Learning to pinpoint effective operators at the LHC: a study of the $t\bar{t}b\bar{b}$ signature

Jorgen D’Hondt(a), Alberto Mariotti(a,b), Ken Mimasu(c), Seth Moortgat(a), Cen Zhang (d)

(a) Vrije Universiteit Brussel – Interuniversity Institute for High Energies (IIHE)
Pleinlaan 2, B-1050 Brussels, Belgium

(b) Vrije Universiteit Brussel, Theoretische Natuurkunde
Pleinlaan 2, B-1050 Brussels, Belgium

(c) Université catholique de Louvain – Centre for Cosmology, Particle Physics and Phenomenology (CP3)
Chemin du Cyclotron 2, B-1348 Louvain-La-Neuve, Belgium

(d) Chinese Academy of Sciences, Institute of High Energy Physics
Beijing 100049, China

ArXiv: 1807.02130

JHEP11(2018)131

HEFT2019 (UCL) – 15th Apr 2019
1. Introduction

2. SMEFT: $\bar{t}t\bar{b}b$ and its virtues
 a. Four-quark operators
 b. Complementarity to four top

3. Sensitivity study: individual operators

4. Learning the effective operators

5. Conclusion and outlook
1. Introduction: SMEFT

- Lack of direct evidence for BSM physics at the LHC → Standard Model Effective Field Theory (SMEFT):
 - model-independent interpretation
 - New physics at high energy scales
 - Heightened energy dependence and modified kinematics

Extend SM Lagrangian up to dim. 6:
(→ Leading B & L conserving contributions)

\[\mathcal{L} = \mathcal{L}_{SM} + \sum_i \frac{C_i}{\Lambda^2} O_i^{(6)} \]

\[M^2 \equiv \Lambda^2 \gg p^2 \]

\[\frac{g^2_*}{p^2 - M^2} \]
1. Introduction: SMEFT

- Warsaw basis of dim. 6 operators (B. Grzadkowsk, et al. [JHEP 1010 (2010) 085])
- Depending on flavor assumptions, tens to hundreds of independent operators
 → For a given final-state, many simultaneous contributions possible!

Intrinsically large SMEFT parameter space

- high-multiplicity final states with complex inter-correlated kinematics

= multi-class machine learning algorithms
2. $t\bar{t}b\bar{b}$ in SMEFT: four-heavy-quark operators

- $t\bar{t}b\bar{b}$ is sensitive to a set of four-quark dim. 6 operators.
- MFV-inspired approach to separate 4-Heavy, 2-Heavy-2-Light and 4-Light operators
- We focus on 4-Heavy operators
 - 2H2L are constrained much more by $t\bar{t}$ and $b\bar{b}$ production via $q\bar{q}$ initial state
2. $t\bar{t}b\bar{b}$ in SMEFT: comparison to four top

- Some operators can be constrained by four top as well

 ex: C. Zhang Chin. Phys. C42 (2018), no. 2 023104

<table>
<thead>
<tr>
<th>Operator</th>
<th>$t\bar{t}b\bar{b}$</th>
<th>$t\bar{t}t\bar{t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O_{QQ}^1 = \frac{1}{2} (\bar{Q} \gamma_{\mu} Q) (\bar{Q} \gamma^{\mu} Q)$,</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{QQ}^8 = \frac{1}{2} (\bar{Q} \gamma_{\mu} T^A Q) (\bar{Q} \gamma^{\mu} T^A Q)$,</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{tb}^1 = (\bar{t} \gamma_{\mu} t) (\bar{b} \gamma_{\mu} b)$,</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{tb}^8 = (\bar{t} \gamma_{\mu} T^A t) (\bar{b} \gamma_{\mu} T^A b)$,</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{tt}^1 = (\bar{t} \gamma_{\mu} t) (\bar{t} \gamma_{\mu} t)$,</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{bb}^1 = (\bar{b} \gamma_{\mu} b) (\bar{b} \gamma_{\mu} b)$,</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{Qt}^1 = (\bar{Q} \gamma_{\mu} Q) (\bar{t} \gamma^{\mu} t)$,</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{Qt}^8 = (\bar{Q} \gamma_{\mu} T^A Q) (\bar{t} \gamma^{\mu} T^A t)$,</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{Qb}^1 = (\bar{Q} \gamma_{\mu} Q) (\bar{b} \gamma^{\mu} b)$,</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{Qb}^8 = (\bar{Q} \gamma_{\mu} T^A Q) (\bar{b} \gamma^{\mu} T^A b)$,</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{QtQb}^1 = (\bar{Q} t) \in (\bar{Q} b)$,</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{QtQb}^8 = (\bar{Q} T^A t) \in (\bar{Q} T^A b)$,</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

\[C_{QQ}^{(+)} = \frac{1}{2} C_{QQ}^{1} + \frac{1}{6} C_{QQ}^{8} \]

Degeneracy in four-top, lifted for $t\bar{t}b\bar{b}$!
2. $t\bar{t}b\bar{b}$ in SMEFT: comparison to four top

- Some operators can be constrained by four top as well

 \[\begin{align*}
 O_{QQ}^1 &= \frac{1}{2} (\bar{Q} \gamma_\mu Q) (\bar{Q} \gamma^\mu Q), \\
 O_{QQ}^8 &= \frac{1}{2} (\bar{Q} \gamma_\mu T^A Q) (\bar{Q} \gamma^\mu T^A Q), \\
 O_{tb}^1 &= (\bar{t} \gamma_\mu t) (\bar{b} \gamma_\mu b), \\
 O_{tb}^8 &= (\bar{t} \gamma_\mu T^A t) (\bar{b} \gamma_\mu T^A b), \\
 O_{tt}^1 &= (\bar{t} \gamma_\mu t) (\bar{t} \gamma_\mu t), \\
 O_{bb}^1 &= (\bar{b} \gamma_\mu b) (\bar{b} \gamma_\mu b), \\
 O_{Qt}^1 &= (\bar{Q} \gamma_\mu Q) (\bar{t} \gamma^\mu t), \\
 O_{Qt}^8 &= (\bar{Q} \gamma_\mu T^A Q) (\bar{t} \gamma^\mu T^A t), \\
 O_{Qb}^1 &= (\bar{Q} \gamma_\mu Q) (\bar{b} \gamma^\mu b), \\
 O_{Qb}^8 &= (\bar{Q} \gamma_\mu T^A Q) (\bar{b} \gamma^\mu T^A b), \\
 O_{QtQb}^1 &= (\bar{Q} t) \bar{e} (\bar{Q} b), \\
 O_{QtQb}^8 &= (\bar{Q} T^A t) \bar{e} (\bar{Q} T^A b).
 \end{align*} \]

\[C_{QQ}^{(+)} = \frac{1}{2} C_{QQ}^1 + \frac{1}{6} C_{QQ}^8 \]

Degeneracy in four-top, lifted for $t\bar{t}b\bar{b}$!

Pre-requisite:

$t\bar{t}b\bar{b}$ has a sufficiently large production cross section (~ 3 pb) to exploit differential kinematical information with 300 fb-1 (after Run III)!

(for comparison: $\sigma_{tttt} \sim 9$ fb)
2. $t\bar{t}b\bar{b}$ in SMEFT: comparison to four top

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4-top (300 fb$^{-1}$) ($M_{\text{cut}} = 4$ TeV)</td>
<td>4-top (35.8 fb$^{-1}$) (no M_{cut})</td>
<td>global fit (no M_{cut})</td>
<td>$t\bar{t}b\bar{b}$ (300 fb$^{-1}$) ($M_{\text{cut}} = 2$ TeV)</td>
</tr>
<tr>
<td>C_{qq}^1</td>
<td>$[-2.8, 2.5]$</td>
<td>$[-2.2, 2.0]$</td>
<td>$[-5.4, 5.2]$</td>
<td>$[-2.1, 2.3]$</td>
</tr>
<tr>
<td>C_{qq}^8</td>
<td>$[-8.4, 7.4]$</td>
<td>n.a.</td>
<td>$[-21, 16]$</td>
<td>$[-4.5, 3.1]$</td>
</tr>
<tr>
<td>C_{qt}^1</td>
<td>$[-2.2, 2.3]$</td>
<td>$[-3.5, 3.5]$</td>
<td>$[-4.9, 4.9]$</td>
<td>$[-2.1, 2.3]$</td>
</tr>
<tr>
<td>C_{qt}^8</td>
<td>$[-5.1, 4.1]$</td>
<td>$[-7.9, 6.6]$</td>
<td>$[-11, 8.7]$</td>
<td>$[-3.9, 3.8]$</td>
</tr>
</tbody>
</table>

$\mu_{4t} < 1.87$ \hspace{1cm} $\mu_{4t} < 5.22$
3. Deriving constraints on individual operators: **Sensitivity study**
Strategy

Cross section measurement in the fiducial detector volume → CMS ttbb/ttjj @ 13 TeV

Strategy

\[\sigma_{t\bar{t}b,CMS} = 88 \pm 12(\text{stat.}) \pm 29(\text{syst.}) \text{ fb} \]

\[\sigma [\text{pb}] = 0.078 (1 + 0.0011 C + 0.0049 C^2) \]

Strategy

Selection of kinematic phase space to enrich in EFT contributions (using m_{4b}) → reconstructed phase space needed!
Strategy

- Identify sensitive variable and apply a cut
- Derive cross section dependence on the Wilson coefficients in this EFT-enriched phase space

\[\bar{b} \bar{t} W^- W^+ \]

<table>
<thead>
<tr>
<th>\text{SM only}</th>
<th>SM + EFT (C_{qb} = 10 \text{ TeV}^2)</th>
<th>SM + EFT (C_{qb} = 20 \text{ TeV}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>2.0</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

\[M_{tb} \text{ [TeV]} \]
Learning effective operators: Combine kinematic information of the ttbb final state into machine learning tools
→ Select EFT enriched phase space
Strategy

<table>
<thead>
<tr>
<th>ΔR</th>
<th>m_{inv}</th>
<th>p_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta R(\ell_1,\ell_2)$</td>
<td>$m_{\text{inv}}(\ell_1,\ell_2)$</td>
<td>$p_T(\ell_1)$</td>
</tr>
<tr>
<td>$\Delta R(b_1,b_2)$</td>
<td>$m_{\text{inv}}(b_1,b_2)$</td>
<td>$p_T(b_2)$</td>
</tr>
<tr>
<td>$\Delta R(b_1,\ell_2)$</td>
<td>$m_{\text{inv}}(b_1,\ell_2)$</td>
<td>$p_T(\ell_2)$</td>
</tr>
<tr>
<td>$\Delta R(b_2,\ell_1)$</td>
<td>$m_{\text{inv}}(b_2,\ell_1)$</td>
<td>$p_T(b_1)$</td>
</tr>
<tr>
<td>$\Delta R(\text{add}_1,\text{add}_2)$</td>
<td>$m_{\text{inv}}(\text{add}_1,\text{add}_2)$</td>
<td>$p_T(\text{add}_1)$</td>
</tr>
<tr>
<td>$m_{\text{inv}}(b_1,b_2,\text{add}_1,\text{add}_2)$</td>
<td>$p_T(\text{add}_2)$</td>
<td></td>
</tr>
<tr>
<td>$m_{\text{inv}}(\ell_1,\ell_2,b_1,b_2,\text{add}_1,\text{add}_2)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Histogram of discriminator $p(T_L) + p(T_R)$](image-url)
Summary of individual limits

Summary of the obtained (projected) 95% CL constraints on all relevant operators (one-by-one).

![Graph showing 95% CL limits for various operators](image)
4. Improving sensitivity with multiple effective operators simultaneously

<table>
<thead>
<tr>
<th>Operator</th>
<th>$t\overline{t}bb$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O_{QQ}^1 = \frac{1}{2} (\bar{Q} \gamma_\mu Q) (\bar{Q} \gamma^\mu Q)$</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{QQ}^8 = \frac{1}{2} (\bar{Q} \gamma_\mu T^A Q) (\bar{Q} \gamma^\mu T^A Q)$</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{tb}^1 = (\bar{t} \gamma_\mu t) (\bar{b} \gamma_\mu b)$</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{tb}^8 = (\bar{t} \gamma_\mu T^A t) (\bar{b} \gamma_\mu T^A b)$</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{tt}^1 = (\bar{t} \gamma_\mu t) (\bar{t} \gamma_\mu t)$</td>
<td></td>
</tr>
<tr>
<td>$O_{bb}^1 = (\bar{b} \gamma_\mu b) (\bar{b} \gamma_\mu b)$</td>
<td></td>
</tr>
<tr>
<td>$O_{Qt}^1 = (\bar{Q} \gamma_\mu Q) (\bar{t} \gamma^\mu t)$</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{Qt}^8 = (\bar{Q} \gamma_\mu T^A Q) (\bar{t} \gamma^\mu T^A t)$</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{Qb}^1 = (\bar{Q} \gamma_\mu Q) (\bar{b} \gamma^\mu b)$</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{Qb}^8 = (\bar{Q} \gamma_\mu T^A Q) (\bar{b} \gamma^\mu T^A b)$</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{QtQb}^1 = (\bar{Q} t) \varepsilon (\bar{Q} b)$</td>
<td>✓</td>
</tr>
<tr>
<td>$O_{QtQb}^8 = (\bar{Q} T^A t) \varepsilon (\bar{Q} T^A b)$</td>
<td>✓</td>
</tr>
</tbody>
</table>

Case study: operators with right-handed top currents (t_R) or left-handed top currents (t_L)
Learning the effective operators

- Combine all available kinematics in a (shallow) neural network (NN) to select EFT enriched phase space.

- Instead of a binary classifier (SM vs EFT), we exploit multi-class structure to also distinguish amongst EFT operators with left-handed top quark currents (t_L) and with right-handed top quark currents (t_R)!

- **Important note**: training performed on pure SM and pure EFT (only quadratic contribution, no interference!). Including interference in the training is an interesting case-study for the future!

<table>
<thead>
<tr>
<th>ΔR</th>
<th>m_{inv}</th>
<th>p_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta R(\ell_1,\ell_2)$</td>
<td>$m_{inv}(\ell_1,\ell_2)$</td>
<td>$p_T(\ell_1)$</td>
</tr>
<tr>
<td>$\Delta R(b_1,b_2)$</td>
<td>$m_{inv}(b_1,b_2)$</td>
<td>$p_T(b_2)$</td>
</tr>
<tr>
<td>$\Delta R(b_1,\ell_2)$</td>
<td>$m_{inv}(b_1,\ell_2)$</td>
<td>$p_T(b_1)$</td>
</tr>
<tr>
<td>$\Delta R(b_2,\ell_1)$</td>
<td>$m_{inv}(b_2,\ell_1)$</td>
<td>$p_T(b_2)$</td>
</tr>
<tr>
<td>$\Delta R(\text{add}_1,\text{add}_2)$</td>
<td>$m_{inv}(\text{add}_1,\text{add}_2)$</td>
<td>$p_T(\text{add}_1)$</td>
</tr>
<tr>
<td></td>
<td>$m_{inv}(b_1,b_2,\text{add}_1,\text{add}_2)$</td>
<td>$p_T(\text{add}_2)$</td>
</tr>
<tr>
<td></td>
<td>$m_{inv}(\ell_1,\ell_2,b_1,b_2,\text{add}_1,\text{add}_2)$</td>
<td></td>
</tr>
</tbody>
</table>

18 kinematic input observables

50 nodes (10% dropout) 3 output classes

\[\sum_{i=1}^{3} P_i = 1 \]
Learning the effective operators

How to combine the network outputs?

<table>
<thead>
<tr>
<th>Desired Discrimination</th>
<th>Combined NN Output used for limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>only t_L operator</td>
<td>$\frac{P(t_L)}{P(t_L)+P(SM)}$</td>
</tr>
<tr>
<td>only t_R operator</td>
<td>$\frac{P(t_R)}{P(t_R)+P(SM)}$</td>
</tr>
<tr>
<td>including both t_L and t_R operators</td>
<td>$P(t_L) + P(t_R)$</td>
</tr>
<tr>
<td>t_L vs t_R</td>
<td>$\frac{P(t_L)}{P(t_L)+P(t_R)}$</td>
</tr>
</tbody>
</table>

One operator at a time:
dedicated SM vs t_L/t_R outputs

Multiple operators: SM vs EFT and t_L vs t_R outputs
Learning the effective operators

multiple operators

2-dim phase space of NN outputs

- **x-axis**: SM vs EFT (t_L and t_R)
- **y-axis**: t_L vs t_R
Learning the effective operators

multiple operators

Case-study: Consider two non-zero Wilson coefficients: C_{tb}^1 and C_{Qb}^1

→ Assume an observation of the SM: $(C_{tb}^1, C_{Qb}^1) = (0,0)$
Learning the effective operators

multiple operators

Case-study: Consider two non-zero Wilson coefficients: C_{tb}^1 and C_{Qb}^1

\rightarrow Assume an observation of the SM: $(C_{tb}^1, C_{Qb}^1) = (0,0)$
Learning the effective operators

multiple operators

Case-study: Consider two non-zero Wilson coefficients: C_{tb}^1 and C_{Qb}^1

→ Assume an observation of the SM: $(C_{tb}^1, C_{Qb}^1) = (0,0)$
Learning the effective operators

multiple operators

Case-study: Consider two non-zero Wilson coefficients: C_{tb}^1 and C_{Qb}^1

→ Assume an observation of the SM: $(C_{tb}^1, C_{Qb}^1) = (0,0)$
Learning the effective operators

multiple operators

Case-study: Consider two non-zero Wilson coefficients: C_{tb}^1 and C_{Qb}^1

→ Assume an observation of the SM: $(C_{tb}^1, C_{Qb}^1) = (0,0)$
Learning the effective operators

Multiple operators

Case-study: Consider two non-zero Wilson coefficients: C_{tb}^1 and C_{Qb}^1

→ Assume an observation of EFT signal: $(C_{tb}^1, C_{Qb}^1) = (5,3)$
Learning the effective operators

multiple operators

Case-study: Consider two non-zero Wilson coefficients: C^1_{tb} and C^1_{Qb}

→ Assume an observation of EFT signal: $(C^1_{tb}, C^1_{Qb}) = (5,3)$
Learning the effective operators

multiple operators

Case-study: Consider two non-zero Wilson coefficients: C_{tb}^1 and C_{Qb}^1

→ Assume an observation of EFT signal: $(C_{tb}^1, C_{Qb}^1) = (5,3)$
Learning the effective operators

multiple operators

Case-study: Consider two non-zero Wilson coefficients: C_{tb}^1 and C_{Qb}^1

→ Assume an observation of EFT signal: $(C_{tb}^1, C_{Qb}^1) = (5,3)$
Learning the effective operators

multiple operators

Case-study: Consider two non-zero Wilson coefficients: C_{tb}^1 and C_{Qb}^1

→ Assume an observation of EFT signal: $(C_{tb}^1, C_{Qb}^1) = (5,3)$
Summary

• $t\bar{t}\bar{b}\bar{b}$ is an indispensable component in a global fit of the top-quark interactions in the SMEFT at the LHC!
 o Large enough cross section to exploit differential information
 o First direct constraints on a specific set of operators

• Multi-class machine learning algorithms are a suitable tool for interpreting LHC data in this framework!
 o Intrinsically large SMEFT parameter space
 o High-multiplicity final states with inter-correlated information

• Probing multiple SMEFT couplings simultaneously allow to pinpoint (or constrain) more efficiently the origin (absence) of a possible excess!
Backup
Introduction: $t\bar{t}b\bar{b}$ production

I associate $t\bar{t}b\bar{b}$ to:

A. Higgs boson measurements
B. SM measurements
C. Theory calculations (simulations)
D. BSM searches
Introduction: $t\bar{t}b\bar{b}$ production

A. $t\bar{t}b\bar{b}$ is important background for $t\bar{t}H$ ($H \rightarrow b\bar{b}$). Recent discovery of this Higgs production mode

B. $t\bar{t}b\bar{b}$ ($t\bar{t}b\bar{b}$/ttjj) has therefore been measured by CMS and ATLAS (7, 8 & 13 TeV)

C. Difficult modeling (different mass scales, collinear splitting,...) → large effort from theory community

D. ??? → Indispensable component in global fit of top-quark interactions!
t\(\bar{t}\)b\(\bar{b}\) in SMEFT: comparison to four top

- Some operators can be constrained by four top as well

ex: C. Zhang Chin. Phys.C42(2018), no. 2 023104

<table>
<thead>
<tr>
<th>Operator</th>
<th>(t\bar{t}b\bar{b})</th>
<th>(t\bar{t}t\bar{t})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O_{QQ}^1) = (\frac{1}{2} (\bar{Q} \gamma_\mu Q) (\bar{Q} \gamma^\mu Q))</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>(O_{QQ}^8) = (\frac{1}{2} (\bar{Q} \gamma_\mu T^A Q) (\bar{Q} \gamma^\mu T^A Q))</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>(O_{tb}^1 = (\bar{t} \gamma_\mu t) (\bar{b} \gamma_\mu b))</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>(O_{tb}^8 = (\bar{t} \gamma_\mu T^A t) (\bar{b} \gamma_\mu T^A b))</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>(O_{tt}^1 = (\bar{t} \gamma_\mu t) (\bar{t} \gamma_\mu t))</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>(O_{bb}^1 = (\bar{b} \gamma_\mu b) (\bar{b} \gamma_\mu b))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(O_{Qt}^1 = (\bar{Q} \gamma_\mu Q) (\bar{t} \gamma^\mu t))</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>(O_{Qt}^8 = (\bar{Q} \gamma_\mu T^A Q) (\bar{t} \gamma^\mu T^A t))</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>(O_{Qb}^1 = (\bar{Q} \gamma_\mu Q) (\bar{b} \gamma_\mu b))</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>(O_{Qb}^8 = (\bar{Q} \gamma_\mu T^A Q) (\bar{b} \gamma^\mu T^A b))</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>(O_{QT}^{1Qb} = (\bar{Q} t) \epsilon (\bar{Q} b))</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>(O_{QT}^{8Qb} = (\bar{Q} T^A t) \epsilon (\bar{Q} T^A b))</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

\(C_{QQ}^{(+) = \frac{1}{2} C_{QQ}^1 + \frac{1}{6} C_{QQ}^8}\)

Degeneracy in four-top, lifted for \(t\bar{t}b\bar{b}\)!

<table>
<thead>
<tr>
<th>Operator</th>
<th>4-top ((M_{cut} = 2 \text{ TeV}))</th>
<th>4-top ((M_{cut} = 3 \text{ TeV}))</th>
<th>4-top ((M_{cut} = 4 \text{ TeV}))</th>
<th>this work ((M_{cut} = 2 \text{ TeV}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{QQ}^1)</td>
<td>([-3.9, 3.5])</td>
<td>([-2.9, 2.6])</td>
<td>([-2.8, 2.5])</td>
<td>([-2.1, 2.3])</td>
</tr>
<tr>
<td>(C_{QQ}^8)</td>
<td>([-11.8, 10.5])</td>
<td>([-8.8, 7.8])</td>
<td>([-8.4, 7.4])</td>
<td>([-4.5, 3.1])</td>
</tr>
<tr>
<td>(C_{Qt}^1)</td>
<td>([-3.2, 3.3])</td>
<td>([-2.4, 2.4])</td>
<td>([-2.2, 2.3])</td>
<td>([-2.1, 2.3])</td>
</tr>
<tr>
<td>(C_{Qt}^8)</td>
<td>([-7.4, 5.8])</td>
<td>([-5.4, 4.3])</td>
<td>([-5.1, 4.1])</td>
<td>([-3.9, 3.8])</td>
</tr>
</tbody>
</table>

\(\rightarrow @ 300 \text{ fb}^{-1}\)
Model building and generator software details

Dimension-6 four-fermion EFT operators
Feynrules model provided by LHC TOP WG

LO matrix element calculation
MadGraph

Parton showering
Pythia 8

Detector simulation and event reconstruction
Delphes

Visible phase space at particle level

Phase space after event reconstruction and selection
EFT validity

\[
\frac{C_i}{\Lambda^2} E^2 \equiv C_i E^2 < C_i M_{\text{cut}}^2 \lesssim (4\pi)^2
\]

Fix \(\Lambda = 1 \) TeV and express limits in [TeV\(^{-2}\)]

All energy scales associated to the final state are imposed to be below \(M_{\text{cut}} \).
\(\rightarrow H_T \) (scalar sum of all visible final state objects) is a good example.

\(M_{\text{cut}} = 2 \) TeV
Strategy

Cross section measurement in the fiducial detector volume
→ CMS ttbb/ttjj @ 13 TeV

Selection of kinematic phase space to enrich in EFT contributions (using m_{4b})
→ reconstructed phase space needed!

Learning effective operators: Combine kinematic information of the ttbb final state into machine learning tools
→ Select EFT enriched phase space
→ Distinguish amongst EFT operators!
Cross section in the fiducial detector volume

Integrated luminosity = 2.3 fb$^{-1}$
Visible phase space definition:
$\sigma_{t\bar{t}b\bar{b},CMS} = 88 \pm 12(stat.) \pm 29(syst.)$ fb

Projections for 300 fb$^{-1}$: scaled stat. unc. and fixed syst. unc. of 10%
measured xsec = prediction of MadGraph
Cross section in the fiducial detector volume

Integrated luminosity = 2.3 fb$^{-1}$

Visible phase space definition:

$\sigma_{t\bar{t}b\bar{b},CMS} = 88 \pm 12(\text{stat.}) \pm 29(\text{syst.})$ fb

Projections for 300 fb$^{-1}$: scaled stat. unc. and fixed syst. unc. of 10%

measured xsec = prediction of MadGraph

$\sigma_{\text{fit}} = \sigma_{\text{SM}} \left(1 + p_1 \cdot C_i + p_2 \cdot C_i^2\right)$
Cross section in the fiducial detector volume

$$\sigma_{fit} = \sigma_{SM} \left(1 + p_1 \cdot C_i + p_2 \cdot C_i^2 \right)$$

Color singlet operators have small interference but larger squared order contributions

Color octet operators have larger interference (SM ~ gluon induced) but suppressed squared order contributions (color factor 2/9)
Tailoring the kinematical phase space

Step 1: move to the reconstructed phase space: **Dileptonic decays of the top quarks**

Step 2: identify quantities that are sensitive to the EFT operators \((\Delta R, M_{\text{inv}}, p_T, \eta) \to M_{4b}\)

Step 3: Make a selection on this quantity and derive the effective cross section dependence
Tailoring the kinematical phase space

Question: What cut to choose on M4b?
Answer: The one that optimizes the sensitivity!
→ increase relative population of EFT contributions
→ without blowing up statistical uncertainty on the SM measurement

M_{4b} > 1.1 \text{ TeV} \ (< 2 \text{ TeV!!})
Learning the effective operators

multiple operators

The NN has indeed learned to distinguish amongst t_L and t_R operators!
Tailoring the kinematical phase space

Prospects for 300 fb$^{-1}$ after event reconstruction/selection and $M_{4b} > 1.1$ TeV

$\sigma [\text{fb}] = 0.2977 \ (1 + 0.0052 \ C + 0.0332 \ C^2)$

χ^2

cross section [fb]

$C_{Qb}^1 \in [-3, +3] \ \text{TeV}^{-2}$

$xsec: C_{Qb}^1 \in [-6, +6] \ \text{TeV}^{-2}$

→ Improvement with a factor $\sim 2!$
Learning the effective operators

one operator at a time

Once again the cut value is chosen to optimize the sensitivity

\[\sigma \text{ [fb]} = 0.2064 (1 - 0.0016 C + 0.0671 C^2) \]

\[\sigma \text{ [fb]} = 0.2026 (1 + 0.0166 C + 0.0153 C^2) \]

\[C_{Qb}^1 \in [-2.1, +2.3] \text{ TeV}^{-2} \]

\[M_{4b}: C_{Qb}^1 \in [-3, +3] \text{ TeV}^{-2} \]

\[C_{Qb}^8 \in [-5, +4.3] \text{ TeV}^{-2} \]

\[M_{4b}: C_{Qb}^8 \in [-6.5, +7] \text{ TeV}^{-2} \]

→ significant further improvement!
Learning the effective operators

one operator at a time

Question: What cut to choose on the NN output?
Answer: The one that optimizes the sensitivity!

→ increase relative population of EFT contributions
→ without blowing up statistical uncertainty on the SM measurement

NN output > 0.83
Backup: Neural Network training

- 18 inputs + RELU + 1 hidden layer (50 neurons) + RELU + Dropout (10%) + 3 outputs + SOFTMAX (sum=1)
- Mini-batches of size 128, training for 100 epochs
- Loss function: Categorical cross entropy
- Optimizer: Stochastic gradient descent
 - Initial learning rate = 0.005
 - Decay = 10^{-6}
 - Nestrov momentum = 0.8
Outlook

• Fully marginalized limits when more precise measurements become available

• Method is generic and can be applied to other topologies / final states!

• Increased complexity of the network (Deep learning) or more advanced machine learning techniques may result in better sensitivity.

• Question for the future: How much can we push these algorithms to distinguish different EFT operators.
 o We demonstrated a distinction between t_L and t_R operators
 o Distinguish color singlet operators from color octet ones would be possible if one includes interference effects during the training phase! (becomes dependent on the value of the Wilson coefficient \rightarrow Parametrized learning approach?)
 o Can you (ideally) distinguish each individual operator or are some of them indistinguishable?