Bipartite fidelity of critical dense polymers

Gilles Parez

Joint work with Alexi Morin-Duchesne and Philippe Ruelle

When the \mathcal{M} meets the \mathcal{P}
December 13, 2018

Institut de recherche en mathématique et physique

Did you ever wonder why?

- Thermodynamical entropy: Statistical mechanics

$$
S=-\sum_{i} p_{i} \log p_{i}
$$

Did you ever wonder why?

- Thermodynamical entropy: Statistical mechanics

$$
S=-\sum_{i} p_{i} \log p_{i}
$$

- Shannon entropy: Information theory

$$
H=-\sum_{i} p_{i} \log p_{i}
$$

Did you ever wonder why?

- Thermodynamical entropy: Statistical mechanics

$$
S=-\sum_{i} p_{i} \log p_{i}
$$

- Shannon entropy: Information theory

$$
H=-\sum_{i} p_{i} \log p_{i}
$$

$\Rightarrow \quad$ Relations between the two [Jaynes, 1957]

Did you ever wonder why?

- Thermodynamical entropy: Statistical mechanics

$$
S=-\sum_{i} p_{i} \log p_{i}
$$

- Shannon entropy: Information theory

$$
H=-\sum_{i} p_{i} \log p_{i}
$$

$\Rightarrow \quad$ Relations between the two [Jaynes, 1957]

What about quantum mechanics?

Quantum entanglement

Two subsystems \mathbf{A} and \mathbf{B} in an overall pure state

$$
\left|\psi_{\mathbf{A B}}\right\rangle=\sum_{i} \lambda_{i}\left|\phi_{\mathbf{A}}^{i}\right\rangle \otimes\left|\varphi_{\mathbf{B}}^{i}\right\rangle
$$

Quantum entanglement

Two subsystems \mathbf{A} and \mathbf{B} in an overall pure state

$$
\left|\psi_{\mathbf{A B}}\right\rangle=\sum_{i} \lambda_{i}\left|\phi_{\mathbf{A}}^{i}\right\rangle \otimes\left|\varphi_{\mathbf{B}}^{i}\right\rangle
$$

i.e. we know everything there is to know about the system

Quantum entanglement

Two subsystems \mathbf{A} and \mathbf{B} in an overall pure state

$$
\left|\psi_{\mathbf{A B}}\right\rangle=\sum_{i} \lambda_{i}\left|\phi_{\mathbf{A}}^{i}\right\rangle \otimes\left|\varphi_{\mathbf{B}}^{i}\right\rangle
$$

i.e. we know everything there is to know about the system

$$
\text { - }\left|\psi_{\mathbf{A B}}\right\rangle=\left|\phi_{\mathbf{A}}\right\rangle \otimes\left|\varphi_{\mathbf{B}}\right\rangle \quad \Rightarrow \quad \text { No entanglement }
$$

Quantum entanglement

Two subsystems \mathbf{A} and \mathbf{B} in an overall pure state

$$
\left|\psi_{\mathbf{A B}}\right\rangle=\sum_{i} \lambda_{i}\left|\phi_{\mathbf{A}}^{i}\right\rangle \otimes\left|\varphi_{\mathbf{B}}^{i}\right\rangle
$$

i.e. we know everything there is to know about the system

$$
\begin{array}{rlll}
-\left|\psi_{\mathbf{A B}}\right\rangle=\left|\phi_{\mathbf{A}}\right\rangle \otimes\left|\varphi_{\mathbf{B}}\right\rangle & \Rightarrow & & \text { No entanglement } \\
-\left|\psi_{\mathbf{A B}}\right\rangle \neq\left|\phi_{\mathbf{A}}\right\rangle \otimes\left|\varphi_{\mathbf{B}}\right\rangle & \Rightarrow & & \text { Entanglement }
\end{array}
$$

Quantum entanglement

Two subsystems A and B in an overall pure state

$$
\left|\psi_{\mathbf{A B}}\right\rangle=\sum_{i} \lambda_{i}\left|\phi_{\mathbf{A}}^{i}\right\rangle \otimes\left|\varphi_{\mathbf{B}}^{i}\right\rangle
$$

i.e. we know everything there is to know about the system

$$
\begin{array}{rlrl}
\left|\psi_{\mathbf{A B}}\right\rangle & =\left|\phi_{\mathbf{A}}\right\rangle \otimes\left|\varphi_{\mathbf{B}}\right\rangle & & \Rightarrow \\
& \text { No entanglement } \\
-\left|\psi_{\mathbf{A B}}\right\rangle \neq\left|\phi_{\mathbf{A}}\right\rangle \otimes\left|\varphi_{\mathbf{B}}\right\rangle & & \Rightarrow & \\
\text { Entanglement }
\end{array}
$$

Entanglement is associated with a loss of information

Quantum entanglement

Two subsystems \mathbf{A} and \mathbf{B} in an overall pure state

$$
\left|\psi_{\mathbf{A B}}\right\rangle=\sum_{i} \lambda_{i}\left|\phi_{\mathbf{A}}^{i}\right\rangle \otimes\left|\varphi_{\mathbf{B}}^{i}\right\rangle
$$

i.e. we know everything there is to know about the system

$$
\begin{array}{rlll}
\text { - }\left|\psi_{\mathbf{A B}}\right\rangle=\left|\phi_{\mathbf{A}}\right\rangle \otimes\left|\varphi_{\mathbf{B}}\right\rangle & \Rightarrow & & \text { No entanglement } \\
-\left|\psi_{\mathbf{A B}}\right\rangle \neq\left|\phi_{\mathbf{A}}\right\rangle \otimes\left|\varphi_{\mathbf{B}}\right\rangle & \Rightarrow & & \text { Entanglement }
\end{array}
$$

Entanglement is associated with a loss of information

Quantifying entanglement is crucial in quantum information theory and in condensed matter physics

Bipartite fidelity of critical dense polymers

Definition

Bipartite fidelity of critical dense polymers

Definition
$\mathrm{A} \otimes \mathrm{B}$
$A \cup B$

$$
\mathcal{F}=-\log |\langle\mathbf{A} \cup \mathbf{B} \mid \mathbf{A} \otimes \mathbf{B}\rangle|^{2}
$$

[Dubail, Stéphan, 2011]

Bipartite fidelity of critical dense polymers

Definition

$$
\begin{aligned}
& \mathrm{A} \otimes \mathrm{~B} \\
& A \cup B \\
& \mathcal{F}=-\log |\langle\mathbf{A} \cup \mathbf{B} \mid \mathbf{A} \otimes \mathbf{B}\rangle|^{2} \\
& \text { [Dubail, Stéphan, 2011] }
\end{aligned}
$$

From $1 d$ quantum to $2 d$ statistical models
$1 d$ quantum spin chain

$$
\Longleftrightarrow
$$

$2 d$ statistical model [Baxter, Lieb, 70's]

Results

Results

- \mathcal{F} corresponds to normalized partition functions of the $2 d$ model

Results

- \mathcal{F} corresponds to normalized partition functions of the $2 d$ model
- $\mathcal{F}=-\frac{2}{8} \log N+\ldots$

Results

- \mathcal{F} corresponds to normalized partition functions of the $2 d$ model
- $\mathcal{F}=-\frac{2}{8} \log N+\ldots$
- -2 is the central charge of the underlying CFT

Results

- \mathcal{F} corresponds to normalized partition functions of the $2 d$ model
- $\mathcal{F}=-\frac{2}{8} \log N+\ldots$
- -2 is the central charge of the underlying CFT

We were also able to generalize this result to logarithmic CFT, both with lattice and CFT computations

Conclusion

- Information plays a key role in many areas of physics

Conclusion

- Information plays a key role in many areas of physics
- Quantifying entanglement is an important challenge

Conclusion

- Information plays a key role in many areas of physics
- Quantifying entanglement is an important challenge
- Bipartite fidelity is an entanglement measure which has a simple interpretation in terms of overlaps

Conclusion

- Information plays a key role in many areas of physics
- Quantifying entanglement is an important challenge
- Bipartite fidelity is an entanglement measure which has a simple interpretation in terms of overlaps
- We were able to perform exact calculations which confirmed CFT predictions...

Conclusion

- Information plays a key role in many areas of physics
- Quantifying entanglement is an important challenge
- Bipartite fidelity is an entanglement measure which has a simple interpretation in terms of overlaps
- We were able to perform exact calculations which confirmed CFT predictions...
- ... and could be extended to logarithmic CFT, a modern and active research area in theoretical condensed matter

Conclusion

- Information plays a key role in many areas of physics
- Quantifying entanglement is an important challenge
- Bipartite fidelity is an entanglement measure which has a simple interpretation in terms of overlaps
- We were able to perform exact calculations which confirmed CFT predictions...
- ... and could be extended to logarithmic CFT, a modern and active research area in theoretical condensed matter

Thank you!

