Tuning of Merged Pythia

Leif Gellersen

PhD Student at Lund University

leif.gellersen@thep.lu.se

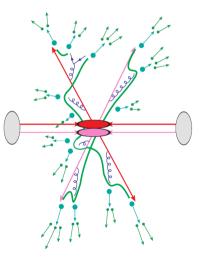
January 23rd, 2019

MCnet

Overview

- 1 Introduction: Tuning of MC Event Generators
- 2 Pythia Matching & Merging Tune
- Scale variations in Pythia Merging

4 AutoTunes

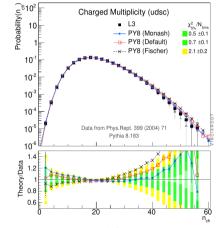


MC Event Generators

Predict fully exclusive final state

- Perturbative methods well known
 - Hard interaction: Matrix elements (LO/NLO)
 - Radiative Corrections: Parton shower in initial and final state
- Non-perturbative models
 - Multiple interactions
 - Hadronization
 - Hadron decays

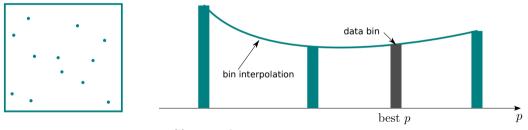
Models include many parameters


Borrowed from S. Prestel

Tuning: General Idea

- Optimize parameters based on well-measured data
- Factorize as much as possible (assuming universality)

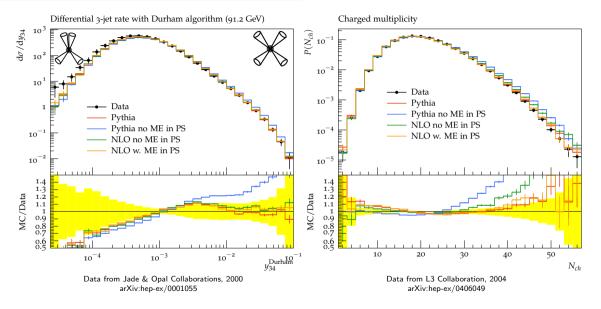
FSR e^+e^- data: LEP event shapes


Hadronization Many parameters, model dependent. Use LEP identified particle spectra ISR and UE Use hadron collider data

arXiv:1404.5630, P. Skands et al., 2014

How to Tune

- Generate MC pseudodata $f_b(\vec{p})$, compare to experimental data bin \mathcal{R}_b
- \bullet Iterative MC event generation slow \rightarrow Use bin-wise parametrization of MC generator response


- Minimize $\chi^2(\vec{p}) = \sum_b w_b \frac{(f^{(b)}(\vec{p}) \mathcal{R}_b)^2}{\Delta_b^2}$, with data uncertainty Δ_b , bin weights w_b
- PROFESSOR: Python package for MC tuning, highly automated, includes validation tools arXiv:0907.2973, A. Buckley et al., 2009

Pythia Matching & Merging Tune work with Stefan Prestel and Malin Sjödahl

• Matching and Merging: use additional pQCD input

Multi-jet Merging Higher multiplicity matrix elements \rightarrow improved radiation pattern NLO Matching NLO matrix elements \rightarrow higher fixed order accuracy

- Problem: Monash tune based on LO matrix elements with ME corrections
- Good for many observables in matched & merged calculations
- ${ullet}$ More precise perturbative calculation \rightarrow less freedom to tune
- Retuning might allow for improvements, more universal tune

Scale Variations in UMEPS Merging

In unitarized multi-jet merging, observables $\ensuremath{\mathcal{O}}$ are calculated by

$$\langle \mathcal{O} \rangle = \int d\phi_0 \left\{ \mathcal{O}_0 \left[B_0 - \int_S B_{1 \to 0} w_1 - \int_S B_{2 \to 0} w_2 \right] \right. \\ \left. + \int d\phi_1 \mathcal{O}_1 \left[B_1 w_1 - \int_S B_{2 \to 1} w_2 \right] \right. \\ \left. + \int d\phi_1 \int d\phi_2 \mathcal{O}_2 B_2 w_2 \right\}$$
with weights

$$w_{1} = \frac{\alpha_{s}(bt_{1})}{\alpha_{s}(\mu_{R})} \Pi_{0}(t_{0}, t_{1}, b) \quad \text{and} \quad w_{2} = \frac{\alpha_{s}(bt_{1})}{\alpha_{s}(\mu_{R})} \frac{\alpha_{s}(bt_{2})}{\alpha_{s}(\mu_{R})} \Pi_{0}(t_{0}, t_{1}, b) \Pi_{1}(t_{1}, t_{2}, b) \int_{0}^{t_{0}} \frac{\alpha_{s}(\mu_{R})}{\alpha_{s}(\mu_{R})} \Pi_{0}(t_{0}, t_{1}, b) \prod_{s} \frac{\alpha_{s}(\mu_{R})}{\alpha_{s}(\mu_{R})} \prod_{s} \frac{\alpha_{s}(\mu_{R})}{\alpha_{s}(\mu_{R})}} \prod_{s} \frac{\alpha_{s}(\mu_{R})}{\alpha_{s}(\mu_{R})} \prod_{s} \frac{\alpha_{s}(\mu_{R})}{\alpha_{s}(\mu_{R})} \prod_{s} \frac{\alpha_{s}(\mu_{R})}{\alpha_{s}(\mu_{R})}} \prod_{s} \frac{\alpha_{s}(\mu_{R})}{\alpha_{s}(\mu_{R})} \prod_{s} \frac{\alpha_{s}(\mu_{R})}{\alpha_{s}(\mu_{R})}} \prod_{$$

Vary $b \rightarrow b/2, 2b$ in weights and in trial shower generating Sudakovs Π_i

KKWL, no shower variations

104

10

10

Scale Variations in UNLOPS

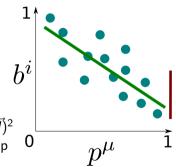
UNLOPS: Combine NLO matching and UMEPS merging:

$$\begin{split} \langle \mathcal{O} \rangle &= \int d\phi_0 \left\{ \mathcal{O}_0 \left[\bar{B}_0 - \int_S \bar{B}_{1 \to 0} - \int_S B_{1 \to 0} (w_1 - w_1|_{\mathcal{O}(\alpha_s)}) - \int_S B_{2 \to 0} w_2 \right] \\ &+ \int d\phi_1 \mathcal{O}_1 \left[\bar{B}_1 + B_1 (w_1 - w_1|_{\mathcal{O}(\alpha_s)}) - \int_S B_{2 \to 1} w_2 \right] \\ &+ \int d\phi_1 \int d\phi_2 \mathcal{O}_2 B_2 w_2 \right\} \end{split}$$

with weights w_1 , w_2 as before, but \overline{B}_i come with variations as well

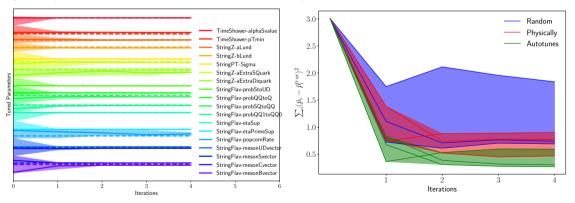
AutoTunes work with Johannes Bellm

Problem


- Polynomial interpolation only possible for $\lesssim 10~{\rm parameters}$
- Interpolation only good if ranges small enough
- χ^2 depends on weights \rightarrow need to know data and generator

Goal

- Framework to reduce human interaction & make tune reproducible
- Tune many parameters at once: automatically divide into sub-tunes
- Set weights for observables automatically
- Allow for iterations with revised parameter ranges


AutoTunes: The Idea

- Normalize each bin b_i and each parameter p^{μ} to [0,1]
- Find slopes S_i^{μ}
- \vec{S}_i vector in parameter space
- \vec{S}_i points along parameters of high influence on bin
- Normalize: $N_i^{\mu} = \frac{S_i^{\mu}}{\sum_i S_i^{\mu}}$
- Find $\vec{J} = (1, 0, 0, 1, 0, ..., 1)$ that maximizes $w = \sum_{i} (\vec{N}_{i} \cdot \vec{J})^{2}$ \rightarrow "Most correlated" subset of parameters: tune in one step
- Use weights $w_i = \vec{N}_i \cdot \vec{J}$, emphasizes relevant data bins

Iterative Pythia Tune to Pythia Pseudodata

Try to reproduce - - - values, pprox 6000 DOF & 18 parameters

Summary

- Matching and Merging requires tune validation and retuning of soft physics models
- Scale variations can identify well constrained hard regions of phase space
- Working on AutoTunes: Framework for more automated tuning with many parameters