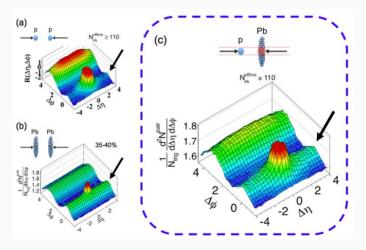
String shoving in heavy ion collisions in PYTHIA8: Few ideas

Smita Chakraborty

with Christian Bierlich, Gösta Gustafsson, Leif Lönnblad

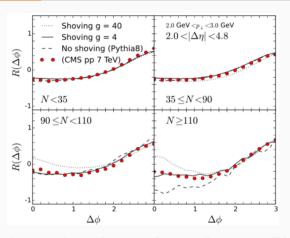
18th MCnet meeting

23rd January 2019

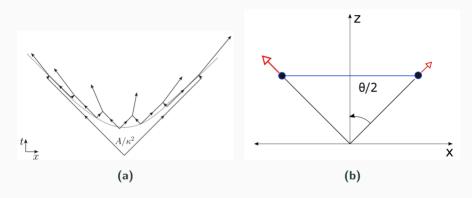


Outline

- 1. Motivation
- 2. Parallel frames
- 3. String shoving
- 4. Conclusion


Motivation

Flow effects


Figure 1: Flow effects in p-p, p-A and A-A collisions. V. Khachatryan et al. (CMS), JHEP 09, 091 (2010), arXiv:1009.4122 [hep-ex].

Correlation functions

Figure 2: Di-hadron correlation functions for pp collisions at 7 TeV, in four centrality intervals. C.Bierlich et al., Collectivity without plasma in hadronic collisions, Phys.Lett.B(2018)

Lund Model

Figure 3: Strings in (a) x-t diagram where A= coherence area, $\kappa =$ string tension and (b) real time, $\theta/2 =$ angle between the parton momentum and the z axis

Parallel frames

Parallel frame

Figure 4: Boosting to parallel frame, $\theta=$ opening angle, $\phi=$ skew angle between the strings

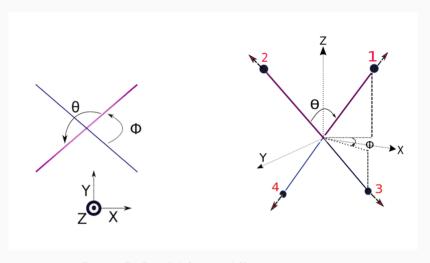


Figure 5: Parallel frame: different perspectives

Finding the "perfect" boost

1. Energies q_i s:

$$q_1^2 = \Sigma(s_{12}s_{13}s_{14})/8(s_{34}s_{24}s_{23}) \tag{1}$$

2. Opening angle Θ :

$$\sin^2\Theta = 2\sqrt{s_{12}s_{34}}/\Sigma \tag{2}$$

3. Skew angle Φ:

$$\cos 2\Phi = (\sqrt{s_{13}s_{24}} - \sqrt{s_{14}s_{23}})/2\sqrt{s_{12}s_{34}}$$
 (3)

where $\Sigma = 8\sqrt{q_1q_2q_3q_4}$, $s_{ij} = (p_i + p_j)^2$ and $p_i =$ momentum of *i*th parton in parallel frame.

String shoving

Interaction force

1. A string of radius R:

Field
$$E \propto \frac{g}{R} \exp^{-\frac{r^2}{R^2}}$$
 (4)

2. For two overlapping (but in parallel planes) strings with radii R_1 , R_2 and separation x_o :

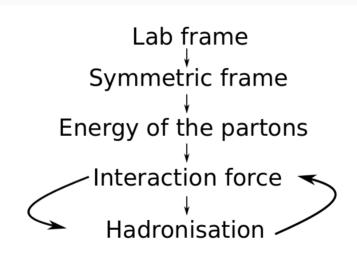
$$I/length \propto g^2 \pi \frac{1}{(R_1^2 + R_2^2)} exp^{-\frac{\chi_0^2}{R_1^2 + R_2^2}}$$
 (5)

where I = interaction energy.

3. Equilibrium radius $R_{eq} \Rightarrow$ string tension \Rightarrow normalization

The resultant push

The force can be calculated by following the expression for the interaction energy I:

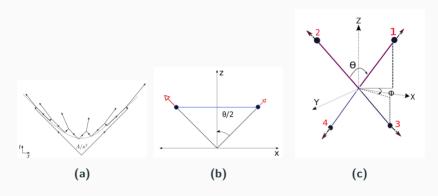

$$I \propto dz\pi g^2 \frac{cos\Phi}{(R_1^2 + R_2^2)cos(\Phi/2)} exp\left[-z^2 \frac{4sin^2(\Phi/2)}{(R_1^2 + R_2^2)}\right] exp\left[\frac{x_0^2}{R_1^2 + R_2^2}\right]$$
 (6)

for two strings parallel to y-z plane, separation in x-direction = x_0 .

Flowchart of processes

Lab frame Symmetric frame Energy of the partons Interaction force Hadronisation

Flowchart of processes


Conclusion

Test and decide!

- 1. Lab frame ightarrow Parallel frame with planar geometry of a string pair
- 2. Push on each hadrons based on the string-string interaction
- 3. Revert to the lab frame
- 4. Repeat for large multiplicity events
- 5. Test with data

x-t diagram and the real time picture

Figure 6: Strings in (a) x-t diagram where A = coherence area, κ = string tension and (b), (c) real time