One-Loop Æffective Actions

Jérémie Quevillon

LPSC, Grenoble

Overview

1. Universal One-Loop Effective Action
2. Effective action for gauge bosons
3. Effective action and anomalies (axion)

How far is new physics from the weak scale?

Energy

Program: Matching-Running-Mapping

Energy

RG running

 (resum large logs) done once for all$\mathcal{L}_{E F T}\left[\psi_{S M}\right]=\mathcal{L}_{S M}+\sum c_{i}\left(m_{W}\right) \mathcal{O}_{i}$
done once for all
electro-weak precision tests $\mathcal{O}(0.1 \%)-\mathcal{O}(1 \%)$

Program: Matching-Running-Mapping

Effective Action by the path integral method

$$
e^{i S_{\text {eff }}}\left[\phi_{\mathrm{SM}}\right](\mu)=\int \mathcal{D} \Phi_{\text {heavy }} e^{i S\left[\phi_{\mathrm{SM}}, \Phi_{\text {heavy }}\right](\mu)}
$$

Eq. of Motion : $\quad \frac{\delta S\left[\phi_{\mathrm{SM}}, \Phi\right]}{\delta \Phi}=0 \Rightarrow \Phi_{c}\left(\phi_{\mathrm{SM}}\right)$
Expand action around minimum :
Taylor exp. $S[\Phi]=S\left[\Phi_{c}+\eta\right]=S\left[\Phi_{c}\right]+\frac{1}{2} \frac{\delta^{2} S}{\delta \Phi^{2}}\left(\Phi_{c}\right) \eta^{2}+\mathcal{O}\left(\eta^{3}\right)$

Write Gaussian integral as determinant :

$$
\Rightarrow e^{i S_{\mathrm{eff}}\left[\phi_{\mathrm{SM}}\right]}=e^{i S\left[\Phi_{c}\right]}\left[\operatorname{det}\left(-\frac{\delta^{2} S}{\delta \Phi^{2}}\left(\Phi_{c}\right)\right]^{-1 / 2}\right.
$$

Write determinant as trace of log in exponent :

$$
S_{\text {eff }}=\underset{\text { tree level }}{S\left[\Phi_{c}\right]+\frac{i}{2} \operatorname{Tr} \ln \left[-\frac{\delta^{2} S}{\delta \Phi^{2}}\left(\Phi_{c}\right)\right]}
$$

One-loop Effective Action

$$
\begin{aligned}
& \mathcal{L}_{U V}=\mathcal{L}_{S M}+\left(\Phi^{\dagger} F\left(\phi_{\mathrm{SM}}\right)+\text { h.c. }\right)+\Phi^{\dagger}\left(-D^{2}-m_{\Phi}^{2}-U\left(\phi_{\mathrm{SM}}\right)\right) \Phi+\mathcal{O}\left(\Phi^{3}\right) \\
& \text { Heavy fields can be bosons or fermions } \\
& S_{\text {eff }}^{1-\mathrm{loop}}=i c_{s} \operatorname{Tr} \ln \left[-\frac{\delta^{2} S}{\delta \Phi^{2}}\left(\Phi_{c}\right)\right]=i c_{s} \operatorname{Tr} \ln \left[-P^{2}+m_{\mu}^{2}+U\right] \\
&=i c_{s} \int d^{4} x \int d^{4} q \operatorname{tr} \ln \left[e^{O p}\left(-P_{\mu}^{2}+m_{\Phi}^{2}+U\right) e^{-O p}\right] \\
& \text { Gaillard \& Cheyette's trick : momentum shift } \\
&=i c_{s} \int d^{4} x \int d^{4} q \operatorname{tr} \ln \left[-\left(\tilde{G}_{\nu \mu} \frac{\partial}{\partial q_{\mu}}+q_{\mu}\right)^{2}+P_{\mu} \frac{\partial}{\partial q_{\mu}}\right. \\
&
\end{aligned}
$$

So covariant derivatives are explicitly in commutators from beginning : gauge invariance manifest through the computation

$$
\tilde{G}_{\nu \mu} \equiv \sum_{n=0}^{\infty} \frac{n+1}{(n+2)} \sum^{\left[P_{\alpha_{1}},\left[\ldots\left[P_{\alpha_{n}}, G_{\nu \mu}^{\prime}\right]\right]\right]} \frac{\partial^{n}}{\partial q_{\alpha_{1}} \ldots q_{\alpha_{n}}} \quad \tilde{U} \equiv \sum_{n=0}^{\infty} \frac{1}{\left.n!P_{\alpha_{1}},\left[\ldots\left[P_{\alpha_{n}}, U\right]\right]\right]} \frac{\partial^{n}}{\partial q_{\alpha_{1}} \ldots q_{\alpha_{n}}}
$$

contain dim-6 operators \& independent of momentum q!
integration on a can be done once for all!!!

- q-integrals factorize give usual \& simple Feynman Integrals
- traces give Higher Dimensional Operators

One-Loop Effective Action

 assuming degenerate mass matrix
B. Henning, X. Lu and H. Murayama arXiv:1412.183

$$
\begin{aligned}
\Delta \mathcal{L}_{\text {eff, } 1 \text {-loop }} & =\frac{c_{s}}{(4 \pi)^{2}} \operatorname{tr}\{ \\
& +m^{4}\left[-\frac{1}{2}\left(\log \frac{m^{2}}{\mu^{2}}-\frac{3}{2}\right)\right] \\
& +m^{2}\left[-\left(\log \frac{m^{2}}{\mu^{2}}-1\right) U\right] \\
& \left.+{m^{0}}_{1-l o o p}=\Phi-\frac{1}{12}\left(\log \frac{m^{2}}{\mu^{2}}-1\right) G_{\mu \nu}^{\prime 2}-\frac{1}{2} \log \frac{m^{2}}{\mu^{2}} U^{2}\right] \\
& +\frac{1}{m^{2}}\left[-\frac{1}{60}\left(P_{\mu} G_{\mu \nu}^{\prime}\right)^{2}-\frac{1}{90} G_{\mu \nu}^{\prime} G_{\nu \sigma}^{\prime} G_{\sigma \mu}^{\prime}-\frac{1}{12}\left(P_{\mu} U\right)^{2}-\frac{1}{6} U^{3}\left[-\frac{1}{12}\left[\frac{1}{m^{4}}\left[U^{4}+\frac{1}{12} U\left(P_{\mu} U\right)^{2}+\frac{1}{120}\left(P^{2} U\right)^{2}+\frac{1}{24}\left(U^{2} G_{\mu \nu}^{\prime} G_{\mu \nu}^{\prime}\right)\right]\right.\right.\right.
\end{aligned}
$$

$$
\mathcal{L}_{1 \text {-loop }}=\Phi^{\dagger}\left(-D^{2}-m^{2}-U\right) \Phi
$$

dim-6
Operators

Universality of the One-Loop Effective Action

- No need to reinvent the wheel, every slide up to here can be ignored
- Universality of CDE expansion results first noticed in the simplified case of degenerate mass for heavy fields B. Henning, X. Lu and H. Murayama arXiv:1412.183
- The general Universal One-Loop Effective Action (UOLEA) subsequently derived without such assumption
A. Drozd, J. Ellis, JQ and T. You arXiv:1504.02409
- However, extra structures (heavy-light terms, " open "covariant derivatives, momentum-shifted-gamma matrices) in CDE expansion not included in initial UOLEA
S.A.R. Ellis, JQ, T. You, Z. Zhang arXiv:1604.02445
- Universal heavy-light terms now done
S.A.R. Ellis, JQ, T. You, Z. Zhang arXiv:1706.07765
- A complete UOLEA, including all possible CDE structures, is in sight...

Universal One-Loop Effective Action for non degenerate mass heavy fields

A. Drozd, J. Ellis, JQ and T. You arXiv:1512.03003

$$
\mathcal{L}_{1 \text {-loop }}=\Phi^{\dagger}\left(-D^{2}-m^{2}-U\right) \Phi
$$

$$
\mathcal{L}_{1-\text { loop }}^{\text {eff }}[\phi] \supset-i c_{s}\left\{f_{1}^{i}+f_{2}^{i} U_{i i}+f_{3}^{i} G_{\mu \nu, i j}^{\prime 2}+f_{4}^{i j} U_{i j}^{2}\right.
$$

$$
+f_{5}^{i j}\left(P_{\mu} G_{\mu \nu, i j}^{\prime}\right)^{2}+f_{6}^{i j}\left(G_{\mu \nu, i j}^{\prime}\right)\left(G_{\nu \sigma, j k}^{\prime}\right)\left(G_{\sigma \mu, k i}^{\prime}\right)+f_{7}^{i j}\left[P_{\mu}, U_{i j}\right]^{2}
$$

$$
+f_{8}^{i j k}\left(U_{i j} U_{j k} U_{k i}\right)+f_{9}^{i j}\left(U_{i j} G_{\mu \nu, j k}^{\prime} G_{\mu \nu, k i}^{\prime}\right)
$$

Universal

 coefficients f encapsulate dependence on combinations of momentum master integrals$$
+f_{10}^{i j k l}\left(U_{i j} U_{j k} U_{k l} U_{l i}\right)+f_{11}^{i j k} U_{i j}\left[P_{\mu}, U_{j k}\right]\left[P_{\mu}, U_{k i}\right]
$$

$$
+f_{12, a}^{i j}\left[P_{\mu},\left[P_{\nu}, U_{i j}\right]\right]\left[P_{\mu},\left[P_{\nu}, U_{j i}\right]\right]+f_{12, b}^{i j}\left[P_{\mu},\left[P_{\nu}, U_{i j}\right]\right]\left[P_{\nu},\left[P_{\mu}, U_{j i}\right]\right]
$$

$$
+f_{12, c}^{i j}\left[P_{\mu},\left[P_{\mu}, U_{i j}\right]\right]\left[P_{\nu},\left[P_{\nu}, U_{j i}\right]\right]
$$

$$
+f_{13}^{i j k} U_{i j} U_{j k} G_{\mu \nu, k l}^{\prime} G_{\mu \nu, l i}^{\prime}+f_{14}^{i j k}\left[P_{\mu}, U_{i j}\right]\left[P_{\nu}, U_{j k}\right] G_{\nu \mu, k i}^{\prime}
$$

$$
+\left(f_{15 a}^{i j k} U_{i, j}\left[P_{\mu}, U_{j, k}\right]-f_{15 b}^{i j k}\left[P_{\mu}, U_{i, j}\right] U_{j, k}\right)\left[P_{\nu}, G_{\nu \mu, k i}^{\prime}\right]
$$

$$
+f_{16}^{i j k l m}\left(U_{i j} U_{j k} U_{k l} U_{l m} U_{m i}\right)+f_{17}^{i j k l} U_{i j} U_{j k}\left[P_{\mu}, U_{k l}\right]\left[P_{\mu}, U_{l i}\right]
$$

$$
\left.+f_{18}^{i j k l} U_{i j}\left[P_{\mu}, U_{j k}\right] U_{k l}\left[P_{\mu}, U_{l i}\right]+f_{19}^{i j k l m n}\left(U_{i j} U_{j k} U_{k l} U_{l m} U_{m n} U_{n i}\right)\right\}
$$

Application of the UOLEA: MSSM stops

- Write UV Lagrangian for heavy multiplet in appropriate form to extract U matrix, mass matrix and covariant derivative

$$
\begin{gathered}
\mathcal{L}_{U V}=\mathcal{L}_{S M}+\frac{\left(\Phi^{\dagger} F-\text { h.c. }\right)}{\text { R-parity }}+\Phi^{\dagger}\left(-D^{2}-M^{2}-U\right) \Phi+\mathcal{O}\left(\Phi^{3}\right) \\
\Phi=\binom{\tilde{Q}}{\tilde{t}_{R}^{*}} \quad \underbrace{G_{\mu \nu}^{\prime}=\left(\begin{array}{cc}
W^{\prime}{ }_{\mu \nu} \tau^{a}+Y_{\tilde{Q}} B_{\mu \nu}^{\prime} 1 \\
0 & -Y_{\tilde{t}_{R} B_{\mu \nu}^{\prime}}
\end{array}\right)} M^{2}=\left(\begin{array}{cc}
m_{\tilde{Q}}^{2} & 0 \\
0 & m_{\tilde{t}_{R}}^{2}
\end{array}\right)
\end{gathered}
$$

- Example: $\mathcal{O}_{G G}=g_{s}^{2}|H|^{2} G_{\mu \nu}^{a} G^{a, \mu \nu}$

$$
\mathcal{L}_{1-\mathrm{lfopp}}^{\mathrm{eff}}=-i c_{s}\left\{f_{1}^{i}+f_{2}^{i} U_{i i}+f_{3}^{i j} G_{\mu \nu, i j}^{\prime 2}+f_{4}^{i j} U_{i j}^{2}\right.
$$

$$
\begin{aligned}
& \begin{array}{l}
10 \\
+f_{12, a}^{i j}\left(P_{\mu}\left[P_{\nu}, U_{i j}\right]\right)\left(P_{\mu}\left[P_{\nu}, U_{j i}\right]\right)+f_{12, b}^{i j}\left(P_{\mu}\left[P_{\nu}, U_{i j}\right]\right)\left(P_{\nu}\left[P_{\mu}, U_{j i}\right]\right) \\
+f_{12, c}^{i 2}\left(P_{\mu}\left[P_{\mu}, U_{i j}\right]\right)\left(P_{\nu}\left[P_{\nu}, U_{j i]}\right)\right.
\end{array}
\end{aligned} \underbrace{\left.\bar{c}_{g}=\frac{m_{W}^{2}}{(4 \pi)^{2}} \frac{1}{24}\left(\frac{h_{t}^{2}-\frac{1}{6} g_{1}^{2} c_{2 \beta}}{m_{\tilde{Q}}^{2}}+\frac{h_{t}^{2}+\frac{1}{3} g_{2}^{2} c_{2 \beta}}{m_{\tilde{t}_{R}}^{2}}-\frac{h_{t}^{2} X_{t}^{2}}{m_{\tilde{Q}}^{2} m_{\tilde{t}_{R}}^{2}}\right)\right)}
$$

$$
\begin{align*}
& \begin{array}{l}
\left.+f_{13}^{i k k} U_{i j} U_{j k} G_{\mu \nu, k l}^{\prime} G_{\mu \nu, l}^{\prime}\right)+f_{14}^{\prime 2}\left[P_{\mu}, U_{i j}\right]\left[P_{\nu}, U_{j k}\right] G_{\nu \mu, k i}^{\prime} \\
+\left(f_{15 a}^{2 j} U_{i, j}\left[P_{\mu}, U_{j, k}\right]-f_{15 b}^{i j k}\left[P_{\mu}, U_{i, j}\right] U_{j, k}\right]\left[P_{\nu}, G_{\nu \mu, k i}^{\prime}\right]
\end{array} \\
& +f_{16}^{i}\left(U_{i j} U_{j k} U_{k l} U_{l m} U_{m i}\right)+f_{17}^{i j k l} U_{i j} U_{j k}\left[P_{\mu}, U_{k l}\left[P_{\mu}, U_{l i}\right]+f_{18}^{i j k l} U_{i j}\left[P_{\mu}, U_{j k}\right] U_{k l}\left[P_{\mu}, U_{l i}\right]\right. \\
& \left.+f_{19}^{i j k l m n}\left(U_{i j} U_{j k} U_{k l} U_{l m} U_{m n} U_{n i}\right)\right\}, \tag{3.1}
\end{align*}
$$

Effective action for gauge bosons (Euler-Heisenberg generalisation)

J.Q., C. Smith and S. Touati, Phys.Rev. D99 (2019) no.1, 013003

Photon effective interactions

$$
Z_{Q E D}\left[J^{\mu}, \eta, \bar{\eta}\right]=\int D A^{\mu} D \psi D \bar{\psi} \exp i \int d x\left(\mathcal{L}_{Q E D}+\bar{\eta} \psi+\bar{\psi} \eta+J^{\mu} A_{\mu}\right) \quad \mathcal{L}_{Q E D}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}(i \not D-m) \psi
$$

- Construct EFT (integrate out fermion) :

$$
\begin{aligned}
& Z_{Q E D}\left[J^{\mu}, 0,0\right]=\int D A^{\mu} \exp i \int d x\left\{-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+J^{\mu} A_{\mu}\right\} \times \operatorname{det}(i \not D-m) \\
& \equiv \int D A^{\mu} \exp i \int d x\left(\mathcal{L}_{e f f}+J^{\mu} A_{\mu}\right) . \quad \mathcal{L}_{e f f}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-i \operatorname{Tr} \ln (i \not D-m) \\
& \\
& \mathcal{L}_{e f f}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+i \sum_{n=1}^{\infty} \frac{e^{n}}{n} \operatorname{Tll}\left(\frac{1}{i \not \partial-m} \not A^{n}\right)^{n}
\end{aligned}
$$

- Match QED to EFT: light fields are not assumed on-shell!

$$
\begin{aligned}
& \mathfrak{L}_{e f f}=-\frac{1}{4}\left\{1+\alpha_{0} \frac{e^{2}}{4!\pi^{2}}\right\} F_{\mu \nu} F^{\mu \nu}+\alpha_{2} \frac{e^{2}}{5!\pi^{2} m^{2}} \partial^{\mu} F_{\mu \nu} \partial_{\rho} F^{\rho \nu}+\alpha_{4} \frac{e^{2}}{6!\pi^{2} m^{4}} \partial^{\mu} F_{\mu \nu} \square \partial_{\rho} F^{\rho \nu} \\
& +\gamma_{4,1} \frac{e^{4}}{6!\pi^{2} m^{4}}\left(F_{\mu \nu} F^{\mu \nu}\right)^{2}+\gamma_{4,2} \frac{e^{4}}{6!\pi^{2} m^{4}}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)^{2}+\mathcal{O}\left(m^{-6}\right) . \\
& \text { Scalar } \\
& \frac{1}{2} D_{\varepsilon} Q^{2} \\
& -\frac{1}{8} Q^{2} \\
& \frac{3}{56} Q^{2} \\
& \frac{7}{32} Q^{4} \quad \frac{1}{32} Q^{4}
\end{aligned}
$$

Photon effective interactions

integrate out vectors

- in 't Hooft-Feynman gauge: does not satisfy QED ward identities when photons are off-shell
$\longrightarrow 4$ photons amplitude matches onto effective operators only for on-shell photons usual prescription to construct effective action breaks down
- the problem: the gauge fixing procedure
$\mathfrak{L}_{\text {gauge-fixing }}^{R_{\xi}, \text { linear }}=-\frac{1}{\xi}\left|\partial^{\mu} W_{\mu}^{+}+\xi M_{W} \phi^{+}\right|^{2} \quad$ this explicitly breaks $U(1)_{Q E D}$
unitary gauge?

$$
\mathcal{L}_{U-\text { gauge }}=-\frac{1}{2}\left(D_{\mu} W_{\nu}^{+}-D_{\nu} W_{\nu}^{+}\right)\left(D^{\mu} W^{-\nu}-D^{\nu} W^{-\mu}\right)+i e F^{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}+M_{W}^{2} W_{\mu}^{+} W^{-\mu} \longrightarrow \text { matching fails agiain! }
$$

- the non-linear gauge: $\partial^{\mu} W_{\mu}^{ \pm} \rightarrow D^{\mu} W_{\mu}^{ \pm}$
$\mathfrak{L}_{\text {gauge-fixing }}^{\text {non-linear }}=-\frac{1}{\xi}\left|\partial^{\mu} W_{\mu}^{+}+i \kappa e A^{\mu} W_{\mu}^{+}+\xi M_{W} \phi^{+}\right|^{2}$
interpolate between linear $(\kappa=0)$ and the $U(1)$ gauge invariant non linear gauge ($\kappa=1$)
Match QED to EFT: $\quad \mathfrak{L}_{e f f}=-\frac{1}{4}\left\{1+\alpha_{0} \frac{e^{2}}{4!\pi^{2}}\right\} F_{\mu \nu} F^{\mu \nu}+\alpha_{2} \frac{e^{2}}{5!\pi^{2} m^{2}} \partial^{\mu} F_{\mu \nu} \partial_{\rho} F^{\rho \nu}+\alpha_{4} \frac{e^{2}}{6!\pi^{2} m^{4}} \partial^{\mu} F_{\mu \nu} \square \partial_{\rho} F^{\rho \nu}$

$$
+\gamma_{4,1} \frac{e^{4}}{6!\pi^{2} m^{4}}\left(F_{\mu \nu} F^{\mu \nu}\right)^{2}+\gamma_{4,2} \frac{e^{4}}{6!\pi^{2} m^{4}}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)^{2}+\mathcal{O}\left(m^{-6}\right)
$$

	α_{0}	α_{2}	α_{4}	$\gamma_{4,1}$	$\gamma_{4,2}$
Vector	$-\frac{21 D_{\varepsilon}+2}{2} Q^{2}$	$\frac{37}{8} Q^{2}$	$-\frac{159}{56} Q^{2}$	$\frac{261}{32} Q^{4}$	$\frac{243}{32} Q^{4}$

Gluon effective interactions

non-linear nature of field strength
Construct EFT i.e integrate out fermion :

$$
\begin{aligned}
\mathcal{L}_{e f f} & =-\frac{1}{4} G_{\mu \nu}^{a} G^{a, \mu \nu}-i \operatorname{Tr} \ln (i \not D-m) \\
& =-\frac{1}{4} G_{\mu \nu}^{a} G^{a, \mu \nu}+i \sum_{n=1}^{\infty} \frac{e^{n}}{n} \operatorname{Tr}\left(\frac{1}{i \not \partial-m} G_{r}^{a} T^{a}\right)_{\substack{\text { not finite }}}^{n}
\end{aligned}
$$

- build the basis:

$$
\begin{aligned}
\mathfrak{L}_{e f f}^{(0+2)} & =-\frac{1}{4}\left\{1+\alpha_{0} \frac{g_{S}^{2}}{4!\pi^{2}}\right\} G_{\mu \nu}^{a} G^{a, \mu \nu} \\
& +\alpha_{2} \frac{g_{S}^{2}}{5!\pi^{2} m^{2}} D^{\nu} G_{\nu \mu}^{a} D_{\rho} G^{a, \rho \mu}+\alpha_{4} \frac{g_{S}^{2}}{6!\pi^{2} m^{4}} D^{\nu} G_{\nu \mu}^{a} D^{2} D_{\rho} G^{a, \rho \mu} \\
\mathfrak{L}_{e f f}^{(3)} & =\beta_{2} \frac{g_{S}^{3}}{5!\pi^{2} m^{2}} f^{a b c} G_{\mu}^{a \nu} G_{\nu}^{b} G_{\rho}^{c \mu} \\
& +\beta_{4,1} \frac{g_{S}^{3}}{6!\pi^{2} m^{4}} f^{a b c} G^{a, \mu \nu} D^{\alpha} G_{\mu \nu}^{b} D^{\beta} G_{\alpha \beta}^{c}+\beta_{4,2} \frac{g_{S}^{3}}{6!\pi^{2} m^{4}} f^{a b c} G^{a, \mu \nu} D^{\alpha} G_{\alpha \mu}^{b} D^{\beta} G_{\beta \nu}^{c} \\
\mathfrak{L}_{e f f}^{(4)} & =\gamma_{4,1} \frac{g_{S}^{4}}{6!\pi^{2} m^{4}} G_{\mu \nu}^{a} G^{a, \mu \nu} G_{\rho \sigma}^{b} G^{b, \rho \sigma}+\gamma_{4,2} \frac{g_{S}^{4}}{6!\pi^{2} m^{4}} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu} G_{\rho \sigma}^{b} \tilde{G}^{b, \rho \sigma} \\
& +\gamma_{4,3} \frac{g_{S}^{4}}{6!\pi^{2} m^{4}} G_{\mu \nu}^{a} G^{b, \mu \nu} G_{\rho \sigma}^{a} G^{b, \rho \sigma}+\gamma_{4,4} \frac{g_{S}^{4}}{6!\pi^{2} m^{4}} G_{\mu \nu}^{a} \tilde{G}^{b, \mu \nu} G_{\rho \sigma}^{a} \tilde{G}^{b, \rho \sigma} \\
& +\gamma_{4,5} \frac{g_{S}^{4}}{6!\pi^{2} m^{4}} f^{a b e} f^{c d e} G_{\mu \nu}^{a} G^{c, \mu \nu} G_{\rho \sigma}^{b} G^{d, \rho \sigma}+\gamma_{4,6} \frac{g_{S}^{4}}{6!\pi^{2} m^{4}} f^{a b e} f^{c d e} G_{\mu \nu}^{a} \tilde{G}^{c, \mu \nu} G_{\rho \sigma}^{b} \tilde{G}^{d, \rho \sigma}
\end{aligned}
$$

- Match:

	α_{0}	α_{2}	α_{4}	β_{2}	$\beta_{4,1}$	$\beta_{4,2}$	$\gamma_{4,1}$	$\gamma_{4,2}$	$\gamma_{4,3}$	$\gamma_{4,4}$	$\gamma_{4,5}$	$\gamma_{4,6}$
Scalar	$\frac{1}{4} D_{\varepsilon}$	$-\frac{1}{16}$	$\frac{3}{112}$	$\frac{1}{48}$	$-\frac{1}{28}$	0	$\frac{7}{768}$	$\frac{1}{768}$	$\frac{7}{384}$	$\frac{1}{384}$	$\frac{1}{96}$	$\frac{1}{672}$
Fermion	D_{ε}	$-\frac{1}{2}$	$\frac{9}{28}$	$-\frac{1}{24}$	$\frac{1}{14}$	$-\frac{3}{4}$	$\frac{1}{48}$	$\frac{7}{192}$	$\frac{1}{24}$	$\frac{7}{96}$	$\frac{1}{96}$	$\frac{19}{672}$

Gluon effective interactions

integrate out vectors

- calculation far more challenging!
- need to generalize the non-linear gauge to preserve QCD symmetry otherwise 1 PI off-shell amplitudes cannot matched onto gauge invariant operators
- non-linear gauge drastically reduce the number of diagrams to compute (4-gluon diagrams: $\mathbf{2 0 7} \longrightarrow \mathbf{8 4}$)
- R_{ξ} gauge: get rid of mixing term like $X_{\mu}^{k} \partial^{\mu} H_{X}^{k}$
- non-linear gauge: no $X-V_{S M}-H_{X}$ couplings all the mixed loops of vector with its WBG boson disappear (very welcome!)
- Match with vectors in the loops:
J.Q., C. Smith and S. Touati, Phys.Rev. D99 (2019) no.l, 013003

	α_{0}	α_{2}	α_{4}	β_{2}	$\beta_{4,1}$	$\beta_{4,2}$	$\gamma_{4,1}$	$\gamma_{4,2}$	$\gamma_{4,3}$	$\gamma_{4,4}$
Vector	$-\frac{21 D_{\varepsilon}+2}{4}$	$\frac{37}{16}$	$-\frac{159}{112}$	$\frac{1}{16}$	$-\frac{3}{28}$	3	$\frac{87}{256}$	$\frac{81}{256}$	$\frac{87}{128}$	$\frac{81}{128}$

$\mathrm{SU}(\mathrm{N})$ effective interactions

- QCD case extended to arbitrary representations of other Lie groups :

Tr over the fundamental generators of $\mathrm{SU}(3)$ \square Tr over generic rep. R of $S U(N)$
vacuum polarization :
3 bosons amplitudes:
4 bosons amplitudes:
$\mathcal{M}^{a b c d}=C_{1}^{a b c d} \mathcal{M}_{1}+C_{2}^{a b c d} \mathcal{M}_{2}+C_{3}^{a b c d} \mathcal{M}_{3}$,

$$
\begin{aligned}
& \operatorname{Tr}\left(T_{\mathbf{R}}^{a} T_{\mathbf{R}}^{b}\right)=I_{2}(\mathbf{R}) \delta^{a b} \\
& \operatorname{Tr}\left(T_{\mathbf{R}}^{a}\left[T_{\mathbf{R}}^{b}, T_{\mathbf{R}}^{c}\right]\right)=i I_{2}\left(\mathbf{R}^{\mathbf{R}}\right) f^{a b c}
\end{aligned}
$$

reversing loop momentum

$$
\left\{\begin{array}{l}
C_{1}^{a b c d}=\operatorname{Tr}\left(T_{\mathbf{R}}^{a} T_{\mathbf{R}}^{b} T_{\mathbf{R}}^{d} T_{\mathbf{R}}^{c}\right)+\operatorname{Tr}\left(T_{\mathbf{R}}^{a} T_{\mathbf{R}}^{c} T_{\mathbf{R}}^{d} T_{\mathbf{R}}^{b}\right) \\
C_{2}^{a b c d}=\operatorname{Tr}\left(T_{\mathbf{R}}^{a} T_{\mathbf{R}}^{b} T_{\mathbf{R}}^{c} T_{\mathbf{R}}^{d}\right)+\operatorname{Tr}\left(T_{\mathbf{R}}^{a} T_{\mathbf{R}}^{d} T_{\mathbf{R}}^{c} T_{\mathbf{R}}^{b}\right) \\
C_{3}^{a b c d}=\operatorname{Tr}\left(T_{\mathbf{R}}^{a} T_{\mathbf{R}}^{c} T_{\mathbf{R}}^{b} T_{\mathbf{R}}^{d}\right)+\operatorname{Tr}\left(T_{\mathbf{R}}^{a} T_{\mathbf{R}}^{d} T_{\mathbf{R}}^{b} T_{\mathbf{R}}^{c}\right)
\end{array}\right.
$$

$$
\begin{aligned}
D_{1}^{a b c d} & =2 C_{1}^{a b c d}-C_{2}^{a b c d}-C_{3}^{a b c d}=I_{2}(\mathbf{R})\left(2 f^{a c e} f^{b d e}-f^{a d e} f^{b c e}\right) \\
D_{2}^{a b c d} & =2 C_{2}^{a b c d}-C_{1}^{a b c d}-C_{3}^{a b c d}=I_{2}(\mathbf{R})\left(2 f^{a d e} f^{b c e}-f^{a c e} f^{b d e}\right) \\
D_{3}^{a b c d} & =2 C_{3}^{a b c d}-C_{1}^{a b c d}-C_{2}^{a b c d}=I_{2}(\mathbf{R})\left(-f^{a d e} f^{b c e}-f^{a c e} f^{b d e}\right)=-D_{1}^{a b c d}-D_{2}^{a b c d}
\end{aligned}
$$

$\mathcal{O}\left(m^{-4}\right): D_{1,2,3}^{a b c d}$ induce operators tuned by: $\gamma_{4,5}$ and $\gamma_{4,6}$ the rest is proportional to the symmetrize Tr: $D_{0}^{a b c d}=C_{1}^{a b c d}+C_{2}^{a b c d}+C_{3}^{a b c d}=\frac{1}{4} S \operatorname{Tr}^{2}\left(T_{\mathbf{R}}^{a} T_{\mathbf{R}}^{b} T_{\mathbf{R}}^{c} T_{\mathbf{R}}^{d}\right)$ $=6 I_{4}(\mathbf{R}) d^{a b c d}+6 \Lambda(\mathbf{R})\left(\delta^{a b} \delta^{c d}+\delta^{a c} \delta^{b d}+\delta^{a d} \delta^{b c}\right)$
no matter the rep. or spin in the loop:

$$
\begin{aligned}
\gamma_{4,1} & =\frac{1}{2} \gamma_{4,3} \\
\gamma_{4,2} & =\frac{1}{2} \gamma_{4,4}
\end{aligned}
$$

SU(N), SO(N) effective interactions

	α_{0}	α_{2}	α_{4}	β_{2}	$\beta_{4,1}$	$\beta_{4,2}$
Scalar	$\frac{1}{2} I_{2}(\mathbf{R}) D_{\varepsilon}$	$-\frac{1}{8} I_{2}(\mathbf{R})$	$\frac{3}{56} I_{2}(\mathbf{R})$	$\frac{1}{24} I_{2}(\mathbf{R})$	$-\frac{1}{14} I_{2}(\mathbf{R})$	0

Fermion	$2 I_{2}(\mathbf{R}) D_{\varepsilon}$	$-I_{2}(\mathbf{R})$	$\frac{9}{14} I_{2}(\mathbf{R})$	$-\frac{1}{12} I_{2}(\mathbf{R})$	$\frac{1}{7} I_{2}(\mathbf{R})$	$-\frac{3}{2} I_{2}(\mathbf{R})$
Vector	$-\frac{21 D_{\varepsilon}+2}{2} I_{2}(\mathbf{R})$	$\frac{37}{8} I_{2}(\mathbf{R})$	$-\frac{159}{56} I_{2}(\mathbf{R})$	$\frac{1}{8} I_{2}(\mathbf{R})$	$-\frac{3}{14} I_{2}(\mathbf{R})$	$6 I_{2}(\mathbf{R})$
	$\gamma_{4,1}=\gamma_{4,3} / 2$	$\gamma_{4,2}=\gamma_{4,4} / 2$	$\gamma_{4,5}$	$\gamma_{4,6}$	$\gamma_{4,7}$	$\gamma_{4,8}$
Scalar	$\frac{7}{32} \Lambda(\mathbf{R})$	$\frac{1}{32} \Lambda(\mathbf{R})$	$\frac{1}{48} I_{2}(\mathbf{R})$	$\frac{1}{336} I_{2}(\mathbf{R})$	$\frac{7}{32} I_{4}(\mathbf{R})$	$\frac{1}{32} I_{4}(\mathbf{R})$

$$
\begin{aligned}
\mathfrak{L}_{\text {eff }}^{(4)} & =\gamma_{4,1} \frac{g_{S}^{4}}{6!\pi^{2} m^{4}} G_{\mu \nu}^{a} G^{a, \mu \nu} G_{\rho \sigma}^{b} G^{b, \rho \sigma}+\gamma_{4,2} \frac{g_{S}^{4}}{6!\pi^{2} m^{4}} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu} G_{\rho \sigma}^{b} \tilde{G}^{b, \rho \sigma} \\
& +\gamma_{4,3} \frac{g_{S}^{4}}{6!\pi^{2} m^{4}} G_{\mu \nu}^{a} G^{b, \mu \nu} G_{\rho \sigma}^{a} G^{b, \rho \sigma}+\gamma_{4,4} \frac{g_{S}^{4}}{6!\pi^{2} m^{4}} G_{\mu \nu}^{a} \tilde{G}^{b, \mu \nu} G_{\rho \sigma}^{a} \tilde{G}^{b, \rho \sigma} \\
& +\gamma_{4,5} \frac{g_{S}^{4}}{6!\pi^{2} m^{4}} f^{a b e} f^{c d e} G_{\mu \nu}^{a} G^{c, \mu \nu} G_{\rho \sigma}^{b} G^{d, \rho \sigma}+\gamma_{4,6} \frac{g_{S}^{4}}{6!\pi^{2} m^{4}} f^{a b e} f^{c d e} G_{\mu \nu}^{a} \tilde{G}^{c, \mu \nu} G_{\rho \sigma}^{b} \tilde{G}^{d, \rho \sigma} \\
& +\gamma_{4,7} \frac{g_{S}^{4}}{6!\pi^{2} m^{4}} d^{a b c d} G_{\mu \nu}^{a} G^{b, \mu \nu} G_{\rho \sigma}^{c} G^{d, \rho \sigma}+\gamma_{4,8} \frac{g_{S}^{4}}{6!\pi^{2} m^{4}} d^{a b c d} G_{\mu \nu}^{a} \tilde{G}^{b, \mu \nu} G_{\rho \sigma}^{c} \tilde{G}^{d, \rho \sigma}
\end{aligned}
$$

- reduction to $\mathrm{U}(1), \mathrm{SU}(2)$ and $\mathrm{SU}(3)$:

$$
+\frac{4\left(\gamma_{4,1}+\gamma_{4,5}\right) g^{4}}{6!\pi^{2} m^{4}} W_{\mu \nu}^{3} W^{3, \mu \nu} W_{\rho \sigma}^{+} W^{-, \rho \sigma}+\frac{4\left(\gamma_{4,2}+\gamma_{4,6}\right) g^{4}}{6!\pi^{2} m^{4}} W_{\mu \nu}^{3} \tilde{W}^{3, \mu \nu} W_{\rho \sigma}^{+} \tilde{W}^{-, \rho \sigma}
$$

$$
+\frac{4\left(\gamma_{4,3}-\gamma_{4,5}\right) g^{4}}{6!\pi^{2} m^{4}}\left|W_{\mu \nu}^{3} W^{+, \mu \nu}\right|^{2}+\frac{4\left(\gamma_{4,4}-\gamma_{4,6}\right) g^{4}}{6!\pi^{2} m^{4}}\left|W_{\mu \nu}^{3} \tilde{W}^{+, \mu \nu}\right|^{2}
$$

$$
+\frac{2\left(2 \gamma_{4,1}+\gamma_{4,3}+\gamma_{4,5}\right) g^{4}}{6!\pi^{2} m^{4}}\left(W_{\mu \nu}^{+} W^{-, \mu \nu}\right)^{2}+\frac{2\left(\gamma_{4,4}-\gamma_{4,6}\right) g^{4}}{6!\pi^{2} m^{4}}\left|W_{\mu \nu}^{+} \tilde{W}^{+, \mu \nu}\right|^{2}
$$

$$
+\frac{2\left(\gamma_{4,3}-\gamma_{4,5}\right) g^{4}}{6!\pi^{2} m^{4}}\left|W_{\mu \nu}^{+} W^{+, \mu \nu}\right|^{2}+\frac{2\left(2 \gamma_{4,2}+\gamma_{4,4}+\gamma_{4,6}\right) g^{4}}{6!\pi^{2} m^{4}}\left(W_{\mu \nu}^{+} \tilde{W}^{-, \mu \nu}\right)^{2} .
$$

Axions are blind to anomalies

J.Q. and C. Smith, arXiv:1903.12559

An axionic toy model: simple QED extension

- local $U(1)_{e m}$, new scalar field ϕ :
$\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}_{L}(i D) \psi_{L}+\bar{\psi}_{R}(i D) \psi_{R}+\left(y \phi \bar{\psi}_{L} \psi_{R}+h . c.\right)+\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-V(\phi)$
- global $U(1)_{P Q}$:
$\phi \rightarrow \exp (-i \theta) \phi, \quad \psi_{L} \rightarrow \exp (i \alpha \theta) \psi_{L}, \quad \psi_{R} \rightarrow \exp (i(\alpha+1) \theta) \psi_{R}$ slobal fermion number
\longrightarrow Goldstone boson (axion) remnant of $U(1)_{P Q}$ S.S.B.

Linear representation

$$
\phi(x)=\sigma^{0}(x)+i a^{0}(x)+v
$$

$$
\mathcal{L}_{\text {Linear }} \supset \frac{1}{2} \partial_{\mu} a^{0} \partial^{\mu} a^{0}+\frac{m}{v} a^{0} \bar{\psi} i \gamma_{5} \psi
$$

$$
\begin{aligned}
\mathcal{T}_{P V V}^{\alpha \beta} & =\int \frac{d^{4} k}{(2 \pi)^{4}}(-1) \operatorname{Tr}[\frac{i}{\not k-q_{1}-m} \succ^{\alpha} \frac{i}{\not k-m} \overbrace{}^{\beta} \frac{i}{\not k+q_{2}-m} \overbrace{5}]+(1, \alpha \leftrightarrow 2, \beta)+(m \rightarrow M) \\
& =-i \frac{1}{2 \pi^{2}} \varepsilon^{\alpha \beta \rho \sigma} q_{1, \rho} q_{2, \sigma}\left(m C_{0}\left(m^{2}\right)-M C_{0}\left(M^{2}\right)\right) . \\
m & \rightarrow \infty \quad \mathcal{L}_{\text {Linear }}^{\text {eff }}=-\frac{e^{2}}{16 \pi^{2} v} a^{0} F_{\mu \nu} \tilde{F}^{\mu \nu}
\end{aligned}
$$

Anomalies do no show up : loop amplitude can safely be computed using a naive regularization procedure even if $U(1)_{P Q}$ is anomalous

Polar representation

$$
\phi(x)=\frac{1}{\sqrt{2}}\left(v+\sigma^{0}(x)\right) e^{-i a^{0}(x) / v}
$$

reparametrize fermion fields (invariant under $U(1)_{P Q}$):

$$
\psi_{L}(x) \rightarrow \exp \left(i \alpha a^{0}(x) / v\right) \psi_{L}(x), \psi_{R}(x) \rightarrow \exp \left(i(\alpha+1) a^{0}(x) / v\right) \psi_{R}(x)
$$

- a^{0} disapears from the Yukawa ($y \phi \bar{\psi}_{L} \psi_{R}+$ h.c.)
- Fermion kinetic term induce derivative interactions $\bar{\psi}_{L}(i D) \psi_{L}+\bar{\psi}_{R}(i D) \psi_{R}$

$$
\delta \mathcal{L}_{\text {Der }}=-\frac{\partial_{\mu} a^{0}}{v}\left(\alpha \bar{\psi}_{L} \gamma^{\mu} \psi_{L}+(\alpha+1) \bar{\psi}_{R} \gamma^{\mu} \psi_{R}\right)=-\frac{\partial_{\mu} a^{0}}{2 v}\left((2 \alpha+1) \bar{\psi} \gamma^{\mu} \psi+\bar{\psi} \gamma^{\mu} \gamma_{5} \psi\right)
$$

- Fermionic path integral measure is not invariant: new local interaction (Jacobian of the transformation)

$$
\begin{aligned}
\delta \mathcal{L}_{\mathrm{Jac}} & =\frac{e^{2}}{16 \pi^{2} v} a^{0}(\alpha-(\alpha+1)) F_{\mu \nu} \tilde{F}^{\mu \nu}=-\frac{e^{2}}{16 \pi^{2} v} a^{0} F_{\mu \nu} \tilde{F}^{\mu \nu} \\
\longrightarrow & \mathcal{L}_{\text {Polar }} \supset \frac{1}{2} \partial_{\mu} a^{0} \partial^{\mu} a^{0}+\delta \mathcal{L}_{\text {Der }}+\delta \mathcal{L}_{\mathrm{Jac}}
\end{aligned}
$$

Polar representation

$$
\begin{aligned}
& \mathcal{T}_{A V V}^{\gamma \alpha \beta}=\int \frac{d^{4} k}{(2 \pi)^{4}}(-1) \operatorname{Tr}[\frac{i}{\not k-q_{1}-m} \bigodot^{\top} \frac{i}{\not k-m} \bigodot^{\beta} \frac{i}{\not k+q_{2}-m} \underbrace{\gamma^{\gamma} \gamma_{5}}]+(1, \alpha \leftrightarrow 2, \beta) \\
& \mathcal{M}\left(a^{0} \rightarrow \gamma \gamma\right) \text { Der }=\frac{-e^{2}}{2 v} i\left(q_{1}+q_{2}\right)_{\gamma} \mathcal{T}_{A V V}^{\gamma \alpha \beta} \varepsilon\left(q_{1}\right)_{\alpha}^{*} \varepsilon\left(q_{2}\right)_{\beta}^{*} \\
& \text { no «VVV » diagram (Furry theorem) } \\
& =\frac{-e^{2}}{4 \pi^{2} v}\left(2 m^{2} C_{0}\left(m^{2}\right)-2 M^{2} C_{0}\left(M^{2}\right)\right) \varepsilon^{\alpha \beta \rho \sigma} \varepsilon\left(q_{1}\right)_{\alpha}^{*} \varepsilon\left(q_{2}\right)_{\beta}^{*} q_{1, \rho} q_{2, \sigma} \\
& \xrightarrow{M \rightarrow \infty} \text { the regulator term precisely cancels the local term from } \delta \mathcal{L}_{\mathrm{Jac}}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{M}\left(a^{0} \rightarrow \gamma \gamma\right)_{\text {Polar }} & =\mathcal{M}\left(a^{0} \rightarrow \gamma \gamma\right)_{\text {Der }}+\mathcal{M}\left(a^{0} \rightarrow \gamma \gamma\right)_{\mathrm{Jac}} \\
& =-\frac{e^{2}}{2 \pi^{2} v} m^{2} C_{0}\left(m^{2}\right) \varepsilon^{\alpha \beta \rho \sigma} \varepsilon\left(q_{1}\right)_{\alpha}^{*} \varepsilon\left(q_{2}\right)_{\beta}^{*} q_{1, \rho} q_{2, \sigma}=\mathcal{M}\left(a^{0} \rightarrow \gamma \gamma\right)_{\text {Linear }}
\end{aligned}
$$

- in polar rep. : the local term $a^{0} F_{\mu \nu} \tilde{F}^{\mu \nu}$ is spurious
it only serves to cancel out the anomalous term arising from $\partial_{\mu} a^{0} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi$ nothing but axial Ward identity:

$$
\partial_{\mu} A^{\mu}-\frac{e^{2}}{8 \pi^{2}} F_{\mu \nu} \tilde{F}^{\mu \nu}=2 i m P
$$

$$
\begin{aligned}
A^{\mu} & =\bar{\psi} \gamma^{\mu} \gamma_{5} \psi \\
P & =\bar{\psi} \gamma_{5} \psi
\end{aligned}
$$

- $a^{0} \rightarrow \gamma \gamma$ often misinterpreted as induced by the anomaly

Consistent use of anomalies

Jacobian of the transformation: triangle graph with left handed currents

- a and b are free parameters :needed to keep track of the anomalies
- anomaly equally distributed (Bose symmetry) with $a=-b=1 / 3$
- In terms of vector and axial currents only "AVV ${ }_{\mathrm{s}}$ " and «A.A. " do not cancel (Furry)
- careful to the regularization procedure: Pauli-Villars or dim. reg. enforce automatically a and b (AVV: $a=-b=1$; AAA: $a=-b=1 / 3$) *we do not want that! *
- examples: impose which are the anomalous currents

$$
\left.\mathcal{M}\left(a^{0} \rightarrow \gamma Z\right)^{\frac{A}{V A V}}\right|_{m \rightarrow \infty} \neq 0
$$

$$
\left.\mathcal{M}\left(a^{0} \rightarrow \gamma Z\right)^{A V V}\right|_{m \rightarrow \infty}=0
$$

$$
\left.\mathcal{M}\left(a^{0} \rightarrow \gamma Z\right)^{A A A}\right|_{m \rightarrow \infty} \neq 0
$$

$$
\begin{aligned}
& \mathcal{T}_{L L L}^{\alpha \beta \gamma}=\int \frac{d^{4} k}{(2 \pi)^{4}}(-1) \operatorname{Tr}[\frac{i}{\not k-q_{1}} \gamma^{\gamma^{\beta} P_{L}} \int_{k}^{i} \underbrace{\gamma^{\gamma} P_{L}} \frac{i}{\not k+q_{2}} \gamma^{\gamma^{\alpha} P_{L}}]+(1, \beta \leftrightarrow 2, \gamma) \\
& -i\left(q_{1}\right)_{\beta} \mathcal{T}_{L L L}^{\alpha \beta \gamma}=\frac{1}{8 \pi^{2}}(1+b) \varepsilon^{\gamma \alpha \mu \nu} q_{1 \mu} q_{2 \nu} \\
& { }^{i\left(q_{1}+q_{2}\right)_{\alpha} \mathcal{T}_{L L L}^{\alpha \beta \gamma}}{ }^{\alpha} \frac{1}{8 \pi^{2}}(a-b) \varepsilon^{\beta \gamma \mu \nu} q_{1 \mu} q_{2 \nu} \\
& =0 \text { since } a=-b=1 \\
& U(1)_{e m} \text { non anomalous } \Rightarrow b=-1
\end{aligned}
$$

Couplings of the PQ axion: Matching the polar and linear rep.

$$
\begin{aligned}
& \text { - } a^{0} \rightarrow \gamma \gamma, g g: \\
& \text { simple usual 2HDIM } \\
& \mathcal{M}\left(a^{0} \rightarrow \gamma \gamma, g g\right)_{\text {Polar }}=\mathcal{M}\left(a^{0} \rightarrow \gamma \gamma, g g\right)_{\text {Der }}^{A V V}+\mathcal{M}\left(a^{0} \rightarrow \gamma \gamma, g g\right)_{\mathrm{Jac}} \\
& \mathcal{M}\left(a^{0} \rightarrow \gamma \gamma, g g\right)_{\text {Der }}^{A V V}=-\mathcal{\mathcal { M } (a ^ { 0 } \rightarrow \gamma \gamma , g g) _ { \mathrm { Jac } }}+\mathcal{M}\left(A^{0} \rightarrow \gamma \gamma, g g\right)_{\text {Linear }} \\
& \mathcal{M}\left(a^{0} \rightarrow \gamma \gamma, g g\right)_{\text {Polar }}=\mathcal{M}\left(A^{0} \rightarrow \gamma \gamma, g g\right)_{\text {Linear }}
\end{aligned}
$$

The anomalous contact int. do cancel out systematically with the anomalous part to the triangle graphs

$$
\mathcal{M}\left(a^{0} \rightarrow \gamma \gamma, g g\right)_{\text {Der }}^{A V V} \stackrel{m \rightarrow \infty}{=} 0 \Rightarrow \mathcal{M}\left(A^{0} \rightarrow \gamma \gamma, g g\right)_{\text {Linear }} \stackrel{m \rightarrow \infty}{=} \mathcal{M}\left(a^{0} \rightarrow \gamma \gamma, g g\right)_{\mathrm{Jac}}
$$

though interpreting the axion coupling as induced by the anomaly is incorrect!

Couplings of the PQ axion: Matching the polar and linear representations

- $a^{0} \rightarrow \gamma Z:$
 $\mathcal{M}\left(a^{0} \rightarrow \gamma Z\right)_{\text {Polar }}=\mathcal{M}\left(a^{0} \rightarrow \gamma Z\right)_{\text {Der }}^{A V V}+\frac{\mathcal{M}\left(a^{0} \rightarrow \gamma Z\right)_{\text {Der }}^{V A V}}{\neq 0}+\mathcal{M}\left(a^{0} \rightarrow \gamma Z\right)_{\mathrm{Jac}} \quad=\mathcal{M}\left(A^{0} \rightarrow \gamma Z\right)_{\text {Linear }}$
For chiral gauge theory: the local terms from $\delta \mathcal{L}_{\text {Jac }}$ are no longer reliable bookkeeping of the effect of heavy fermions because part of the anomaly is hidden in the VAV triangle
- $a^{0} \rightarrow Z Z, W^{+} W^{-}$:

same conclusion: all the local anomalous contributions cancel exactly

$$
\begin{aligned}
\mathcal{M}\left(a^{0} \rightarrow V V\right)_{\text {Polar }} & =\mathcal{M}\left(a^{0} \rightarrow V V\right)_{\text {Der }}^{A V V}+\mathcal{M}\left(a^{0} \rightarrow V V\right)_{\text {Der }}^{V A V} \\
& \frac{+\mathcal{M}\left(a^{0} \rightarrow V V\right)_{\text {Der }}^{A A A}}{\neq 0}+\overline{\mathcal{M}\left(a^{0} \rightarrow V V\right)_{\mathrm{Jac}}=\mathcal{M}\left(A^{0} \rightarrow V V\right)_{\text {Linear }}}
\end{aligned}
$$

Conclusion

- All decoupled new physics is a non zero Wilson coefficient:

The One-Loop Universal Action is a simplified way to express collider constraints on realistic BSM theories

- Construct EFTs for gauge bosons up to dim. 8 interactions (loop of $\operatorname{spin} 0,1 / 2,1$)
- Spin l: usual diagrammatic procedure to build effective action breaks down
\longrightarrow quantized the SM in the non-linear gauge: matching consistent off-shell (closely parallels the CDE path integral method)
- Generalization to QCD gluon and $\mathrm{SU}(\mathrm{N}), U(1) \otimes S U(N), S U(N) \otimes S U(M)$ boson EFTs
- At one-loop some operators are redundant! no matter the rep. or spin of particle circulating in the loops
- Match the axion decay modes computed using either a linear or a polar representation for the scalar field breaking the $U(1)_{P Q}$ symmetry
- we derived the couplings of axions to gauge bosons, they are not induced by the anomaly
- Could have consequences for ALP searches

spare slides

Euler-Heisenberg Effective Action

"Consequences of Dirac's Theory of the Positron", W. Heisenberg \& H. Euler (1936)

- Classical field theory: Lagrangian encapsulates the relevant E.O.M and the symmetries of the system
- Dirac's theory: an E.M. field create pairs of particles which change Maxwell's equations in the vacuum
- QFT: effective Lagrangian encodes quantum corrections to the classical Lagrangian (ex: vacuum polarization)
- E.H. (1936): compute nonperturbative, renormalized, one-loop effective (no e+,e-) action for QED in a classical E.M. background of constant field strength \longrightarrow leads to several insights and applications
integrate out electron from path integral: $\quad \int \mathcal{D} A \exp \left(i \Gamma\left[A_{\mu}\right)\right) \equiv \int \mathcal{D} A \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left[i \int d^{4} x\left(-\frac{1}{4} F_{\mu \nu}^{2}+\bar{\psi}(i \not D-m) \psi\right)\right]$ one-loop effective action of QED: $\quad S^{(1)}=-i \ln \operatorname{det}(i \not D-m)=-\frac{i}{2} \ln \operatorname{det}\left(\not D^{2}+m^{2}\right)$

Perturbative expansion in powers of the external photon field:
at low energies: effective action in terms of local operators

low energy limit: closed form which generates all the perturbative diagrams for the effective action

$$
S^{(1)}=-\frac{1}{h c} \int_{0}^{\infty} \frac{d \eta}{\eta^{3}} e^{-\eta e \mathcal{E}_{c}}\left\{\frac{e^{2} a b \eta^{2}}{\tanh (e b \eta) \tan (e a \eta)}-1-\frac{e^{2} \eta^{2}}{3}\left(b^{2}-a^{2}\right)\right\}
$$

$$
\begin{gathered}
a^{2}-b^{2}=\vec{E}^{2}-\vec{B}^{2}=-\frac{1}{2} F_{\mu \nu} F^{\mu \nu} \equiv-2 \mathcal{F}, \\
a b=\vec{E} \cdot \vec{B}=-\frac{1}{4} F_{\mu \mu}^{F^{\mu \nu}} \equiv-\mathcal{G} . \\
a=\sqrt{\sqrt{\mathcal{F}^{2}+\mathcal{G}^{2}}-\mathcal{F}}, \quad b=\sqrt{\sqrt{\mathcal{F}^{2}+\mathcal{G}^{2}}+\mathcal{F}} .
\end{gathered}
$$

Euler-Heisenberg Effective Action

- nonlinear QED processes:
expanding E.H. to quartic order: $S^{(1)}=\frac{e^{4}}{360 \pi^{2} m^{4}} \int d^{4} x\left[\left(\vec{E}^{2}-\vec{B}^{2}\right)^{2}+7(\vec{E} \cdot \vec{B})^{2}\right]+\ldots$
low energy limit of
light by light scattering full QED process solved in 1951
nonlinearities \sim dielectric effects, the quantum vacuum behaving as a polarizable medium
- pair-production from vacuum in $\mathbf{E - f i e l d}$:

\boldsymbol{E} field accelerates and splits virtual vacuum dipole pairs, leading to e+e- particle production

$$
\begin{aligned}
\Gamma & =2 \operatorname{Im} \mathcal{L} \\
\Gamma & \sim \frac{e^{2} E^{2}}{4 \pi^{3}} \exp \left[-\frac{m^{2} \pi}{e E}\right]
\end{aligned}
$$

rate of vacuum non persistence due to pair production

- charge renormalization, β-function:
E.H.'s result correctly anticipated charge renormalization

$$
\left.\begin{array}{c}
S^{(1)}=-\frac{1}{h c} \int_{0}^{\infty} \frac{d \eta}{\eta^{3}} e^{-\eta e \mathcal{E}_{c}}\left\{\frac{e^{2} a b \eta^{2}}{\text { sanh }(e b \eta) \tan (e a \eta)}-1-\frac{e^{2} \eta^{2}}{3}\left(b^{2}-a^{2}\right)\right.
\end{array}\right\}
$$

- paradigm of what is now called «low energy EFT »:
describes the physics of light d.o.f at energies much lower than some energy scale (heavy d.o.f. are integrated out) Lagrangian expanded in terms of gauge and Lorentz invariant operators for the light fields

$$
\mathcal{L}_{\text {eff }}=m^{4} \sum_{n} a_{n} \frac{O^{(n)}}{m^{n}} \quad \text { at mass dim. 8: } \quad\left(F_{\mu \nu} F^{\mu i \nu}\right)^{2} \text { or }\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)^{2}:
$$

Mixed effective interactions

$$
\begin{aligned}
\left.\mathfrak{L}_{e f f}^{(4)} \underline{(U(1)} \otimes \underline{S U(N)}\right) & =\alpha_{1} \frac{g_{1}^{2} g_{n}^{2}}{6!\pi^{2} m^{4}} F_{\mu \nu} F^{\mu \nu} G_{\rho \sigma}^{a} G^{a, \rho \sigma}+\alpha_{2} \frac{g_{1}^{2} g_{n}^{2}}{6!\pi^{2} m^{4}} F_{\mu \nu} \tilde{F}^{\mu \nu} G_{\rho \sigma}^{a} \tilde{G}^{a, \rho \sigma} \\
& +\alpha_{3} \frac{g_{1}^{2} g_{n}^{2}}{6!\pi^{2} m^{4}} F_{\mu \nu} G^{a, \mu \nu} F_{\rho \sigma} G^{a, \rho \sigma}+\alpha_{4} \frac{g_{1}^{2} g_{n}^{2}}{6!\pi^{2} m^{4}} F_{\mu \nu} \tilde{G}^{a, \mu \nu} F_{\rho \sigma} \tilde{G}^{a, \rho \sigma} \\
& +\beta_{1} \frac{g_{1} g_{n}^{3}}{6!\pi^{2} m^{4}} d^{a b c} F_{\mu \nu} G^{a, \mu \nu} G_{\rho \sigma}^{b} G^{c, \rho \sigma}+\beta_{2} \frac{g_{1} g_{n}^{3}}{6!\pi^{2} m^{4}} d^{a b c} F_{\mu \nu} \tilde{G}^{a, \mu \nu} G_{\rho \sigma}^{b} \tilde{G}^{c, \rho \sigma}
\end{aligned}
$$

$\mathfrak{L}_{e f f}^{(4)}(\underline{\underline{S U(M)}} \otimes \underline{S U(N)})=\alpha_{1} \frac{g_{m}^{2} g_{n}^{2}}{6!\pi^{2} m^{4}} W_{\mu \nu}^{i} W^{i, \mu \nu} G_{\rho \sigma}^{a} G^{a, \rho \sigma}+\alpha_{2} \frac{g_{m}^{2} g_{n}^{2}}{6!\pi^{2} m^{4}} W_{\mu \nu}^{i} \tilde{W}^{i, \mu \nu} G_{\rho \sigma}^{a} \tilde{G}^{a, \rho \sigma}$ $+\alpha_{3} \frac{g_{m}^{2} g_{n}^{2}}{6!\pi^{2} m^{4}} W_{\mu \nu}^{i} G^{a, \mu \nu} W_{\rho \sigma}^{i} G^{a, \rho \sigma}+\alpha_{4} \frac{g_{m}^{2} g_{n}^{2}}{6!\pi^{2} m^{4}} W_{\mu \nu}^{i} \tilde{G}^{a, \mu \nu} W_{\rho \sigma}^{i} \tilde{G}^{a, \rho \sigma}$

	$\alpha_{1}=\alpha_{3} / 2$	$\alpha_{2}=\alpha_{4} / 2$	β_{1}	β_{2}
Scalar	$\frac{7}{16} Q(\mathbf{R})^{2} I_{2}(\mathbf{R})$	$\frac{1}{16} Q(\mathbf{R})^{2} I_{2}(\mathbf{R})$	$\frac{7}{32} Q(\mathbf{R}) I_{3}(\mathbf{R})$	$\frac{1}{32} Q(\mathbf{R}) I_{3}(\mathbf{R})$
Fermion	$Q(\mathbf{R})^{2} I_{2}(\mathbf{R})$	$\frac{7}{4} Q(\mathbf{R})^{2} I_{2}(\mathbf{R})$	$\frac{1}{2} Q(\mathbf{R}) I_{3}(\mathbf{R})$	$\frac{7}{8} Q(\mathbf{R}) I_{3}(\mathbf{R})$
Vector	$\frac{261}{16} Q(\mathbf{R})^{2} I_{2}(\mathbf{R})$	$\frac{243}{16} Q(\mathbf{R})^{2} I_{2}(\mathbf{R})$	$\frac{261}{32} Q(\mathbf{R}) I_{3}(\mathbf{R})$	$\frac{243}{32} Q(\mathbf{R}) I_{3}(\mathbf{R})$

Universal coefficients in terms of standard master integrals

$$
\int \frac{d^{d} q}{(2 \pi)^{d}} \frac{q^{\mu_{1}} \cdots q^{\mu_{2 n_{c}}}}{\left(q^{2}-M_{i}^{2}\right)^{n_{i}}\left(q^{2}-M_{j}^{2}\right)^{n_{j}} \cdots\left(q^{2}\right)^{n_{L}}} \equiv g^{\mu_{1} \ldots \mu_{2 n_{c}}} \mathcal{I}\left[q^{2 n_{c}}\right]_{i j \ldots 0}^{n_{i} n_{j} \ldots n_{L}}
$$

Universal coefficient	Operator
$f_{2}^{i}=\mathcal{I}_{i}^{1}$	$U_{i i}$
$f_{3}^{i}=2 \mathcal{I}\left[q^{4}\right]_{i}^{4}$	$G_{i}^{\prime \mu \nu} G_{\mu \nu, i}^{\prime}$
$f_{4}^{i j}=\frac{1}{2} \mathcal{I}_{i j}^{11}$	$U_{i j} U_{j i}$
$f_{5}^{i}=16 \mathcal{I}\left[q^{6}\right]_{i}^{6}$	$\left[P^{\mu}, G_{\mu \nu, i}^{\prime}\right]\left[P_{\rho}, G_{i}^{\prime \rho \nu}\right]$
$f_{6}^{i}=\frac{32}{3} \mathcal{I}\left[q^{6}\right]_{i}^{6}$	$G^{\prime \mu}{ }_{\nu, i} G^{\prime \prime}{ }_{\rho, i} G^{\prime \rho}{ }_{\mu, i}$
$f_{7}^{i j}=\mathcal{I}\left[q^{2}\right]_{i j}^{22}$	$\left.{ }^{[} P^{\mu}, U_{i j}\right]\left[P_{\mu}, U_{j i}\right]$
$f_{8}^{i j k}=\frac{1}{3} \mathcal{I}_{i j k}^{111}$	$U_{i j} U_{j k} U_{k i}$
$f_{9}^{i}=8 \mathcal{I}\left[q^{4}\right]_{i}^{5}$	$U_{i i} G_{i}^{\prime \mu \nu} G_{\mu \nu, i}^{\prime}$
$f_{10}^{i j k l}=\frac{1}{4} \mathcal{I}_{i j k l}^{1111}$	$U_{i j} U_{j k} U_{k l} U_{l i}$
$f_{11}^{i j k}=2\left(\mathcal{I}\left[q^{2}\right]_{i j k}^{122}+\mathcal{I}\left[q^{2}\right]_{i j k}^{212}\right)$	$U_{i j}\left[P^{\mu}, U_{j k}\right]\left[P_{\mu}, U_{k i}\right]$
$f_{12}^{i j}=4 \mathcal{I}\left[q^{4}\right]_{i j}^{33}$	$\left[P^{\mu},\left[P_{\mu}, U_{i j}\right]\right]\left[P^{\nu},\left[P_{\nu}, U_{j i}\right]\right]$
$\begin{aligned} f_{13}^{i j}= & 4\left(\mathcal{I}\left[q^{4}\right]_{j 3}^{33}\right. \\ & \left.+2 \mathcal{I}\left[q^{4}\right]_{i j}^{42}+2 \mathcal{I}\left[q^{4}\right]_{i j}^{51}\right) \end{aligned}$	$U_{i j} U_{j i} G_{i}^{\prime \mu \nu} G_{\mu \nu, i}^{\prime}$
$f_{14}^{i j}=-8 \mathcal{I}\left[q^{4}\right]_{i j}^{33}$	$\left[P^{\mu}, U_{i j}\right]\left[P^{\nu}, U_{j i}\right] G_{\nu \mu, i}^{\prime}$
$f_{15}^{i j}=4\left(\mathcal{I}\left[q^{4}\right]_{i j}^{33}+\mathcal{I}\left[q^{4}\right]_{i j}^{42}\right)$	$\left(U_{i j}\left[P^{\mu}, U_{j i}\right]-\left[P^{\mu}, U_{i j}\right] U_{j i}\right)\left[P^{\nu}, G_{\nu \mu, i}^{\prime}\right]$
$f_{16}^{i j k l m}=\frac{1}{5} \mathcal{I}_{i j k l m}^{1111}$	$U_{i j} U_{j k} U_{k l} U_{l m} U_{m i}$
$\begin{aligned} f_{17}^{i j k l}= & 2\left(\mathcal{I}\left[q^{2}\right]_{i j k l}^{2112}\right. \\ & \left.+\mathcal{I}\left[q^{2}\right]_{i j k l}^{1212}+\mathcal{I}\left[q^{2}\right]_{i j k l}^{1122}\right) \end{aligned}$	$U_{i j} U_{j k}\left[P^{\mu}, U_{k l}\right]\left[P_{\mu}, U_{l i}\right]$
$\begin{aligned} f_{18}^{i j k l}= & \mathcal{I}\left[q^{2}\right]_{i k j k l}^{2121}+\mathcal{I}\left[q^{2}\right]_{i j k l}^{2112} \\ & +\mathcal{I}\left[q^{2}\right]_{i j k l}^{1221}+\mathcal{I}\left[q^{2}\right]_{i j k l}^{1212} \end{aligned}$	$U_{i j}\left[P^{\mu}, U_{j k}\right] U_{k l}\left[P_{\mu}, U_{l i}\right]$
$f_{19}^{i j k l m n}=\frac{1}{6} \mathcal{L}_{i j k l m n}^{111111}$	$U_{i j} U_{j k} U_{k l} U_{l m} U_{m n} U_{n i}$

for degonerate mass heavy fields

$f_{5}=-\frac{i}{(4 \pi)^{2} 60 m^{2}}$,	$f_{11}=\frac{i}{(4 \pi)^{2} 12 m^{4}}$,	$f_{15 a}=\frac{i}{(4 \pi)^{2} 60 m^{4}}$,
$f_{6}=-\frac{i}{(4 \pi)^{2} 90 m^{2}}$,	$f_{12, a}=0$,	$f_{15 b}=\frac{i}{(4 \pi)^{2} 60 m^{4}}$,
$f_{7}=-\frac{i}{(4 \pi)^{2} 12 m^{2}}$,	$f_{12, b}=0$,	$f_{16}=-\frac{i}{(4 \pi)^{2} 60 m^{6}}$,
$f_{8}=-\frac{i}{(4 \pi)^{2} 6 m^{2}}$,	$f_{12, c}=\frac{i}{(4 \pi)^{2} 120 m^{4}}$,	$f_{17}=-\frac{i}{(4 \pi)^{2} 20 m^{6}}$,
$f_{9}=-\frac{i}{(4 \pi)^{2} 12 m^{2}}$,	$f_{13}=\frac{i}{(4 \pi)^{2} 24 m^{4}}$,	$f_{18}=-\frac{i}{(4 \pi)^{2} 30 m^{6}}$
$f_{10}=\frac{i}{(4 \pi)^{2} 24 m^{4}}$,	$f_{14}=\frac{-i}{(4 \pi)^{2} 60 m^{4}}$,	$f_{19}=\frac{i}{(4 \pi)^{2} 120 m^{8}}$,

A. Drozd, J. Ellis, JQ and T. You arXiv:1512.03003

Functional methods: Heavy-Light loops?

- Linear coupling = tree-level, quadratic coupling = heavy-only one-loop

$$
\mathcal{L}_{\mathrm{UV}}=\mathcal{L}_{\mathrm{SM}}+\left(\Phi(F(x)+\text { h.c. })+\Phi^{\dagger}\left(P^{2}-M^{2}-U(x)\right) \Phi+\mathcal{O}\left(\Phi^{3}\right),\right.
$$

- What about loops involving both heavy and light fields?
- Naively not accounted for in functional method

See e.g. Bilenky \& Santamaria, hep-ph/9310302; Del Aguila, Kunszt, Santiago, 1602.00126.

- Solution: apply background field method to both heavy and light fields

$$
\begin{gathered}
\frac{\phi \rightarrow \phi_{c}+\phi^{\prime}}{}, \frac{\Phi \rightarrow \Phi_{c}+\Phi^{\prime}}{} \\
\mathcal{L}_{\text {quad }}=\frac{1}{2}\left(\Phi^{\prime}, \phi^{\prime}\right)\left(\begin{array}{cc}
P^{2}-M^{2}-U_{\Phi \Phi} & -U_{\Phi \phi} \\
-U_{\phi \Phi} & P^{2}-m^{2}-U_{\phi \phi}
\end{array}\right)\binom{\Phi^{\prime}}{\phi^{\prime}}
\end{gathered}
$$

Functional methods: Heavy-Light loops?

- Just apply background field method to both heavy and light fields?

$$
\phi \rightarrow \phi_{c}+\phi^{\prime} \quad, \quad \Phi \rightarrow \Phi_{c}+\Phi^{\prime}
$$

- Actually, this gives the one-loop 1PI effective action and not $\mathcal{L}_{\text {eff }}$
- Feynman diagram intuition: Heavy-light loops in UV theory match onto both tree-level-generated EFT operators inserted at one-loop, and one-loopgenerated EFT operators inserted at tree-level

- The former is not part of $\mathcal{L}_{\text {eff }}$, must be subtracted to keep only the latter

Functional methods：Heavy－Light subtractions

－Various subtraction procedures proposed
See e．g．Boggsia，Gomez－Ambrisio，Passarino arXiv：1603．03660
B．Henning，X．Lu and H．Murayama arXiv：1604．01019
S．A．R．Ellis，JQ，T．You，Z．Zhang arXiv：1604．02445 \longrightarrow Universality properties also applies to heavy－light case
Fuentes－Martin，Portoles，Ruiz－Femenia arXiv：160\％．02142

$$
\begin{aligned}
& \int d^{d} x \mathcal{L}_{\mathrm{EFT}}^{1 \text {-loop }}\left[\varphi_{L}\right] \neq \Gamma_{\mathrm{L}, \mathrm{UV}}^{1 \text {-loop }}\left[\varphi_{L}\right] \\
& \text { - 1PI effective actions include } \\
& \text { quantum fluctuations at all scales } \\
& \int d^{d} x \mathcal{L}_{\mathrm{EFT}}^{1 \text {-loop }}\left[\varphi_{L}\right]=\left.\Gamma_{\mathrm{L}, \mathrm{UV}}^{1 \text {-loop }}\left[\varphi_{L}\right]\right|_{\text {hard }} \\
& \text { - Extract short-distance fluctuations } \\
& \text {->local operators in EFT Lagrangian } \\
& m_{\varphi_{H}} \\
& \text { hard region } \\
& \left|q^{2}\right| \sim m_{\varphi_{H}}^{2} \gg\left|m_{\varphi_{L}}^{2}\right| \\
& \text {-ローローロー } \\
& \text { soft region } \\
& \left|q^{2}\right| \sim\left|m_{\varphi_{L}}^{2}\right| \ll m_{\varphi_{H}}^{2} \\
& m_{\varphi_{L}}
\end{aligned}
$$

－Simplification of evaluating CDE from these developments lead to a Covariant Diagram formulation
－But Universality of CDE results means evaluation via all these different methods gives same model－independent expression

B．Henning，X．Lu and H．Murayama arXiv：1412．183
A．Drozd，J．Ellis，JQ and T．You arXiv：1504．02409
S．A．R．Ellis，JQ，T．You，Z．Zhang arXiv：1706．07765

Universal One-Loop Effective Action

- with Heavy-Light extension S.A.R. Ellis, JQ, T. You, Z. Zhang arXiv:1706.07765

P-only terms	
$f_{3}^{i}=2 \mathcal{I}\left[q^{4}\right]_{i}^{4}$	$G_{i}^{\prime \mu \nu} G_{\mu \nu_{i}}^{\prime}$
$f_{5}^{i}=16 \mathcal{I}\left[q^{6}\right]_{i}^{6}$	$\left[P^{\mu}, G_{\mu \nu_{i}}^{\prime}\right]\left[P_{\rho}, G_{i}^{\prime \rho \nu}\right]$
$f_{6}^{i}=(32 / 3) \mathcal{I}\left[q^{6}\right]_{i}^{6}$	$G_{\nu i}^{\prime \mu} G_{\rho_{i}}^{\prime \nu} G_{\mu_{i}}^{\rho}{ }_{\mu_{i}}$

$\mathcal{O}\left(U_{H}^{2} P^{2}\right)$ terms	
$f_{7}^{i j}=\mathcal{I}\left[q^{2}\right]_{i j}^{22}$	$\left[P^{\mu}, U_{H i j}\right]\left[P_{\mu}, U_{H j i}\right]$
$\mathcal{O}\left(U_{H L}^{1} U_{L H}^{1} P^{2}\right)$ terms	
$f_{7 A}^{i j}=2 \mathcal{I}\left[q^{2}\right]_{i 0}^{22}$	$\left[P^{\mu}, U_{H L i i^{\prime}}\right]\left[P_{\mu}, U_{L H i^{\prime}}\right]$
$\mathcal{O}\left(U_{H}^{1} P^{4}\right)$ terms	
$f_{9}^{i}=8 \mathcal{I}\left[q^{4}\right]_{i}^{5}$	$U_{H i j} G_{i}^{\prime \mu \nu} G_{\mu \nu}^{\prime}$

Application: matching SM-EFT vs UV model

Let's match dim6-EFT and the MSSM :

$$
\left(\mathcal{O}_{\gamma}=\mathcal{O}_{B B}+\mathcal{O}_{W W}-\mathcal{O}_{W B}\right)
$$

A. Drozd, J. Ellis, JQ and T. You arXiv:1504.02409
Wilson coef. for non-degenerate stops
B. Henning, X. Lu and H. Murayama arXiv:1412.1837
Wilson coef. for degenerate stops

EFT vs Loop Calculation

+ EFT vs full MSSM calculation agrees well (non trivial check!)
+ Operators > dim-6 become important when EFT cut-off (stop mass) is too low

A. Drozd, J. Ellis, JQ and T. You arXiv:1504.02409

Indirect Constraints on Stops

A. Drozd, J. Ellis, JQ and T. You arXiv:1504.02409

Coeff.	Experimental constraints		95% CL limit	deg. $m_{\tilde{t}_{1}}$, $X_{t}=0$
\bar{c}_{g}	LHC	marginalized individual	$[-4.5,2.2] \times 10^{-5}$ $[-3.0,2.5] \times 10^{-5}$ $\sim 410 \mathrm{GeV}$ $\sim 390 \mathrm{GeV}$	
\bar{c}_{γ}	LHC	marginalized individual	$[-6.5,2.7] \times 10^{-4}$ $[-4.0,2.3] \times 10^{-4}$	$\sim 215 \mathrm{GeV}$
\bar{c}_{T}	LEP	marginalized individual	$[-10,10] \times 10^{-4}$	$\sim 290 \mathrm{GeV}$
$\bar{c}_{W}+\bar{c}_{B}$	LEP	marginalized individual	$[-5,5] \times 10^{-4}$	$\sim 380 \mathrm{GeV}$

Indirect Constraints on Stops

A. Drozd, J. Ellis, JQ and T. You arXiv:1504.02409

The current sensitivity is already comparable to that of direct LHC searches 40

Indirect Constraints on Stopsiders

A. Drozd, J. Ellis, JQ and T. You arXiv:1504.02409

Coeff	Experimental constraints		95 \% CL limit	deg. $m_{\tilde{t}_{1}}$		
Coeff.			$X_{t}=0$	$X_{t}=m_{\tilde{t}} / 2$		
\bar{c}_{g}	$\mathrm{ILC}_{250 \mathrm{GeV}}^{1150 \mathrm{Ob}^{-1}}$	marginalized		$[-7.7,7.7] \times 10^{-6}$	$\sim 675 \mathrm{GeV}$	$\sim 520 \mathrm{GeV}$
		individual	$[-7.5,7.5] \times 10^{-6}$	$\sim 680 \mathrm{GeV}$	$\sim 545 \mathrm{GeV}$	
	FCC-ee	marginalized	$[-3.0,3.0] \times 10^{-6}$	$\sim 1065 \mathrm{GeV}$	$\sim 920 \mathrm{GeV}$	
		individual	$[-3.0,3.0] \times 10^{-6}$	$\sim 1065 \mathrm{GeV}$	$\sim 915 \mathrm{GeV}$	
\bar{c}_{γ}	$\mathrm{ILC}_{250 \mathrm{GeV}}^{1150 \mathrm{fb}^{-1}}$	marginalized	$[-3.4,3.4] \times 10^{-4}$	$\sim 200 \mathrm{GeV}$	$\sim 40 \mathrm{GeV}$	
		individual	$[-3.3,3.3] \times 10^{-4}$	$\sim 200 \mathrm{GeV}$	$\sim 35 \mathrm{GeV}$	
	FCC-ee	marginalized	$[-6.4,6.4] \times 10^{-5}$	$\sim 385 \mathrm{GeV}$	$\sim 250 \mathrm{GeV}$	
		individual	$[-6.3,6.3] \times 10^{-5}$	$\sim 390 \mathrm{GeV}$	$\sim 260 \mathrm{GeV}$	
\bar{c}_{T}	$\mathrm{ILC}_{250 \mathrm{GeV}}^{1150 \mathrm{fb}^{-1}}$	marginalized	$[-3,3] \times 10^{-4}$	$\sim 480 \mathrm{GeV}$	$\sim 285 \mathrm{GeV}$	
		individual	$[-7,7] \times 10^{-5}$	$\sim 930 \mathrm{GeV}$	$\sim 780 \mathrm{GeV}$	
	FCC-ee	marginalized	$[-3,3] \times 10^{-5}$	$\sim 1410 \mathrm{GeV}$	$\sim 1285 \mathrm{GeV}$	
		individual	$[-0.9,0.9] \times 10^{-5}$	$\sim 2555 \mathrm{GeV}$	$\sim 2460 \mathrm{GeV}$	
$\bar{c}_{W}+\bar{c}_{B}$		marginalized	$[-2,2] \times 10^{-4}$	$\sim 230 \mathrm{GeV}$	$\sim 170 \mathrm{GeV}$	
	$1 L^{250 G e V}$	individual	$[-6,6] \times 10^{-5}$	$\sim 340 \mathrm{GeV}$	$\sim 470 \mathrm{GeV}$	
	FCC-ee	marginalized	$[-2,2] \times 10^{-5}$	$\sim 545 \mathrm{GeV}$	$\sim 960 \mathrm{GeV}$	
		individual	$[-0.8,0.8] \times 10^{-5}$	$\sim 830 \mathrm{GeV}$	$\sim 1590 \mathrm{GeV}$	

