

Institut für Theoretische Physik

Bounding the Higgs width through interference effects

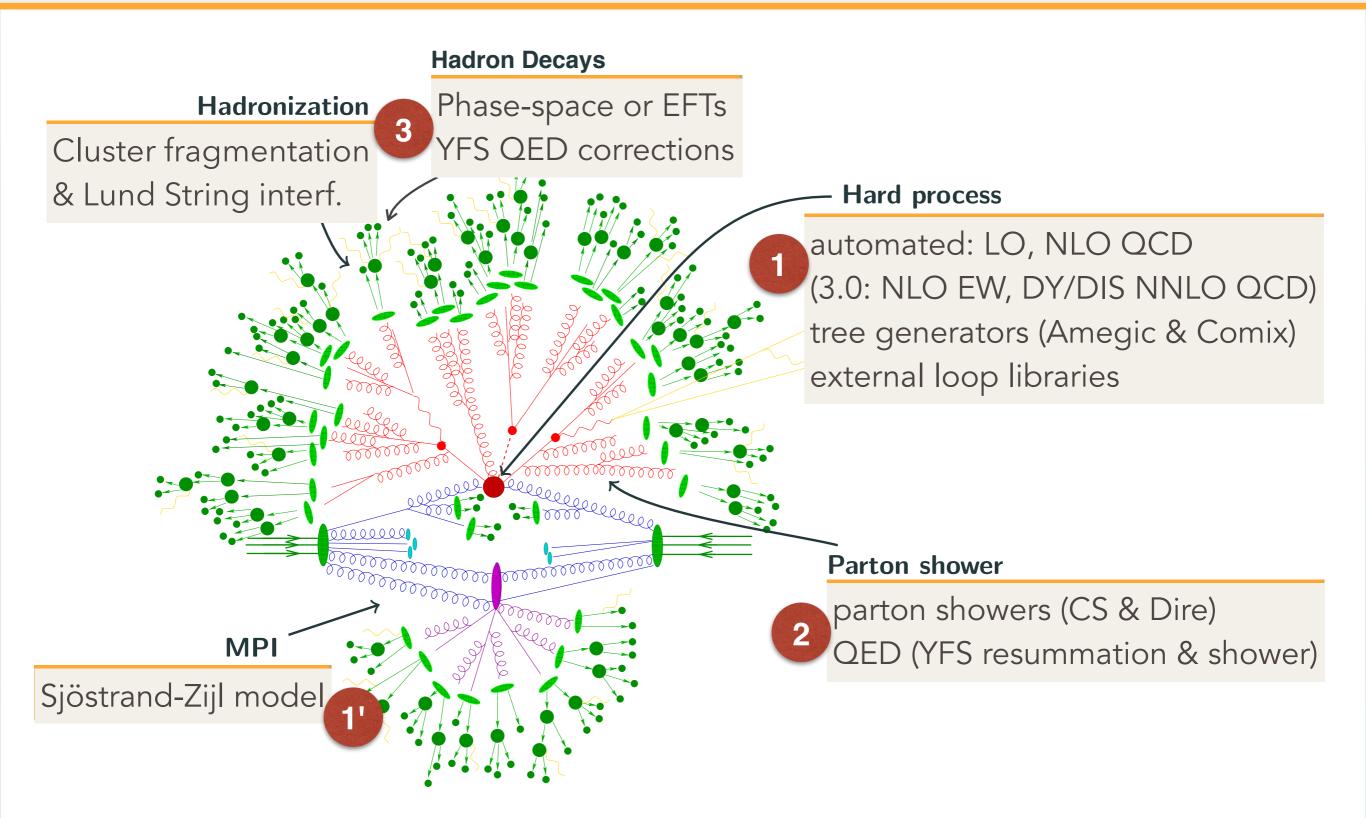
Prospects for the (HL-)LHC

18th MCnet Meeting 23 January 2019

Enrico Bothmann

Lance Dixon, Stefan Höche, Silvan Kuttimalai

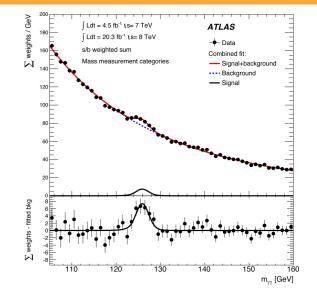
SHERPA overview



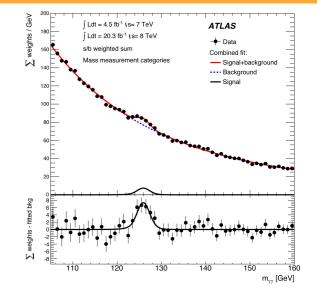
 \rightarrow each "MC point" gives a fully differential simulated event

Motivation

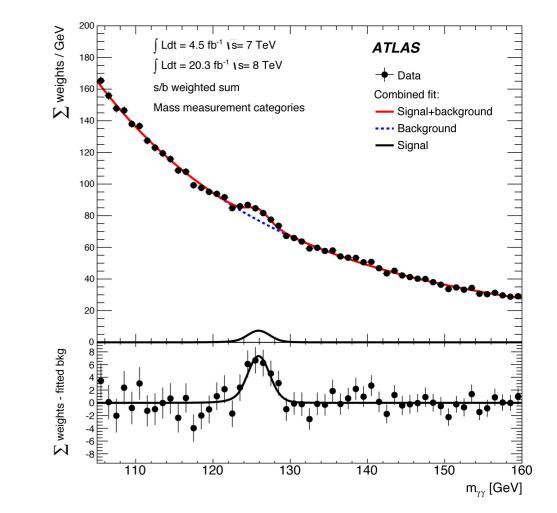
- Higgs mostly produced through gluon fusion at LHC
- H→yy decay of high relevance due to clean final state
 - measure mass peak $M_{\rm H}$ with good accuracy
 - can not measure width directly, $\Gamma_{\rm H} < O(10^{-2}) \times exp.$ resolution
- Higgs might couple to unknown states $\rightarrow \Gamma_{\rm H} > \Gamma_{\rm H}^{\rm SM}$
- on-shell signal cross section $\sim g^2/\Gamma_H \sim$ coupling-width degeneracy
- break degeneracy
 - complement with off-shell measurements (somewhat modeldependent interpretation)
 - ➡ take interference effects into account, which scale like ~g



 Q: estimates for bounds at fixed-order already exist, are they robust?



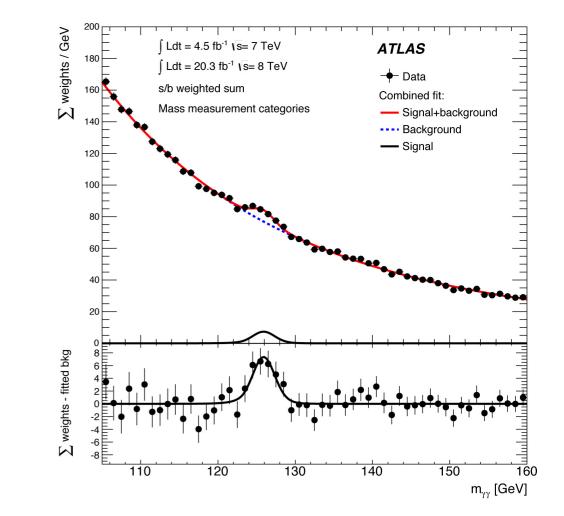
- particle-level prediction, realistic analysis cuts
 - Sherpa S-MC@NLO with NLO calculation impl'd [Dixon, Li 1305.3854 (2013)]
 - background 0j@NLO, ≤3j@LO CKKW-L
 - estimate (HL-)LHC reach using toy experiments
 - explore possibility of a direct line shape fit



[Martin 1208.1533 (2012)]

observation: interference of $gg \rightarrow H \rightarrow \chi\chi$ with $gg \rightarrow quark \ loop \rightarrow \chi\chi$ \Rightarrow Higgs mass peak in $m_{\chi\chi}$ shifts:

 $\Delta M_H = -150 \,\mathrm{MeV} \quad (\mathrm{LO})$



[Martin 1208.1533 (2012)]

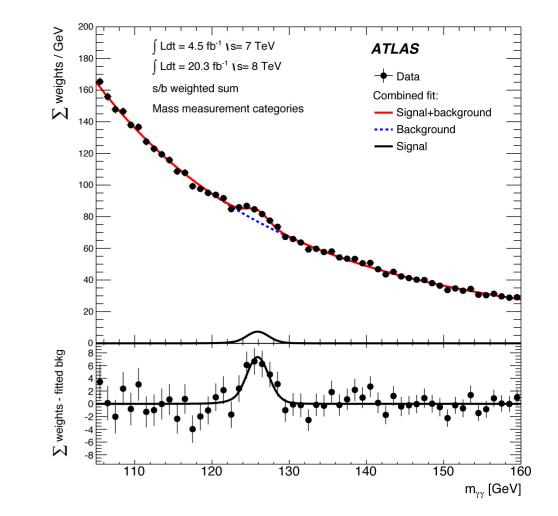
observation: interference of $gg \rightarrow H \rightarrow \chi \chi$ with $gg \rightarrow quark \ loop \rightarrow \chi \chi$ \Rightarrow Higgs mass peak in $m_{\chi\chi}$ shifts:

$$\Delta M_H = -150 \,\mathrm{MeV} \quad (\mathrm{LO})$$

$$\sim 30 \times \Gamma_{\rm H}^{\rm SM} \quad (4 \,{\rm MeV})$$

$$\sim 0.1 \times \sigma_{\rm res} \quad (1.7 \,{\rm GeV})$$

$$\sim 2.5 \times m_{H}^{\gamma\gamma} \text{ uncert} . \quad (0.4 \,{\rm GeV} \text{ at } 36 \,{\rm fb}^{-1} \,{\rm 13 \, TeV}_{\rm [ATLAS \, 1806.00242]}$$



[Martin 1208.1533 (2012)]

observation: interference of $gg \rightarrow H \rightarrow \chi \chi$ with $gg \rightarrow quark \ loop \rightarrow \chi \chi$ \Rightarrow Higgs mass peak in $m_{\chi\chi}$ shifts:

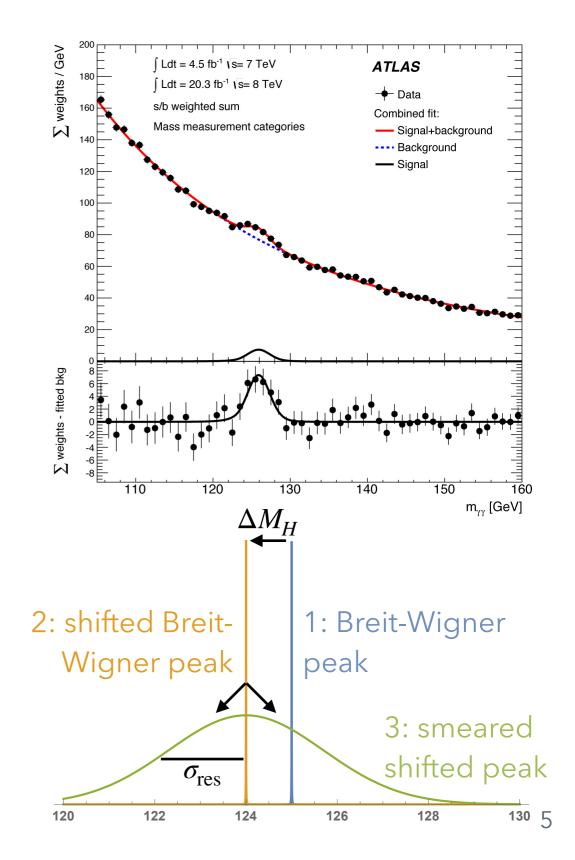
$$\Delta M_H = -150 \,\mathrm{MeV} \quad (\mathrm{LO})$$

$$\sim 30 \times \Gamma_{\rm H}^{\rm SM} \quad (4 \text{ MeV})$$

$$\sim 0.1 \times \sigma_{\rm res} \quad (1.7 \text{ GeV})$$

$$\sim 2.5 \times m_{H}^{\gamma\gamma} \text{ uncert} . \quad (0.4 \text{ GeV at } 36 \text{ fb}^{-1} \text{ 13 TeV})$$

[ATLAS 1806.00242]



[Martin 1208.1533 (2012)]

observation: interference of $gg \rightarrow H \rightarrow \chi \chi$ with $gg \rightarrow quark \ loop \rightarrow \chi \chi$ \Rightarrow Higgs mass peak in $m_{\chi\chi}$ shifts:

$$\Delta M_H = -150 \,\mathrm{MeV} \quad (\mathrm{LO})$$

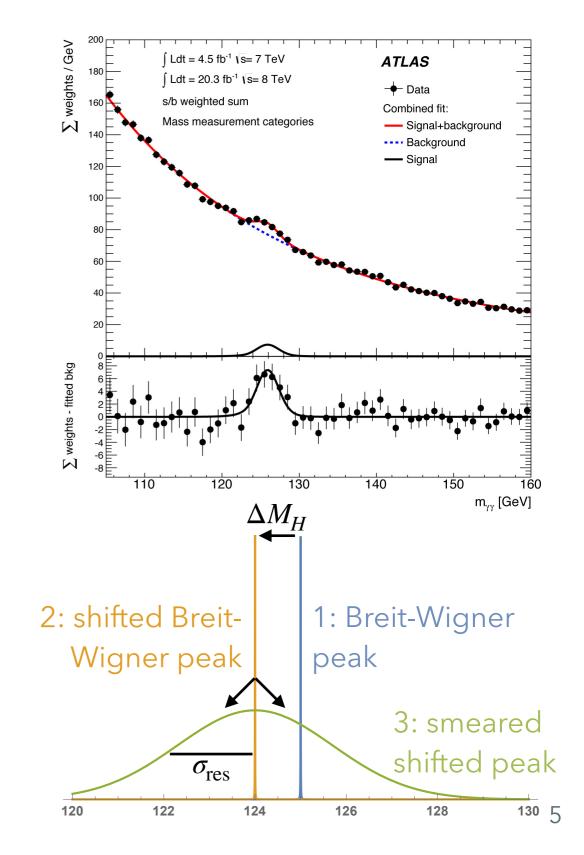
 $\sim 30 \times \Gamma_{\rm H}^{\rm SM} \quad (4 \text{ MeV})$ $\sim 0.1 \times \sigma_{\rm res} \quad (1.7 \text{ GeV})$ $\sim 2.5 \times m_{H}^{\gamma\gamma} \text{ uncert} . \quad (0.4 \text{ GeV at } 36 \text{ fb}^{-1} \text{ 13 TeV})$ [ATLAS 1806.00242]

[Dixon, Li 1305.3854 (2013)]

 $\Delta M_H = -70 \,\mathrm{MeV} \quad (\mathrm{NLO})$

(reduced due to large signal K factor)

observation: fixing signal event yield $\Gamma_{\rm H}$ bound independent from further assumptions on couplings and/or decay modes



[Martin 1208.1533 (2012)]

[Martin 1208.1533 (2012)]

9999

H

000

000

$$\mathcal{M} = \frac{1}{m^2 - m_H^2 + i m_H \Gamma_H} \frac{\mathcal{A}_S}{\sqrt{\pi}} + \frac{\mathcal{A}_B}{\sqrt{\pi}}$$
$$\hat{\sigma}_{\rm S} = \operatorname{Re}\{\mathscr{L}\} \frac{1}{2m_H^2} \int \mathrm{d}\Phi \, \frac{|\mathscr{A}_S|^2}{m_H \Gamma_H} \,,$$

$$\hat{\sigma}_{\mathrm{I}} = \frac{\mathrm{Re}\{\mathscr{L}\}}{2m_{H}^{2}} \int \mathrm{d}\Phi \, 2\,\mathrm{Im}\left\{\mathscr{A}_{S}\mathscr{A}_{B}^{*}\right\}\,,$$

$$\hat{\sigma}_{\mathrm{R}} = \mathrm{Im}\{\mathscr{L}\} \frac{1}{2m_{H}^{2}} \int \mathrm{d}\Phi \, 2\, \mathrm{Re}\left\{\mathscr{A}_{S}\mathscr{A}_{B}^{*}\right\} \,.$$

$$\mathscr{L} = \frac{1}{\pi} \frac{m_H \Gamma_H + i(m_{\gamma\gamma}^2 - m_H^2)}{(m_{\gamma\gamma}^2 - m_H^2)^2 + m_H^2 \Gamma_H^2}$$

[Martin 1208.1533 (2012)]

$$\mathcal{M} = \frac{1}{m^2 - m_H^2 + i \, m_H \Gamma_H} \frac{\mathcal{A}_S}{\sqrt{\pi}} + \frac{\mathcal{A}_B}{\sqrt{\pi}}$$

$$\hat{\sigma}_S = \operatorname{Re}\{\mathcal{L}\} \frac{1}{2m_H^2} \int d\Phi \frac{|\mathcal{A}_S|^2}{m_H \Gamma_H},$$

$$\hat{\sigma}_I = \operatorname{Re}\{\mathcal{L}\} \frac{1}{2m_H^2} \int d\Phi 2 \operatorname{Im}\{\mathcal{A}_S \mathcal{A}_B^*\},$$

$$\hat{\sigma}_R = \operatorname{Im}\{\mathcal{L}\} \frac{1}{2m_H^2} \int d\Phi 2 \operatorname{Re}\{\mathcal{A}_S \mathcal{A}_B^*\}.$$

$$\mathcal{L} = \frac{1}{\pi} \frac{m_H \Gamma_H}{(m_{\gamma\gamma}^2 - m_H^2)^2 + m_H^2 \Gamma_H^2}$$

[Martin 1208.1533 (2012)]

$$\mathcal{M} = \frac{1}{m^2 - m_H^2 + i m_H \Gamma_H} \frac{\mathcal{A}_S}{\sqrt{\pi}} + \frac{\mathcal{A}_B}{\sqrt{\pi}}$$

$$\hat{\sigma}_S = \operatorname{Re}\{\mathcal{L}\} \frac{1}{2m_H^2} \int d\Phi \frac{|\mathcal{A}_S|^2}{m_H \Gamma_H},$$

$$\hat{\sigma}_I = \operatorname{Re}\{\mathcal{L}\} \frac{1}{2m_H^2} \int d\Phi 2 \operatorname{Im}\{\mathcal{A}_S \mathcal{A}_B^*\},$$

$$\hat{\sigma}_R = \operatorname{Im}\{\mathcal{L}\} \frac{1}{2m_H^2} \int d\Phi 2 \operatorname{Re}\{\mathcal{A}_S \mathcal{A}_B^*\}.$$

$$\mathcal{L} = \frac{1}{\pi} \frac{m_H \Gamma_H}{(m_{\gamma\gamma}^2 - m_H^2)^2 + m_H^2 \Gamma_H^2}$$

Why should we care?

- BSM: factors c_g, c_γ for Hgg, Hγγ couplings (SM: 1)
- let c_g, c_g, $\Gamma_{\rm H}$ vary, but keep measured signal yield fixed: $\mu_{\rm XX} \approx 1$

BSM parametrisation = SM x signal yield

$$\frac{(c_g c_\gamma)^2 \sigma_S}{m_H \Gamma_H} + c_g c_\gamma \sigma_I = \left(\frac{\sigma_S}{m_H \Gamma_H^{\rm SM}} + \sigma_I\right) \mu_{\gamma\gamma}$$

• σ_I very small, can be neglected for $\Gamma_{\rm H} \lesssim 100 \ \Gamma_{\rm H}^{\rm SM}$

$$\Rightarrow c_g c_\gamma = \sqrt{\mu_{\gamma\gamma} \frac{\Gamma_H}{\Gamma_H^{\rm SM}}} \quad \text{and with} \quad \Delta m_H \sim c_g c_\gamma \quad \rightarrow \quad \Delta m_H \sim \sqrt{\mu_{\gamma\gamma} \frac{\Gamma_H}{\Gamma_H^{\rm SM}}}$$

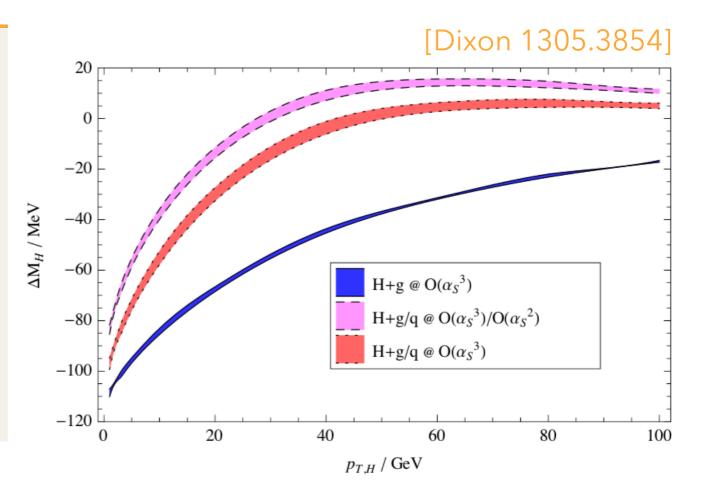
 \Rightarrow bound on $\Gamma_{\rm H}$ independent from further assumptions on couplings and/or decay modes

we need a comparison value to extract $\Delta m_{\rm H} = m_{\rm H}^{\rm shifted} - m_{\rm H}^{\rm actual}$

- yyj has smaller relative magnitude of interference
- ... and opposite sign of interference for qg- and gginitiated channels ⇒ cancellation
- $\rightarrow p_{T,H}$ cut dependent mass shift

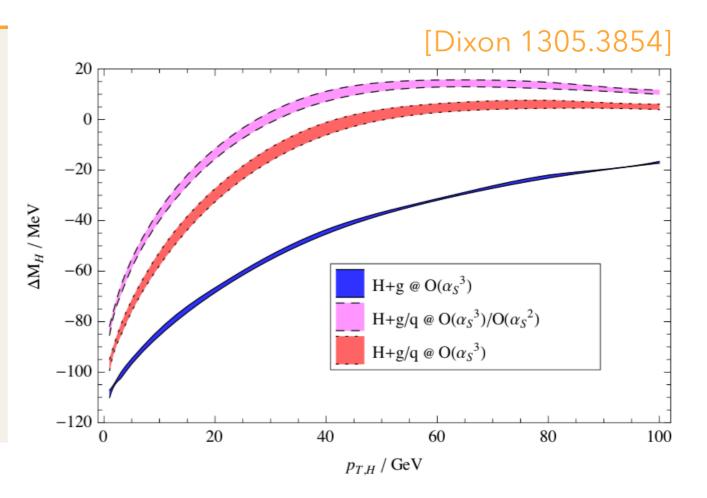
we need a comparison value to extract $\Delta m_{\rm H} = m_{\rm H}^{\rm shifted} - m_{\rm H}^{\rm actual}$

- **yy**j has smaller relative magnitude of interference
- ... and opposite sign of interference for qg- and gginitiated channels ⇒ cancellation
- → p_{T,H} cut dependent mass shift



we need a comparison value to extract $\Delta m_{\rm H} = m_{\rm H}^{\rm shifted} - m_{\rm H}^{\rm actual}$

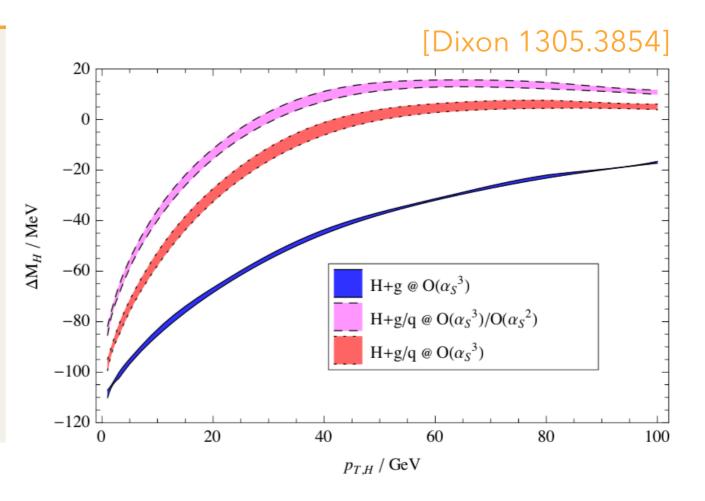
- **yy**j has smaller relative magnitude of interference
- … and opposite sign of interference for qg- and gginitiated channels ⇒ cancellation
- $\rightarrow p_{T,H}$ cut dependent mass shift



• extract shift within $gg \rightarrow H \rightarrow \gamma\gamma(j)$ channel by comparing large p_T bin and low p_T bin

we need a comparison value to extract $\Delta m_{\rm H} = m_{\rm H}^{\rm shifted} - m_{\rm H}^{\rm actual}$

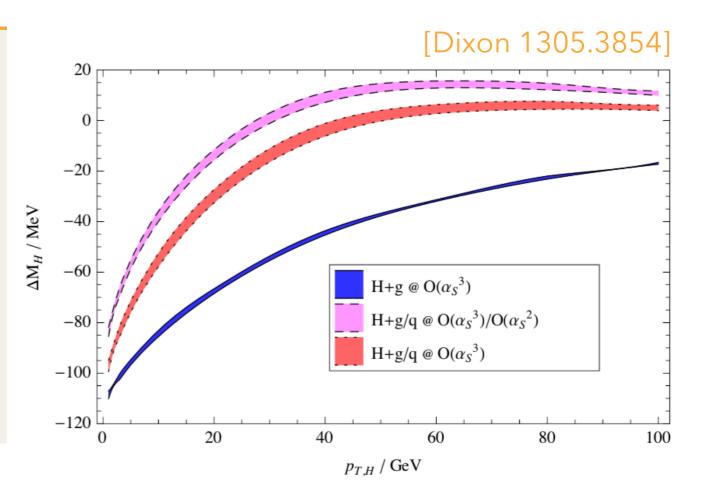
- yyj has smaller relative magnitude of interference
- … and opposite sign of interference for qg- and gginitiated channels ⇒ cancellation
- $\rightarrow p_{T,H}$ cut dependent mass shift



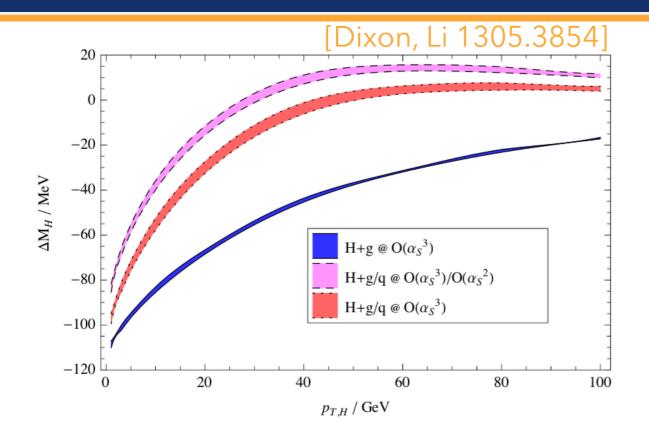
- extract shift within $gg \rightarrow H \rightarrow \gamma \gamma(j)$ channel by comparing large p_T bin and low p_T bin
- projection to HL-LHC (3 ab⁻¹): 95 % CL limit for $\Gamma_{\rm H} \leq 15 \Gamma_{\rm H}^{\rm SM}$

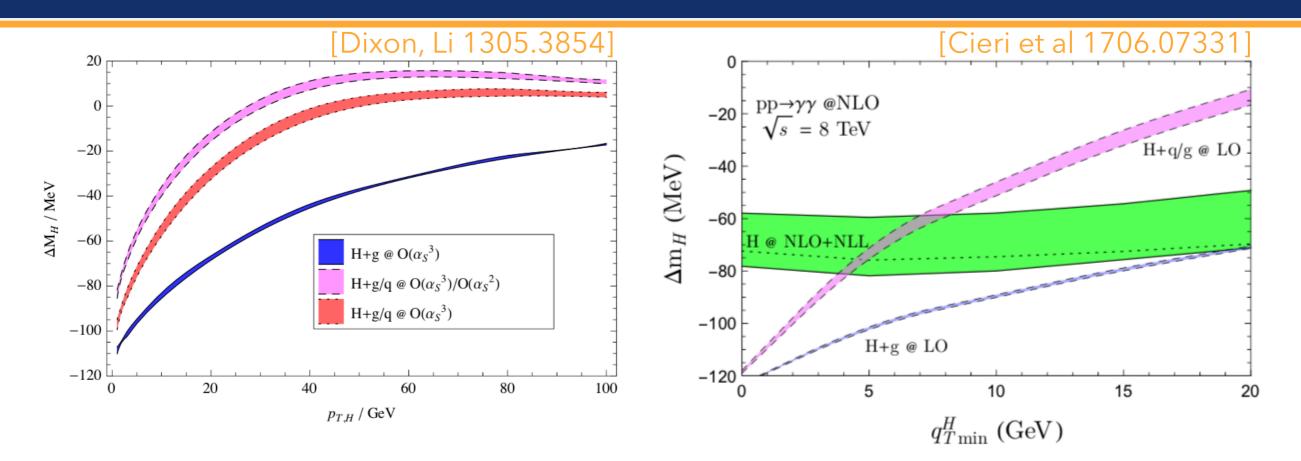
we need a comparison value to extract $\Delta m_{\rm H} = m_{\rm H}^{\rm shifted} - m_{\rm H}^{\rm actual}$

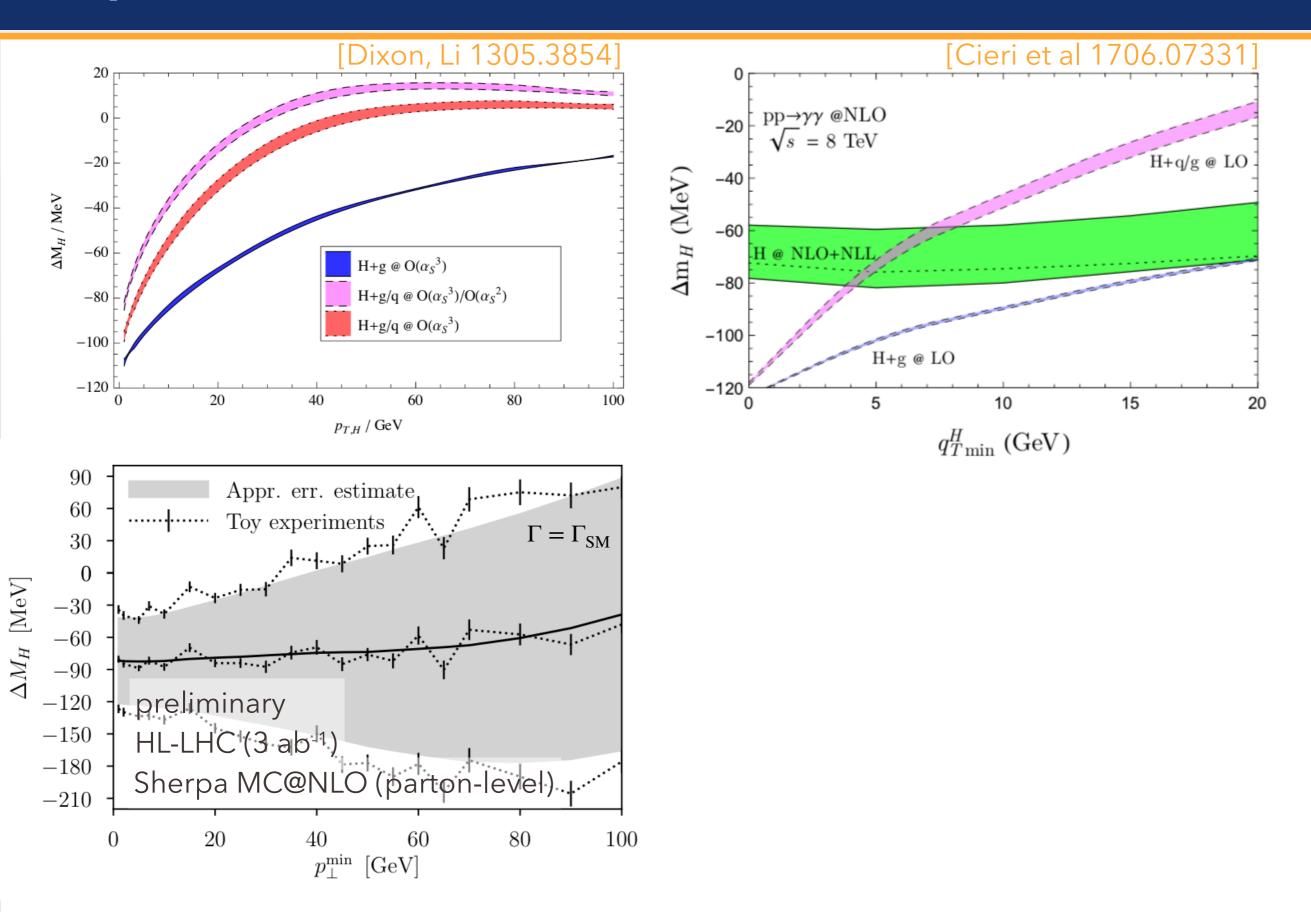
- yyj has smaller relative magnitude of interference
- … and opposite sign of interference for qg- and gginitiated channels ⇒ cancellation
- → p_{T,H} cut dependent mass shift

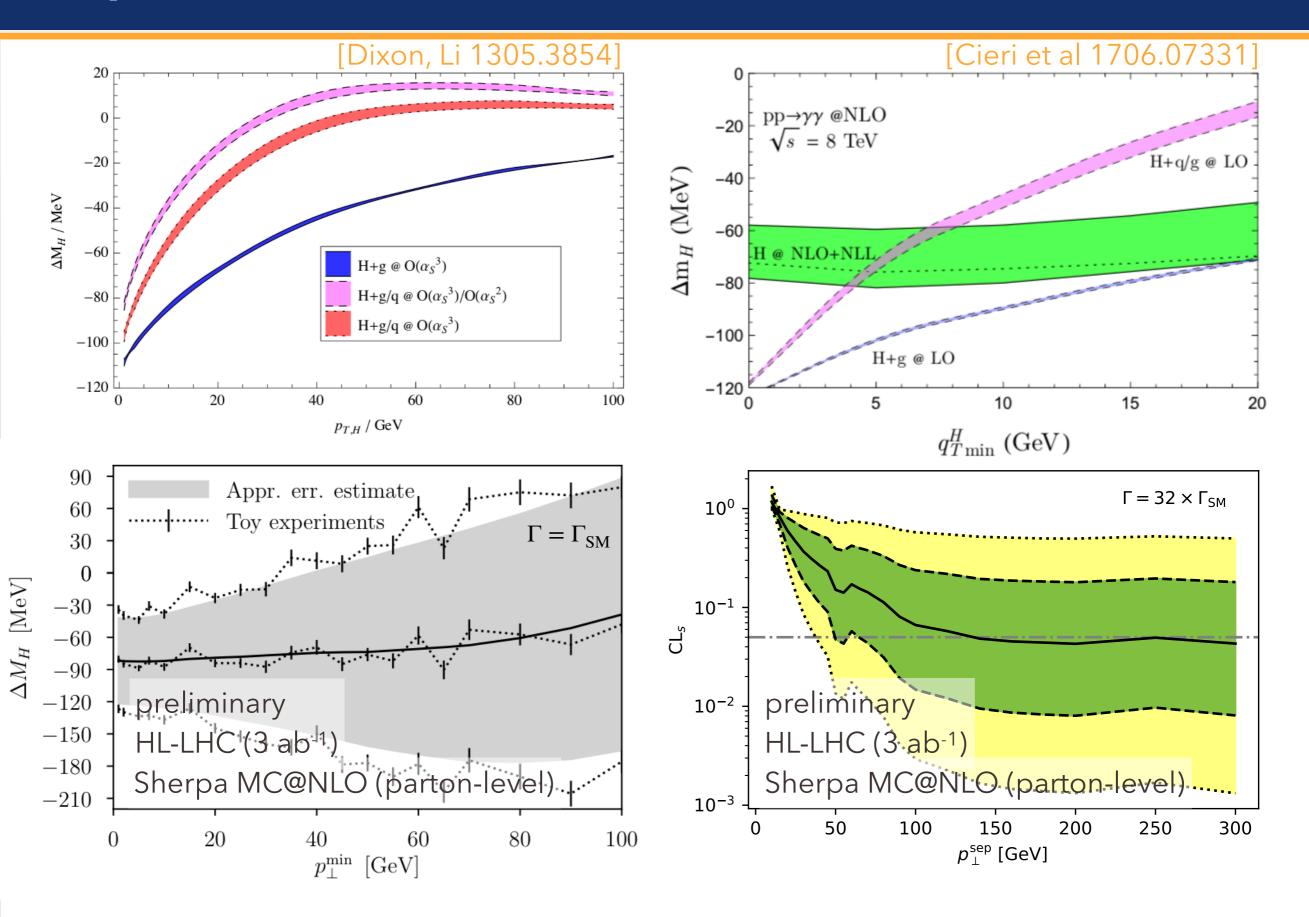


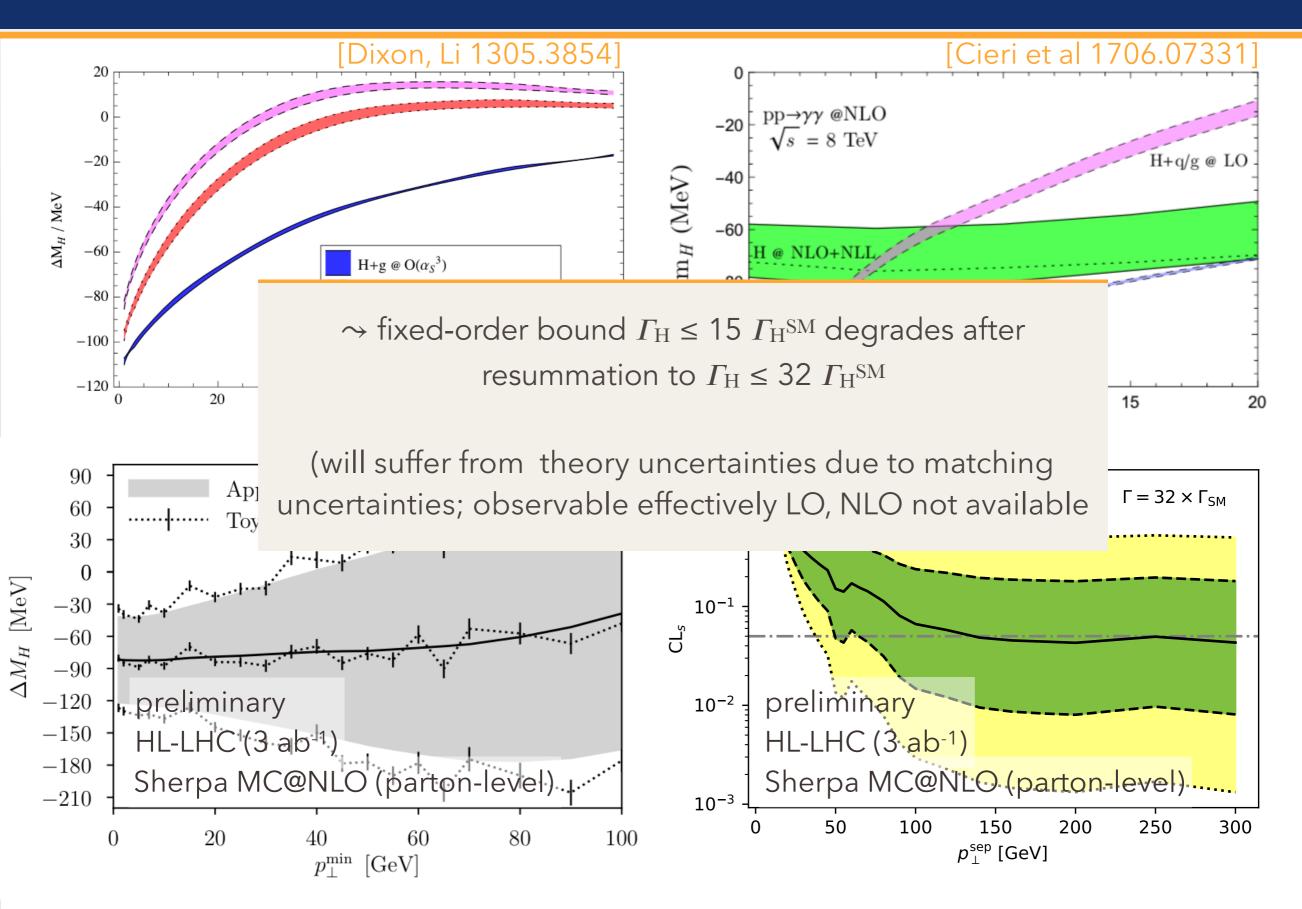
- extract shift within $gg \rightarrow H \rightarrow \gamma\gamma(j)$ channel by comparing large p_T bin and low p_T bin
- projection to HL-LHC (3 ab⁻¹): 95 % CL limit for $\Gamma_{\rm H} \leq 15 \Gamma_{\rm H}^{\rm SM}$
- but fixed-order unreliable for low $p_T \rightarrow$ how stable when including resummation (& hadronisation?) effects











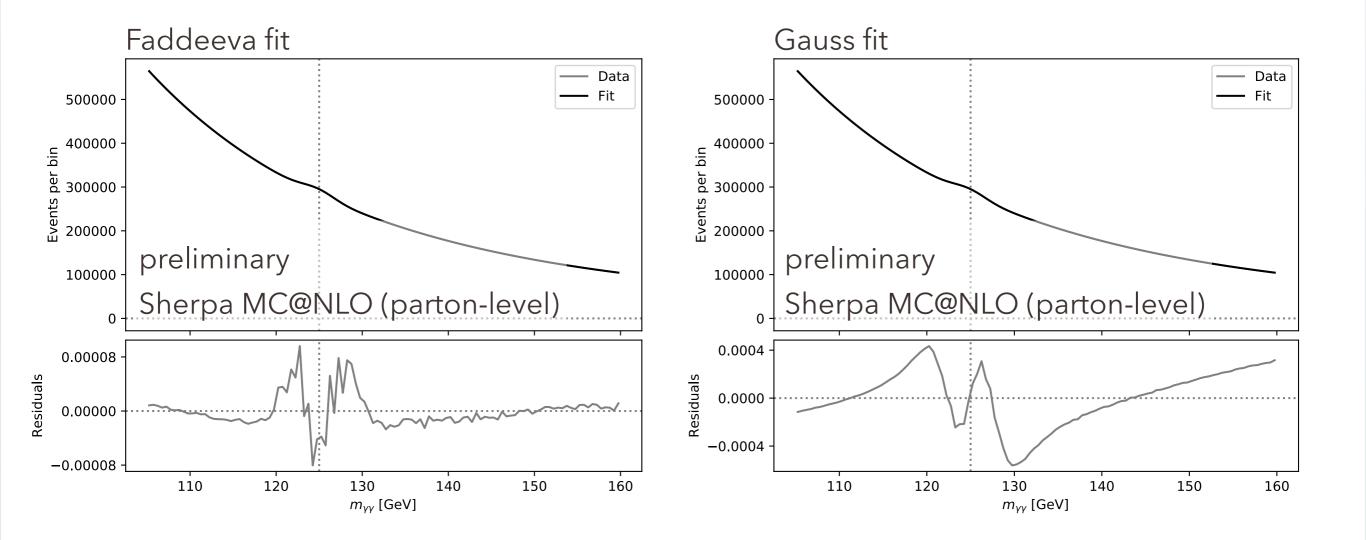
Go back to the $m_{\chi\chi}$ distribution?

- can we just go back to the $m_{\chi\chi}$ distribution and fit something that includes the shape distortion?? \rightarrow all data in fiducial region
- convolution of Lorentzian with Gaussian \Rightarrow Faddeeva function: $w(z) = e^{-z^2} \operatorname{erfc}(-iz)$

$$\mathcal{S} = \frac{w(z_{-}) - w(z_{+})}{2\sqrt{2\pi}\sigma} \quad \text{with} \quad z_{\mp} = \frac{m_{\gamma\gamma} \mp M_H}{\sqrt{2}\sigma}, \quad M_H = \sqrt{m_H^2 - i m_H \Gamma_H}$$
$$\mathcal{F} = N\left[\frac{\text{Re}\{\mathcal{S}\}}{\text{Re}\{\mathcal{N}\}} + N_{RS}\frac{\text{Im}\{\mathcal{S}\}}{\text{Im}\{\mathcal{N}\}}\right] \quad \text{where} \quad N_{RS} = \sigma_R\left(\sigma_S c_{g\gamma}\frac{\Gamma_{H,SM}}{\Gamma_H} + \sigma_I\right)^{-1}$$

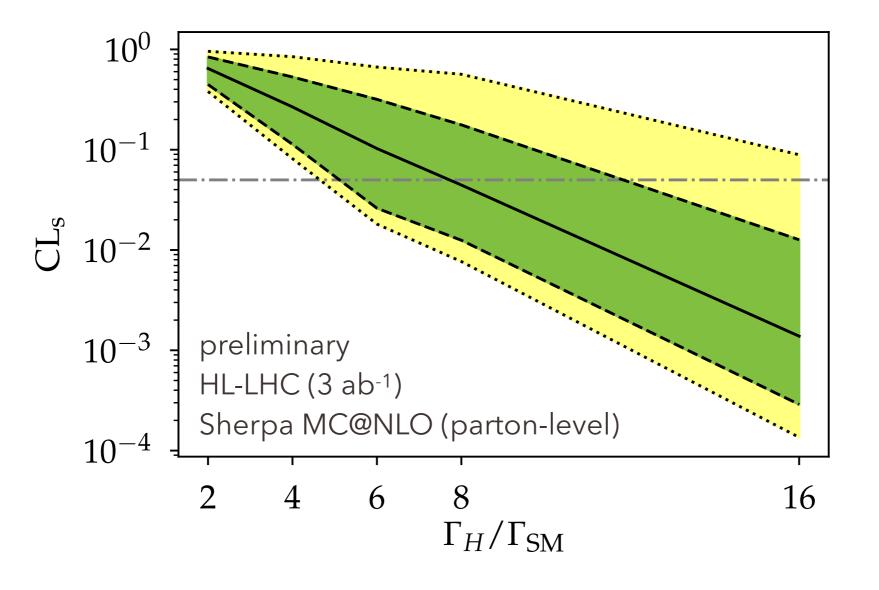
- sole theoretical input: σ_R , σ_S , σ_I
- fit to (MC) data

GOF comparison for Faddeeva vs. Gaussian



 \rightarrow Residuals reduced by factor > 4 by using Faddeeva function

Direct-fit method result



 \rightarrow HL-LHC bound using direct-fit method: $\varGamma_{\rm H}$ \leq 8 $\varGamma_{\rm H}{}^{\rm SM}$

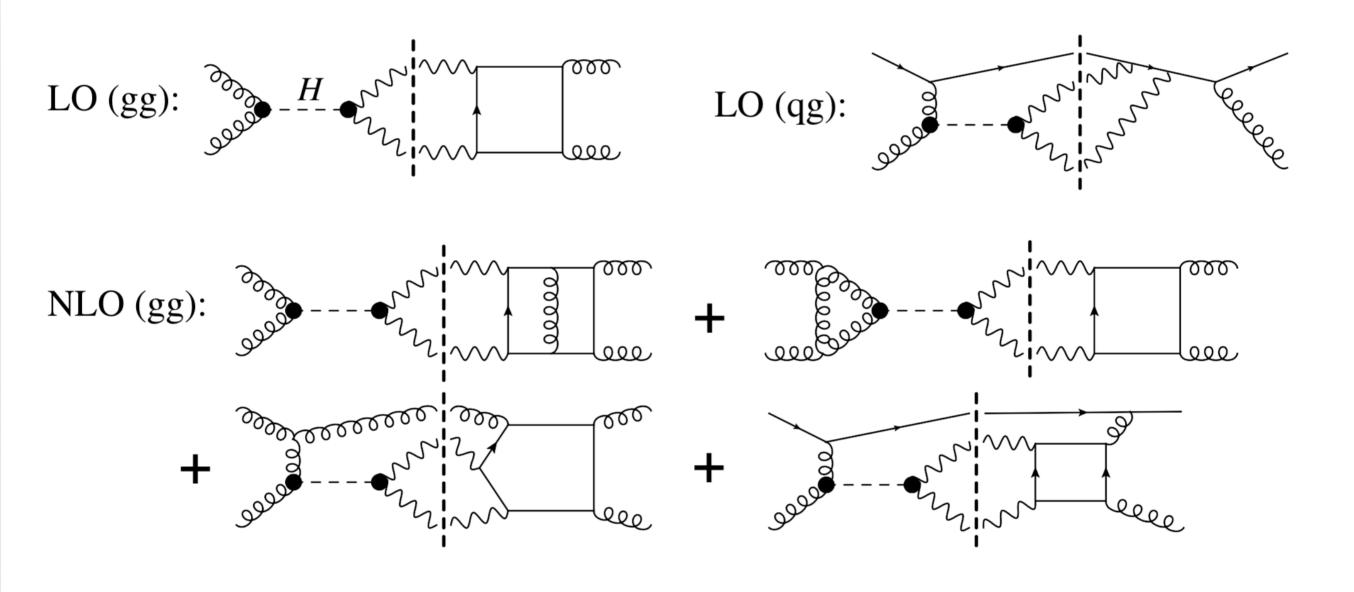
Conclusions

- interference-induced Higgs peak shift
- extract the shift \Rightarrow model-independent bound on $\Gamma_{\rm H}$
- HL-LHC bounds (preliminary)
 - e.g. by comparing shift in high-/low H p_T
 - + fixed-order bound $\Gamma_{\rm H} \le 15~\Gamma_{\rm H}{}^{\rm SM}$ degrades after resummation to $\Gamma_{\rm H} \le 32~\Gamma_{\rm H}{}^{\rm SM}$
 - or by directly fitting distorted peak in $m_{\chi\chi}$
 - looks like $\varGamma_{\rm H} \leq 8 ~ \varGamma_{\rm H}{}^{\rm SM}$

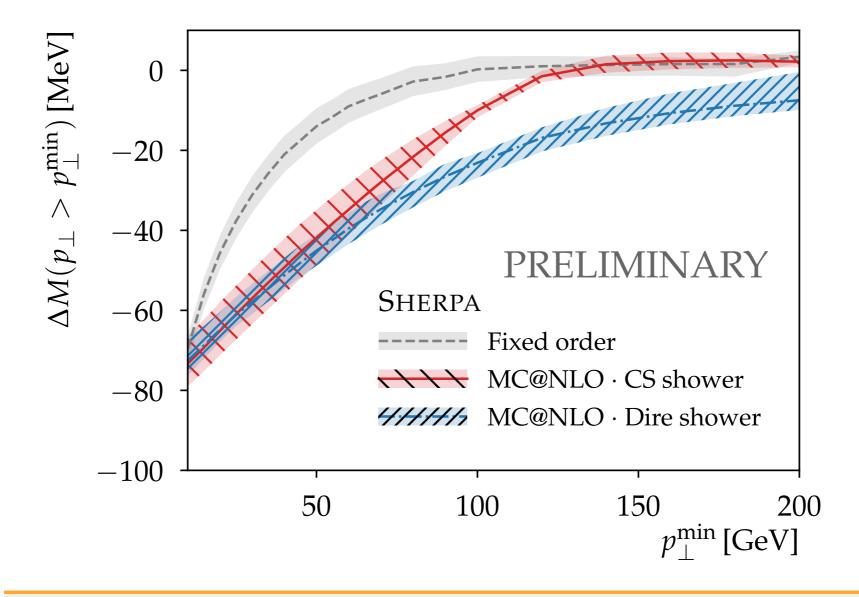
Back-up

Interference contributions

[Dixon 1305.3854]



Matching uncertainties

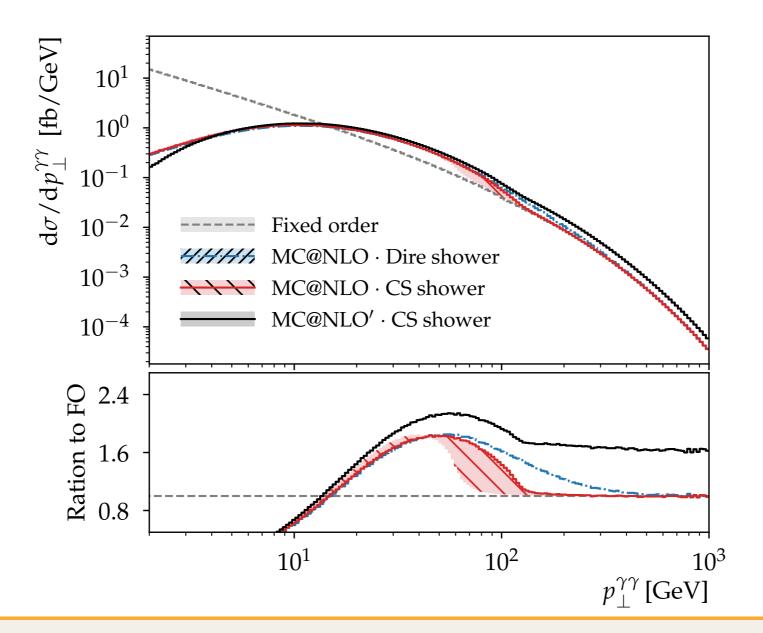


 \rightarrow large matching uncertainties, can be traced back to the large radiative corrections to the signal at NLO

NLO "fudge" factor for real-emission events

$$\left|\frac{\Gamma_a(Q^2)}{\Gamma_a(-Q^2)}\right|^2 = 1 + \frac{\alpha_s(Q^2)}{2\pi} C_a \pi^2 + \mathcal{O}(\alpha_s^2)$$

[Magnea, Sterman Phys. Rev. D42, 4222 (1990)]



include universal higher-order corrections in all components of the NLO calculation and subtracted the overlap

Background prediction

[ATLAS 1704.03839]

