A Global Likelihood for Precision Constraints and Flavour Anomalies

Presented by Peter Stangl

Laboratoire d'Annecy-le-Vieux de Physique Théorique

Outline

- 1 Flavour anomalies and a global likelihood
- 2 Applications: EWPOs
- Opplications: Fitting anomalies
- 4 Conclusions

Based on:

Jason Aebischer, Jacky Kumar, PS, David M. Straub [arXiv:1810.07698] Jason Aebischer, Wolfgang Altmannshofer, Diego Guadagnoli, Méril Reboud, PS, David M. Straub [arXiv:1903.10434]

Outline

Flavour anomalies and a global likelihood

- 2 Applications: EWPOs
- Opplications: Fitting anomalies
- 4 Conclusions

$b ightarrow s \, \mu^+ \mu^-$ anomaly

Several LHCb measurements deviate from Standard model (SM) predictions by $2-3\sigma$:

- Angular observable P_5' in $B o K^* \mu^+ \mu^-$. LHCb, arXiv:1512.04442
- ▶ Branching ratios of $B \to K\mu^+\mu^-$, $B \to K^*\mu^+\mu^-$, and $B_s \to \phi\mu^+\mu^-$.

LHCb, arXiv:1403.8044, arXiv:1506.08777, arXiv:1606.04731

$$egin{aligned} \mathcal{O}_9^\ell &= (ar{s}\gamma_\mu \mathcal{P}_L b)(ar{\ell}\gamma^\mu\ell) \ \mathcal{O}_{10}^\ell &= (ar{s}\gamma_\mu \mathcal{P}_L b)(ar{\ell}\gamma^\mu\gamma_5\ell) \end{aligned}$$

see also fits by other groups: Capdevila et al., arXiv:1704.05340 D'Amico et al., arXiv:1704.05438 Geng et al., arXiv:1704.05446 Ciuchini et al., arXiv:1704.05447 Mahmoudi et al., arXiv:1611.05060 Peter Stand (LAPTh)

Hints for LFU violation in neutral current decays

Measurements of lepton flavour universality (LFU) ratios $R_{K}^{[1,6]}$, $R_{K^*}^{[0.045,1.1]}$, $R_{K^*}^{[1.1,6]}$ show deviations from SM by about 2.5 σ each. LHCb, arXiv:1406.6482, arXiv:1705.05802

- Rr & Rr.

$$R_{K^{(*)}} = \frac{BR(B \to K^{(*)}\mu^+\mu^-)}{BR(B \to K^{(*)}e^+e^-)}$$
see also fits by other groups:
Capdevila et al., arXiv:1704.05340
D'Amico et al., arXiv:1704.05438
Geng et al., arXiv:1704.05436
Cluchini et al., arXiv:1704.05446
Cluchini et al., arXiv:1704.05447
(this slide: excluding results from Moriond 2019)

flavio

Hints for LFU violation in neutral current decays

Measurements of lepton flavour universality (LFU) ratios $R_{K}^{[1,6]}$, $R_{K^*}^{[0.045,1.1]}$, $R_{K^*}^{[1.1,6]}$ show deviations from SM by about 2.5 σ each. LHCb, arXiv:1406.6482, arXiv:1705.05802

 $R_K \& R_{K^*}$

$$R_{K^{(*)}} = \frac{BR(B \to K^{(*)}\mu^{+}\mu^{-})}{BR(B \to K^{(*)}e^{+}e^{-})}$$

see also fits by other groups:
Capdevila et al., arXiv:1704.05340
D'Amico et al., arXiv:1704.05348
Geng et al., arXiv:1704.05346

(this slide: excluding results from Moriond 2019)

Ciuchini et al., arXiv:1704.05447

Belle, arXiv:1507.03233, arXiv:1607.07923, arXiv:1612.00529

Hints for LFU violation in charged current decays

Measurements of LFU ratios R_D and R_{D^*} by BaBar, Belle, and LHCb show combined deviation from SM by 3.6-3.8 σ . BaBar, arXiv:1205.5442, arXiv:1303.0571 LHCb, arXiv:1506.08614, arXiv:1708.08856

HFLAV, arXiv:1612.07233

Hurdles for model building

Hurdles for model building

• Model explaining
$$R_{D^{(*)}}$$
 using $b_L \rightarrow c_L \tau_L \nu_{\tau L}$

$$b_L \rightarrow c_L \tau_L \nu_{\tau L} \xrightarrow{\text{SU}(2)_L} b_L \rightarrow s_L \nu_{\mu L} \nu_{\tau L}$$

Constrained by $B \to K \nu \bar{\nu}$ searches

Buras, Girrbach-Noe, Niehoff, Straub, arXiv:1409.4557

Model explaining R_D(*) and R_K(*) using mostly 3rd gen. couplings Modifies LFU in *τ* and *Z* decays, strongly constrained Feruglio, Paradisi, Pattori, arXiv:1705.00929

► Model explaining $b \rightarrow s\mu\mu$ using $tt\mu\mu$ interaction Modifies $Z \rightarrow \mu\mu$, constrained by LEP

Hurdles for model building

(

Leaping the hurdles

► Compute all relevant observables O
 (flavour, EWPO, ...) in terms of Lagrangian parameters d

$$\mathcal{L}_{\mathsf{NP}}(ec{ heta}) o ec{\mathcal{O}}(ec{ heta})$$

Take into account loop / RGE effects

$$\mathcal{L}_{\mathsf{NP}}(ec{ heta}) \xrightarrow{\Lambda_{\mathsf{NP}} o \Lambda_{\mathsf{IR}}} ec{ heta}(ec{ heta})$$

Compare to experiment

$$\vec{\mathcal{O}}(\vec{\theta})
ightarrow \underbrace{\mathcal{L}(\vec{\mathcal{O}}(\vec{\theta}), \vec{\mathcal{O}}_{\mathsf{exp}})}_{\mathsf{Likelihood}}$$

Tedious to do this for each model...

Leaping the hurdles

► Assuming A_{NP} ≫ v, NP effects in flavour, EWPO, Higgs, top,... can be expressed in terms of SMEFT Wilson coefficients

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_{n>4} \sum_i rac{m{c}_i}{m{\Lambda}^{n-4}} m{O}_i$$

Buchmuller, Wyler, Nucl. Phys. B 268 (1986) 621 Grzadkowski, Iskrzynski, Misiak, Rosiek, arXiv:1008.4884

- Powerful tool to connect model-building to phenomenology without needing to recompute hundreds of observables in each model
 - Model building:

$$\mathcal{L}_{\text{NP}}(\vec{\theta})
ightarrow \vec{C}(\vec{\theta})$$
 @ Λ_{NP}

Model-independent pheno:

$$ec{C} \xrightarrow{\Lambda_{
m NP}
ightarrow \Lambda_{
m IR}} ec{O}(ec{C})
ightarrow L(ec{O}(ec{C}), ec{O}_{
m exp})$$

Leaping the hurdles

- ► Having this SMEFT likelihood function L(C) = L(O(C), O_{exp}) at hand would tremendously simplify analyses of NP models
- Several likelihood functions have been considered

see talks by Anke Biekötter, Alexander Josef Grohsjean, Chris Hays, Juan Rojo

$$\begin{split} L(\vec{C}) &= L_{\text{EW} + \text{Higgs}}(\vec{C}_{\text{EW} + \text{Higgs}}) \times \dots \\ L(\vec{C}) &= L_{\text{top physics}}(\vec{C}_{\text{top physics}}) \times \dots \\ L(\vec{C}) &= L_{B \text{ physics}}(\vec{C}_{B \text{ physics}}) \times \dots \\ L(\vec{C}) &= L_{\text{LFV}}(\vec{C}_{\text{LFV}}) \times \dots \\ \end{split}$$

cf. eg. Falkowski, Mimouni, arXiv:1511.07434 Falkowski, González-Alonso, Mimouni, arXiv:1706.03783 Ellis, Murphy, Sanz, You, arXiv:1803.03252 Biekötter, Corbett, Plehn, arXiv:1812.07587 Hartland et al., arXiv:1901.05965

...

- But actually the likelihood does not factorize since RG effects mix different sectors
- We need to consider the global SMEFT likelihood

Tools for leaping the hurdles

Tools for leaping the hurdles

- Computing hundreds of relevant flavour observables properly accounting for theory uncertainties
 - flavio https://flav-io.github.io

Straub, arXiv:1810.08132

- Already used in O(20) papers since 2016
- Representing and exchanging thousands of Wilson coefficient values, different EFTs, possibly different bases
 - Wilson coefficient exchange format (WCxf) https://wcxf.github.io/

Aebischer et al., arXiv:1712.05298

- RG evolution above* and below the EW scale, matching from SMEFT to the weak effective theory (WET)
 - wilson https://wilson-eft.github.io

Aebischer, Kumar, Straub, arXiv:1804.05033

* based on DsixTools Celis, Fuentes-Martin, Vicente, Virto, arXiv:1704.04504

Building a global SMEFT likelihood

Aebischer, Kumar, PS, Straub, arXiv:1810.07698

Based on these tools, we have started building the **SME**FT LikeLIhood

- Smelli https://github.com/smelli
- So far, 265 observables included
 - Rare B decays
 - Semi-leptonic B and K decays
 - Meson-antimeson mixing
 - FCNC K decays
 - (LFV) tau and muon decays
 - Z and W pole EWPOs
 - ▶ g 2
- Real global likelihood is work in progress and open to everybody: smelli is open source

 $\vec{C}_{\text{SMEFT}}(\Lambda_{\text{NP}})$ \downarrow $\vec{C}_{\text{SMEFT}}(\mu_h) \longrightarrow \text{EWPO}$ \downarrow $\vec{C}_{\text{WET}}(\mu_l) \longrightarrow \text{LFV}$ \downarrow LFV MDM \vec{L}_{global}

Outline

Flavour anomalies and a global likelihood

- 2 Applications: EWPOs
- 3 Applications: Fitting anomalies
- 4 Conclusions

Electroweak precision observables

We have implemented all the relevant Z and W pole observables, not assuming LFU, in flavio

> Efrati, Falkowski, Soreq, arXiv:1503.07872 Brivio, Trott, arXiv:1706.08945

SM pulls in good agreement e.g. with Gfitter

Baak et al., arXiv:1407.3792

Oblique parameters

Reproducing the EWPO constraint on the electrowewak S and T parameters

$$S \propto C_{\phi WB}, ~~T \propto -C_{\phi D}$$

$$O_{\phi D} = \left(\phi^{\dagger} D^{\mu} \phi\right)^{*} \left(\phi^{\dagger} D_{\mu} \phi\right)$$
$$O_{\phi WB} = \phi^{\dagger} \tau' \phi W'_{\mu\nu} B^{\mu\nu}$$

B anomalies from NP in top

- ► $[C_{eu}]_{2233}$, i.e. RH $tt\mu\mu$ operator, suggested as solution to $b \rightarrow s\ell\ell$ anomalies in Celis et al., arXiv:1704.05672
 - see Z' model in Kamenik et al., arXiv:1704.06005
- Later realized that there are strong constraints from $Z \rightarrow \mu\mu$ Camargo-Molina, Celis, Faroughy, arXiv:1805.04917
- Plot: SMEFT at 1 TeV

Outline

Flavour anomalies and a global likelihood

- 2 Applications: EWPOs
- 3 Applications: Fitting anomalies
- 4 Conclusions

Before Moriond 2019:

Very good agreement between fits to $b
ightarrow s \mu \mu$ observables and $R_{\!K}$ & $R_{\!K^*}$

WET at 4.8 GeV

WET at 4.8 GeV

Before Moriond 2019:

Very good agreement between fits to $b
ightarrow s \mu \mu$ observables and R_{K} & $R_{K^{*}}$

After Moriond 2019:

Updated R_{K} measurement by LHCb and new R_{K^*} measurement by Belle closer to SM value LHCb, arXiv:1903.09252 Belle, arXiv:1904.02440

Tension between fits to $R_{\rm K}$ & $R_{\rm K^*}$ and $b \rightarrow s \mu \mu$ observables in C_9 direction

WET at 4.8 GeV

Before Moriond 2019:

Very good agreement between fits to $b
ightarrow s \mu \mu$ observables and R_{K} & $R_{K^{*}}$

After Moriond 2019:

Updated R_{K} measurement by LHCb and new R_{K^*} measurement by Belle closer to SM value LHCb, arXiv:1903.09252 Belle, arXiv:1904.02440

Tension between fits to $R_{\rm K}$ & $R_{\rm K^*}$ and $b \rightarrow s \mu \mu$ observables in C_9 direction

Global likelihood:

Contribution to purely left-handed $C_9^{bs\mu\mu} = -C_1^{os}^{bs\mu\mu}$ yields very good fit to experimental data

- LFU contribution only affects $b \rightarrow s \mu \mu$ observables
- ► Tension between fits to b → sµµ observables and R_K & R_{K*} could be reduced by LFU contribution to C₉
- Perform two-parameter fit in space of $C_9^{\text{univ.}}$ and $\Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$:

WET at 4.8 GeV

Before Moriond 2019:

Fit compatible with $C_9^{\text{univ.}} = 0$ and only contribution to $C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$

► Before Moriond 2019: Fit compatible with $C_9^{\text{univ.}} = 0$ and only contribution to $C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$

After Moriond 2019: Preference for non-zero C₉^{univ.}

WET at 4.8 GeV

WET at 4.8 GeV

 Before Moriond 2019: Fit compatible with C₉^{univ.} = 0 and only contribution to C₉^{bsμμ} = -C₁₀^{bsμμ}

 After Moriond 2019: Preference for non-zero C₉^{univ.}

Bobeth, Haisch, arXiv:1109.1826 Crivellin, Greub, Müller, Saturnino, arXiv:1807.02068

RG effects require scale separation

Consider SMEFT at 2 TeV

Possible operators:

 $\ [{\cal O}_{lq}^{(3)}]_{3323} = (\bar{l}_3 \gamma_\mu \tau^a l_3) (\bar{q}_2 \gamma^\mu \tau^a q_3):$ Can also explain ${\cal R}_{D^{(*)}}$ anomalies!

•
$$[O_{lq}^{(1)}]_{3323} = (\bar{l}_3 \gamma_\mu l_3)(\bar{q}_2 \gamma^\mu q_3):$$

Strong constraints from $B \rightarrow K \nu \nu$ require $[C_{lq}^{(1)}]_{3323} \approx [C_{lq}^{(3)}]_{3323}$

Buras et al., arXiv:1409.4557

- $[O_{qe}]_{2333} = (\bar{q}_2 \gamma_\mu q_3)(\bar{e}_3 \gamma^\mu e_3)$ cannot explain $R_{D^{(*)}}$
- Four-quark operators cannot explain R_D(*), models yielding large enough contributions already in tension with data

Before Moriond 2019:

Fit compatible with $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} = 0$ and only contribution to $[C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223}$

$$\begin{split} & [C_{l_q}^{(1)}]_{3323} = [C_{l_q}^{(3)}]_{3323} \quad \Rightarrow \quad C_9^{\text{univ.}} \quad (\text{RG effect}) \\ & [C_{l_q}^{(1)}]_{2223} = [C_{l_q}^{(3)}]_{2223} \quad \Rightarrow \quad \Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu} \end{split}$$

$$\begin{split} & [C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} \implies C_9^{\text{univ.}} \text{ (RG effect)} \\ & [C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223} \implies \Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu} \end{split}$$

Before Moriond 2019:

Fit compatible with $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} = 0$ and only contribution to $[C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223}$

After Moriond 2019: Clear preference for non-zero $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323}$

$$\begin{split} & [C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} \quad \Rightarrow \quad C_9^{\text{univ.}} \quad (\text{RG effect}) \\ & [C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223} \quad \Rightarrow \quad \Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu} \end{split}$$

Before Moriond 2019:

Fit compatible with $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} = 0$ and only contribution to $[C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223}$

• After Moriond 2019: Clear preference for non-zero $[C_{iq}^{(1)}]_{3223} = [C_{iq}^{(3)}]_{3223}$

$R_{D^{(*)}}$ explanation: Agreement with combined $R_{\kappa^{(*)}}$ and $b \rightarrow s \mu \mu$ explanation has improved

$$\begin{split} & [C_{lq}^{(1)}]_{3223} = [C_{lq}^{(3)}]_{3323} \quad \Rightarrow \quad C_9^{\text{univ.}} \quad (\text{RG effect}) \\ & [C_{lq}^{(1)}]_{2223} = [C_{lg}^{(3)}]_{2223} \quad \Rightarrow \quad \Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu} \end{split}$$

Before Moriond 2019:

Fit compatible with $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} = 0$ and only contribution to $[C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223}$

After Moriond 2019: Clear preference for non-zero $[C_{iq}^{(1)}]_{3323} = [C_{iq}^{(3)}]_{3323}$

 $R_{D^{(*)}}$ explanation: Agreement with combined $R_{\kappa^{(*)}}$ and $b \rightarrow s \mu \mu$ explanation has improved

Fitting anomalies in a U_1 -leptoquark model

• U_1 vector leptoquark $(3, 1)_{2/3}$ couples quarks and leptons

$$\mathcal{L}_{\mathit{U_1}} \supset g_{\mathit{lq}}^{\mathit{ji}} \left(ar{q}^{\mathit{i}} \gamma^{\mu} \mathit{l}^{\mathit{j}}
ight) \mathit{U_{\mu}} + ext{h.c.}$$

Generates semi-leptonic operators at tree-level

$$[C_{lq}^{(1)}]_{ijkl} = [C_{lq}^{(3)}]_{ijkl} = -\frac{g_{lq}^{jk}g_{lq}^{jl*}}{2M_U^2}.$$

• And dipole operators at one-loop, e.g. $[O_{dV}]_{ij} = (\bar{q}_i \sigma^{\mu\nu} V_{\mu\nu} d_j) \varphi, \quad V \in \{W, B, G\}:$

$$[C_{dV}]_{23} = \kappa_V \frac{Y_b}{16\pi^2} \sum_i \frac{g_{lq}^{i2} g_{lq}^{i3*}}{M_U^2}, \qquad \kappa_W = \frac{g}{6}, \quad \kappa_B = \frac{-4 g'}{9}, \quad \kappa_V = \frac{-5 g_s}{12}$$

Fitting anomalies in a *U*₁-leptoquark model

- *R_D(*)* mostly depends on tauonic couplings *g³²_{Iq}*, *g³³_{Iq}*
- Dipole operators contribute to $BR(B \rightarrow X_s \gamma)$
- RG running contributes to leptonic *τ* decays
- Well defined allowed region for explaining R_D(*), select benchmark point

$$g_{lq}^{32} = 0.6, \qquad g_{lq}^{33} = 0.8$$

Fitting anomalies in a U_1 -leptoquark model

Benchmark point explaining $R_{D^{(*)}}$,

$$g_{lq}^{32} = 0.6, \qquad g_{lq}^{33} = 0.8,$$

implies non-zero C₉^{univ.}

- ► R_{K(*)} can be explained by additional muonic couplings g²²_{Iq}, g²³_{Iq}
- Constraint from LFV observables

Before Moriond 2019:

Given non-zero $C_9^{\text{univ.}}$, tension between fits to $R_{\kappa(*)}$ and $b \rightarrow s \mu \mu$ observables

Fitting anomalies in a *U*₁-leptoquark model

Benchmark point explaining $R_{D^{(*)}}$,

$$g_{lq}^{32} = 0.6, \qquad g_{lq}^{33} = 0.8,$$

implies non-zero C₉^{univ.}

- ► R_{K(*)} can be explained by additional muonic couplings g²²_{Iq}, g²³_{Iq}
- Constraint from LFV observables

Before Moriond 2019: Given non-zero C₉^{univ.}, tension between

fits to ${\it R}_{{\it K}^{(*)}}$ and $b
ightarrow s\mu\mu$ observables

• After Moriond 2019: Non-zero $C_9^{\text{univ.}}$ preferred, $R_{K^{(*)}}$ and $b \rightarrow s \mu \mu$ in good agreement

Outline

Flavour anomalies and a global likelihood

- 2 Applications: EWPOs
- 3 Applications: Fitting anomalies
- 4 Conclusions

Conclusions

- New likelihood function in space of dim-6 SMEFT Wilson coeffcients
- Inlcudes 265 observables from
 - Rare B decays
 - Semi-leptonic B and K decays
 - Meson-antimeson mixing
 - FCNC K decays
 - (LFV) tau and muon decays
 - EWPOs
 - ▶ g 2
- Other sectors of observables to be added
 - Higgs production & decay
 - top physics
 - Iow-energy precision tests (atomic parity violation etc.)
 - ► high-p_T contact interaction searches
 - diboson production
 - ▶ ...

Completely open source!

You are welcome to participate $\rightarrow \texttt{https://github.com/smelli}$

Backup slides

Installing smelli

- Prerequisite: working installtion of Python version 3.5 or above
- Installation from the command line:

python3 -m pip install smelli --user

- downloads smelli with all dependencies from Python package archive (PyPI)
- installs it in user's home directory (no need to be root)

As any Python package, smelli can be used

- as library imported from other scripts
- directly in the command line interpreter
- in an interactive session
 - \rightarrow we recommend the Jupyter notebook

0 smalli				
- silietti				
€ → e @	0 ■ https://hub.mybinder.org/user/smell-si ···· 0 ☆ 👱 » =*			
💭 Jupyter	smelli (autosaved) 👶 Logout			
File Edit	View Insert Cell Kernel Widgets Help Trusted 🖋 Python 3 O			
6 * × Ø	No 🛧 🔸 H Run 🔳 C 🗰 Code			
	smelli playground			
	This Jupyter notebook allows you to try out the smell1 Python package. Note that the execution speed is limited. To make full use of the package, install it locally with			
	pip3 installuser smelli			
	Execute the cells of this notebook with shift + enter.			
In [1]:	from playground import *			
	Ohen de EET and haade			
	Step 1: EFT and basis			
	Execute this cell and select an EFT and basis			
$M = Iu \left[1 \right];$	widgets.HBox([widget_eft, widget_basis])			
Step 2: likelihood				
	execute this cell to initialize the likelihood. This will only take a moment.			
In []:	<pre>gl = smelli.GlobalLikelihood(eft=select_eft.value, basis=select_basis.value)</pre>			
	Step 3: Wilson coefficients			
	select a point in EFT parameter space by entering in the text field Wilson coefficient values in the form name: value, one coefficient per (ne (this format is called YAML). The allowed names in the chosen basis can be found in the PDF If the fixed below.			
	Example in the SMEFT Warsaw basis:			
	12223: 10-9 1q1_3323: 10-8 1q3_3323: 10-8			
In []:	widgets.VBox([out_basispdf, widgets.HBox([ta_wc, t_scale])])			
Step 4: parameter point				
	execute this cell to initialize the GlobalLikelihoodPoint object			

Try out **smelli** in a Jupyter notebook at

https://github.com/smelli/smelli-playground

Step 1:

Import package and initalize GlobalLikelihood class

```
import smelli
gl = smelli.GlobalLikelihood()
```

possible arguments are

- eft='WET' to use Wilson coefficients in weak effective theory (no EWPOs)
 (default: eft='SMEFT')
- basis='...' to select different WCxf basis (default: basis='Warsaw' for SMEFT, basis='flavio' for WET)

Step 2:

Select point in Wilson coefficient space using parameter_point method

- Three possible input formats:
 - Python dictionary with Wilson coefficient name/value pair and input scale

glp = gl.parameter_point({'lq1_2223': 1e-8}, scale=1000)

fixes Wilson coefficient $[C_{la}^{(1)}]_{2223}$ to 10^{-8} GeV^{-2} at scale 1 TeV

WCxf data file in YAML or JSON format (specified by file path)

glp = gl.parameter_point('my_wc.yaml')

instance of class wilson.Wilson from wilson package

glp = gl.parameter_point(wilson_instance)

Step 3:

Get results from GlobalLikelihoodPoint instance glp defined in step 2

The most important methods are:

glp.log_likelihood_global()

returns $\ln \Delta L = \ln \left(\frac{L_{global}(\vec{c})}{L_{global}^{SM}} \right)$

glp.log_likelihood_dict()

returns Python dictionary with contributions to In ΔL from different sets of observables (EWPOs, charged current LFU, neutral current LFU,...)

```
glp.obstable()
```

returns table listing individual observables with their experimental and theoretical central values and uncertainties

```
glp = gl.parameter_point({}, scale=1000)
```

glp.obstable(min_pull='2.35')

returns observables with highest pull in Standard Model (no Wilson coefficient set)

Observable	Prediction	Measurement	Pull
$\left\langle \frac{d\overline{BR}}{dq^2} \right\rangle (B_s \rightarrow \phi \mu^+ \mu^-)^{[1.0,6.0]}$	$(5.37\pm0.65) imes10^{-8}~rac{1}{ m GeV^2}$	$(2.57\pm0.37) imes10^{-8}~rac{1}{GeV^2}$	3.8σ
a_{μ}	$(1.1659182 \pm 0.0000004) imes 10^{-3}$	$(1.1659209 \pm 0.0000006) imes 10^{-3}$	3.5σ
$\langle P_5' angle (B^0 o K^{*0} \mu^+ \mu^-)^{[4,6]}$	-0.756 ± 0.074	-0.21 ± 0.15	3.3σ
$R_{ au\ell}(B o D^* \ell^+ u)$	0.248	0.306 ± 0.018	3.3σ
$\langle A_{FB}^{\ell h} \rangle (\Lambda_b \to \Lambda \mu^+ \mu^-)^{[15,20]}$	0.1400 ± 0.0075	0.250 ± 0.041	2.6σ
$\langle R_{\mu e} angle (B^{\pm} ightarrow K^{\pm} \ell^{+} \ell^{-})^{[1.0, 6.0]}$	1.000	0.745 ± 0.098	2.6σ
ϵ'/ϵ	$(-0.3\pm 6.0) imes 10^{-4}$	$(1.66 \pm 0.23) imes 10^{-3}$	2.6σ
$BR(W^{\pm} \rightarrow \tau^{\pm}\nu)$	0.1084	0.1138 ± 0.0021	2.6σ
$\langle R_{\mu e} angle (B^0 ightarrow K^{*0} \ell^+ \ell^-)^{[1.1,6.0]}$	1.00	$\textbf{0.68} \pm \textbf{0.12}$	2.5σ
$R_{ au\ell}(B o D\ell^+ u)$	0.281	0.406 ± 0.050	2.5σ
$\langle \frac{dBR}{dq^2} \rangle (B^{\pm} \rightarrow \kappa^{\pm} \mu^{+} \mu^{-})^{[15.0,22.0]}$	$(1.56 \pm 0.12) imes 10^{-8} \ rac{1}{GeV^2}$	$(1.210\pm0.072) imes10^{-8}~rac{1}{ m GeV^2}$	2.5σ
A ^{0,b} _{FB}	10.31×10^{-2}	$(9.92\pm0.16) imes10^{-2}$	2.4σ
$\left< \frac{dBR}{dq^2} \right> (B^0 \to K^0 \mu^+ \mu^-)^{[15.0,22.0]}$	$(1.44\pm0.11) imes10^{-8}~rac{1}{ m GeV^2}$	$(9.6 \pm 1.6) imes 10^{-9} \ rac{1}{ m GeV^2}$	2.4σ
$\langle R_{\mu e} angle (B^0 ightarrow K^{*0} \ell^+ \ell^-)^{[0.045, 1.1]}$	0.93	0.65 ± 0.12	2.4σ

EWPT vs. B constraints on modified t couplings

- Modifications of LH vs. RH Ztt
 couplings (in basis where up-type
 quark mass matrix is diagonal)
- Complementarity between flavour $(B_s \rightarrow \mu^+ \mu^-)$ and EW $(Z \rightarrow b\overline{b}, T)$ constraints

Brod, Greljo, Stamou, Uttayarat, arXiv:1408.0792

Plot: WC at 1 TeV, up-aligned basis

Scalar and tensor operator explanation of $R_{D^{(*)}}$

 This combination is generated with C^{bcτν_τ}_{S_L} = -4C^{bcτν_τ}_T at matching scale in S₁ leptoquark scenario

Becirevic, Sumensari, arXiv:1704.05835

New result:

second, disjoint solution with large tensor Wilson coefficient excluded by new, preliminary Belle measurement of longitudinal polarization fraction F_L in $B \rightarrow D^* \tau \nu$ Nishida, Talk given at CKM 2018

LLLL solutions to B anomalies

- ► Using models that generate C⁽³⁾_{lq} with flavour ττsb are prime candidates to explain R_D(*)
- Strong constraint from bounds on $B \rightarrow K \nu \nu$ probing $b \rightarrow s \nu_{\tau} \bar{\nu}_{\tau}$ unless $C_{lq}^{(1)} \approx C_{lq}^{(3)}$ Buras et al., arXiv:1409.4557
- ► Radiatevely induced lepton flavour universal conntribution to $b \rightarrow s\mu\mu$ and thus also explain $B \rightarrow K^*\mu\mu$ anomalies Bobeth, Haisch, arXiv:1109.1826 Crivellin, Greub, Müller, Saturnino, arXiv:1807.02068
- ► (Explaining R_K(*) possible by directly coupling to muons)
- Plot: WC at 1 TeV