Bipartite fidelity of critical dense polymers

Gilles Parez

Joint work with Alexi Morin-Duchesne and Philippe Ruelle

When the \mathcal{M} meets the \mathcal{P} December 13, 2018

Institut de recherche en mathématique et physique

• Thermodynamical entropy: Statistical mechanics

$$S = -\sum_{i} p_i \log p_i$$

• Thermodynamical entropy: Statistical mechanics

$$S = -\sum_{i} p_i \log p_i$$

• Shannon entropy: Information theory

$$H = -\sum_{i} p_i \log p_i$$

• Thermodynamical entropy: Statistical mechanics

$$S = -\sum_{i} p_i \log p_i$$

• Shannon entropy: Information theory

$$H = -\sum_{i} p_i \log p_i$$

 \Rightarrow Relations between the two [Jaynes, 1957]

• Thermodynamical entropy: Statistical mechanics

$$S = -\sum_{i} p_i \log p_i$$

• Shannon entropy: Information theory

$$H = -\sum_{i} p_i \log p_i$$

 \Rightarrow Relations between the two [Jaynes, 1957]

What about quantum mechanics?

Two subsystems ${\bf A}$ and ${\bf B}$ in an overall ${\bf pure\ state}$

$$\left|\psi_{\mathbf{AB}}\right\rangle = \sum_{i} \lambda_{i} \left|\phi_{\mathbf{A}}^{i}\right\rangle \otimes \left|\varphi_{\mathbf{B}}^{i}\right\rangle$$

Two subsystems ${\bf A}$ and ${\bf B}$ in an overall ${\bf pure\ state}$

$$\left|\psi_{\mathbf{AB}}\right\rangle = \sum_{i} \lambda_{i} \left|\phi_{\mathbf{A}}^{i}\right\rangle \otimes \left|\varphi_{\mathbf{B}}^{i}\right\rangle$$

i.e. we *know everything* there is to know about the system

Two subsystems ${\bf A}$ and ${\bf B}$ in an overall ${\bf pure}\ {\bf state}$

$$\left|\psi_{\mathbf{AB}}\right\rangle = \sum_{i} \lambda_{i} \left|\phi_{\mathbf{A}}^{i}\right\rangle \otimes \left|\varphi_{\mathbf{B}}^{i}\right\rangle$$

i.e. we *know everything* there is to know about the system

•
$$|\psi_{\mathbf{AB}}\rangle = |\phi_{\mathbf{A}}\rangle \otimes |\varphi_{\mathbf{B}}\rangle \quad \Rightarrow \quad \text{No entanglement}$$

Two subsystems \mathbf{A} and \mathbf{B} in an overall **pure state**

$$\left|\psi_{\mathbf{AB}}\right\rangle = \sum_{i} \lambda_{i} \left|\phi_{\mathbf{A}}^{i}\right\rangle \otimes \left|\varphi_{\mathbf{B}}^{i}\right\rangle$$

i.e. we *know everything* there is to know about the system

- $|\psi_{\mathbf{AB}}\rangle = |\phi_{\mathbf{A}}\rangle \otimes |\varphi_{\mathbf{B}}\rangle \Rightarrow$ No entanglement
- $|\psi_{\mathbf{AB}}\rangle \neq |\phi_{\mathbf{A}}\rangle \otimes |\varphi_{\mathbf{B}}\rangle \Rightarrow$ Entanglement

Two subsystems ${\bf A}$ and ${\bf B}$ in an overall ${\bf pure}\ {\bf state}$

$$\left|\psi_{\mathbf{AB}}\right\rangle = \sum_{i} \lambda_{i} \left|\phi_{\mathbf{A}}^{i}\right\rangle \otimes \left|\varphi_{\mathbf{B}}^{i}\right\rangle$$

i.e. we *know everything* there is to know about the system

- $|\psi_{\mathbf{AB}}\rangle = |\phi_{\mathbf{A}}\rangle \otimes |\varphi_{\mathbf{B}}\rangle \Rightarrow$ No entanglement
- $|\psi_{\mathbf{AB}}\rangle \neq |\phi_{\mathbf{A}}\rangle \otimes |\varphi_{\mathbf{B}}\rangle \Rightarrow$ Entanglement

Entanglement is associated with a loss of information

Two subsystems \mathbf{A} and \mathbf{B} in an overall **pure state**

$$\left|\psi_{\mathbf{AB}}\right\rangle = \sum_{i} \lambda_{i} \left|\phi_{\mathbf{A}}^{i}\right\rangle \otimes \left|\varphi_{\mathbf{B}}^{i}\right\rangle$$

i.e. we *know everything* there is to know about the system

- $|\psi_{\mathbf{AB}}\rangle = |\phi_{\mathbf{A}}\rangle \otimes |\varphi_{\mathbf{B}}\rangle \Rightarrow$ No entanglement
- $|\psi_{\mathbf{AB}}\rangle \neq |\phi_{\mathbf{A}}\rangle \otimes |\varphi_{\mathbf{B}}\rangle \Rightarrow$ Entanglement

Entanglement is associated with a loss of information

Quantifying entanglement is crucial in quantum information theory and in condensed matter physics

Bipartite fidelity of critical dense polymers

Bipartite fidelity of critical dense polymers

Bipartite fidelity of critical dense polymers

From 1d quantum to 2d statistical models

1d quantum spin chain

 \Leftrightarrow 2d statistical model [Baxter, Lieb, 70's]

• \mathcal{F} corresponds to normalized **partition functions** of the 2*d* model

• \mathcal{F} corresponds to normalized **partition functions** of the 2*d* model

•
$$\mathcal{F} = -\frac{2}{8}\log N + \dots$$

• \mathcal{F} corresponds to normalized **partition functions** of the 2*d* model

•
$$\mathcal{F} = -\frac{2}{8}\log N + \dots$$

• -2 is the central charge of the underlying CFT

• \mathcal{F} corresponds to normalized **partition functions** of the 2*d* model

•
$$\mathcal{F} = -\frac{2}{8}\log N + \dots$$

• -2 is the central charge of the underlying CFT

We were also able to generalize this result to logarithmic CFT, both with lattice and CFT computations

• Information plays a key role in many areas of physics

- Information plays a key role in many areas of physics
- Quantifying entanglement is an important challenge

- Information plays a key role in many areas of physics
- Quantifying entanglement is an important challenge
- **Bipartite fidelity** is an entanglement measure which has a simple interpretation in terms of overlaps

- Information plays a key role in many areas of physics
- Quantifying entanglement is an important challenge
- **Bipartite fidelity** is an entanglement measure which has a simple interpretation in terms of overlaps
- We were able to perform **exact calculations** which confirmed CFT predictions...

- Information plays a key role in many areas of physics
- Quantifying entanglement is an important challenge
- **Bipartite fidelity** is an entanglement measure which has a simple interpretation in terms of overlaps
- We were able to perform **exact calculations** which confirmed CFT predictions...
- ... and could be extended to logarithmic CFT, a modern and active research area in theoretical condensed matter

- Information plays a key role in many areas of physics
- Quantifying entanglement is an important challenge
- **Bipartite fidelity** is an entanglement measure which has a simple interpretation in terms of overlaps
- We were able to perform **exact calculations** which confirmed CFT predictions...
- ... and could be extended to logarithmic CFT, a modern and active research area in theoretical condensed matter

Thank you!