m ~GeV}$	$\sim 40 { m GeV}$	
	$\mathrm{ILC}_{250\mathrm{GeV}}$	individual	$[-3.3, 3.3] \times 10^{-4}$	$\sim 200 { m ~GeV}$	$\sim 35~{\rm GeV}$	
	FCC-ee	marginalized	$[-6.4, 6.4] \times 10^{-5}$	$\sim 385 { m GeV}$	$\sim 250 { m ~GeV}$	
		individual	$[-6.3, 6.3] \times 10^{-5}$	$\sim 390~{\rm GeV}$	$\sim 260 { m ~GeV}$	
	$\rm ILC^{1150 fb^{-1}}_{250 GeV}$	marginalized	$[-3,3] \times 10^{-4}$	$\sim 480 { m ~GeV}$	$\sim 285 { m ~GeV}$	
ā		individual	$[-7,7] \times 10^{-5}$	$\sim 930~{\rm GeV}$	$\sim 780~{\rm GeV}$	
c_T	FCC oo	marginalized	$[-3,3] \times 10^{-5}$	$\sim 1410 { m ~GeV}$	$\sim 1285 { m ~GeV}$	
	гоо-ее	individual	$[-0.9, 0.9] \times 10^{-5}$	$\sim 2555~{\rm GeV}$	$\sim 2460~{\rm GeV}$	
	$TT \cap 1150 fb^{-1}$	marginalized	$[-2,2] \times 10^{-4}$	$\sim 230 { m ~GeV}$	$\sim 170 { m ~GeV}$	
ā. lā.	$\mathrm{ILC}_{250\mathrm{GeV}}$	individual	$[-6, 6] \times 10^{-5}$	$\sim 340~{\rm GeV}$	$\sim 470 { m ~GeV}$	
$c_W + c_B$	FCC on	marginalized	$[-2,2] \times 10^{-5}$	$\sim 545 { m GeV}$	$\sim 960 { m ~GeV}$	
	FUU-ee	individual	$[-0.8, 0.8] \times 10^{-5}$	$\sim 830 { m ~GeV}$	$\sim 1590~{\rm GeV}$	

+ Future FCC-ee measurements could be sensitive to stop masses above a TeV

