# Using MHV amplitudes in the VINCIA Helicity Shower 

## Andrew Lifson

In collaboration with Peter Skands, Nadine Fischer

Work completed in 2017, arXiv:1708.01736

Supported by ARC Future Fellowship, Monash-Wawrick Alliance

Work Done at Monash University

$$
\text { January } 25^{\text {th }} 2019
$$

## Overview

(1) Summarising the Vincia Antenna Shower

## (2) Helicity Amplitudes

(3) Vincia's Helicity Shower - The Details
(4) Shower Validation Tests
(5) Summary

## Overview

(1) Summarising the Vincia Antenna Shower
(2) Helicity Amplitudes
(3) Vincia's Helicity Shower - The Details
(4) Shower Validation Tests
(5) Summary

## Overview

(1) Summarising the Vincia Antenna Shower
(2) Helicity Amplitudes
(3) Vincia's Helicity Shower - The Details
(4) Shower Validation Tests
(5) Summary

## Overview

(1) Summarising the Vincia Antenna Shower
(2) Helicity Amplitudes
(3) Vincia's Helicity Shower - The Details

44 Shower Validation Tests
(5) Summary

## Overview

(1) Summarising the Vincia Antenna Shower
(2) Helicity Amplitudes
(3) Vincia's Helicity Shower - The Details

44 Shower Validation Tests
(5) Summary

## The Vincia Antenna Shower

- VIrtual Numerical Collider with Interleaved Antennae
- Began in 2007 as proof of concept by P. Z. Skands, W. T. Giele and D. A. Kosower [1]
- Plugin to Pythia, replaces its parton shower
- Had 2 main goals in mind
- Include systematic uncertainty estimates
- Allow matching to any LO or NLO matrix element
- 2 main versions:
- Vincia 1: $e^{+} e^{-}$collisions
- Vincia 2: $e^{+} e^{-}$and pp collisions [2]
- Recently released Vincia 2.204


## The Vincia Antenna Shower

- VIrtual Numerical Collider with Interleaved Antennae
- Began in 2007 as proof of concept by P. Z. Skands, W. T. Giele and D. A. Kosower [1]
- Plugin to Pythia, replaces its parton shower
- Had 2 main goals in mind
- Include systematic uncerta inty estimates
- Allow matching to any LO or NLO matrix element
- 2 main versions:
- Vincia 1: $e^{+} e^{-}$collisions
- Vincia 2: $e^{+} e^{-}$and pp collisions [2]
- Recently released Vincia 2.204


## The Vincia Antenna Shower

- VIrtual Numerical Collider with Interleaved Antennae
- Began in 2007 as proof of concept by P. Z. Skands, W. T. Giele and D. A. Kosower [1]
- Plugin to Pythia, replaces its parton shower
- Had 2 main goals in mind
- Include systematic uncertainty estimates
- Allow matching to any LO or NLO matrix element
- 2 main versions:
- Vincia 1: $e^{+} e^{-}$collisions
- Vincia 2: $e^{+} e^{-}$and po collisions [2]
- Recently released Vincia 2.204


## The Vincia Antenna Shower

- VIrtual Numerical Collider with Interleaved Antennae
- Began in 2007 as proof of concept by P. Z. Skands, W. T. Giele and D. A. Kosower [1]
- Plugin to Pythia, replaces its parton shower
- Had 2 main goals in mind
- Include systematic uncertainty estimates
- Allow matching to any LO or NLO matrix element
- 2 main versions:
- Vincia 1: $e^{+} e^{-}$collisions
- Vincia 2: $e^{+} e^{-}$and $p p$ collisions [2]
- Recently released Vincia 2.204


## The Vincia Antenna Shower

- VIrtual Numerical Collider with Interleaved Antennae
- Began in 2007 as proof of concept by P. Z. Skands, W. T. Giele and D. A. Kosower [1]
- Plugin to Pythia, replaces its parton shower
- Had 2 main goals in mind
- Include systematic uncertainty estimates
- Allow matching to any LO or NLO matrix element
- 2 main versions:
- Vincia 1: $e^{+} e^{-}$collisions
- Vincia 2: $e^{+} e^{-}$and $p p$ collisions [2]
- Recently released Vincia 2.204


## The Vincia Antenna Shower

- VIrtual Numerical Collider with Interleaved Antennae
- Began in 2007 as proof of concept by P. Z. Skands, W. T. Giele and D. A. Kosower [1]
- Plugin to Pythia, replaces its parton shower
- Had 2 main goals in mind
- Include systematic uncertainty estimates
- Allow matching to any LO or NLO matrix element
- 2 main versions:
- Vincia 1: $e^{+} e^{-}$collisions
- Vincia 2: $e^{+} e^{-}$and pp collisions [2]
- Recently released Vincia 2.204


## Comparing Vincia's and Pythia's Parton Showers

## Pythia

- Markovian, no history
- Parton shower with spectator parton
- Corrects only 1st emission with full ME
- Minimal spin correlations


## Vincia

- Non-Markovian, historical MEs
- Antenna shower radiate off 2 partons in one splitting function
- Can correct up to 3 emissions with full ME
- Helicity shower, spin correlations in MEC


## Comparing Vincia's and Pythia's Parton Showers

## Pythia

- Markovian, no history
- Parton shower with spectator parton
- Corrects only 1st emission with full ME
- Minimal spin correlations


## Vincia

- Non-Markovian, historical MEs
- Antenna shower, radiate off 2 partons in one splitting function
- Can correct un to 3 emissions with full ME
- Helicity shower, spin correlations in MEC


## Comparing Vincia's and Pythia's Parton Showers

## Pythia

- Markovian, no history
- Parton shower with spectator parton
- Corrects only 1st emission with full ME
- Minimal snin correlations


## Vincia

- Non-Markovian, historical MEs
- Antenna shower, radiate off 2 partons in one splitting function
- Can correct up to 3 emissions with full ME
- Helicity shower, spin correlations in MEC


## Comparing Vincia's and Pythia's Parton Showers

## Pythia

- Markovian, no history
- Parton shower with spectator parton
- Corrects only 1st emission with full ME
- Minimal spin correlations


## Vincia

- Non-Markovian, historical MEs
- Antenna shower, radiate off 2 partons in one splitting function
- Can correct up to 3 emissions with full ME
- Helicity shower, spin correlations in MEC


## Comparing Vincia's and Pythia's Parton Showers

## Pythia

- Markovian, no history
- Parton shower with spectator parton
- Corrects only 1st emission with full ME
- Minimal spin correlations


## Vincia

- Non-Markovian, historical MEs
- Antenna shower, radiate off 2 partons in one splitting function
- Can correct up to 3 emissions with full ME
- Helicity shower, spin correlations in MEC


## Why Helicity Shower?

- $\mathcal{M}_{i}\left(1^{h_{1}}, \ldots, n^{h_{n}}\right)=C_{i}\left(t^{1}, \ldots, t^{n}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)$
- Helicity-amplitudes easier than helicity-summed amplitudes
- Organise processes based on the number of opposite helicities (all particles outgoing)
- $\mathcal{M}\left[n^{ \pm}\right], \mathcal{M}\left[(n-1)^{ \pm}, 1^{\mp}\right]=0$


## - Using spinor-helicity formalism and recursion relations can greatly simplify calculations

## Why Helicity Shower?

- $\mathcal{M}_{i}\left(1^{h_{1}}, \ldots, n^{h_{n}}\right)=C_{i}\left(t^{1}, \ldots, t^{n}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)$
- Helicity-amplitudes easier than helicity-summed amplitudes
- Organise processes based on the number of opposite helicities (all particles outgoing)
- Using spinor-helicity formalism and recursion relations can greatly simplify calculations


## Why Helicity Shower?

- $\mathcal{M}_{i}\left(1^{h_{1}}, \ldots, n^{h_{n}}\right)=C_{i}\left(t^{1}, \ldots, t^{n}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)$
- Helicity-amplitudes easier than helicity-summed amplitudes
- Organise processes based on the number of opposite helicities (all particles outgoing)
- $\mathcal{M}\left[n^{ \pm}\right], \mathcal{M}\left[(n-1)^{ \pm}, 1^{\mp}\right]=0$
- Using spinor-helicity formalism and recursion relations can greatly simplify calculations


## Why Helicity Shower?

- $\mathcal{M}_{i}\left(1^{h_{1}}, \ldots, n^{h_{n}}\right)=C_{i}\left(t^{1}, \ldots, t^{n}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)$
- Helicity-amplitudes easier than helicity-summed amplitudes
- Organise processes based on the number of opposite helicities (all particles outgoing)
- $\mathcal{M}\left[n^{ \pm}\right], \mathcal{M}\left[(n-1)^{ \pm}, 1^{\mp}\right]=0$
- $\mathcal{M}\left[(n-2)^{ \pm}, 2^{\mp}\right]=M H V$
- Using spinor-helicity formalism and recursion relations can greatly simplify calculations


## Why Helicity Shower?

- $\mathcal{M}_{i}\left(1^{h_{1}}, \ldots, n^{h_{n}}\right)=C_{i}\left(t^{1}, \ldots, t^{n}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)$
- Helicity-amplitudes easier than helicity-summed amplitudes
- Organise processes based on the number of opposite helicities (all particles outgoing)
- $\mathcal{M}\left[n^{ \pm}\right], \mathcal{M}\left[(n-1)^{ \pm}, 1^{\mp}\right]=0$
- $\mathcal{M}\left[(n-2)^{ \pm}, 2^{\mp}\right]=M H V$
- $\mathcal{M}\left[(n-3)^{ \pm}, 3^{\mp}\right]=N M H V$
- Using spinor-helicity formalism and recursion relations can greatly simplify calculations


## Why Helicity Shower?

- $\mathcal{M}_{i}\left(1^{h_{1}}, \ldots, n^{h_{n}}\right)=C_{i}\left(t^{1}, \ldots, t^{n}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)$
- Helicity-amplitudes easier than helicity-summed amplitudes
- Organise processes based on the number of opposite helicities (all particles outgoing)
- $\mathcal{M}\left[n^{ \pm}\right], \mathcal{M}\left[(n-1)^{ \pm}, 1^{\mp}\right]=0$
- $\mathcal{M}\left[(n-2)^{ \pm}, 2^{\mp}\right]=M H V$
- $\mathcal{M}\left[(n-3)^{ \pm}, 3^{\mp}\right]=N M H V$
- etc.
- Using spinor-helicity formalism and recursion relations can greatly simplify calculations


## Why Helicity Shower?

- $\mathcal{M}_{i}\left(1^{h_{1}}, \ldots, n^{h_{n}}\right)=C_{i}\left(t^{1}, \ldots, t^{n}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)$
- Helicity-amplitudes easier than helicity-summed amplitudes
- Organise processes based on the number of opposite helicities (all particles outgoing)
- $\mathcal{M}\left[n^{ \pm}\right], \mathcal{M}\left[(n-1)^{ \pm}, 1^{\mp}\right]=0$
- $\mathcal{M}\left[(n-2)^{ \pm}, 2^{\mp}\right]=M H V$
- $\mathcal{M}\left[(n-3)^{ \pm}, 3^{\mp}\right]=N M H V$
- etc.
- Using spinor-helicity formalism and recursion relations can greatly simplify calculations


## Feynman Diagrams vs Recursion Relations: The All-Gluon MHV Case

| No. of External Gluons | No. of Feynman Diagrams | Relative Growth |
| :---: | :---: | :---: |
| 4 | 4 | - |
| 5 | 25 | 6.3 |
| 6 | 220 | 8.8 |
| 7 | 2485 | 11.3 |
| 8 | 34300 | 13.8 |
| 9 | 559405 | 16.3 |
| 10 | 10525900 | 18.8 |

All-gluon Feynman Diagram numbers calculated by Kleiss and Kuijf [3]

## Feynman Diagrams vs Recursion Relations: The All-Gluon MHV Case

| No. of External Gluons | No. of Feynman Diagrams | Relative Growth |
| :---: | :---: | :---: |
| 4 | 4 | - |
| 5 | 25 | 6.3 |
| 6 | 220 | 8.8 |
| 7 | 2485 | 11.3 |
| 8 | 34300 | 13.8 |
| 9 | 559405 | 16.3 |
| 10 | 10525900 | 18.8 |

All-gluon Feynman Diagram numbers calculated by Kleiss and Kuijf [3]
Recursion relation for $n \geq 4$ Gluons, $(n-2)+$ hel, 2 - hel

$$
A_{\sigma_{i}}\left(i^{-}, j^{-}\right)=i \frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle} \quad\langle i j\rangle \equiv \bar{u}_{-}\left(p_{i}\right) u_{+}\left(p_{j}\right)
$$

## Speed Testing MHV Amplitudes

## $g g \rightarrow n g$ MHV amplitudes, micro-seconds per calculation

| nParticles | RAMBO | MadGraph4 | MHV | Ratio |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 0.671 | 1.868 | 1.496 | 1.451 |
| 5 | 0.806 | 7.716 | 2.546 | 3.966 |
| 6 | 0.931 | 76.434 | 7.940 | 10.771 |

## Speed Testing MHV Amplitudes

$g g \rightarrow n g$ MHV amplitudes, micro-seconds per calculation

| nParticles | RAMBO | MadGraph4 | MHV | Ratio |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 0.671 | 1.868 | 1.496 | 1.451 |
| 5 | 0.806 | 7.716 | 2.546 | 3.966 |
| 6 | 0.931 | 76.434 | 7.940 | 10.771 |

$q \bar{q} \rightarrow n g$ MHV amplitudes, micro-seconds per calculation

| nParticles | RAMBO | MadGraph4 | MHV | Ratio |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 0.855 | 1.551 | 1.596 | 0.927 |
| 5 | 0.822 | 3.216 | 2.669 | 1.296 |
| 6 | 0.935 | 18.579 | 3.447 | 7.024 |
| 7 | 1.088 | 236.183 | 14.355 | 17.720 |

## MHV Amplitudes within Vincia

- Swaps incoming particles to outgoing, checks it has process
- Base class calculates all relevant spinor products
- Uses MHV wherever possible for MEC and setting polarisations
- Can also use Vincia to calculate MHV amplitudes as standalone
- The following can be calculated


## MHV Amplitudes within Vincia

- Swaps incoming particles to outgoing, checks it has process
- Base class calculates all relevant spinor products
- Uses MHV wherever possible for MEC and setting polarisations
- Can also use Vincia to calculate MHV amplitudes as standalone
- The following can be calculated


## MHV Amplitudes within Vincia

- Swaps incoming particles to outgoing, checks it has process
- Base class calculates all relevant spinor products
- Uses MHV wherever possible for MEC and setting polarisations
- Can also use Vincia to calculate MHV amplitudes as standalone
- The following can be calculated


## MHV Amplitudes within Vincia

- Swaps incoming particles to outgoing, checks it has process
- Base class calculates all relevant spinor products
- Uses MHV wherever possible for MEC and setting polarisations
- Can also use Vincia to calculate MHV amplitudes as standalone
- The following can be calculated


## MHV Amplitudes within Vincia

- Swaps incoming particles to outgoing, checks it has process
- Base class calculates all relevant spinor products
- Uses MHV wherever possible for MEC and setting polarisations
- Can also use Vincia to calculate MHV amplitudes as standalone
- The following can be calculated

| Type of Process | Number of Particles |
| :--- | :--- |
| All-Gluon | $4-6$ |
| Single $q \bar{q}$ Pair + Gluons | $4-7$ |
| Two $q \bar{q}$ Pairs + Gluons | 4,5 |
| $q \bar{q}$ and $I \bar{l}$ Pairs + Gluons (Z-Boson Exchange) | $4-9$ |

## Setting up the Shower

## Reminder

$$
\mathcal{M}_{i}\left(1^{h_{1}}, \ldots, n^{h_{n}}\right)=C_{i}\left(t^{1}, \ldots, t^{n}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)
$$

- Requires both a colour flow and a polarisation
- To understand, first need definitions:

- If no colour flow in hard process:


Helicity-Selection Factor Colour-Flow Selection Factor

- Else:



## Setting up the Shower

## Reminder

$$
\mathcal{M}_{i}\left(1^{h_{1}}, \ldots, n^{h_{n}}\right)=C_{i}\left(t^{1}, \ldots, t^{n}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)
$$

- Requires both a colour flow and a polarisation
- To understand, first need definitions:
- $L C_{i}=\mathcal{M}_{i}^{*} \mathcal{M}_{i}$, $F C=\sum_{i j} \mathcal{M}_{i}^{*} \mathcal{M}_{j}$, $V C_{i}=F C^{L} \frac{L C_{i}}{\sum_{i^{\prime}} L C_{i^{\prime}}}$
- If no colour flow in hard process:

- Else:



## Setting up the Shower

## Reminder

$$
\mathcal{M}_{i}\left(1^{h_{1}}, \ldots, n^{h_{n}}\right)=C_{i}\left(t^{1}, \ldots, t^{n}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)
$$

- Requires both a colour flow and a polarisation
- To understand, first need definitions:
- $L C_{i}=\mathcal{M}_{i}^{*} \mathcal{M}_{i}$, $F C=\sum_{i j} \mathcal{M}_{i}^{*} \mathcal{M}_{j}$,
$V C_{i}=F C \frac{L C_{i}}{\sum_{i^{\prime}} L_{C_{i}}}$
- If no colour flow in hard process:
- $P(h, i)=\underbrace{\frac{\mathrm{FC}^{h}}{\sum_{h^{\prime}} \mathrm{FC}^{h^{\prime}}}} \times \underbrace{\frac{\mathrm{LC}_{i}^{h}}{\sum_{j} \mathrm{LC}_{j}^{h}}}$

Helicity-Selection Factor
Colour-Flow Selection Factor

- Else
- $P(h \mid i)=\frac{V C_{i}}{\sum h^{\prime} C^{\prime}}$


## Setting up the Shower

## Reminder

$$
\mathcal{M}_{i}\left(1^{h_{1}}, \ldots, n^{h_{n}}\right)=C_{i}\left(t^{1}, \ldots, t^{n}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)
$$

- Requires both a colour flow and a polarisation
- To understand, first need definitions:
- $L C_{i}=\mathcal{M}_{i}^{*} \mathcal{M}_{i}$, $F C=\sum_{i j} \mathcal{M}_{i}^{*} \mathcal{M}_{j}$,
$V C_{i}=F C \frac{L C_{i}}{\sum_{i^{\prime}} L_{C_{i}}}$
- If no colour flow in hard process:
- P(h,i)= $\underbrace{\frac{\mathrm{FC}^{h}}{\sum_{h^{\prime}} \mathrm{FC}^{h^{\prime}}}}_{\text {Helicity-Selection Factor }} \times \underbrace{\frac{\mathrm{LC}_{i}^{h}}{\sum_{j} \mathrm{LC}_{j}^{h}}}_{\text {Colour-Flow Selection Factor }}$
- Else:
- $P(h \mid i)=\frac{\mathrm{VC}_{i}^{h}}{\sum_{h^{\prime}} \mathrm{VC}_{i}^{h^{\prime}}}$


## Polarising the Shower with MHV Amplitudes

$$
P(h \mid i)=\frac{\mathrm{VC}_{i}^{h}}{\sum_{h^{\prime}} \mathrm{VC}_{i}^{h^{\prime}}}=\frac{\mathrm{FC}^{h} \mathrm{LC}_{i}^{h}}{\sum_{j} \mathrm{LC}_{j}^{h}}\left[\sum_{h^{\prime}} \frac{\mathrm{FCC}^{\prime} \mathrm{LC}_{h^{\prime}}}{\sum_{k} \mathrm{LC}_{k}^{h^{\prime}}}\right]^{-1}
$$

- Usually polarise $2 \rightarrow 2$ or $2 \rightarrow 3$, i.e. MHV
- MHV kinematics can* be factorised into helicity and colour parts

$$
\begin{aligned}
\mathrm{FC}^{h} & =\left|A_{n}^{h}(1, \ldots, n)\right|^{2}\left|\sum_{\sigma} \frac{1}{\langle\sigma(1) \sigma(2)\rangle \ldots\langle\sigma(n) \sigma(1)\rangle} \mathrm{C}\left(\sigma\left(t^{1}\right), \ldots, \sigma\left(t^{n}\right)\right)\right|^{2} \\
& =\left|A_{n}^{h}\right|^{2}\left|\sum_{\sigma} F(\sigma)\right|^{2} \\
\mathrm{LC}_{i}^{h} & =\left|A_{n}^{h}\right|^{2}\left|F\left(\sigma_{i}\right)\right|^{2}
\end{aligned}
$$

## Polarising the Shower with MHV Amplitudes

$$
P(h \mid i)=\frac{\mathrm{VC}_{i}^{h}}{\sum_{h^{\prime}} \mathrm{VC}_{i}^{h^{\prime}}}=\frac{\mathrm{FC}^{h} \mathrm{LC}_{i}^{h}}{\sum_{j} \mathrm{LC}_{j}^{h}}\left[\sum_{h^{\prime}} \frac{\mathrm{FCC}^{\prime} \mathrm{LC}_{h^{\prime}}^{h^{\prime}}}{\sum_{k} \mathrm{LC}_{k}^{h^{\prime}}}\right]^{-1}=\frac{\left|A^{h}\right|^{h^{\prime}}}{\sum_{h^{\prime}}\left|A_{h}^{h^{\prime}}\right|^{2}}
$$

- Usually polarise $2 \rightarrow 2$ or $2 \rightarrow 3$, i.e. MHV
- MHV kinematics can* be factorised into helicity and colour parts

$$
\begin{aligned}
\mathrm{FC}^{h} & =\left|A_{n}^{h}(1, \ldots, n)\right|^{2}\left|\sum_{\sigma} \frac{1}{\langle\sigma(1) \sigma(2)\rangle \ldots\langle\sigma(n) \sigma(1)\rangle} \mathrm{C}\left(\sigma\left(t^{1}\right), \ldots, \sigma\left(t^{n}\right)\right)\right|^{2} \\
& =\left|A_{n}^{h}\right|^{2}\left|\sum_{\sigma} F(\sigma)\right|^{2} \\
\mathrm{LC}_{i}^{h} & =\left|A_{n}^{h}\right|^{2}\left|F\left(\sigma_{i}\right)\right|^{2}
\end{aligned}
$$

## Polarising the Shower with MHV Amplitudes

$$
P(h \mid i)=\frac{\mathrm{VC}_{i}^{h}}{\sum_{h^{\prime}} \mathrm{VC}_{i}^{h^{\prime}}}=\frac{\mathrm{FC}^{h} \mathrm{LC}_{i}^{h}}{\sum_{j} \mathrm{LC}_{j}^{h}}\left[\sum_{h^{\prime}} \frac{\mathrm{FC}^{h^{\prime}} \mathrm{LC}_{i}^{h^{\prime}}}{\sum_{k} \mathrm{LC}_{k}^{h^{\prime}}}\right]^{-1}=\frac{\left|A_{n}^{h}\right|^{2}}{\sum_{h^{\prime}}\left|A_{n}^{h^{\prime}}\right|^{2}} \stackrel{n-g}{=} \frac{\left|\langle i j\rangle^{4}\right|^{2}}{\sum_{k, I}\left|\langle k \mid\rangle^{4}\right|^{2}}
$$

- Usually polarise $2 \rightarrow 2$ or $2 \rightarrow 3$, i.e. MHV
- MHV kinematics can* be factorised into helicity and colour parts

$$
\begin{aligned}
\mathrm{FC}^{h} & =\left|A_{n}^{h}(1, \ldots, n)\right|^{2}\left|\sum_{\sigma} \frac{1}{\langle\sigma(1) \sigma(2)\rangle \ldots\langle\sigma(n) \sigma(1)\rangle} \mathrm{C}\left(\sigma\left(t^{1}\right), \ldots, \sigma\left(t^{n}\right)\right)\right|^{2} \\
& =\left|A_{n}^{h}\right|^{2}\left|\sum_{\sigma} F(\sigma)\right|^{2} \\
\mathrm{LC}_{i}^{h} & =\left|A_{n}^{h}\right|^{2}\left|F\left(\sigma_{i}\right)\right|^{2}
\end{aligned}
$$

## Match to Full (LO) Matrix Element

- MEC:

$$
\mathcal{M}_{P S}^{n+1} \rightarrow \mathcal{M}_{P S}^{n+1} \times \mathcal{R}, \quad\left(\mathcal{M}_{P S}^{n+1}=\mathcal{A} \times \mathcal{M}^{n}, \quad \mathcal{R} \sim \mathcal{M}_{\mathrm{ex}}^{n+1} / \mathcal{M}_{P S}^{n+1}\right)
$$

## Match to Full (LO) Matrix Element

- MEC:
$\mathcal{M}_{P S}^{n+1} \rightarrow \mathcal{M}_{P S}^{n+1} \times \mathcal{R}, \quad\left(\mathcal{M}_{P S}^{n+1}=\mathcal{A} \times \mathcal{M}^{n}, \quad \mathcal{R} \sim \mathcal{M}_{\mathrm{ex}}^{n+1} / \mathcal{M}_{P S}^{n+1}\right)$


## MEC factor

$$
\begin{aligned}
\mathcal{R}\left(\Phi_{n+1}\right)= & \left|\mathcal{M}\left(\Phi_{n+1}\right)\right|^{2} \times \\
& {\left[\sum_{\Phi_{n}^{\prime}} \mathcal{A}\left(\Phi_{n+1} / \Phi_{n}^{\prime}\right) \mathcal{R}\left(\Phi_{n}^{\prime}\right) \sum_{\phi_{n-1}^{\prime}} \Theta\left(t\left(\Phi_{n}^{\prime} / \Phi_{n-1}^{\prime}\right)-t\left(\Phi_{n+1} / \Phi_{n}^{\prime}\right)\right) \mathcal{A}\left(\Phi_{n}^{\prime} / \Phi_{n-1}^{\prime}\right) \mathcal{R}\left(\Phi_{n-1}^{\prime}\right)\right.} \\
& \prod_{k=n-2}^{k \leq 1}\left(\sum_{\Phi_{k}^{\prime}} \Theta\left(t\left(\Phi_{k+1}^{\prime} / \Phi_{k}^{\prime}\right)-t\left(\Phi_{k+2}^{\prime} / \Phi_{k+1}^{\prime}\right)\right) \mathcal{A}\left(\Phi_{k+1}^{\prime} / \Phi_{k}^{\prime}\right) \mathcal{R}\left(\Phi_{k}^{\prime}\right)\right) \\
& \left.\sum_{\Phi_{0}^{\prime}} \Theta\left(t\left(\phi_{1}^{\prime} / \Phi_{0}^{\prime}\right)-t\left(\Phi_{2}^{\prime} / \Phi_{1}^{\prime}\right)\right) \mathcal{A}\left(\phi_{1}^{\prime} / \Phi_{0}^{\prime}\right) \Theta\left(t\left(\Phi_{0}^{\prime}\right)-t\left(\Phi_{1}^{\prime} / \Phi_{0}^{\prime}\right)\right)\left|\mathcal{M}\left(\Phi_{0}^{\prime}\right)\right|^{2}\right]^{-1}
\end{aligned}
$$

## Match to Full (LO) Matrix Element

- MEC:

$$
\mathcal{M}_{P S}^{n+1} \rightarrow \mathcal{M}_{P S}^{n+1} \times \mathcal{R}, \quad\left(\mathcal{M}_{P S}^{n+1}=\mathcal{A} \times \mathcal{M}^{n}, \quad \mathcal{R} \sim \mathcal{M}_{\mathrm{ex}}^{n+1} / \mathcal{M}_{P S}^{n+1}\right)
$$

Full Matrix Element

## MEC factor

$$
\mathcal{R}\left(\Phi_{n+1}\right)=\left|\mathcal{M}\left(\Phi_{n+1}\right)\right|^{2} \times
$$

$$
\left[\sum_{\phi_{n}^{\prime}} \mathcal{A}\left(\phi_{n+1} / \phi_{n}^{\prime}\right) \mathcal{R}\left(\phi_{n}^{\prime}\right) \sum_{\Phi_{n-1}^{\prime}} \Theta^{\prime}\left(t\left(\Phi_{n}^{\prime} / \phi_{n-1}^{\prime}\right)-t\left(\phi_{n+1} / \Phi_{n}^{\prime}\right)\right) \mathcal{A}\left(\Phi_{n}^{\prime} / \Phi_{n-1}^{\prime}\right) \mathcal{R}\left(\phi_{n-1}^{\prime}\right)\right.
$$

$$
\prod_{k=n-2}^{k \leq 1}\left(\sum_{\phi_{k}^{\prime}} \Theta\left(t\left(\Phi_{k+1}^{\prime} / \Phi_{k}^{\prime}\right)-t\left(\Phi_{k+2}^{\prime} / \Phi_{k+1}^{\prime}\right)\right) \mathcal{A}\left(\Phi_{k+1}^{\prime} / \Phi_{k}^{\prime}\right) \mathcal{R}\left(\Phi_{k}^{\prime}\right)\right)
$$

$$
\left.\sum_{\Phi_{0}^{\prime}} \Theta\left(t\left(\Phi_{1}^{\prime} / \Phi_{0}^{\prime}\right)-t\left(\Phi_{2}^{\prime} / \Phi_{1}^{\prime}\right)\right) \mathcal{A}\left(\Phi_{1}^{\prime} / \Phi_{0}^{\prime}\right) \Theta\left(t\left(\phi_{0}^{\prime}\right)-t\left(\Phi_{1}^{\prime} / \Phi_{0}^{\prime}\right)\right)\left|\mathcal{M}\left(\phi_{0}^{\prime}\right)\right|^{2}\right]^{-1}
$$

Sum All Shower Histories
Possible Born-Level Processes

## Effects on Early Branchings, gg $\rightarrow$ gg

- Corrected first 2 emissions
- Large $d_{23}$ (i.e. $\left.\log _{10}\left(d_{23} / d_{12}\right) \sim 0\right)$ expect MECs important
- Pythia has no MECs
- Vincia and Pythia showers intrinsically different

Ratio of differential $k_{\perp}$-jet resolutions $(R=0.4)$


## Effects on Early Branchings, gg $\rightarrow$ gg

- Corrected first 2 emissions
- Large $d_{23}$ (i.e. $\left.\log _{10}\left(d_{23} / d_{12}\right) \sim 0\right)$ expect MECs important
- Pythia has no MECs
- Vincia and Pythia showers intrinsically different

Ratio of differential $k_{\perp}$-jet resolutions $(R=0.4)$


## Effects on Early Branchings, gg $\rightarrow$ gg

- Corrected first 2 emissions
- Large $d_{23}$ (i.e. $\left.\log _{10}\left(d_{23} / d_{12}\right) \sim 0\right)$ expect MECs important
- Pythia has no MECs
- Vincia and Pythia showers intrinsically different

Ratio of differential $k_{\perp}$-jet resolutions $(R=0.4)$


## Effects on Early Branchings, gg $\rightarrow$ gg

- Corrected first 2 emissions
- Large $d_{23}$ (i.e. $\left.\log _{10}\left(d_{23} / d_{12}\right) \sim 0\right)$ expect MECs important
- Pythia has no MECs
- Vincia and Pythia showers intrinsically different

Ratio of differential $k_{\perp}$-jet resolutions ( $R=0.4$ )


## Polarisation Effects, $g g \rightarrow g g, g \rightarrow b \bar{b}$



Image from arxiv:1812.09283

- $\theta(g p p, b b) \equiv$ angle between planes
- Both showers flat
- Vincia MECs, Pythia azymuthal Asym give preferred directions



## Polarisation Effects, $g g \rightarrow g g, g \rightarrow b \bar{b}$



Image from arxiv:1812.09283

- $\theta(g p p, b b) \equiv$ angle between planes
- Both showers flat
- Vincia MECs, Pythia azymuthal Asym give preferred directions



## Polarisation Effects, $g g \rightarrow g g, g \rightarrow b \bar{b}$



Image from arxiv:1812.09283

- $\theta(g p p, b b) \equiv$ angle between planes
- Both showers flat
- Vincia MECs, Pythia azymuthal Asym give preferred directions



## Polarisation Effects, $g g \rightarrow g g, g \rightarrow b \bar{b}$



Image from arxiv:1812.09283

- $\theta(g p p, b b) \equiv$ angle between planes
- Both showers flat
- Vincia MECs, Pythia azymuthal Asym give preferred directions

- But, opposite!?


## Polarisation Effects: a New ATLAS Measurement

- Recent measurement of gluon splitting at small opening angle (arxiv:1812.09283)
- Sherpa $2 \rightarrow n+\mathrm{PS}$ is flat, Pythia opposite shape, Vincia correct shape


Anti- $k_{\perp}$ jets with $R=0.2$ and $p_{\perp}>10 \mathrm{GeV}$,
$p_{\perp j}>450 \mathrm{GeV}$ and $m_{b b}$ unrestricted



## Summary

- Vincia is a plugin to Pythia, replaces its parton shower
- Vincia adds recursive MECs, giving better predictions in hard, wide angle limits
- Vincia uses helicity shower, giving more spin data, better angular information
- MECs slowed down by factorial-like growth of Feynman diagrams
- Vincia uses MHV amplitudes to remove this issue for some helicity configurations
- Results validate efforts
- One disagreement with Pythia, but ATLAS appears to favour Vincia


## Summary

- Vincia is a plugin to Pythia, replaces its parton shower
- Vincia adds recursive MECs, giving better predictions in hard, wide angle limits
- Vincia uses helicity shower, giving more spin data, better angular information
- MECs slowed down by factorial-like growth of Feynman diagrams
- Vincia uses MHV amplitudes to remove this issue for some helicity configurations
- Results validate efforts
- One disagreement with Pythia, but ATLAS appears to favour Vincia


## Summary

- Vincia is a plugin to Pythia, replaces its parton shower
- Vincia adds recursive MECs, giving better predictions in hard, wide angle limits
- Vincia uses helicity shower, giving more spin data, better angular information
- MECs slowed down by factorial-like growth of Feynman diagrams
- Vincia uses MHV amplitudes to remove this issue for some helicity configurations
- Results validate efforts
- One disagreement with Pythia, but ATLAS appears to favour Vincia


## Summary

- Vincia is a plugin to Pythia, replaces its parton shower
- Vincia adds recursive MECs, giving better predictions in hard, wide angle limits
- Vincia uses helicity shower, giving more spin data, better angular information
- MECs slowed down by factorial-like growth of Feynman diagrams
- Vincia uses MHV amplitudes to remove this issue for some helicity configurations
- Results validate efforts
- One disagreement with Pythia, but ATLAS appears to favour Vincia


## Summary

- Vincia is a plugin to Pythia, replaces its parton shower
- Vincia adds recursive MECs, giving better predictions in hard, wide angle limits
- Vincia uses helicity shower, giving more spin data, better angular information
- MECs slowed down by factorial-like growth of Feynman diagrams
- Vincia uses MHV amplitudes to remove this issue for some helicity configurations
- Results validate efforts
- One disagreement with Pythia, but ATLAS appears to favour Vincia


## Summary

- Vincia is a plugin to Pythia, replaces its parton shower
- Vincia adds recursive MECs, giving better predictions in hard, wide angle limits
- Vincia uses helicity shower, giving more spin data, better angular information
- MECs slowed down by factorial-like growth of Feynman diagrams
- Vincia uses MHV amplitudes to remove this issue for some helicity configurations
- Results validate efforts
- One disagreement with Pythia, but ATLAS appears to favour Vincia


## Bibliography I

目 Walter T. Giele, David A. Kosower, and Peter Z. Skands.
A simple shower and matching algorithm.
Phys. Rev., D78:014026, 2008.
Radine Fischer, Stefan Prestel, Mathias Ritzmann, and Peter Skands.
Vincia for Hadron Colliders.
Eur. Phys. J., C76(11):589, 2016.
Ronald Kleiss and Hans Kuijf.
Multi-gluon cross-sections and 5-jet production at hadron colliders.
Nucl. Phys., B312:616, 1989.

## Spinor-Helicity Formalism

## Spinors

- $v_{\mp}(p)=u_{ \pm}(p)=\frac{1}{2}\left(1 \pm \gamma^{5}\right) u(p)$
- $\bar{v}_{\mp}(p)=\bar{u}_{ \pm}(p)=\bar{u}(p) \frac{1}{2}\left(1 \mp \gamma^{5}\right)$
- $\langle i j\rangle \equiv \bar{u}_{-}(i) u_{+}(j)=\sqrt{p_{j}^{+}} e^{i \phi_{i}}-\sqrt{p_{i}^{+}} e^{i \phi_{j}}=-\langle j i\rangle$
- $[i] \equiv \bar{u}_{+}(i) u_{-}(j)=\langle j i\rangle^{*}$
- $\langle i j\rangle[j i]=s_{i j}=\left(p_{i}+p_{j}\right)^{2}$
- $\left.\bar{u}_{+}(i) \gamma^{\mu} u_{+}(j) \equiv\left[i\left|\gamma^{\mu}\right| j\right\rangle=\langle j| \gamma^{\mu} \mid i\right] \equiv \bar{u}_{-}(j) \gamma^{\mu} u_{-}(i)$
- $\epsilon_{\mu}^{+}(p, q)=\frac{\left[p\left|\gamma_{\mu}\right| q\right\rangle}{\sqrt{2}(q p\rangle}, \quad \epsilon_{\mu}^{-}(p, q)=-\frac{\left.\langle g| \gamma_{\mu} \mid q\right]}{\sqrt{2}[q p]}$
- $\left[i\left|\gamma_{\mu}\right| j\right\rangle\left[k\left|\gamma^{\mu}\right|\right\rangle=2[i k]\langle j i\rangle, \quad \epsilon_{\mu}^{+}(p, q) k^{\mu}=\frac{[p k]\langle k q\rangle}{\sqrt{2}(q p)}$


## Spinor-Helicity Formalism

## Spinors

- $v_{\mp}(p)=u_{ \pm}(p)=\frac{1}{2}\left(1 \pm \gamma^{5}\right) u(p)$
- $\bar{v}_{\mp}(p)=\bar{u}_{ \pm}(p)=\bar{u}(p) \frac{1}{2}\left(1 \mp \gamma^{5}\right)$
- $\langle i j\rangle \equiv \bar{u}_{-}(i) u_{+}(j)=\sqrt{p_{j}^{+}} e^{i \phi_{i}}-\sqrt{p_{i}^{+}} e^{i \phi_{j}}=-\langle j i\rangle$
- $[i j] \equiv \bar{u}_{+}(i) u_{-}(j)=\langle j i\rangle^{*}$

$$
\text { - } p_{i}^{+}=p_{i}^{0}+p_{i}^{3}, \quad e^{i \phi_{i}}=\left(p_{i}^{1}+i p_{i}^{2}\right) / \sqrt{p_{i}^{+}}
$$

- $\left.\bar{u}_{+}(i) \gamma^{\mu} u_{+}(j) \equiv\left[i\left|\gamma^{\mu}\right| j\right\rangle=\langle j| \gamma^{\mu} \mid i\right] \equiv \bar{u}_{-}(j)$
- $\epsilon_{\mu}^{+}(p, q)=\frac{\left[p\left|\gamma_{\mu}\right| q\right\rangle}{\sqrt{2}\langle q p\rangle}, \quad \epsilon_{\mu}^{-}(p, q)=-\frac{\left.\langle g| \gamma_{\mu} \mid q\right]}{\sqrt{2}[q p]}$
- $\left[i\left|\gamma_{\mu}\right| j\right\rangle\left[k\left|\gamma^{\mu}\right| I\right\rangle=2[i k]\langle i l\rangle, \quad \epsilon_{\mu}^{+}(p, a) k^{\mu}=\frac{[p k]\langle k q}{\sqrt{2}(q p)}$


## Spinor-Helicity Formalism

## Spinors

- $v_{\mp}(p)=u_{ \pm}(p)=\frac{1}{2}\left(1 \pm \gamma^{5}\right) u(p)$
- $\bar{v}_{\mp}(p)=\bar{u}_{ \pm}(p)=\bar{u}(p) \frac{1}{2}\left(1 \mp \gamma^{5}\right)$
- $\langle i j\rangle \equiv \bar{u}_{-}(i) u_{+}(j)=\sqrt{p_{j}^{+}} e^{i \phi_{i}}-\sqrt{p_{i}^{+}} e^{i \phi_{j}}=-\langle j i\rangle$
- $[i j] \equiv \bar{u}_{+}(i) u_{-}(j)=\langle j i\rangle^{*}$

$$
\text { - } p_{i}^{+}=p_{i}^{0}+p_{i}^{3}, \quad e^{i \phi_{i}}=\left(p_{i}^{1}+i p_{i}^{2}\right) / \sqrt{p_{i}^{+}}
$$

- $\langle i j\rangle[j i]=s_{i j}=\left(p_{i}+p_{j}\right)^{2}$

- $\left[i\left|\gamma_{\mu}\right| j\right\rangle\left[k\left|\gamma^{\mu}\right| I\right\rangle=2[i k]\langle j l\rangle, \quad \epsilon_{\mu}^{+}(p, q) k^{\mu}=\frac{[p k]\langle k q\rangle}{\sqrt{2}\langle q p\rangle}$


## Spinor-Helicity Formalism

## Spinors

- $v_{\mp}(p)=u_{ \pm}(p)=\frac{1}{2}\left(1 \pm \gamma^{5}\right) u(p)$
- $\bar{v}_{\mp}(p)=\bar{u}_{ \pm}(p)=\bar{u}(p) \frac{1}{2}\left(1 \mp \gamma^{5}\right)$
- $\langle i j\rangle \equiv \bar{u}_{-}(i) u_{+}(j)=\sqrt{p_{j}^{+}} e^{i \phi_{i}}-\sqrt{p_{i}^{+}} e^{i \phi_{j}}=-\langle j i\rangle$
- $[i j] \equiv \bar{u}_{+}(i) u_{-}(j)=\langle j i\rangle^{*}$

$$
\text { - } p_{i}^{+}=p_{i}^{0}+p_{i}^{3}, \quad e^{i \phi_{i}}=\left(p_{i}^{1}+i p_{i}^{2}\right) / \sqrt{p_{i}^{+}}
$$

- $\langle i j\rangle[j i]=s_{i j}=\left(p_{i}+p_{j}\right)^{2}$


## Vectors

- $\left.\bar{u}_{+}(i) \gamma^{\mu} u_{+}(j) \equiv\left[i\left|\gamma^{\mu}\right| j\right\rangle=\langle j| \gamma^{\mu} \mid i\right] \equiv \bar{u}_{-}(j) \gamma^{\mu} u_{-}(i)$
- $\epsilon_{\mu}^{+}(p, q)=\frac{\left[p\left|\gamma_{\mu}\right| q\right\rangle}{\sqrt{2}\langle q p\rangle}, \quad \epsilon_{\mu}^{-}(p, q)=-\frac{\left.\langle g| \gamma_{\mu} \mid q\right]}{\sqrt{2}[q p]}$
- $\left[i\left|\gamma_{\mu}\right| j\right\rangle\left[k\left|\gamma^{\mu}\right| I\right\rangle=2[i k]\langle j \mid\rangle, \quad \epsilon_{\mu}^{+}(p, q) k^{\mu}=\frac{[p k]\langle k q\rangle}{\sqrt{2}\langle q p\rangle}$


## Spinor-Helicity Formalism

## Spinors

- $v_{\mp}(p)=u_{ \pm}(p)=\frac{1}{2}\left(1 \pm \gamma^{5}\right) u(p)$
- $\bar{v}_{\mp}(p)=\bar{u}_{ \pm}(p)=\bar{u}(p) \frac{1}{2}\left(1 \mp \gamma^{5}\right)$
- $\langle i j\rangle \equiv \bar{u}_{-}(i) u_{+}(j)=\sqrt{p_{j}^{+}} e^{i \phi_{i}}-\sqrt{p_{i}^{+}} e^{i \phi_{j}}=-\langle j i\rangle$
- $[i j] \equiv \bar{u}_{+}(i) u_{-}(j)=\langle j i\rangle^{*}$

$$
\text { - } p_{i}^{+}=p_{i}^{0}+p_{i}^{3}, \quad e^{i \phi_{i}}=\left(p_{i}^{1}+i p_{i}^{2}\right) / \sqrt{p_{i}^{+}}
$$

- $\langle i j\rangle[j i]=s_{i j}=\left(p_{i}+p_{j}\right)^{2}$


## Vectors

- $\left.\bar{u}_{+}(i) \gamma^{\mu} u_{+}(j) \equiv\left[i\left|\gamma^{\mu}\right| j\right\rangle=\langle j| \gamma^{\mu} \mid i\right] \equiv \bar{u}_{-}(j) \gamma^{\mu} u_{-}(i)$
- $\epsilon_{\mu}^{+}(p, q)=\frac{\left[p\left|\gamma_{\mu}\right| q\right\rangle}{\sqrt{2}\langle q p\rangle}, \quad \epsilon_{\mu}^{-}(p, q)=-\frac{\left.\langle g| \gamma_{\mu} \mid q\right]}{\sqrt{2}[q p]}$
- $\left[i\left|\gamma_{\mu}\right| j\right\rangle\left[k\left|\gamma^{\mu}\right| I\right\rangle=2[i k]\langle j l\rangle, \quad \epsilon_{\mu}^{+}(p, q) k^{\mu}=\frac{[p k]\langle k q\rangle}{\sqrt{2}\langle q p\rangle}$


## Generate a Branching

- Generate unpolarised antenna branching
- Means shower without MECs has no spin correlations
- Then choose a polarisation for $i, j, k$
- $P\left(h_{A}, h_{B} ; h_{i}, h_{j}, h_{k}\right)=\frac{\mathcal{A}\left(h_{A}, h_{B} ; h_{i}, h_{j}, h_{k}\right)}{\sum \mathcal{A}\left(h_{A}, h_{B} ; h_{i}, h_{j}, h_{k}\right)}$
- $\mathcal{A}\left(h_{A}, h_{B} ; h_{i}, h_{j}, h_{k}\right)$ is antenna function
- Reproduces correct limits in soft/collinear regions
- Sum of polarised antennae $=$ unpolarised antenna



## Generate a Branching

- Generate unpolarised antenna branching
- Means shower without MECs has no spin correlations
- Then choose a polarisation for $i, j, k$
- $P\left(h_{A}, h_{B} ; h_{i}, h_{j}, h_{k}\right)=\frac{\mathcal{A}\left(h_{A}, h_{B} ; h_{i}, h_{j}, h_{k}\right)}{\sum_{h_{i}, h_{j}, h_{k}} \mathcal{A}\left(h_{A}, h_{B} ; h_{i}, h_{j}, h_{k}\right)}$
- $\mathcal{A}\left(h_{A}, h_{B} ; h_{i}, h_{j}, h_{k}\right)$ is antenna function
- Reproduces correct limits in soft/collinear regions
- Sum of polarised antennae $=$ unpolarised antenna



## Generate a Branching

- Generate unpolarised antenna branching
- Means shower without MECs has no spin correlations
- Then choose a polarisation for $i, j, k$
- $P\left(h_{A}, h_{B} ; h_{i}, h_{j}, h_{k}\right)=\frac{\mathcal{A}\left(h_{A}, h_{B} ; h_{i}, h_{j}, h_{k}\right)}{\sum_{h_{i}, h_{j}, h_{k}} \mathcal{A}\left(h_{A}, h_{B} ; h_{i}, h_{j}, h_{k}\right)}$
- $\mathcal{A}\left(h_{A}, h_{B} ; h_{i}, h_{j}, h_{k}\right)$ is antenna function
- Reproduces correct limits in soft/collinear regions
- Sum of polarised antennae $=$ unpolarised antenna



## MHV Amplitudes

- Results for mostly-plus helicities
- Flipping all helicities means $\langle i j\rangle \rightarrow[j i]$ (and $|\mathcal{M}|_{h}^{2}=|\mathcal{M}|_{-h}^{2}$ )


## MHV Amplitudes

- Results for mostly-plus helicities
- Flipping all helicities means $\langle i j\rangle \rightarrow[j i]$ (and $|\mathcal{M}|_{h}^{2}=|\mathcal{M}|_{-h}^{2}$ )


## All-Gluon Amplitudes

$$
A_{\sigma_{i}}\left(i^{-}, j^{-}\right)=i \frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle}
$$

## MHV Amplitudes

- Results for mostly-plus helicities
- Flipping all helicities means $\langle i j\rangle \rightarrow[j i]$ (and $|\mathcal{M}|_{h}^{2}=|\mathcal{M}|_{-h}^{2}$ )


## All-Gluon Amplitudes

$$
A_{\sigma_{i}}\left(i^{-}, j^{-}\right)=i \frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle}
$$

## 1 Quark Pair QCD Amplitudes

$$
\begin{aligned}
& A_{\sigma_{i}}\left(q^{-}, i^{-}, \bar{q}^{+}\right)=\frac{\langle q i\rangle^{3}\langle\bar{q} i\rangle}{\langle\bar{q} q\rangle\langle q 1\rangle\langle 12\rangle \ldots\langle(n-2) \bar{q}\rangle} \\
& A_{\sigma_{i}}\left(q^{+}, i^{-}, \bar{q}^{-}\right)=\frac{\langle q i\rangle\langle\bar{q} i\rangle^{3}}{\langle\bar{q} q\rangle\langle q 1\rangle\langle 12\rangle \ldots\langle(n-2) \bar{q}\rangle}
\end{aligned}
$$

## Proton-Proton Collisions: Overview



- Figure stolen from Stefan Hoeche
- Hard Process, resonant
- Parton Shower
- MPIs
- Hadronisation
- Hadron Decays


## Proton-Proton Collisions: Overview



- Figure stolen from Stefan Hoeche
- Hard Process, resonant decays
- Parton Shower
- MPIs
- Hadronisation
- Hadron Decays


## Proton-Proton Collisions: Overview



- Figure stolen from Stefan Hoeche
- Hard Process, resonant decays
- Parton Shower
- MPIs
- Hadronisation
- Hadron Decavs


## Proton-Proton Collisions: Overview



- Figure stolen from Stefan Hoeche
- Hard Process, resonant decays
- Parton Shower
- MPIs
- Hadronisation
- Hadron Decays


## Proton-Proton Collisions: Overview



- Figure stolen from Stefan Hoeche
- Hard Process, resonant decays
- Parton Shower
- MPIs
- Hadronisation
- Hadron Decays
- Beam Remnants/UE


## Proton-Proton Collisions: Overview



- Figure stolen from Stefan Hoeche
- Hard Process, resonant decays
- Parton Shower
- MPIs
- Hadronisation
- Hadron Decays



## Proton-Proton Collisions: Overview



- Figure stolen from Stefan Hoeche
- Hard Process, resonant decays
- Parton Shower
- MPIs
- Hadronisation
- Hadron Decays
- Photon Emission
- Beam Remnants/UE


## Proton-Proton Collisions: Overview



- Figure stolen from Stefan Hoeche
- Hard Process, resonant decays
- Parton Shower
- MPIs
- Hadronisation
- Hadron Decays
- Photon Emission
- Beam Remnants/UE


## What a Parton Shower Does

- Bremsstrahlung occurs in initial- (ISR) and final- (FSR) state radiation
- Recursively generates emissions off a parton
- Assumes radiation to be soft and/or collinear
- Logarithmic enhancement in emission probability
- Describes soft and/or collinear radiation very well
- Poor job of describing hard, wide-angle emissions



## What a Parton Shower Does

- Bremsstrahlung occurs in initial- (ISR) and final- (FSR) state radiation
- Recursively generates emissions off a parton
- Assumes radiation to be soft and/or collinear
- Logarithmic enhancement in emission probability
- Describes soft and/or collinear radiation very well
- Poor job of describing hard, wide-angle emissions



## What a Parton Shower Does

- Bremsstrahlung occurs in initial- (ISR) and final- (FSR) state radiation
- Recursively generates emissions off a parton
- Assumes radiation to be soft and/or collinear
- Logarithmic enhancement in emission probability
- Describes soft and/or collinear radiation very well
- Poor job of describing hard, wide-angle emissions



## What a Parton Shower Does

- Bremsstrahlung occurs in initial- (ISR) and final- (FSR) state radiation
- Recursively generates emissions off a parton
- Assumes radiation to be soft and/or collinear
- Logarithmic enhancement in emission probability
- Describes soft and/or collinear radiation very well
- Poor job of describing hard, wide-angle emissions



## Pythia's Parton Shower

- Markov chain of collinear emissions off single partons
- No concept of history
- Soft and wide-angled emissions artificially separated
- Angular distributions can be compromised
- Dipole shower. Spectator parton for momentum conservation
- Unpolarised partons, minimal spin correlations
- Uses the full matrix element to correct first emission (MEC)
- All subsequent emissions only well-described in soft/collinear parts of phase space



## Pythia's Parton Shower

- Markov chain of collinear emissions off single partons
- No concept of history
- Soft and wide-angled emissions artificially separated
- Angular distributions can be compromised
- Dipole shower. Spectator parton for momentum conservation
- Unpolarised partons, minimal spin correlations
- Uses the full matrix element to correct first emission (MEC)
- All subsequent emissions only well-described in soft/collinear parts of phase space



## Pythia's Parton Shower

- Markov chain of collinear emissions off single partons
- No concept of history
- Soft and wide-angled emissions artificially separated
- Angular distributions can be compromised
- Dipole shower. Spectator parton for momentum conservation
- Unpolarised partons, minimal spin correlations
- Uses the full matrix element to correct first emission (MEC)
- All subsequent emissions only well-described in soft/collinear parts of phase space



## Pythia's Parton Shower

- Markov chain of collinear emissions off single partons
- No concept of history
- Soft and wide-angled emissions artificially separated
- Angular distributions can be compromised
- Dipole shower. Spectator parton for momentum conservation
- Unpolarised partons, minimal spin correlations
- Uses the full matrix element to correct first emission (MEC)
- All subsequent emissions only well-described in soft/collinear parts of phase space



## Pythia's Parton Shower

- Markov chain of collinear emissions off single partons
- No concept of history
- Soft and wide-angled emissions artificially separated
- Angular distributions can be compromised
- Dipole shower. Spectator parton for momentum conservation
- Unpolarised partons, minimal spin correlations
- Uses the full matrix element to correct first emission (MEC)
- All subsequent emissions only well-described in soft/collinear parts of phase space
- Conclusion: is good, can be better



## Vincia's Parton Shower

- Uses colour antennae, not emission off single partons
- Soft and wide-angle emissions described more naturally
- Can use full matrix element to correct up to $3^{\text {rd }}$ emission
- Non-Markovian emissions, remembers histories
- Helicity shower
- Many spin correlations automatically accounted for
- Quicker calculation of MECs



## Vincia's Parton Shower

- Uses colour antennae, not emission off single partons
- Soft and wide-angle emissions described more naturally
- Can use full matrix element to correct up to $3^{\text {rd }}$ emission
- Non-Markovian emissions, remembers histories
- Helicity shower
- Many spin correlations automatically accounted for
- Quicker calculation of MECs



## Vincia's Parton Shower

- Uses colour antennae, not emission off single partons
- Soft and wide-angle emissions described more naturally
- Can use full matrix element to correct up to $3^{\text {rd }}$ emission
- Non-Markovian emissions, remembers histories
- Helicity shower
- Many spin correlations automatically accounted for
- Quicker calculation of MECs



## Vincia's Parton Shower

- Uses colour antennae, not emission off single partons
- Soft and wide-angle emissions described more naturally
- Can use full matrix element to correct up to $3^{\text {rd }}$ emission
- Non-Markovian emissions, remembers histories
- Helicity shower
- Many spin correlations automatically accounted for
- Quicker calculation of MECs



## Why Quicker MECs in a Helicity Shower?

- In normal Amplitudes we sum and average spins/helicities
- Here we only need a single helicity configuration for each amplitude
- Helicity amplitudes are often remarkably simple to compute
- Most simple is called Maximally Helicity Violating (MHV)
- Helicity conservation can be made explicit
- Can trace the helicity through the shower
- Allows us to use the quicker helicity amplitudes in all histories of an MEC


## Why Quicker MECs in a Helicity Shower?

- In normal Amplitudes we sum and average spins/helicities
- Here we only need a single helicity configuration for each amplitude
- Helicity amplitudes are often remarkably simple to compute
- Most simple is called Maximally Helicity Violating (MHV)
- Helicity conservation can be made explicit
- Can trace the helicity through the shower
- Allows us to use the quicker helicity amplitudes in all histories of an MEC


## Why Quicker MECs in a Helicity Shower?

- In normal Amplitudes we sum and average spins/helicities
- Here we only need a single helicity configuration for each amplitude
- Helicity amplitudes are often remarkably simple to compute
- Most simple is called Maximally Helicity Violating (MHV)
- Helicity conservation can be made explicit
- Can trace the helicity through the shower
- Allows us to use the quicker helicity amplitudes in all histories of an MEC


## Why Quicker MECs in a Helicity Shower?

- In normal Amplitudes we sum and average spins/helicities
- Here we only need a single helicity configuration for each amplitude
- Helicity amplitudes are often remarkably simple to compute
- Most simple is called Maximally Helicity Violating (MHV)
- Helicity conservation can be made explicit
- Can trace the helicity through the shower
- Allows us to use the quicker helicity amplitudes in all histories of an MEC


## Why Quicker MECs in a Helicity Shower?

- In normal Amplitudes we sum and average spins/helicities
- Here we only need a single helicity configuration for each amplitude
- Helicity amplitudes are often remarkably simple to compute
- Most simple is called Maximally Helicity Violating (MHV)
- Helicity conservation can be made explicit
- Can trace the helicity through the shower
- Allows us to use the quicker helicity amplitudes in all histories of an


## Why Quicker MECs in a Helicity Shower?

- In normal Amplitudes we sum and average spins/helicities
- Here we only need a single helicity configuration for each amplitude
- Helicity amplitudes are often remarkably simple to compute
- Most simple is called Maximally Helicity Violating (MHV)
- Helicity conservation can be made explicit
- Can trace the helicity through the shower
- Allows us to use the quicker helicity amplitudes in all histories of an MEC


## A Solution: Recursion Relations

- Recursively generate a compact form for the matrix element
- Often use spinor-helicity formalism
- Assume all particles are outgoing
- Use crossing symmetry for initial-state partons
- Organises processes based on the number of opposite helicities - $\mathcal{M}\left[n^{ \pm}\right], \mathcal{M}\left[(n-1)^{ \pm}, 1^{\mp}\right]=0$

[^0]
## A Solution: Recursion Relations

- Recursively generate a compact form for the matrix element
- Often use spinor-helicity formalism
- Assume all particles are outgoing
- Use crossing symmetry for initial-state partons
- Organises processes based on the number of onnosite helicities - $\mathcal{M}\left[n^{ \pm}\right], \mathcal{M}\left[(n-1)^{ \pm}, 1^{\mp}\right]=0$
- This simplifies only the kinematics of the amplitude


## A Solution: Recursion Relations

- Recursively generate a compact form for the matrix element
- Often use spinor-helicity formalism
- Assume all particles are outgoing
- Use crossing symmetry for initial-state partons
- Organises processes based on the number of opposite helicities - $\mathcal{M}\left[n^{ \pm}\right], \mathcal{M}\left[(n-1)^{ \pm}, 1^{\mp}\right]=0$
- This simplifies only the kinematics of the amplitude


## A Solution: Recursion Relations

- Recursively generate a compact form for the matrix element
- Often use spinor-helicity formalism
- Assume all particles are outgoing
- Use crossing symmetry for initial-state partons
- Organises processes based on the number of opposite helicities
- $\mathcal{M}\left[n^{ \pm}\right], \mathcal{M}\left[(n-1)^{ \pm}, 1^{\mp}\right]=0$

- This simplifies only the kinematics of the amplitude


## A Solution: Recursion Relations

- Recursively generate a compact form for the matrix element
- Often use spinor-helicity formalism
- Assume all particles are outgoing
- Use crossing symmetry for initial-state partons
- Organises processes based on the number of opposite helicities
- $\mathcal{M}\left[n^{ \pm}\right], \mathcal{M}\left[(n-1)^{ \pm}, 1^{\mp}\right]=0$
- $\mathcal{M}\left[(n-2)^{ \pm}, 2^{\mp}\right]=M H V$
- $\mathcal{M}\left[(n-3)^{ \pm}, 3^{+}\right]=$NMHV
- $\mathcal{M}\left[(n-4)^{ \pm}, 4^{\mp}\right]=$ NNMHV
- etc.
- This simplifies only the kinematics of the amplitude


## A Solution: Recursion Relations

- Recursively generate a compact form for the matrix element
- Often use spinor-helicity formalism
- Assume all particles are outgoing
- Use crossing symmetry for initial-state partons
- Organises processes based on the number of opposite helicities
- $\mathcal{M}\left[n^{ \pm}\right], \mathcal{M}\left[(n-1)^{ \pm}, 1^{\mp}\right]=0$
- $\mathcal{M}\left[(n-2)^{ \pm}, 2^{\mp}\right]=M H V$
- $\mathcal{M}\left[(n-3)^{ \pm}, 3^{\mp}\right]=N M H V$
- etc.
- This simplifies only the kinematics of the amplitude


## A Solution: Recursion Relations

- Recursively generate a compact form for the matrix element
- Often use spinor-helicity formalism
- Assume all particles are outgoing
- Use crossing symmetry for initial-state partons
- Organises processes based on the number of opposite helicities
- $\mathcal{M}\left[n^{ \pm}\right], \mathcal{M}\left[(n-1)^{ \pm}, 1^{\mp}\right]=0$
- $\mathcal{M}\left[(n-2)^{ \pm}, 2^{\mp}\right]=M H V$
- $\mathcal{M}\left[(n-3)^{ \pm}, 3^{\mp}\right]=N M H V$
- $\mathcal{M}\left[(n-4)^{ \pm}, 4^{\mp}\right]=N N M H V$
- This simplifies only the kinematics of the amplitude


## A Solution: Recursion Relations

- Recursively generate a compact form for the matrix element
- Often use spinor-helicity formalism
- Assume all particles are outgoing
- Use crossing symmetry for initial-state partons
- Organises processes based on the number of opposite helicities
- $\mathcal{M}\left[n^{ \pm}\right], \mathcal{M}\left[(n-1)^{ \pm}, 1^{\mp}\right]=0$
- $\mathcal{M}\left[(n-2)^{ \pm}, 2^{\mp}\right]=M H V$
- $\mathcal{M}\left[(n-3)^{ \pm}, 3^{\mp}\right]=N M H V$
- $\mathcal{M}\left[(n-4)^{ \pm}, 4^{\mp}\right]=N N M H V$
- etc.
- This simplifies only the kinematics of the amplitude


## A Solution: Recursion Relations

- Recursively generate a compact form for the matrix element
- Often use spinor-helicity formalism
- Assume all particles are outgoing
- Use crossing symmetry for initial-state partons
- Organises processes based on the number of opposite helicities
- $\mathcal{M}\left[n^{ \pm}\right], \mathcal{M}\left[(n-1)^{ \pm}, 1^{\mp}\right]=0$
- $\mathcal{M}\left[(n-2)^{ \pm}, 2^{\mp}\right]=M H V$
- $\mathcal{M}\left[(n-3)^{ \pm}, 3^{\mp}\right]=N M H V$
- $\mathcal{M}\left[(n-4)^{ \pm}, 4^{\mp}\right]=N N M H V$
- etc.
- This simplifies only the kinematics of the amplitude


## Colour Ordering

- Can easily separate colour and kinematics in a process
- $\mathcal{M}_{i}\left(1^{h_{1}}, \ldots, n^{h_{n}}\right)=C_{i}\left(t^{1}, \ldots, t^{n}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)$
- $|\mathcal{M}|^{2}=\sum_{i, j} \mathcal{M}_{i}^{*} \mathcal{M}_{j}=\sum_{i, j} A_{i}^{*} C_{i j} A_{j}$
- Many different possible colour bases
- each give different kinematics
- Most common is so-called trace basis


## Colour Ordering

- Can easily separate colour and kinematics in a process
- $\mathcal{M}_{i}\left(1^{h_{1}}, \ldots, n^{h_{n}}\right)=C_{i}\left(t^{1}, \ldots, t^{n}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)$
- $|\mathcal{M}|^{2}=\sum_{i, j} \mathcal{M}_{i}^{*} \mathcal{M}_{j}=\sum_{i, j} A_{i}^{*} C_{i j} A_{j}$
- Many different possible colour bases
- each give different kinematics
- Most common is so-called trace basis


## Colour Ordering

- Can easily separate colour and kinematics in a process
- $\mathcal{M}_{i}\left(1^{h_{1}}, \ldots, n^{h_{n}}\right)=C_{i}\left(t^{1}, \ldots, t^{n}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)$
- $|\mathcal{M}|^{2}=\sum_{i, j} \mathcal{M}_{i}^{*} \mathcal{M}_{j}=\sum_{i, j} A_{i}^{*} C_{i j} A_{j}$
- Many different possible colour bases
- each give different kinematics
- Most common is so-called trace basis


## Colour Ordering

- Can easily separate colour and kinematics in a process
- $\mathcal{M}_{i}\left(1^{h_{1}}, \ldots, n^{h_{n}}\right)=C_{i}\left(t^{1}, \ldots, t^{n}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)$
- $|\mathcal{M}|^{2}=\sum_{i, j} \mathcal{M}_{i}^{*} \mathcal{M}_{j}=\sum_{i, j} A_{i}^{*} C_{i j} A_{j}$
- Many different possible colour bases
- each give different kinematics
- Most common is so-called trace basis
- Conceptually simple, but non-orthogonal and overcomplete


## Colour Ordering

- Can easily separate colour and kinematics in a process
- $\mathcal{M}_{i}\left(1^{h_{1}}, \ldots, n^{h_{n}}\right)=C_{i}\left(t^{1}, \ldots, t^{n}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)$
- $|\mathcal{M}|^{2}=\sum_{i, j} \mathcal{M}_{i}^{*} \mathcal{M}_{j}=\sum_{i, j} A_{i}^{*} C_{i j} A_{j}$
- Many different possible colour bases
- each give different kinematics
- Most common is so-called trace basis
- Conceptually simple, but non-orthogonal and overcomplete


## Colour Order in the Trace Basis: All-Gluon Case

## All-Gluon Amplitude Structure

$$
\mathcal{M}_{i}\left(g_{1}, g_{2}, \ldots, g_{n}\right)=g_{s}^{n-2} \operatorname{Tr}\left(t^{a_{1}} \ldots t^{a_{n}}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)
$$

## Colour Order in the Trace Basis: All-Gluon Case

## All-Gluon Amplitude Structure

$$
\mathcal{M}_{i}\left(g_{1}, g_{2}, \ldots, g_{n}\right)=g_{s}^{n-2} \operatorname{Tr}\left(t^{a_{1}} \ldots t^{a_{n}}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)
$$

- If $\mathcal{M}_{i}\left(g_{1}, g_{2}, g_{3}, g_{4}\right)$ :



## Colour Order in the Trace Basis: All-Gluon Case

## All-Gluon Amplitude Structure

$$
\mathcal{M}_{i}\left(g_{1}, g_{2}, \ldots, g_{n}\right)=g_{s}^{n-2} \operatorname{Tr}\left(t^{a_{1}} \ldots t^{a_{n}}\right) A_{i}\left(p_{1}^{h_{1}}, \ldots, p_{n}^{h_{n}}\right)
$$

- If $\mathcal{M}_{i}\left(g_{1}, g_{2}, g_{3}, g_{4}\right)$ :



## Colour Order in the Trace Basis: $1 q \bar{q}$ Pair, $n-2$ Gluons

## 1 Quark Pair QCD Amplitude Structure

$\mathcal{M}_{i}\left(q, g_{1}, \ldots, g_{n-2}, \bar{q}\right)=g_{s}^{n-2}\left(t^{a_{1}} \ldots t^{a_{n-2}}\right)_{q \bar{q}} A_{i}\left(q^{h_{q}}, p_{1}^{h_{1}}, \ldots, p_{n-2}^{h_{n-2}}, \bar{q}^{h_{\bar{q}}}\right)$

## Colour Order in the Trace Basis: $1 q \bar{q}$ Pair, $n-2$ Gluons

## 1 Quark Pair QCD Amplitude Structure

$\mathcal{M}_{i}\left(q, g_{1}, \ldots, g_{n-2}, \bar{q}\right)=g_{s}^{n-2}\left(t^{a_{1}} \ldots t^{a_{n-2}}\right)_{q \bar{q}} A_{i}\left(q^{h_{q}}, p_{1}^{h_{1}}, \ldots, p_{n-2}^{h_{n-2}}, \bar{q}^{h_{\bar{q}}}\right)$


## Colour Order in the Trace Basis: $1 q \bar{q}$ Pair, $n-2$ Gluons

## 1 Quark Pair QCD Amplitude Structure

$\mathcal{M}_{i}\left(q, g_{1}, \ldots, g_{n-2}, \bar{q}\right)=g_{s}^{n-2}\left(t^{a_{1}} \ldots t^{a_{n-2}}\right)_{q \bar{q}} A_{i}\left(q^{h_{q}}, p_{1}^{h_{1}}, \ldots, p_{n-2}^{h_{n-2}}, \bar{q}^{h_{\bar{q}}}\right)$


## Colour Order in the Trace Basis: $1 q \bar{q}$ Pair, $n-2$ Gluons

## 1 Quark Pair QCD Amplitude Structure

$\mathcal{M}_{i}\left(q, g_{1}, \ldots, g_{n-2}, \bar{q}\right)=g_{s}^{n-2}\left(t^{a_{1}} \ldots t^{a_{n-2}}\right)_{q \bar{q}} A_{i}\left(q^{h_{q}}, p_{1}^{h_{1}}, \ldots, p_{n-2}^{h_{n-2}}, \bar{q}^{h_{\bar{q}}}\right)$


## Colour Order in the Trace Basis: $2 q \bar{q}$ Pairs, $n-4$ Gluons

## 2 Quark Pair QCD Amplitude Structure 1

$\mathcal{M}_{i}(Q, 1, \ldots, k, \bar{q}, q, k+1, \ldots, n-4, \bar{Q})=g_{s}^{n-2} \times$ $\mathcal{A}_{i}\left(h_{q}, h_{Q}, h_{g}\right)\left(t^{a_{1}} \ldots t^{a_{k}}\right)_{Q \bar{q}}\left(t^{a_{k+1}} \ldots t^{a_{n-4}}\right)_{q \bar{Q}} \times$ $\mathcal{A}_{i}^{(1)}(Q, 1, \ldots, k, \bar{q}, q, k+1, \ldots, n-4, \bar{Q})$


## Colour Order in the Trace Basis: $2 q \bar{q}$ Pairs, $n-4$ Gluons

## 2 Quark Pair QCD Amplitude Structure 1

$$
\begin{aligned}
& \mathcal{M}_{i}(Q, 1, \ldots, k, \bar{q}, q, k+1, \ldots, n-4, \bar{Q})=g_{s}^{n-2} \times \\
& \mathcal{A}_{i}\left(h_{q}, h_{Q}, h_{g}\right)\left(t^{a_{1}} \ldots t^{a_{k}}\right)_{Q \bar{q}}\left(t^{a_{k+1}} \ldots t^{a_{n-4}}\right)_{q \bar{Q}} \times \\
& \mathcal{A}_{i}^{(1)}(Q, 1, \ldots, k, \bar{q}, q, k+1, \ldots, n-4, \bar{Q})
\end{aligned}
$$



## 2 Quark Pair QCD Amplitude Structure 2

$$
\mathcal{M}_{i}(q, 1, \ldots, k, \bar{q}, Q, k+1, \ldots, n-4, \bar{Q})=-g_{s}^{n-2} \times
$$

$$
\begin{aligned}
& \frac{1}{N_{C}} \mathcal{A}_{i}\left(h_{q}, h_{Q}, h_{g}\right)\left(t^{a_{1}} \ldots t^{a_{k}}\right)_{q \bar{q}}\left(t^{a_{k+1}} \ldots t^{a_{n-4}}\right)_{Q \bar{Q} \times} \\
& \mathcal{A}_{i}^{(2)}(q, 1, \ldots, k, \bar{q}, Q, k+1, \ldots, n-4, \bar{Q})
\end{aligned}
$$



## MHV Amplitudes: All-Gluon

## Full Colour-Summed Amplitude $\left(\mathrm{MHV}=\mathcal{M}\left[(n-2)^{ \pm}, 2^{\mp}\right]\right)$

$$
\sum_{i} \mathcal{M}_{i}\left(g_{1}, g_{2}, \ldots, g_{n}\right)=g_{s}^{n-2} \sum_{\sigma_{i} \in S_{n} / Z_{n}} \operatorname{Tr}\left(t^{a_{\sigma_{i}(1)}} \ldots t^{a_{\sigma_{i}(n)}}\right) A_{\sigma_{i}}\left(\sigma_{i}\left(p_{1}^{h_{1}}\right), \ldots, \sigma_{i}\left(p_{n}^{h_{n}}\right)\right)
$$

## Kinematic Amplitude

$$
\begin{aligned}
A_{\sigma_{i}}\left(i^{-}, j^{-}\right) & =i \frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle} \\
A_{\sigma_{i}}\left(i^{+}, j^{+}\right) & =i \frac{[j i]^{4}}{[1 n][n(n-1)] \ldots[21]}
\end{aligned}
$$

- Flipping all helicities means $\langle i j\rangle \rightarrow[j i]$



## MHV Amplitudes: All-Gluon

## Full Colour-Summed Amplitude (MHV $\left.=\mathcal{M}\left[(n-2)^{ \pm}, 2^{\mp}\right]\right)$

$$
\sum_{i} \mathcal{M}_{i}\left(g_{1}, g_{2}, \ldots, g_{n}\right)=g_{s}^{n-2} \sum_{\sigma_{i} \in S_{n} / Z_{n}} \operatorname{Tr}\left(t^{a_{\sigma_{i}(1)}} \ldots t^{a_{\sigma_{i}(n)}}\right) A_{\sigma_{i}}\left(\sigma_{i}\left(p_{1}^{h_{1}}\right), \ldots, \sigma_{i}\left(p_{n}^{h_{n}}\right)\right)
$$

## Kinematic Amplitude

$$
\begin{aligned}
A_{\sigma_{i}}\left(i^{-}, j^{-}\right) & =i \frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle} \\
A_{\sigma_{i}}\left(i^{+}, j^{+}\right) & =i \frac{[j i]^{4}}{[1 n][n(n-1)] \ldots[21]}
\end{aligned}
$$

- Flipping all helicities means $\langle i j\rangle \rightarrow[j i]$


## MHV Amplitudes: All-Gluon

## Full Colour-Summed Amplitude (MHV $\left.=\mathcal{M}\left[(n-2)^{ \pm}, 2^{\mp}\right]\right)$

$$
\sum_{i} \mathcal{M}_{i}\left(g_{1}, g_{2}, \ldots, g_{n}\right)=g_{s}^{n-2} \sum_{\sigma_{i} \in S_{n} / Z_{n}} \operatorname{Tr}\left(t^{a_{\sigma_{i}(1)}} \ldots t^{a_{\sigma_{i}(n)}}\right) A_{\sigma_{i}}\left(\sigma_{i}\left(p_{1}^{h_{1}}\right), \ldots, \sigma_{i}\left(p_{n}^{h_{n}}\right)\right)
$$

## Kinematic Amplitude

$$
\begin{aligned}
A_{\sigma_{i}}\left(i^{-}, j^{-}\right) & =i \frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle} \\
A_{\sigma_{i}}\left(i^{+}, j^{+}\right) & =i \frac{[j i]^{4}}{[1 n][n(n-1)] \ldots[21]}
\end{aligned}
$$

- Flipping all helicities means $\langle i j\rangle \rightarrow[j i]$
- $|\mathcal{M}|_{h}^{2}=|\mathcal{M}|_{-h}^{2}$


## MHV Amplitudes: 1 Quark Pair, $n-2$ Gluons

## Full Colour-Summed Amplitude

$\sum_{i} \mathcal{M}_{i}\left(q, g_{1}, \ldots, g_{n-2}, \bar{q}\right)=g_{s}^{n-2} \sum_{\sigma_{i} \in S_{n-2}}\left(t^{a_{\sigma}(1)}, \ldots t^{a_{\sigma}(n-2)}\right)_{q \bar{q}}$

$$
\times A_{\sigma_{i}}\left(q^{h_{q}}, \sigma_{i}\left(p_{1}^{h_{1}}\right), \ldots, \sigma_{i}\left(p_{n-2}^{h_{n-2}}\right), \bar{q}^{h_{\bar{q}}}\right)
$$

## Kinematic Amplitude

$$
\begin{aligned}
& A_{\sigma_{i}}\left(q^{-}, i^{-}, \bar{q}^{+}\right)=\frac{\langle q i\rangle^{3}\langle\bar{q} i\rangle}{\langle\bar{q} q\rangle\langle q 1\rangle\langle 12\rangle \ldots\langle(n-2) \bar{q}\rangle} \\
& A_{\sigma_{i}}\left(q^{+}, i^{-}, \bar{q}^{-}\right)=\frac{\langle q i\rangle\langle\bar{q} i\rangle^{3}}{\langle\bar{q} q\rangle\langle q 1\rangle\langle 12\rangle \ldots\langle(n-2) \bar{q}\rangle}
\end{aligned}
$$

- Flipping all
helicities means
$\langle i j\rangle \rightarrow[j i]$



## MHV Amplitudes: 1 Quark Pair, $n-2$ Gluons

## Full Colour-Summed Amplitude

n 000000000

$$
\begin{aligned}
\sum_{i} \mathcal{M}_{i}\left(q, g_{1}, \ldots, g_{n-2}, \bar{q}\right) & =g_{s}^{n-2} \sum_{\sigma_{i} \in S_{n-2}}\left(t^{a_{i}(1)}, \ldots t^{a_{i}(n-2)}\right)_{q \bar{q}} \\
& \times A_{\sigma_{i}}\left(q^{h_{q}}, \sigma_{i}\left(p_{1}^{h_{1}}\right), \ldots, \sigma_{i}\left(p_{n-2}^{h_{n-2}}\right), \bar{q}^{h_{\bar{q}}}\right)
\end{aligned}
$$

## Kinematic Amplitude

$$
\begin{aligned}
& A_{\sigma_{i}}\left(q^{-}, i^{-}, \bar{q}^{+}\right)=\frac{\langle q i\rangle^{3}\langle\bar{q} i\rangle}{\langle\bar{q} q\rangle\langle q 1\rangle\langle 12\rangle \ldots\langle(n-2) \bar{q}\rangle} \\
& A_{\sigma_{i}}\left(q^{+}, i^{-}, \bar{q}^{-}\right)=\frac{\langle q i\rangle\langle\bar{q} i\rangle^{3}}{\langle\bar{q} q\rangle\langle q 1\rangle\langle 12\rangle \ldots\langle(n-2) \bar{q}\rangle}
\end{aligned}
$$

- Flipping all helicities means
$\langle i j\rangle \rightarrow[j i]$
- $|M|_{h}^{2}=|M|_{-h}^{2}$


## MHV Amplitudes: 2 Quark Pairs, $n-4$ Gluons

## Full Colour-Summed Amplitude

$$
\begin{aligned}
& \sum_{i} \mathcal{M}_{i}\left(q, \bar{q}, Q, \bar{Q}, g_{1}, \ldots, g_{n-4}\right)=g_{s}^{n-2} \frac{A_{0}\left(h_{q}, h_{Q}, h_{g}\right)}{\{q \bar{q}\}\{Q \bar{Q}\}}\left[\sum_{\sigma_{i} \in S_{n-4}}\left(t^{a \sigma_{i}(1)} \ldots t^{a_{\sigma_{i}(k)}}\right)_{Q \bar{q}} \times\right. \\
& \left.\quad\left(t^{a_{\sigma_{i}(k+1)}} \ldots t^{a_{\sigma_{i}(n-4)}}\right)_{q \bar{Q}} \times A_{\sigma_{i}}(Q, 1, \ldots, k, \bar{q}, q, k+1, \ldots, n-4, \bar{Q})-\frac{1}{N_{C}}(\bar{q} \leftrightarrow \bar{Q})\right]
\end{aligned}
$$

## Kinematic Amplitude (part 1)

$$
\begin{array}{c|c}
\left(h_{q}, h_{Q}, h_{g}\right) & A_{0}\left(h_{q}, h_{Q}, h_{g}\right) \\
\hline(+,+,+) & \langle\bar{q} \bar{Q}\rangle^{2} \\
(+,+,-) & {[q Q]^{2}} \\
(+,-,+) & \langle\bar{q} Q\rangle^{2} \\
(+,-,-) & {[q \bar{Q}]^{2}}
\end{array}
$$



## MHV Amplitudes: 2 Quark Pairs, $n-4$ Gluons

## Full Colour-Summed Amplitude

$$
\begin{aligned}
& \sum_{i} \mathcal{M}_{i}\left(q, \bar{q}, Q, \bar{Q}, g_{1}, \ldots, g_{n-4}\right)=g_{s}^{n-2} \frac{A_{0}\left(h_{q}, h_{Q}, h_{g}\right)}{\{q \bar{q}\}\{Q \bar{Q}\}}\left[\sum_{\sigma_{i} \in S_{n-4}}\left(t^{a_{i}(1)} \ldots t^{a_{\sigma_{i}(k)}}\right)_{Q \bar{q}} \times\right. \\
& \left.\quad\left(t^{a_{\sigma_{i}(k+1)}} \ldots t^{a_{\sigma_{i}(n-4)}}\right)_{q \bar{Q}} \times A_{\sigma_{i}}(Q, 1, \ldots, k, \bar{q}, q, k+1, \ldots, n-4, \bar{Q})-\frac{1}{N_{C}}(\bar{q} \leftrightarrow \bar{Q})\right]
\end{aligned}
$$

Kinematic Amplitude (part 2)

$$
A_{\sigma_{i}}=\frac{\{q \bar{Q}\}}{\{q 1\}\{12\} \ldots\{k \bar{Q}\}} \frac{\{Q \bar{q}\}}{\{Q(k+1)\}\{(k+1)(k+2)\} \ldots\{(n-4) \bar{q}\}}
$$

## MHV Amplitudes: 2 Quark Pairs, $n-4$ Gluons

## Full Colour-Summed Amplitude

$$
\begin{aligned}
& \sum_{i} \mathcal{M}_{i}\left(q, \bar{q}, Q, \bar{Q}, g_{1}, \ldots, g_{n-4}\right)=g_{s}^{n-2} \frac{A_{0}\left(h_{q}, h_{Q}, h_{g}\right)}{\{q \bar{q}\}\{Q \bar{Q}\}}\left[\sum_{\sigma_{i} \in S_{n-4}}\left(t^{a_{i}(1)} \ldots t^{a_{\sigma_{i}}(k)}\right)_{Q \bar{q} \times} \times\right. \\
& \left.\quad\left(t^{a_{\sigma_{i}(k+1)}} \ldots t^{a_{\sigma_{i}(n-4)}}\right)_{q \bar{Q}} \times A_{\sigma_{i}}(Q, 1, \ldots, k, \bar{q}, q, k+1, \ldots, n-4, \bar{Q})-\frac{1}{N_{C}}(\bar{q} \leftrightarrow \bar{Q})\right]
\end{aligned}
$$

## Kinematic Amplitude (part 2)

$$
\begin{gathered}
\text { - }\{i j\}=\langle i j\rangle \text { if } \\
h_{g}=-
\end{gathered}
$$

$$
A_{\sigma_{i}}=\frac{\{q \bar{Q}\}}{\{q 1\}\{12\} \ldots\{k \bar{Q}\}} \frac{\{Q \bar{q}\}}{\{Q(k+1)\}\{(k+1)(k+2)\} \ldots\{(n-4) \bar{q}\}}
$$

$$
\begin{aligned}
& \text { - }\{i j\}=[j i] \text { if } \\
& h_{g}=+
\end{aligned}
$$

## MHV Amplitudes: Quark Pair, 1 Lepton Pair, $n-4$ Gluons

## Full Colour-Summed Amplitude

$$
\begin{gathered}
\sum_{i} \mathcal{M}_{i}\left(h_{q}, h_{l}, h_{g}\right)=i g_{s}^{n-4} \sum_{\sigma_{i} \in S_{n-4}}\left(t^{a_{\sigma_{i}(1)}}, \ldots t^{a_{\sigma_{i}(n-4)}}\right)_{q \bar{q}} \\
\quad \times A_{\sigma_{i}}\left(q^{h_{q}}, \sigma_{i}\left(p_{1}^{h_{1}}\right), \ldots, \sigma_{i}\left(p_{n-4}^{h_{n-4}}\right), \bar{q}^{h_{\bar{q}}}, l^{h_{l}}, \bar{l}^{h_{\bar{T}}}\right)
\end{gathered}
$$

- Same as 2 quark pairs with 1 pair not radiating
- Correct for coupling


## Kinematic Amplitude

$$
\begin{aligned}
A_{n}(q, 1, \ldots, n-4, \bar{q}, I, \bar{l}) & =\sum_{V=\gamma, z, W^{ \pm}} M_{V}^{\prime}\left(h_{l}, h_{q}, h_{g}\right) \frac{1}{\{q 1\}\{12\} \ldots\{(n-4) \bar{q}\}} \\
M_{V}^{\prime}\left(h_{l}, h_{q}, h_{g}\right) & =\frac{A_{0}\left(h_{l}, h_{q}, h_{g}\right)[\bar{l} /]\left(g_{h_{l}}^{\prime}\right) v\left(g_{h_{q}}^{q}\right) v}{\langle\mid \bar{I}\rangle[\bar{l} I]-M_{V}^{2}+i \Gamma_{V} M_{V}}
\end{aligned}
$$

## MHV Amplitudes: Quark Pair, 1 Lepton Pair, $n-4$ Gluons

## Full Colour-Summed Amplitude

$$
\begin{gathered}
\sum_{i} \mathcal{M}_{i}\left(h_{q}, h_{l}, h_{g}\right)=i g_{s}^{n-4} \sum_{\sigma_{i} \in S_{n-4}}\left(t^{a_{\sigma_{i}(1)}}, \ldots t^{a_{\sigma_{i}(n-4)}}\right)_{q \bar{q}} \\
\quad \times A_{\sigma_{i}}\left(q^{h_{q}}, \sigma_{i}\left(p_{1}^{h_{1}}\right), \ldots, \sigma_{i}\left(p_{n-4}^{h_{n-4}}\right), \bar{q}^{h_{\bar{q}}}, l^{h_{l}}, \bar{I}^{h_{\bar{J}}}\right)
\end{gathered}
$$

- Same as 2 quark pairs with 1 pair not radiating
- Correct for coupling


## Kinematic Amplitude

$$
\begin{aligned}
A_{n}(q, 1, \ldots, n-4, \bar{q}, I, \bar{l}) & =\sum_{V=\gamma, z, W^{ \pm}} M_{V}^{\prime}\left(h_{l}, h_{q}, h_{g}\right) \frac{1}{\{q 1\}\{12\} \ldots\{(n-4) \bar{q}\}} \\
M_{V}^{\prime}\left(h_{l}, h_{q}, h_{g}\right) & =\frac{A_{0}\left(h_{l}, h_{q}, h_{g}\right)[\bar{l} /]\left(g_{h_{l}}^{\prime}\right) v\left(g_{h_{q}}^{q}\right) v}{\langle\mid \bar{I}\rangle[\bar{l} I]-M_{V}^{2}+i \Gamma_{V} M_{V}}
\end{aligned}
$$

## Polarising with MHV Amplitudes

## What is $A_{n}^{h}$ ??

| Process | Negative-helicity particles | $A_{n}^{h}(1, \ldots, n)$ |
| :---: | :---: | :---: |
| All-gluon | $i, j$ | $\langle i j\rangle^{4}$ |
| Single Quark Pair | $q, i$ | $\langle q i\rangle^{3}\langle\bar{q} i\rangle$ |
| Single Quark Pair | $\bar{q}, i$ | $\langle q i\rangle\langle\bar{q} i\rangle^{3}$ |
| Quark and Lepton Pairs | - | $A_{0}\left(h_{l}, h_{q},+\right)\left(g_{h_{l}}^{l}\right) v\left(g_{h_{q}}^{q}\right) v$ |

- If 2 same-flavour quark pairs no factorisation (since $\left(h_{q}=h_{Q}\right)$ has a different colour structure to $\left(h_{q} \neq h_{Q}\right)$ )


## Polarising with MHV Amplitudes

$$
P(h \mid i)=\frac{\mathrm{VC}_{i}^{h}}{\sum_{h^{\prime}} \mathrm{VC}_{i}^{h^{\prime}}}=\frac{\mathrm{FC}^{h} \mathrm{LC}_{i}^{h}}{\sum_{j} \mathrm{LC} C_{j}^{h}}\left[\sum_{h^{\prime}} \frac{\mathrm{FC}^{h^{\prime}} \mathrm{LC}_{h^{\prime}}}{\sum_{k} \mathrm{LC} C_{k}^{h^{\prime}}}\right]^{-1}=\frac{\left|A^{h}\right|^{\prime}}{\sum_{h^{\prime}}\left|A_{h}^{h^{\prime}}\right|^{2}}
$$

## What is $A_{n}^{h} ?$ ?

| Process | Negative-helicity particles | $A_{n}^{h}(1, \ldots, n)$ |
| :---: | :---: | :---: |
| All-gluon | $i, j$ | $\langle i j\rangle^{4}$ |
| Single Quark Pair | $q, i$ | $\langle q i\rangle^{3}\langle\bar{q} i\rangle$ |
| Single Quark Pair | $\bar{q}, i$ | $\langle q i\rangle\langle\bar{q} i\rangle^{3}$ |
| Quark and Lepton Pairs | - | $A_{0}\left(h_{l}, h_{q},+\right)\left(g_{h_{l}}^{l}\right) v\left(g_{h_{q}}^{q}\right) v$ |

- If 2 same-flavour quark pairs no factorisation (since $\left(h_{q}=h_{Q}\right)$ has a different colour structure to $\left(h_{q} \neq h_{Q}\right)$ )


## Calculating the Antenna Functions

- All antennae have to be positive-definite
- Sum of all antennae must equal the unpolarised antenna
- In collinear and soft limits must reproduce DGLAP splitting
- Quarks cannot change helicity
- The hard branch cannot change helicity
- An initial gluon can change helicity
- The radiated particle goes into the PDF (i.e. hard process)


## Calculating the Antenna Functions

- All antennae have to be positive-definite
- Sum of all antennae must equal the unpolarised antenna
- In collinear and soft limits must reproduce DGLAP splitting
- Quarks cannot change helicity
- The hard branch cannot change helicity
- An initial gluon can change helicity
- The radiated particle goes into the PDF (i.e. hard process)


## Calculating the Antenna Functions

- All antennae have to be positive-definite
- Sum of all antennae must equal the unpolarised antenna
- In collinear and soft limits must reproduce DGLAP splitting
- Quarks cannot change helicity
- The hard branch cannot change helicity
- An initial gluon can change helicity
- The radiated particle goes into the PDF (i.e. hard process)


## Calculating the Antenna Functions

- All antennae have to be positive-definite
- Sum of all antennae must equal the unpolarised antenna
- In collinear and soft limits must reproduce DGLAP splitting
- Quarks cannot change helicity
- The hard branch cannot change helicity
- An initial gluon can change helicity
- The radiated particle goes into the PDF (i.e. hard process)


## Calculating the Antenna Functions

- All antennae have to be positive-definite
- Sum of all antennae must equal the unpolarised antenna
- In collinear and soft limits must reproduce DGLAP splitting
- Quarks cannot change helicity
- The hard branch cannot change helicity
- An initial gluon can change helicity
- The radiated particle goes into the PDF (i.e. hard process)


## Calculating the Antenna Functions

- All antennae have to be positive-definite
- Sum of all antennae must equal the unpolarised antenna
- In collinear and soft limits must reproduce DGLAP splitting
- Quarks cannot change helicity
- The hard branch cannot change helicity
- An initial gluon can change helicity
- The radiated particle goes into the PDF (i.e. hard process)



## Speed Test of Shower



- Helicity shower better for > 2 ME -corrected legs
- At 3 ME-corrected legs, MHV saves $\sim 15 \%$


## Speed Test of Shower



- Helicity shower better for > 2 ME-corrected legs
- At 3 ME-corrected legs, MHV saves $\sim 15 \%$


## Speed Test of Shower



- Helicity shower better for > 2 ME-corrected legs
- At 3 ME-corrected legs, MHV saves $\sim 15 \%$


## Effects on Late Branchings, gg $\rightarrow$ gg

- Corrected first 2 emissions
- Large $d_{56}$ (large $\left.\log _{10}\left(d_{56} / d_{12}\right) \sim 0\right)$ expect MECs important
- Pythia has no MECs
- Vincia and Pythia showers intrinsically different

Ratio of differential $k_{\perp}$-jet resolutions $(R=0.4)$


## Polarising with MHV Amplitudes

$$
P(h \mid i)=\frac{\mathrm{VC}_{i}^{h}}{\sum_{h^{\prime}} \mathrm{VC}_{i}^{h^{\prime}}}=\frac{\mathrm{FC}^{h} \mathrm{LC}_{i}^{h}}{\sum_{j} \mathrm{LC}_{j}^{h}}\left[\sum_{h^{\prime}} \frac{\mathrm{FCC}^{\prime} \mathrm{LC}_{i}^{h^{\prime}}}{\sum_{k} \mathrm{LC}_{k}^{h^{\prime}}}\right]^{-1}
$$

- Usually polarise $2 \rightarrow 2$ or $2 \rightarrow 3$, i.e. MHV
- MHV kinematics can* be factorised into helicity and colour parts


## Polarising with MHV Amplitudes

$$
P(h \mid i)=\frac{\mathrm{VC}_{i}^{h}}{\sum_{h^{\prime}} \mathrm{VC}_{i}^{h^{\prime}}}=\frac{\mathrm{FC}^{h} \mathrm{LC}_{i}^{h}}{\sum_{j} \mathrm{LC}_{j}^{h}}\left[\sum_{h^{\prime}} \frac{\mathrm{FC}^{\prime} \mathrm{LC}_{h^{\prime}}}{\sum_{k} \mathrm{LC}_{k}^{h^{\prime}}}\right]^{-1}
$$

- Usually polarise $2 \rightarrow 2$ or $2 \rightarrow 3$, i.e. MHV
- MHV kinematics can* be factorised into helicity and colour parts

$$
\begin{aligned}
\mathrm{FC}^{h} & =\left|A_{n}^{h}(1, \ldots, n)\right|^{2}\left|\sum_{\sigma} \frac{1}{\langle\sigma(1) \sigma(2)\rangle \ldots\langle\sigma(n) \sigma(1)\rangle} \mathrm{C}\left(\sigma\left(t^{1}\right), \ldots, \sigma\left(t^{n}\right)\right)\right|^{2} \\
& =\left|A_{n}^{h}\right|^{2}\left|\sum_{\sigma} F(\sigma)\right|^{2} \\
\mathrm{LC}_{i}^{h} & =\left|A_{n}^{h}\right|^{2}\left|F\left(\sigma_{i}\right)\right|^{2}
\end{aligned}
$$

## Polarising with MHV Amplitudes

$$
P(h \mid i)=\frac{\mathrm{VC}_{i}^{h}}{\sum_{h^{\prime}} \mathrm{VC}_{i}^{h^{\prime}}}=\frac{\mathrm{FC}^{h} \mathrm{LC}_{i}^{h}}{\sum_{j} \mathrm{LC}_{j}^{h}}\left[\sum_{h^{\prime}} \frac{\mathrm{FC}^{h^{\prime}} \mathrm{LC}_{i}^{h^{\prime}}}{\sum_{k} \mathrm{LC}_{k}^{h^{\prime}}}\right]^{-1}=\frac{\left|A_{n}^{h}\right|^{2}}{\sum_{h^{\prime}}\left|A_{n}^{h^{\prime}}\right|^{2}}
$$

- Usually polarise $2 \rightarrow 2$ or $2 \rightarrow 3$, i.e. MHV
- MHV kinematics can* be factorised into helicity and colour parts

$$
\begin{aligned}
\mathrm{FC}^{h} & =\left|A_{n}^{h}(1, \ldots, n)\right|^{2}\left|\sum_{\sigma} \frac{1}{\langle\sigma(1) \sigma(2)\rangle \ldots\langle\sigma(n) \sigma(1)\rangle} \mathrm{C}\left(\sigma\left(t^{1}\right), \ldots, \sigma\left(t^{n}\right)\right)\right|^{2} \\
& =\left|A_{n}^{h}\right|^{2}\left|\sum_{\sigma} F(\sigma)\right|^{2} \\
\mathrm{LC}_{i}^{h} & =\left|A_{n}^{h}\right|^{2}\left|F\left(\sigma_{i}\right)\right|^{2}
\end{aligned}
$$

## Match to Full (LO) Matrix Element

- Requires ME of all possible histories
- Many of these historical MEs are MHV $((n-2) \pm, 2 \mp)$
- If final-state is MHV, all historical states are either:
- $(n-2) \pm, 1 \mp$, i.e. unphysical
- So MHV multi-parton states are recursively faster
- If not MHV, use MG4 (currently implementing MG5 interface) - May be able to speed up much more using NMHV


## Match to Full (LO) Matrix Element

- Requires ME of all possible histories
- Many of these historical MEs are MHV $((n-2) \pm, 2 \mp)$
- If final-state is MHV, all historical states are either: - $(n-2) \pm, 1 \mp$, i.e. unphysical
- So MHV multi-parton states are recursively faster
- If not MHV, use MG4 (currently implementing MG5 interface) - May be able to speed up much more using NMHV


## Match to Full (LO) Matrix Element

- Requires ME of all possible histories
- Many of these historical MEs are MHV $((n-2) \pm, 2 \mp)$
- If final-state is MHV, all historical states are either:
- $(n-2) \pm, 1 \mp$, i.e. unphysical
- So MHV multi-parton states are recursively faster
- If not MHV, use MG4 (currently implementing MG5 interface)
- May be able to speed up much more using NMHV


## Match to Full (LO) Matrix Element

- Requires ME of all possible histories
- Many of these historical MEs are MHV $((n-2) \pm, 2 \mp)$
- If final-state is MHV, all historical states are either:
- $(n-2) \pm, 1 \mp$, i.e. unphysical
- $(n-3) \pm, 2 \mp$, i.e. MHV
- So MHV multi-parton states are recursively faster
- If not MHV, use MG4 (currently implementing MG5 interface)
- May be able to speed up much more using NMHV


## Match to Full (LO) Matrix Element

- Requires ME of all possible histories
- Many of these historical MEs are MHV $((n-2) \pm, 2 \mp)$
- If final-state is MHV, all historical states are either:
- $(n-2) \pm, 1 \mp$, i.e. unphysical
- $(n-3) \pm, 2 \mp$, i.e. MHV
- So MHV multi-parton states are recursively faster
- If not MHV, use MG4 (currently implementing MG5 interface)
- May be able to speed up much more using NMHV


## Match to Full (LO) Matrix Element

- Requires ME of all possible histories
- Many of these historical MEs are MHV $((n-2) \pm, 2 \mp)$
- If final-state is MHV, all historical states are either:
- $(n-2) \pm, 1 \mp$, i.e. unphysical
- $(n-3) \pm, 2 \mp$, i.e. MHV
- So MHV multi-parton states are recursively faster
- If not MHV, use MG4 (currently implementing MG5 interface)
- May be able to speed up much more using NMHV


[^0]:    - This simplifies only the kinematics of the amplitude

