Using MHV amplitudes in the VINCIA Helicity Shower

Andrew Lifson

In collaboration with Peter Skands, Nadine Fischer

Work completed in 2017, arXiv:1708.01736

Supported by ARC Future Fellowship, Monash-Wawrick Alliance

Work Done at Monash University

January 25th 2019

Overview

1 Summarising the Vincia Antenna Shower

- 2 Helicity Amplitudes
- 3 Vincia's Helicity Shower The Details
- 4 Shower Validation Tests

Overview

1 Summarising the Vincia Antenna Shower

2 Helicity Amplitudes

3 Vincia's Helicity Shower - The Details

4 Shower Validation Tests

1 Summarising the Vincia Antenna Shower

- 2 Helicity Amplitudes
- 3 Vincia's Helicity Shower The Details
 - 4 Shower Validation Tests

- 1 Summarising the Vincia Antenna Shower
- 2 Helicity Amplitudes
- 3 Vincia's Helicity Shower The Details
- 4 Shower Validation Tests

- 1 Summarising the Vincia Antenna Shower
- 2 Helicity Amplitudes
- 3 Vincia's Helicity Shower The Details
- 4 Shower Validation Tests

VIrtual Numerical Collider with Interleaved Antennae

- Began in 2007 as proof of concept by P. Z. Skands, W. T. Giele and D. A. Kosower [1]
- Plugin to Pythia, replaces its parton shower
- Had 2 main goals in mind
 - Include systematic uncertainty estimates
 - Allow matching to any LO or NLO matrix element
- 2 main versions:
 - Vincia 1: e^+e collisions
 - Vincia 2: e^+e and pp collisions [2]
- Recently released Vincia 2.204

- VIrtual Numerical Collider with Interleaved Antennae
- Began in 2007 as proof of concept by P. Z. Skands, W. T. Giele and D. A. Kosower [1]
- Plugin to Pythia, replaces its parton shower
- Had 2 main goals in mind
 - Include systematic uncertainty estimates
 - Allow matching to any LO or NLO matrix element
- 2 main versions:
 - Vincia 1: e^+e collisions
 - Vincia 2: e^+e and pp collisions [2]
- Recently released Vincia 2.204

- VIrtual Numerical Collider with Interleaved Antennae
- Began in 2007 as proof of concept by P. Z. Skands, W. T. Giele and D. A. Kosower [1]
- Plugin to Pythia, replaces its parton shower
- Had 2 main goals in mind
 - Include systematic uncertainty estimates
 - Allow matching to any LO or NLO matrix element
- 2 main versions:
 - Vincia 1: e^+e collisions
 - Vincia 2: e^+e and pp collisions [2]
- Recently released Vincia 2.204

- VIrtual Numerical Collider with Interleaved Antennae
- Began in 2007 as proof of concept by P. Z. Skands, W. T. Giele and D. A. Kosower [1]
- Plugin to Pythia, replaces its parton shower
- Had 2 main goals in mind
 - Include systematic uncertainty estimates
 - Allow matching to any LO or NLO matrix element
- 2 main versions:
 - Vincia 1: e^+e collisions
 - Vincia 2: e^+e and pp collisions [2]
- Recently released Vincia 2.204

- VIrtual Numerical Collider with Interleaved Antennae
- Began in 2007 as proof of concept by P. Z. Skands, W. T. Giele and D. A. Kosower [1]
- Plugin to Pythia, replaces its parton shower
- Had 2 main goals in mind
 - Include systematic uncertainty estimates
 - Allow matching to any LO or NLO matrix element
- 2 main versions:
 - Vincia 1: e^+e collisions
 - Vincia 2: e^+e and pp collisions [2]

• Recently released Vincia 2.204

- VIrtual Numerical Collider with Interleaved Antennae
- Began in 2007 as proof of concept by P. Z. Skands, W. T. Giele and D. A. Kosower [1]
- Plugin to Pythia, replaces its parton shower
- Had 2 main goals in mind
 - Include systematic uncertainty estimates
 - Allow matching to any LO or NLO matrix element
- 2 main versions:
 - Vincia 1: e^+e collisions
 - Vincia 2: e^+e and pp collisions [2]
- Recently released Vincia 2.204

Pythia

- Markovian, no history
- Parton shower with spectator parton
- Corrects only 1st emission with full ME
- Minimal spin correlations

- Non-Markovian, historical MEs
- Antenna shower, radiate off 2 partons in one splitting function
- Can correct up to 3 emissions with full ME
- Helicity shower, spin correlations in MEC

Pythia

• Markovian, no history

- Parton shower with spectator parton
- Corrects only 1st emission with full ME
- Minimal spin correlations

Vincia

• Non-Markovian, historical MEs

- Antenna shower, radiate off 2 partons in one splitting function
- Can correct up to 3 emissions with full ME
- Helicity shower, spin correlations in MEC

Pythia

- Markovian, no history
- Parton shower with spectator parton
- Corrects only 1st emission with full ME
- Minimal spin correlations

- Non-Markovian, historical MEs
- Antenna shower, radiate off 2 partons in one splitting function
- Can correct up to 3 emissions with full ME
- Helicity shower, spin correlations in MEC

Pythia

- Markovian, no history
- Parton shower with spectator parton
- Corrects only 1st emission with full ME
- Minimal spin correlations

- Non-Markovian, historical MEs
- Antenna shower, radiate off 2 partons in one splitting function
- Can correct up to 3 emissions with full ME
- Helicity shower, spin correlations in MEC

Pythia

- Markovian, no history
- Parton shower with spectator parton
- Corrects only 1st emission with full ME
- Minimal spin correlations

- Non-Markovian, historical MEs
- Antenna shower, radiate off 2 partons in one splitting function
- Can correct up to 3 emissions with full ME
- Helicity shower, spin correlations in MEC

• \mathcal{M}_i 1^{h_1} ;...; $n^{h_n} = C_i(t^1$;...; $t^n)A_i$ $p_1^{h_1}$;...; $p_n^{h_n}$

- Helicity-amplitudes easier than helicity-summed amplitudes
- Organise processes based on the number of opposite helicities (all particles outgoing)
 - $\mathcal{M}[n]$, $\mathcal{M}[(n-1)]$; 1] = 0
 - $\mathcal{M}[(n-2)/(2)] = MHV$
 - $\mathcal{M}[(n = 3) ; 3] = NMHV$
 - etc.
- Using spinor-helicity formalism and recursion relations can greatly simplify calculations

- \mathcal{M}_i 1^{h_1} ;...; $n^{h_n} = C_i(t^1$;...; t^n) A_i $p_1^{h_1}$;...; $p_n^{h_n}$
- Helicity-amplitudes easier than helicity-summed amplitudes
- Organise processes based on the number of opposite helicities (all particles outgoing)
 - $\mathcal{M}[n]$, $\mathcal{M}[(n-1)]$; 1] = 0
 - $\mathcal{M}[(n \quad 2) \quad ; 2 \quad] = MHV$
 - $\mathcal{M}[(n = 3) ; 3] = NMHV$
 - etc.
- Using spinor-helicity formalism and recursion relations can greatly simplify calculations

- \mathcal{M}_i 1^{h_1} ;...; $n^{h_n} = C_i(t^1$;...; $t^n)A_i$ $p_1^{h_1}$;...; $p_n^{h_n}$
- Helicity-amplitudes easier than helicity-summed amplitudes
- Organise processes based on the number of opposite helicities (all particles outgoing)
 - $\mathcal{M}[n]$, $\mathcal{M}[(n \ 1)]$; 1] = 0
 - $\mathcal{M}[(n \quad 2) ; 2] = MHV$
 - $\mathcal{M}[(n \quad 3) ; 3] = NMHV$
 - etc.
- Using spinor-helicity formalism and recursion relations can greatly simplify calculations

- \mathcal{M}_i 1^{h_1} ;...; $n^{h_n} = C_i(t^1$;...; $t^n)A_i$ $p_1^{h_1}$;...; $p_n^{h_n}$
- Helicity-amplitudes easier than helicity-summed amplitudes
- Organise processes based on the number of opposite helicities (all particles outgoing)
 - $\mathcal{M}[n]$, $\mathcal{M}[(n-1)]$; 1] = 0
 - $\mathcal{M}[(n \quad 2) ; 2] = MHV$
 - $\mathcal{M}[(n \quad 3) ; 3] = NMHV$
 - etc.
- Using spinor-helicity formalism and recursion relations can greatly simplify calculations

- \mathcal{M}_i 1^{h_1} ;...; $n^{h_n} = C_i(t^1$;...; $t^n)A_i$ $p_1^{h_1}$;...; $p_n^{h_n}$
- Helicity-amplitudes easier than helicity-summed amplitudes
- Organise processes based on the number of opposite helicities (all particles outgoing)

•
$$\mathcal{M}[n]$$
, $\mathcal{M}[(n 1)]$; $1] = 0$

•
$$\mathcal{M}[(n \quad 2) ; 2] = MHV$$

•
$$\mathcal{M}[(n \quad 3) ; 3] = NMHV$$

• etc.

• Using spinor-helicity formalism and recursion relations can greatly simplify calculations

- \mathcal{M}_i 1^{h_1} ;...; $n^{h_n} = C_i(t^1$;...; $t^n)A_i$ $p_1^{h_1}$;...; $p_n^{h_n}$
- Helicity-amplitudes easier than helicity-summed amplitudes
- Organise processes based on the number of opposite helicities (all particles outgoing)

•
$$\mathcal{M}[n]$$
, $\mathcal{M}[(n-1)]$; $1] = 0$

•
$$\mathcal{M}[(n \quad 2) ; 2] = MHV$$

•
$$\mathcal{M}[(n \quad 3) ; 3] = NMHV$$

• etc.

• Using spinor-helicity formalism and recursion relations can greatly simplify calculations

- \mathcal{M}_i 1^{h_1} ;...; $n^{h_n} = C_i(t^1$;...; $t^n)A_i$ $p_1^{h_1}$;...; $p_n^{h_n}$
- Helicity-amplitudes easier than helicity-summed amplitudes
- Organise processes based on the number of opposite helicities (all particles outgoing)

•
$$\mathcal{M}[n]$$
, $\mathcal{M}[(n-1)]$; $1] = 0$

•
$$\mathcal{M}[(n \quad 2) ; 2] = MHV$$

•
$$\mathcal{M}[(n \quad 3) ; 3] = NMHV$$

- etc.
- Using spinor-helicity formalism and recursion relations can greatly simplify calculations

Feynman Diagrams vs Recursion Relations: The All-Gluon MHV Case

No. of External Gluons	No. of Feynman Diagrams	Relative Growth
4	4	-
5	25	6.3
6	220	8.8
7	2485	11.3
8	34300	13.8
9	559405	16.3
10	10525900	18.8

All-gluon Feynman Diagram numbers calculated by Kleiss and Kuijf [3]

Feynman Diagrams vs Recursion Relations: The All-Gluon MHV Case

No. of External Gluons	No. of Feynman Diagrams	Relative Growth
4	4	-
5	25	6.3
6	220	8.8
7	2485	11.3
8	34300	13.8
9	559405	16.3
10	10525900	18.8

All-gluon Feynman Diagram numbers calculated by Kleiss and Kuijf [3]

Recursion relation for
$$n$$
 4 Gluons, $(n \ 2) + \text{hel}/2$ hel

$$A_{i}(i \ ;j \) = i \frac{hiji^{4}}{h12ih23i : :: hn1i} \quad hiji \quad \bar{u} \ (p_{i})u_{+}(p_{j})$$

Speed Testing MHV Amplitudes

gg / ng MHV amplitudes, micro-seconds per calculation						
	nParticles	RAMBO	MadGraph4	MHV	Ratio	
	4	0.671	1.868	1.496	1.451	
	5	0.806	7.716	2.546	3.966	
	6	0.931	76.434	7.940	10.771	
		1	I	I	I	

Speed Testing MHV Amplitudes

gg / ng MHV amplitudes, micro-seconds per calculation							
		nParticles	RAMBO	MadGraph4	MHV	Ratio	
		4	0.671	1.868	1.496	1.451	
		5	0.806	7.716	2.546	3.966	
		6	0.931	76.434	7.940	10.771	

qą !	ng MHV amplitudes, micro-seconds per calculation				
	nParticles	RAMBO	MadGraph4	MHV	Ratio
	4	0.855	1.551	1.596	0.927
	5	0.822	3.216	2.669	1.296
	6	0.935	18.579	3.447	7.024
	7	1.088	236.183	14.355	17.720

• Swaps incoming particles to outgoing, checks it has process

- Base class calculates all relevant spinor products
- Uses MHV wherever possible for MEC and setting polarisations
- Can also use Vincia to calculate MHV amplitudes as standalone
- The following can be calculated

- Swaps incoming particles to outgoing, checks it has process
- Base class calculates all relevant spinor products
- Uses MHV wherever possible for MEC and setting polarisations
- Can also use Vincia to calculate MHV amplitudes as standalone
- The following can be calculated

- Swaps incoming particles to outgoing, checks it has process
- Base class calculates all relevant spinor products
- Uses MHV wherever possible for MEC and setting polarisations
- Can also use Vincia to calculate MHV amplitudes as standalone
- The following can be calculated

- Swaps incoming particles to outgoing, checks it has process
- Base class calculates all relevant spinor products
- Uses MHV wherever possible for MEC and setting polarisations
- Can also use Vincia to calculate MHV amplitudes as standalone
- The following can be calculated

- Swaps incoming particles to outgoing, checks it has process
- Base class calculates all relevant spinor products
- Uses MHV wherever possible for MEC and setting polarisations
- Can also use Vincia to calculate MHV amplitudes as standalone
- The following can be calculated

Type of Process	Number of Particles
All-Gluon	4 6
Single $q\bar{q}$ Pair + Gluons	4 7
Two $q\bar{q}$ Pairs + Gluons	4;5
$q\bar{q}$ and $l\bar{l}$ Pairs + Gluons (Z-Boson Exchange)	4 9

Setting up the Shower

Reminder

$$\mathcal{M}_i \quad 1^{h_1}; \ldots; n^{h_n} = C_i(t^1; \ldots; t^n) A_i \quad p_1^{h_1}; \ldots; p_n^{h_n}$$

Requires both a colour flow and a polarisation •

• To understand, first need definitions: • $LC_i = \mathcal{M}_i \mathcal{M}_i$; $FC = \bigcup_{ij} \mathcal{M}_i \mathcal{M}_j$; $VC_i = FC \underbrace{PLC_i}_{i \in LC_i \in C_i}$

• If no colour flow in hard process:

•
$$P(h;i) = \mp$$

$$\frac{P}{\left|\frac{h^{0}}{Z}\right|}$$

Else

•
$$P(h/i) = \frac{\nabla C_i^h}{h^0 \nabla C_i^{h^0}}$$

Setting up the Shower

Reminder

$$\mathcal{M}_i \quad 1^{h_1}, \ldots, n^{h_n} = C_i(t^1, \ldots, t^n) A_i \quad p_1^{h_1}, \ldots, p_n^{h_n}$$

- Requires both a colour flow and a polarisation
- To understand, first need definitions:
 LC_i = M_i M_i ; FC = ij M_i M_j ; VC_i = FC PLC_i ig LC_i

• If no colour flow in hard process:

•
$$P(h;i) = +$$

Else

•
$$P(hji) = \frac{\nabla C_i^h}{h^0 \nabla C_i^{h^0}}$$

Setting up the Shower

Reminder

$$\mathcal{M}_i \quad 1^{h_1}, \ldots, n^{h_n} = C_i(t^1, \ldots, t^n) A_i \quad p_1^{h_1}, \ldots, p_n^{h_n}$$

- Requires both a colour flow and a polarisation
- To understand, first need definitions:
 LC_i = M_i M_i ; FC = ii M_i M_j ; VC_i = FC PLC_i / LC_i
- If no colour flow in hard process:

Helicity-Selection Factor

Colour-Flow Selection Factor

Else:
Setting up the Shower

Reminder

$$\mathcal{M}_i \quad 1^{h_1}, \ldots, n^{h_n} = C_i(t^1, \ldots, t^n) A_i \quad p_1^{h_1}, \ldots, p_n^{h_n}$$

- Requires both a colour flow and a polarisation
- To understand, first need definitions:
 LC_i = M_i M_i ; FC = ij M_i M_j ; VC_i = FC PLC_i ig LC_i
- If no colour flow in hard process:

•
$$P(h;i) = \frac{FC^{h}}{\left|\frac{h^{\theta}}{Z}\right|^{2}}$$

Helicity-Selection Factor

Colour-Flow Selection Factor

 $P_{j_{1}}^{\text{LC}_{i}^{h}}$

Flse

•
$$P(hji) = \frac{VC_i^h}{h^0 VC_i^{h^0}}$$

1

Polarising the Shower with MHV Amplitudes

$$P(hji) = \Pr_{h^{\theta} \vee C_i^{h^{\theta}}}^{VC_i^{h}} = \Pr_{j \perp C_j^{h}}^{FC_i^{h} \perp C_i^{h}} \stackrel{P}{\underset{k \perp C_k^{h^{\theta}}}{\overset{h^{\theta}}{\mapsto}}}_{k \perp C_k^{h^{\theta}}}$$

- Usually polarise 2 / 2 or 2 / 3, i.e. MHV
- MHV kinematics can be factorised into helicity and colour parts

$$FC^{h} = jA_{n}^{h}(1; ...; n)j^{2} \times \frac{1}{h(1)(2)^{j} ... h(n)(1)^{j}}C((t^{1}); ...; (t^{n}))^{2}$$
$$= jA_{n}^{h}j^{2} \times F()^{2}$$
$$LC_{i}^{h} = jA_{n}^{h}j^{2}jF(i)j^{2}$$

Polarising the Shower with MHV Amplitudes

$$P(h|i) = \Pr_{h^{\theta} \vee \mathsf{C}_{i}^{h^{\theta}}}^{\mathsf{VC}_{i}^{h^{\theta}}} = \Pr_{j \; \mathsf{LC}_{j}^{h}}^{\mathsf{E}_{i}^{h} \mathsf{LC}_{j}^{h^{\theta}}} \stackrel{\mathsf{P}}{\underset{k \; \mathsf{LC}_{k}^{h^{\theta}}}^{\mathsf{E}_{i}^{h^{\theta}} \mathsf{LC}_{i}^{h^{\theta}}} \stackrel{1}{\underset{k \; \mathsf{LC}_{k}^{h^{\theta}}}^{\mathsf{E}_{i}^{h^{\theta}} \mathsf{LC}_{i}^{h^{\theta}}} = \Pr_{j \; \mathsf{A}_{h}^{h^{\theta}} \mathsf{A}_{i}^{\mathsf{E}_{i}^{h^{\theta}}}}$$

- Usually polarise 2 / 2 or 2 / 3, i.e. MHV
- MHV kinematics can be factorised into helicity and colour parts

$$FC^{h} = jA_{n}^{h}(1; ...; n)j^{2} \times \frac{1}{h(1)(2)j :..:h(n)(1)j}C((t^{1}); ...; (t^{n}))^{2}$$
$$= jA_{n}^{h}j^{2} \times F()^{2}$$
$$LC_{i}^{h} = jA_{n}^{h}j^{2}jF(j)j^{2}$$

Andrew Lifson (Lund)

January 25th 2019 10 / 15

Polarising the Shower with MHV Amplitudes

- Usually polarise 2 / 2 or 2 / 3, i.e. MHV
- MHV kinematics can be factorised into helicity and colour parts

$$FC^{h} = jA_{n}^{h}(1; ...; n)j^{2} \times \frac{1}{h(1)(2)j :..:h(n)(1)j}C((t^{1}); ...; (t^{n}))^{2}$$
$$= jA_{n}^{h}j^{2} \times F()^{2}$$
$$LC_{i}^{h} = jA_{n}^{h}j^{2}jF(j)j^{2}$$

Match to Full (LO) Matrix Element

• MEC: \mathcal{M}_{PS}^{n+1} / \mathcal{M}_{PS}^{n+1} R ; $\mathcal{M}_{PS}^{n+1} = A$ \mathcal{M}^n ; R $\mathcal{M}_{ex}^{n+1} = \mathcal{M}_{PS}^{n+1}$

Match to Full (LO) Matrix Element

• MEC:

$$\mathcal{M}_{PS}^{n+1}$$
 / \mathcal{M}_{PS}^{n+1} R ; $\mathcal{M}_{PS}^{n+1} = A$ \mathcal{M}^n ; R $\mathcal{M}_{ex}^{n+1} = \mathcal{M}_{PS}^{n+1}$

MEC factor

$$\begin{array}{c} \mathcal{R}(\Phi_{n+1}) = j\mathcal{M}(\Phi_{n+1})j^{2} \\ \mathsf{h} \times & \mathcal{A}(\Phi_{n+1} = \Phi_{n}^{0}) \quad \mathcal{R}(\Phi_{n}^{0}) \\ \mathcal{A}(\Phi_{n+1} = \Phi_{n}^{0}) \quad \mathcal{R}(\Phi_{n}^{0}) \\ \mathcal{A}(\Phi_{n+1} = \Phi_{n}^{0}) \quad \mathcal{A}(\Phi_{n+1}^{0} = \Phi_{n-1}^{0}) \\ \mathcal$$

Match to Full (LO) Matrix Element

- Corrected first 2 emissions
- Large d₂₃ (i.e. log₁₀(d₂₃=d₁₂) 0) expect MECs important
- Pythia has no MECs
- Vincia and Pythia showers intrinsically different

- Corrected first 2 emissions
- Large d₂₃ (i.e. log₁₀(d₂₃=d₁₂) 0) expect MECs important
- Pythia has no MECs
- Vincia and Pythia showers intrinsically different

- Corrected first 2 emissions
- Large d₂₃ (i.e. log₁₀(d₂₃=d₁₂) 0) expect MECs important
- Pythia has no MECs
- Vincia and Pythia showers intrinsically different

- Corrected first 2 emissions
- Large d₂₃ (i.e. log₁₀(d₂₃=d₁₂) 0) expect MECs important
- Pythia has no MECs
- Vincia and Pythia showers intrinsically different

Polarisation Effects, $gg \neq gg$, $g \neq b\bar{b}$

Image from arxiv:1812.09283

- (gpp; bb) angle between planes
- Both showers flat
- Vincia MECs, Pythia azymuthal Asym give preferred directions
- But, opposite!?

Polarisation Effects, $gg \neq gg$, $g \neq b\bar{b}$

Image from arxiv:1812.09283

- (gpp; bb) angle between planes
- Both showers flat
- Vincia MECs, Pythia azymuthal Asym give preferred directions
- But, opposite!?

January 25th 2019 13 / 15

Polarisation Effects, $gg \neq gg$, $g \neq b\bar{b}$

Image from arxiv:1812.09283

- (gpp; bb) angle between planes
- Both showers flat
- Vincia MECs, Pythia azymuthal Asym give preferred directions
- But, opposite!?

Polarisation Effects, $gg \neq gg$, $g \neq b\bar{b}$

Image from arxiv:1812.09283

- (gpp; bb) angle between planes
- Both showers flat
- Vincia MECs, Pythia azymuthal Asym give preferred directions
- But, opposite!?

Polarisation Effects: a New ATLAS Measurement

- Recent measurement of gluon splitting at small opening angle (arxiv:1812.09283)
- Sherpa 2 / n + PS is flat, Pythia opposite shape, Vincia correct shape

Summary

• Vincia is a plugin to Pythia, replaces its parton shower

- Vincia adds recursive MECs, giving better predictions in hard, wide angle limits
- Vincia uses helicity shower, giving more spin data, better angular information
- MECs slowed down by factorial-like growth of Feynman diagrams
- Vincia uses MHV amplitudes to remove this issue for some helicity configurations
- Results validate efforts
 - One disagreement with Pythia, but ATLAS appears to favour Vincia

Summary

- Vincia is a plugin to Pythia, replaces its parton shower
- Vincia adds recursive MECs, giving better predictions in hard, wide angle limits
- Vincia uses helicity shower, giving more spin data, better angular information
- MECs slowed down by factorial-like growth of Feynman diagrams
- Vincia uses MHV amplitudes to remove this issue for some helicity configurations
- Results validate efforts
 - One disagreement with Pythia, but ATLAS appears to favour Vincia

Summary

- Vincia is a plugin to Pythia, replaces its parton shower
- Vincia adds recursive MECs, giving better predictions in hard, wide angle limits
- Vincia uses helicity shower, giving more spin data, better angular information
- MECs slowed down by factorial-like growth of Feynman diagrams
- Vincia uses MHV amplitudes to remove this issue for some helicity configurations
- Results validate efforts
 - One disagreement with Pythia, but ATLAS appears to favour Vincia

- Vincia is a plugin to Pythia, replaces its parton shower
- Vincia adds recursive MECs, giving better predictions in hard, wide angle limits
- Vincia uses helicity shower, giving more spin data, better angular information
- MECs slowed down by factorial-like growth of Feynman diagrams
- Vincia uses MHV amplitudes to remove this issue for some helicity configurations
- Results validate efforts
 - One disagreement with Pythia, but ATLAS appears to favour Vincia

- Vincia is a plugin to Pythia, replaces its parton shower
- Vincia adds recursive MECs, giving better predictions in hard, wide angle limits
- Vincia uses helicity shower, giving more spin data, better angular information
- MECs slowed down by factorial-like growth of Feynman diagrams
- Vincia uses MHV amplitudes to remove this issue for some helicity configurations
- Results validate efforts
 - One disagreement with Pythia, but ATLAS appears to favour Vincia

- Vincia is a plugin to Pythia, replaces its parton shower
- Vincia adds recursive MECs, giving better predictions in hard, wide angle limits
- Vincia uses helicity shower, giving more spin data, better angular information
- MECs slowed down by factorial-like growth of Feynman diagrams
- Vincia uses MHV amplitudes to remove this issue for some helicity configurations
- Results validate efforts
 - One disagreement with Pythia, but ATLAS appears to favour Vincia

Bibliography I

Walter T. Giele, David A. Kosower, and Peter Z. Skands. A simple shower and matching algorithm. *Phys. Rev.*, D78:014026, 2008.

Nadine Fischer, Stefan Prestel, Mathias Ritzmann, and Peter Skands. Vincia for Hadron Colliders. Eur. Phys. J., C76(11):589, 2016.

Ronald Kleiss and Hans Kuijf. Multi-gluon cross-sections and 5-jet production at hadron colliders. Nucl. Phys., B312:616, 1989.

Spinors

•
$$v (p) = u (p) = \frac{1}{2} 1 {}^{5} u(p)$$

• $\bar{v} (p) = \bar{u} (p) = \bar{u}(p) \frac{1}{2} 1 {}^{5}$
• $hij / \bar{u} (i)u_{+}(j) = p_{j}^{+}e^{i_{-j}} p_{i}^{+}e^{i_{-j}} = hji /$
• $[ij] \bar{u}_{+}(i)u (j) = hji /$
• $p_{i}^{+} = p_{i}^{0} + p_{i}^{3}; e^{i_{-i}} = (p_{i}^{1} + ip_{i}^{2}) = p_{i}^{+}$
• $hij / [ji] = s_{ij} = (p_{i} + p_{j})^{2}$

•
$$\overline{u}_{+}(i) \quad u_{+}(j) \quad [ij \quad jj \ i = hjj \quad ji] \quad \overline{u} \quad (j) \quad u \quad (i)$$

• $^{+}(p;q) = \frac{[pj \quad jqi}{\overline{2}hqpi}; \quad (p;q) = \frac{hgj \quad jq}{\overline{2}[qp]}$
• $[ij \quad jj \ i[kj \quad jli = 2[ik]hjli; \quad ^{+}(p;q)k = \frac{[pk]hkqi}{\overline{2}hqpi}$

Spinors

•
$$v (p) = u (p) = \frac{1}{2} 1 5 u(p)$$

• $\bar{v} (p) = \bar{u} (p) = \bar{u}(p) \frac{1}{2} 1 5$
• $hij i \bar{u} (i)u_{+}(j) = p_{j}^{+}e^{i} p_{j}^{+}e^{i} = hji i$
• $[ij] \bar{u}_{+}(i)u (j) = hji i$
• $p_{i}^{+} = p_{i}^{0} + p_{i}^{3}; e^{i} = (p_{i}^{1} + ip_{i}^{2}) = p_{i}^{+}$
• $hij i [ji] = s_{ij} = (p_{i} + p_{j})^{2}$

•
$$\overline{u}_+(i)$$
 $u_+(j)$ $[ij$ $jji = hjj$ ji] \overline{u} (j) u (i)
• $+(p;q) = \frac{[pj \ jqi}{\overline{2}hqpi}$; $(p;q) = \frac{hgj \ jq}{\overline{2}[qp]}$
• $[ij$ $jji[kj$ $jli = 2[ik]hjli$; $+(p;q)k = \frac{[pk]hkqi}{\overline{2}hqpi}$

Spinors

•
$$v (p) = u (p) = \frac{1}{2} 1 5 u(p)$$

• $\bar{v} (p) = \bar{u} (p) = \bar{u}(p) \frac{1}{2} 1 5$
• $hiji \bar{u} (i)u_{+}(j) = p_{j}^{+}e^{i_{j}} p_{i}^{+}e^{i_{j}} = hjii$
• $[ij] \bar{u}_{+}(i)u (j) = hjii$
• $p_{i}^{+} = p_{i}^{0} + p_{i}^{3}; e^{i_{j}} = (p_{i}^{1} + ip_{i}^{2}) = p_{i}^{+}$
• $hiji[ji] = s_{ij} = (p_{i} + p_{j})^{2}$

• $\bar{u}_{+}(i) \quad u_{+}(j) \quad [ij \quad jji = hjj \quad ji] \quad \bar{u} \quad (j) \quad u \quad (i)$ • $^{+}(p;q) = \frac{[pj \quad jqi}{2hqpi} ; \quad (p;q) = \frac{hgj \quad jq}{2[qp]}$ • $[ij \quad jji[kj \quad jli = 2[ik]hjli ; \quad ^{+}(p;q)k = \frac{[pk]hkqi}{2hqpi}$

Spinors

•
$$v (p) = u (p) = \frac{1}{2} 1 5 u(p)$$

• $\bar{v} (p) = \bar{u} (p) = \bar{u}(p) \frac{1}{2} 1 5$
• $hij i \bar{u} (i)u_{+}(j) = p_{j}^{+}e^{i} p_{j}^{+}e^{i} p_{i}^{+}e^{i} p_{j}^{+}e^{i} p_{j}^{+}e^{$

Vectors

•
$$\bar{u}_{+}(i) \quad u_{+}(j) \quad [ij \quad jji = hjj \quad ji] \quad \bar{u} \quad (j) \quad u \quad (i)$$

• $^{+}(p;q) = \frac{[pj \quad jqi}{\bar{2}hqpi}; \quad (p;q) = \frac{hgj \quad jq]}{\bar{2}[qp]}$
• $[ij \quad jji[kj \quad jli = 2[ik]hjli; \quad ^{+}(p;q)k = \frac{[pk]hkqi}{\bar{2}hqpi}$

Spinors

•
$$v (p) = u (p) = \frac{1}{2} 1 5 u(p)$$

• $\bar{v} (p) = \bar{u} (p) = \bar{u}(p) \frac{1}{2} 1 5$
• $hij i \bar{u} (i)u_{+}(j) = p_{j}^{+}e^{i} p_{j}^{+}e^{i} p_{i}^{+}e^{i} p_{j}^{+}e^{i} p_{j}^{+}e^{$

Vectors

•
$$\bar{u}_{+}(i) \quad u_{+}(j) \quad [ij \quad jj \ i = hjj \quad ji] \quad \bar{u} \quad (j) \quad u \quad (i)$$

• $^{+}(p;q) = \frac{[pj \quad jqi}{\bar{2}hqpi}; \quad (p;q) = \frac{hgj \quad jq]}{\bar{2}[qp]}$
• $[ij \quad jj \ i[kj \quad jli = 2[ik]hjli; \quad ^{+}(p;q)k = \frac{[pk]hkqi}{\bar{2}hqpi}$

Generate a Branching

- Generate unpolarised antenna branching
 - Means shower without MECs has no spin correlations
- Then choose a polarisation for i; j; k
 P(h_A; h_B; h_i; h_j; h_k) =
 <sup>PA(h_A; h_B; h_i; h_j; h_k) A(h_A; h_B; h_i; h_j; h_k)

 </sup>
- $A(h_A; h_B; h_i; h_j; h_k)$ is antenna function
 - Reproduces correct limits in soft/collinear regions
 - Sum of polarised antennae = unpolarised antenna

Generate a Branching

- Generate unpolarised antenna branching
 - Means shower without MECs has no spin correlations
- Then choose a polarisation for *i*; *j*; *k*

•
$$P(h_A; h_B; h_i; h_j; h_k) = \frac{P^{A(h_A; h_B; h_i; h_j; h_k)}}{A(h_A; h_B; h_i; h_j; h_k)}$$

- $A(h_A; h_B; h_i; h_j; h_k)$ is antenna function
 - Reproduces correct limits in soft/collinear regions
 - Sum of polarised antennae = unpolarised antenna

Generate a Branching

- Generate unpolarised antenna branching
 - Means shower without MECs has no spin correlations
- Then choose a polarisation for *i;j;k*

•
$$P(h_A; h_B; h_i; h_j; h_k) = \frac{P^{A(h_A; h_B; h_i; h_j; h_k)}}{A(h_A; h_B; h_i; h_j; h_k)}$$

- $A(h_A; h_B; h_i; h_j; h_k)$ is antenna function
 - Reproduces correct limits in soft/collinear regions
 - Sum of polarised antennae = unpolarised antenna

MHV Amplitudes

• Results for mostly-plus helicities

• Flipping all helicities means $hiji \mid [ji]$ (and $jM_h^2 = jM_h^2 = h$)

MHV Amplitudes

- Results for mostly-plus helicities
- Flipping all helicities means hij i ! [ji] (and $jM_h^2 = jM_h^2 h$)

All-Gluon Amplitudes

$$A_{i}(i ; j) = i \frac{hij/4}{h12/h23/\dots hn1/4}$$

MHV Amplitudes

- Results for mostly-plus helicities
- Flipping all helicities means hij i ! [ji] (and $jM_h^2 = jM_h^2 h$)

All-Gluon Amplitudes

$$A_{i}(i_{j}) = i \frac{hij/4}{h12/h23/\dots+hn1/2}$$

1 Quark Pair QCD Amplitudes

$$A_{i}(q ; i ; \bar{q}^{+}) = \frac{hqi i^{3}h\bar{q}i i}{h\bar{q}q hq1 h12 i :::h(n-2)\bar{q}i}$$
$$A_{i}(q^{+}; i ; \bar{q}^{-}) = \frac{hqi h\bar{q}i h\bar{q}i}{h\bar{q}q hq1 h12 i :::h(n-2)\bar{q}i}$$

Backup Slides

Proton-Proton Collisions: Overview

- Figure stolen from Stefan Hoeche
- Hard Process, resonant decays
- Parton Shower
- MPIs
- Hadronisation
- Hadron Decays
- Photon Emission
- Beam Remnants/UE

Backup Slides

Proton-Proton Collisions: Overview

- Figure stolen from Stefan Hoeche
- Hard Process, resonant decays
- Parton Shower
- MPIs
- Hadronisation
- Hadron Decays
- Photon Emission
- Beam Remnants/UE

- Figure stolen from Stefan Hoeche
- Hard Process, resonant decays
- Parton Shower
- MPIs
- Hadronisation
- Hadron Decays
- Photon Emission
- Beam Remnants/UE

- Figure stolen from Stefan Hoeche
- Hard Process, resonant decays
- Parton Shower
- MPIs
- Hadronisation
- Hadron Decays
- Photon Emission
- Beam Remnants/UE

- Figure stolen from Stefan Hoeche
- Hard Process, resonant decays
- Parton Shower
- MPIs
- Hadronisation
- Hadron Decays
- Photon Emission
- Beam Remnants/UE

- Figure stolen from Stefan Hoeche
- Hard Process, resonant decays
- Parton Shower
- MPIs
- Hadronisation
- Hadron Decays
- Photon Emission
- Beam Remnants/UE

- Figure stolen from Stefan Hoeche
- Hard Process, resonant decays
- Parton Shower
- MPIs
- Hadronisation
- Hadron Decays
- Photon Emission
- Beam Remnants/UE

- Figure stolen from Stefan Hoeche
- Hard Process, resonant decays
- Parton Shower
- MPIs
- Hadronisation
- Hadron Decays
- Photon Emission
- Beam Remnants/UE

• Bremsstrahlung occurs in initial- (ISR) and final- (FSR) state radiation

- Recursively generates emissions off a parton
- Assumes radiation to be soft and/or collinear
 - Logarithmic enhancement in emission probability
 - Describes soft and/or collinear radiation very well
- Poor job of describing hard, wide-angle emissions

- Bremsstrahlung occurs in initial- (ISR) and final- (FSR) state radiation
- Recursively generates emissions off a parton
- Assumes radiation to be soft and/or collinear
 - Logarithmic enhancement in emission probability
 - Describes soft and/or collinear radiation very well
- Poor job of describing hard, wide-angle emissions

- Bremsstrahlung occurs in initial- (ISR) and final- (FSR) state radiation
- Recursively generates emissions off a parton
- Assumes radiation to be soft and/or collinear
 - Logarithmic enhancement in emission probability
 - Describes soft and/or collinear radiation very well

• Poor job of describing hard, wide-angle emissions

- Bremsstrahlung occurs in initial- (ISR) and final- (FSR) state radiation
- Recursively generates emissions off a parton
- Assumes radiation to be soft and/or collinear
 - Logarithmic enhancement in emission probability
 - Describes soft and/or collinear radiation very well
- Poor job of describing hard, wide-angle emissions

- Markov chain of collinear emissions off single partons
 - No concept of history
 - Soft and wide-angled emissions artificially separated
 - Angular distributions can be compromised
- Dipole shower. Spectator parton for momentum conservation
- Unpolarised partons, minimal spin correlations
- Uses the full matrix element to correct first emission (MEC)
 - All subsequent emissions only well-described in soft/collinear parts of phase space
- Conclusion: is good, can be better

- Markov chain of collinear emissions off single partons
 - No concept of history
 - Soft and wide-angled emissions artificially separated
 - Angular distributions can be compromised
- Dipole shower. Spectator parton for momentum conservation
- Unpolarised partons, minimal spin correlations
- Uses the full matrix element to correct first emission (MEC)
 - All subsequent emissions only well-described in soft/collinear parts of phase space
- Conclusion: is good, can be better

- Markov chain of collinear emissions off single partons
 - No concept of history
 - Soft and wide-angled emissions artificially separated
 - Angular distributions can be compromised
- Dipole shower. Spectator parton for momentum conservation
- Unpolarised partons, minimal spin correlations
- Uses the full matrix element to correct first emission (MEC)
 - All subsequent emissions only well-described in soft/collinear parts of phase space
- Conclusion: is good, can be better

- Markov chain of collinear emissions off single partons
 - No concept of history
 - Soft and wide-angled emissions artificially separated
 - Angular distributions can be compromised
- Dipole shower. Spectator parton for momentum conservation
- Unpolarised partons, minimal spin correlations
- Uses the full matrix element to correct first emission (MEC)
 - All subsequent emissions only well-described in soft/collinear parts of phase space

- Markov chain of collinear emissions off single partons
 - No concept of history
 - Soft and wide-angled emissions artificially separated
 - Angular distributions can be compromised
- Dipole shower. Spectator parton for momentum conservation
- Unpolarised partons, minimal spin correlations
- Uses the full matrix element to correct first emission (MEC)
 - All subsequent emissions only well-described in soft/collinear parts of phase space
- Conclusion: is good, can be better

-D

- Uses colour antennae, not emission off single partons
 - Soft and wide-angle emissions described more naturally
- Can use full matrix element to correct up to 3rd emission
- Non-Markovian emissions, remembers histories
- Helicity shower
 - Many spin correlations automatically accounted for
 - Quicker calculation of MECs

- Uses colour antennae, not emission off single partons
 - Soft and wide-angle emissions described more naturally
- Can use full matrix element to correct up to 3rd emission
- Non-Markovian emissions, remembers histories
- Helicity shower
 - Many spin correlations automatically accounted for
 - Quicker calculation of MECs

- Uses colour antennae, not emission off single partons
 - Soft and wide-angle emissions described more naturally
- Can use full matrix element to correct up to 3rd emission
- Non-Markovian emissions, remembers histories
- Helicity shower
 - Many spin correlations automatically accounted for
 - Quicker calculation of MECs

- Uses colour antennae, not emission off single partons
 - Soft and wide-angle emissions described more naturally
- Can use full matrix element to correct up to 3rd emission
- Non-Markovian emissions, remembers histories
- Helicity shower
 - Many spin correlations automatically accounted for
 - Quicker calculation of MECs

- In normal Amplitudes we sum and average spins/helicities
- Here we only need a single helicity configuration for each amplitude
- Helicity amplitudes are often remarkably simple to compute
- Most simple is called Maximally Helicity Violating (MHV)
- Helicity conservation can be made explicit
- Can trace the helicity through the shower
 - Allows us to use the quicker helicity amplitudes in all histories of an MEC

- In normal Amplitudes we sum and average spins/helicities
- Here we only need a single helicity configuration for each amplitude
- Helicity amplitudes are often remarkably simple to compute
- Most simple is called Maximally Helicity Violating (MHV)
- Helicity conservation can be made explicit
- Can trace the helicity through the shower
 - Allows us to use the quicker helicity amplitudes in all histories of an MEC

- In normal Amplitudes we sum and average spins/helicities
- Here we only need a single helicity configuration for each amplitude
- Helicity amplitudes are often remarkably simple to compute
- Most simple is called Maximally Helicity Violating (MHV)
- Helicity conservation can be made explicit
- Can trace the helicity through the shower
 - Allows us to use the quicker helicity amplitudes in all histories of an MEC

- In normal Amplitudes we sum and average spins/helicities
- Here we only need a single helicity configuration for each amplitude
- Helicity amplitudes are often remarkably simple to compute
- Most simple is called Maximally Helicity Violating (MHV)
- Helicity conservation can be made explicit
- Can trace the helicity through the shower
 - Allows us to use the quicker helicity amplitudes in all histories of an MEC

- In normal Amplitudes we sum and average spins/helicities
- Here we only need a single helicity configuration for each amplitude
- Helicity amplitudes are often remarkably simple to compute
- Most simple is called Maximally Helicity Violating (MHV)
- Helicity conservation can be made explicit
- Can trace the helicity through the shower
 - Allows us to use the quicker helicity amplitudes in all histories of an MEC

- In normal Amplitudes we sum and average spins/helicities
- Here we only need a single helicity configuration for each amplitude
- Helicity amplitudes are often remarkably simple to compute
- Most simple is called Maximally Helicity Violating (MHV)
- Helicity conservation can be made explicit
- Can trace the helicity through the shower
 - Allows us to use the quicker helicity amplitudes in all histories of an MEC

• Recursively generate a compact form for the matrix element

- Often use spinor-helicity formalism
- Assume all particles are outgoing
 - Use crossing symmetry for initial-state partons
- Organises processes based on the number of opposite helicities
 - $\mathcal{M}[n]$, $\mathcal{M}[(n 1)]$; 1] = 0
 - $\mathcal{M}[(n \quad 2) \quad ; 2 \quad] = MHV$
 - $\mathcal{M}[(n \quad 3) ; 3] = NMHV$
 - $\mathcal{M}[(n-4); 4] = NNMHV$
 - etc.
- This simplifies only the kinematics of the amplitude

- Recursively generate a compact form for the matrix element
- Often use spinor-helicity formalism
- Assume all particles are outgoing
 - Use crossing symmetry for initial-state partons
- Organises processes based on the number of opposite helicities
 - $\mathcal{M}[n]$, $\mathcal{M}[(n-1)]$; 1] = 0
 - $\mathcal{M}[(n = 2) ; 2] = MHV$
 - $\mathcal{M}[(n \quad 3) \quad ; 3 \quad] = NMHV$
 - $\mathcal{M}[(n-4); 4] = NNMHV$
 - etc.
- This simplifies only the kinematics of the amplitude

- Recursively generate a compact form for the matrix element
- Often use spinor-helicity formalism
- Assume all particles are outgoing
 - Use crossing symmetry for initial-state partons
- Organises processes based on the number of opposite helicities
 - $\mathcal{M}[n]$, $\mathcal{M}[(n-1);1] = 0$
 - $\mathcal{M}[(n = 2) ; 2] = MHV$
 - $\mathcal{M}[(n \quad 3) ; 3] = NMHV$
 - $\mathcal{M}[(n-4); 4] = NNMHV$
 - etc.
- This simplifies only the kinematics of the amplitude

- Recursively generate a compact form for the matrix element
- Often use spinor-helicity formalism
- Assume all particles are outgoing
 - Use crossing symmetry for initial-state partons
- Organises processes based on the number of opposite helicities

•
$$\mathcal{M}[n]$$
, $\mathcal{M}[(n 1); 1] = 0$

$$M[(n \ 2) \ ; 2 \] = MHV$$

•
$$\mathcal{M}[(n \quad 3) ; 3] = NMHV$$

•
$$\mathcal{M}[(n \quad 4) ; 4] = NNMHV$$

• etc.

- Recursively generate a compact form for the matrix element
- Often use spinor-helicity formalism
- Assume all particles are outgoing
 - Use crossing symmetry for initial-state partons
- Organises processes based on the number of opposite helicities

•
$$\mathcal{M}[n]$$
, $\mathcal{M}[(n 1)]$; $1] = 0$

•
$$\mathcal{M}[(n \quad 2) ; 2] = MHV$$

•
$$\mathcal{M}[(n \quad 3) ; 3] = NMHV$$

•
$$\mathcal{M}[(n \quad 4) ; 4] = NNMHV$$

• etc.

- Recursively generate a compact form for the matrix element
- Often use spinor-helicity formalism
- Assume all particles are outgoing
 - Use crossing symmetry for initial-state partons
- Organises processes based on the number of opposite helicities

•
$$\mathcal{M}[n]$$
, $\mathcal{M}[(n 1)]$; $1] = 0$

•
$$\mathcal{M}[(n \quad 2) ; 2] = MHV$$

•
$$\mathcal{M}[(n \quad 3) ; 3] = NMHV$$

•
$$\mathcal{M}[(n \quad 4) ; 4] = NNMHV$$

• etc.

- Recursively generate a compact form for the matrix element
- Often use spinor-helicity formalism
- Assume all particles are outgoing
 - Use crossing symmetry for initial-state partons
- Organises processes based on the number of opposite helicities

•
$$\mathcal{M}[n]$$
, $\mathcal{M}[(n 1)]$; $1] = 0$

•
$$\mathcal{M}[(n \quad 2) ; 2] = MHV$$

•
$$\mathcal{M}[(n \quad 3) ; 3] = NMHV$$

•
$$\mathcal{M}[(n \quad 4) ; 4] = NNMHV$$

• etc.

- Recursively generate a compact form for the matrix element
- Often use spinor-helicity formalism
- Assume all particles are outgoing
 - Use crossing symmetry for initial-state partons
- Organises processes based on the number of opposite helicities

•
$$\mathcal{M}[n]$$
, $\mathcal{M}[(n 1)]$; $1] = 0$

•
$$\mathcal{M}[(n \quad 2) ; 2] = MHV$$

•
$$\mathcal{M}[(n \quad 3) ; 3] = NMHV$$

•
$$\mathcal{M}[(n \quad 4) ; 4] = NNMHV$$

• etc.

- Recursively generate a compact form for the matrix element
- Often use spinor-helicity formalism
- Assume all particles are outgoing
 - Use crossing symmetry for initial-state partons
- Organises processes based on the number of opposite helicities

•
$$\mathcal{M}[n]$$
, $\mathcal{M}[(n 1)]$; $1] = 0$

•
$$\mathcal{M}[(n \quad 2) ; 2] = MHV$$

•
$$\mathcal{M}[(n \quad 3) ; 3] = NMHV$$

•
$$\mathcal{M}[(n \quad 4) ; 4] = NNMHV$$

- etc.
- This simplifies only the kinematics of the amplitude

Colour Ordering

• Can easily separate colour and kinematics in a process

•
$$\mathcal{M}_i \ 1^{h_1}$$
;...; $n^{h_n} = C_i(t^1$;...; $t^n)A_i \ p_1^{h_1}$;...; $p_n^{h_n}$

•
$$jMj^2 = \stackrel{\mathsf{P}}{}_{i;j}M_iM_j = \stackrel{\mathsf{P}}{}_{i;j}A_iC_{ij}A_j$$

• Many different possible colour bases

- each give different kinematics
- Most common is so-called trace basis
 Conceptually simple, but non-orthogonal and overcomplete

Colour Ordering

• Can easily separate colour and kinematics in a process

•
$$\mathcal{M}_i \quad 1^{h_1} ; \dots ; n^{h_n} = C_i(t^1; \dots; t^n) A_i \quad p_1^{h_1}; \dots; p_n^{h_n}$$

• $|\mathcal{M}|^2 = \bigcap_{i=1}^{n} \mathcal{M}_i \mathcal{M}_i = \bigcap_{i=1}^{n} A_i C_{ii} A_i$

Many different possible colour bases
 each give different kinematics

Most common is so-called trace basis
 Conceptually simple, but non-orthogonal and overcomplete
Colour Ordering

• Can easily separate colour and kinematics in a process

•
$$\mathcal{M}_i \ 1^{h_1}, \ldots, n^{h_n} = C_i(t^1, \ldots, t^n) A_i \ p_1^{h_1}, \ldots, p_n^{h_n}$$

•
$$jMj^2 = \bigcap_{i:j} M_i M_j = \bigcap_{i:j} A_i C_{ij}A_j$$

- Many different possible colour bases
 - each give different kinematics
- Most common is so-called trace basis
 Conceptually simple, but non-orthogonal and overcomplete

Colour Ordering

• Can easily separate colour and kinematics in a process

•
$$\mathcal{M}_i \ 1^{h_1}, \ldots, n^{h_n} = C_i(t^1, \ldots, t^n) A_i \ p_1^{h_1}, \ldots, p_n^{h_n}$$

•
$$jMj^2 = \bigcap_{i,j} M_i M_j = \bigcap_{i,j} A_i C_{ij}A_j$$

- Many different possible colour bases
 - each give different kinematics
- Most common is so-called trace basis
 - Conceptually simple, but non-orthogonal and overcomplete

Colour Ordering

• Can easily separate colour and kinematics in a process

•
$$\mathcal{M}_i \ 1^{h_1}, \ldots, n^{h_n} = C_i(t^1, \ldots, t^n) A_i \ p_1^{h_1}, \ldots, p_n^{h_n}$$

•
$$jMj^2 = \bigcap_{i,j} M_i M_j = \bigcap_{i,j} A_i C_{ij}A_j$$

- Many different possible colour bases
 - each give different kinematics
- Most common is so-called trace basis
 - Conceptually simple, but non-orthogonal and overcomplete

Colour Order in the Trace Basis: All-Gluon Case

All-Gluon Amplitude Structure

$$\mathcal{M}_i(g_1;g_2;\ldots;g_n) = g_s^{n-2} \operatorname{Tr}(t^{a_1}\ldots t^{a_n}) A_i(p_1^{h_1};\ldots;p_n^{h_n})$$

• If $\mathcal{M}_i(g_1; g_2; g_3; g_4)$:

Colour Order in the Trace Basis: All-Gluon Case

All-Gluon Amplitude Structure

$$\mathcal{M}_i(g_1;g_2;\ldots;g_n) = g_s^{n-2} \operatorname{Tr}(t^{a_1}\ldots t^{a_n}) A_i(p_1^{h_1};\ldots;p_n^{h_n})$$

• If $\mathcal{M}_i(g_1; g_2; g_3; g_4)$:

Colour Order in the Trace Basis: All-Gluon Case

All-Gluon Amplitude Structure

$$\mathcal{M}_i(g_1;g_2;\ldots;g_n) = g_s^{n-2} \operatorname{Tr}(t^{a_1}\ldots t^{a_n}) A_i(p_1^{h_1};\ldots;p_n^{h_n})$$

Colour Order in the Trace Basis: 1 $q\bar{q}$ Pair, n 2 Gluons

1 Quark Pair QCD Amplitude Structure

 $\mathcal{M}_{i}(q;g_{1};\ldots;g_{n-2};\bar{q}) = g_{s}^{n-2}(t^{a_{1}}:\ldots:t^{a_{n-2}})_{q\bar{q}}A_{i}(q^{h_{q}};p_{1}^{h_{1}};\ldots;p_{n-2}^{h_{n-2}};\bar{q}^{h_{\bar{q}}})$

Colour Order in the Trace Basis: 1 $q\bar{q}$ Pair, n 2 Gluons

1 Quark Pair QCD Amplitude Structure

 $\mathcal{M}_{i}(q;g_{1};\ldots;g_{n-2};\bar{q})=g_{s}^{n-2}(t^{a_{1}}\ldots;t^{a_{n-2}})_{q\bar{q}}A_{i}(q^{h_{q}};p_{1}^{h_{1}};\ldots;p_{n-2}^{h_{n-2}};\bar{q}^{h_{\bar{q}}})$

Colour Order in the Trace Basis: 1 $q\bar{q}$ Pair, n 2 Gluons

1 Quark Pair QCD Amplitude Structure

 $\mathcal{M}_{i}(q;g_{1};\ldots;g_{n-2};\bar{q}) = g_{s}^{n-2}(t^{a_{1}}\ldots;t^{a_{n-2}})_{q\bar{q}}A_{i}(q^{h_{q}};p_{1}^{h_{1}};\ldots;p_{n-2}^{h_{n-2}};\bar{q}^{h_{\bar{q}}})$

Colour Order in the Trace Basis: 1 $q\bar{q}$ Pair, n 2 Gluons

1 Quark Pair QCD Amplitude Structure

 $\mathcal{M}_{i}(q;g_{1};\ldots;g_{n-2};\bar{q}) = g_{s}^{n-2}(t^{a_{1}}\ldots;t^{a_{n-2}})_{q\bar{q}}A_{i}(q^{h_{q}};p_{1}^{h_{1}};\ldots;p_{n-2}^{h_{n-2}};\bar{q}^{h_{\bar{q}}})$

Colour Order in the Trace Basis: 2 $q\bar{q}$ Pairs, n 4 Gluons

2 Quark Pair QCD Amplitude Structure 1

$$\mathcal{M}_{i}(Q;1;\ldots;k;q;q;k+1;\ldots;n-4;Q) = g_{s}^{n-2}$$
$$\mathcal{A}_{i}(h_{q};h_{Q};h_{g})(t^{a_{1}}\ldots t^{a_{k}})_{Q\bar{q}}(t^{a_{k+1}}\ldots t^{a_{n-4}})_{q\bar{Q}}$$
$$\mathcal{A}_{i}^{(1)}(Q;1;\ldots;k;q;q;k+1;\ldots;n-4;Q)$$

Colour Order in the Trace Basis: 2 $q\bar{q}$ Pairs, n 4 Gluons

2 Quark Pair QCD Amplitude Structure 1

$$\mathcal{M}_{i}(Q;1;\ldots;k;q;q;k+1;\ldots;n-4;Q) = g_{s}^{n-2}$$
$$\mathcal{A}_{i}(h_{q};h_{Q};h_{g})(t^{a_{1}}\ldots t^{a_{k}})_{Q\bar{q}}(t^{a_{k+1}}\ldots t^{a_{n-4}})_{q\bar{Q}}$$
$$\mathcal{A}_{i}^{(1)}(Q;1;\ldots;k;q;q;k+1;\ldots;n-4;Q)$$

2 Quark Pair QCD Amplitude Structure 2

$$\mathcal{M}_{i}(q;1;\ldots;k;q;Q;k+1;\ldots;n-4;Q) = g_{s}^{n-2}$$

$$\frac{1}{N_{C}}\mathcal{A}_{i}(h_{q};h_{Q};h_{g})(t^{a_{1}}\ldots t^{a_{k}})_{q\bar{q}}(t^{a_{k+1}}\ldots t^{a_{n-4}})_{Q\bar{Q}}$$

$$\mathcal{A}_{i}^{(2)}(q;1;\ldots;k;q;Q;k+1;\ldots;n-4;Q)$$

MHV Amplitudes: All-Gluon

Full Colour-Summed Amplitude (MHV = $\mathcal{M}[(n \ 2) \ ; 2 \])$

Kinematic Amplitude

$$A_{i}(i;j) = i \frac{hij i^{4}}{h12 i / 23 i : :: hn1 i}$$
$$A_{i}(i^{+};j^{+}) = i \frac{[ji]^{4}}{[1n][n(n-1)] : :: [21]}$$

Flipping all helicities means hij / ! [ji]
 jMj²_h = jMj²_h

MHV Amplitudes: All-Gluon

Full Colour-Summed Amplitude (MHV = $\mathcal{M}[(n \ 2) \ ; 2 \])$

$$\times \underset{i}{\underset{i}{\sim}} \mathcal{M}_{i}(g_{1};g_{2};\ldots;g_{n}) = g_{s}^{n-2} \times \underset{i}{\underset{i}{\sim}} \operatorname{Tr}(t^{a_{i}(1)}:\ldots:t^{a_{i}(n)})A_{i}(i(p_{1}^{h_{1}});\ldots;i(p_{n}^{h_{n}}))$$

Kinematic Amplitude

$$A_{i}(i : j) = i \frac{hij i^{4}}{h12 i h23 i : :: hn1 i}$$
$$A_{i}(i^{+}; j^{+}) = i \frac{[ji]^{4}}{[1n][n(n-1)] : :: [21]}$$

Flipping all helicities means hij i ! [ji]
 jMj²_h = jMj²_h

MHV Amplitudes: All-Gluon

Full Colour-Summed Amplitude (MHV = $\mathcal{M}[(n \ 2) \ ; 2 \])$

$$\times \underset{i}{\underset{i}{\sim}} \mathcal{M}_{i}(g_{1};g_{2};\ldots;g_{n}) = g_{s}^{n-2} \times \underset{i}{\underset{i}{\sim}} \operatorname{Tr}(t^{a_{i}(1)}:\ldots:t^{a_{i}(n)})A_{i}(i(p_{1}^{h_{1}});\ldots;i(p_{n}^{h_{n}}))$$

Kinematic Amplitude

$$A_{i}(i;j) = i \frac{hij i^{4}}{h12ih23i::::hn1i}$$
$$A_{i}(i^{+};j^{+}) = i \frac{[ji]^{4}}{[1n][n(n-1)]:::[21]}$$

Flipping all helicities means *hij* / [*ji*] *i*M²_h = *i*M²_h

MHV Amplitudes: 1 Quark Pair, n = 2 Gluons

Full Colour-Summed Amplitude

$$\sum_{i} \mathcal{M}_{i}(q; g_{1}; \ldots; g_{n-2}; \bar{q}) = g_{s}^{n-2} \sum_{\substack{i \geq S_{n-2} \\ A_{i} = q^{h_{q}}; \quad i} (p_{1}^{h_{1}}); \ldots; t^{a_{-i}(n-2)})_{q\bar{q}}$$

Kinematic Amplitude

$$A_{i}(q ; i ; \bar{q}^{+}) = \frac{hqi/^{3}h\bar{q}ii}{h\bar{q}qihq1ih12i:::h(n-2)\bar{q}i}$$
$$A_{i}(q^{+}; i ; \bar{q}^{-}) = \frac{hqi/h\bar{q}i}{h\bar{q}qihq1ih12i:::h(n-2)\bar{q}i}$$

 Flipping all helicities means hij i [ji]
 jMj²_h = jMj²_h

MHV Amplitudes: 1 Quark Pair, n = 2 Gluons

Full Colour-Summed Amplitude

$$\sum_{i} \mathcal{M}_{i}(q; g_{1}; \dots; g_{n-2}; \bar{q}) = g_{s}^{n-2} \sum_{i \geq S_{n-2}}^{X} (t^{a_{-i}(1)}; \dots; t^{a_{-i}(n-2)})_{q\bar{q}}$$

$$A_{-i} = q^{h_{q}}; \ _{i}(p_{1}^{h_{1}}); \dots; \ _{i}(p_{n-2}^{h_{n-2}}); \bar{q}^{h_{\bar{q}}}$$

Kinematic Amplitude

$$A_{i}(q ; i ; \bar{q}^{+}) = \frac{hqi/^{3}h\bar{q}ii}{h\bar{q}qihq1ih12i:::h(n-2)\bar{q}i}$$
$$A_{i}(q^{+}; i ; \bar{q}^{-}) = \frac{hqi/h\bar{q}i}{h\bar{q}qihq1ih12i:::h(n-2)\bar{q}i}$$

 Flipping all helicities means hiji / [ji]

•
$$jMj_h^2 = jMj_h^2$$

MHV Amplitudes: 2 Quark Pairs, *n* 4 Gluons

Full Colour-Summed Amplitude

Kinematic Amplitude (part 1)			
	$(h_q; h_Q; h_g)$	$A_0(h_q;h_Q;h_g)$	
	(+,+)	h q Q /2	
	(+;+;)	$[qQ]^2$	
	(+; ;+)	$hqQi^2$	
	(+;;)	$[qQ]^2$	

Andrew Lifson (Lund)

January 25th 2019 18 / 27

MHV Amplitudes: 2 Quark Pairs, n 4 Gluons

Full Colour-Summed Amplitude

$$\times \underset{i}{\overset{M_{i}(q;\bar{q};Q;\bar{Q};g_{1};\ldots;g_{n-4}) = g_{s}^{n-2} \frac{A_{0}(h_{q};h_{Q};h_{g})}{fq\bar{q}gfQ\bar{Q}g}} \times \underset{i^{2}S_{n-4}}{\overset{K_{i}(1):\ldots:t^{a-i(k)})_{Q\bar{q}}} }$$

Kinematic Amplitude (part 2)

$$A_{i} = \frac{f_{\mathbf{q}} q_{\mathbf{g}}}{f_{\mathbf{q}} 1g f 12g \dots f k \bar{Q}g} \frac{f_{\mathbf{q}} q_{\mathbf{g}}}{f Q(k+1)g f(k+1)(k+2)g \dots f(n-4)\bar{q}g}$$

fijg = *hij i* if
 h_g =
 fijg = [*ji*] if

MHV Amplitudes: 2 Quark Pairs, *n* 4 Gluons

Full Colour-Summed Amplitude

$$\times \underset{i}{\overset{M_{i}(q;\bar{q};Q;\bar{Q};g_{1};\ldots;g_{n-4}) = g_{s}^{n-2} \frac{A_{0}(h_{q};h_{Q};h_{g})}{fq\bar{q}gfQ\bar{Q}g}} \times \underset{i^{2}S_{n-4}}{\overset{X}(t^{a_{-i}(1)}:\ldots:t^{a_{-i}(k)})_{Q\bar{q}}}$$

$$= (t^{a_{-i}(k+1)}:\ldots:t^{a_{-i}(n-4)})_{q\bar{Q}} \quad A_{-i}(Q;1;\ldots;k;\bar{q};q;k+1;\ldots;n-4;\bar{Q}) = \frac{1}{N_{C}} \quad \bar{q} \notin \bar{Q}$$

Kinematic Amplitude (part 2) $A_{i} = \frac{fq\bar{Q}g}{fq1gf12g:::fk\bar{Q}g} \frac{fQ\bar{q}g}{fQ(k+1)gf(k+1)(k+2)g:::f(n-4)\bar{q}g}$

• fijg = hiji if $h_g =$

MHV Amplitudes: Quark Pair, 1 Lepton Pair, n 4 Gluons

Full Colour-Summed Amplitude

$$\times_{i} \mathcal{M}_{i}(h_{q}; h_{l}; h_{g}) = ig_{s}^{n-4} \times_{i^{2}S_{n-4}} (t^{a_{-i}(1)}; \dots; t^{a_{-i}(n-4)})_{q\bar{q}} \\ A_{-i}(q^{h_{q}}; -i(p_{1}^{h_{1}}); \dots; -i(p_{n-4}^{h_{n-4}}); q^{h_{\bar{q}}}; l^{h_{l}}; l^{h_{\bar{l}}})$$

- Same as 2 quark pairs with 1 pair not radiating
- Correct for coupling

Kinematic Amplitude

$$A_{n}(q;1;:::;n \quad 4;\bar{q};I;\bar{I}) = \underset{V = :;Z;W}{\times} M_{V}^{I}(h_{I};h_{q};h_{g}) \frac{1}{fq1gf12g:::f(n-4)\bar{q}g}$$
$$M_{V}^{I}(h_{I};h_{q};h_{g}) = \frac{A_{0}(h_{I};h_{q};h_{g})[\bar{I}I](g_{h_{I}}^{I})_{V}(g_{h_{q}}^{q})_{V}}{hI\bar{I}/[\bar{I}I]} M_{V}^{2} + i\Gamma_{V}M_{V}}$$

MHV Amplitudes: Quark Pair, 1 Lepton Pair, n 4 Gluons

Full Colour-Summed Amplitude

$$\times_{i} \mathcal{M}_{i}(h_{q}; h_{l}; h_{g}) = ig_{s}^{n-4} \times_{i^{2}S_{n-4}} (t^{a_{-i}(1)}; \dots; t^{a_{-i}(n-4)})_{q\bar{q}} \\ A_{-i}(q^{h_{q}}; -i(p_{1}^{h_{1}}); \dots; -i(p_{n-4}^{h_{n-4}}); q^{h_{\bar{q}}}; l^{h_{l}}; l^{h_{\bar{l}}})$$

- Same as 2 quark pairs with 1 pair not radiating
- Correct for coupling

Kinematic Amplitude

$$A_{n}(q;1;:::;n \quad 4;\bar{q};I;\bar{I}) = \underset{V=:;Z;W}{\times} M_{V}^{I}(h_{I};h_{q};h_{g}) \frac{1}{fq1gf12g:::f(n-4)\bar{q}g}$$
$$M_{V}^{I}(h_{I};h_{q};h_{g}) = \frac{A_{0}(h_{I};h_{q};h_{g})[\bar{I}I](g_{h_{I}}^{I})_{V}(g_{h_{q}}^{q})_{V}}{hI\bar{I}/[\bar{I}I]} M_{V}^{2} + i\Gamma_{V}M_{V}}$$

Polarising with MHV Amplitudes

$$P(h|i) = \Pr_{h^{\theta} \vee \mathbb{C}_{i}^{h^{\theta}}}^{\mathbb{V}\mathbb{C}_{i}^{h^{\theta}}} = \Pr_{j}^{\mathbb{E}\mathbb{C}_{j}^{h}} \stackrel{\mathbb{P}}{\underset{j \in \mathbb{C}_{j}^{h^{\theta}}}{\mathbb{P}}} \stackrel{\mathbb{P}}{\underset{k \in \mathbb{C}_{k}^{h^{\theta}}}{\mathbb{P}}} \stackrel{1}{\underset{k \in \mathbb{C}_{k}^{h^{\theta}}}{\mathbb{P}}} = \Pr_{j, A_{n}^{h^{\theta}} / A_{n}^{h^{\theta}} / 2}$$

What	is	$A_n^h?$?
------	----	----------	---

Process	Negative-helicity particles	$A_n^h(1; :::; n)$
All-gluon	i;j	hij i ⁴
Single Quark Pair	q;i	h qi i ³ h q i i
Single Quark Pair	ą;i	hqi i h q i i ³
Quark and Lepton Pairs		$A_0(h_l; h_q; +)(g_{h_l}^l)_V(g_{h_q}^q)_V$

If 2 same-flavour quark pairs no factorisation (since (h_q = h_Q) has a different colour structure to (h_q ∉ h_Q))

Polarising with MHV Amplitudes

$$P(h|i) = \Pr \frac{\mathsf{VC}_i^h}{h^\theta \mathsf{VC}_i^{h^\theta}} = \Pr \frac{\mathsf{FC}^h \mathsf{LC}_i^h}{\int_j \mathsf{LC}_j^h} \stackrel{\mathsf{P}}{\longrightarrow} h^\theta \Pr \frac{\mathsf{FC}^{h^\theta} \mathsf{LC}_i^{h^\theta}}{\int_k \mathsf{LC}_k^{h^\theta}} \stackrel{1}{\longrightarrow} = \Pr \frac{jA_n^h j^2}{h^\theta jA_n^{h^\theta} j^2}$$

What	is	$A_n^h??$
------	----	-----------

Process	Negative-helicity particles	$A_n^h(1; \ldots; n)$
All-gluon	i;j	hij i ⁴
Single Quark Pair	q;i	hqi i ³ h q i i
Single Quark Pair	ą;i	hqi i h q i i ³
Quark and Lepton Pairs		$A_0(h_l;h_q;+)(g_{h_l}^l)_V(g_{h_q}^q)_V$

• If 2 same-flavour quark pairs no factorisation (since $(h_q = h_Q)$ has a different colour structure to $(h_q \notin h_Q)$)

• All antennae have to be positive-definite

- Sum of all antennae must equal the unpolarised antenna
- In collinear and soft limits must reproduce DGLAP splitting
- Quarks cannot change helicity
- The hard branch cannot change helicity
- An initial gluon can change helicity
 - The radiated particle goes into the PDF (i.e. hard process)

- All antennae have to be positive-definite
- Sum of all antennae must equal the unpolarised antenna
- In collinear and soft limits must reproduce DGLAP splitting
- Quarks cannot change helicity
- The hard branch cannot change helicity
- An initial gluon can change helicity
 - The radiated particle goes into the PDF (i.e. hard process)

- All antennae have to be positive-definite
- Sum of all antennae must equal the unpolarised antenna
- In collinear and soft limits must reproduce DGLAP splitting
- Quarks cannot change helicity
- The hard branch cannot change helicity
- An initial gluon can change helicity
 - The radiated particle goes into the PDF (i.e. hard process)

- All antennae have to be positive-definite
- Sum of all antennae must equal the unpolarised antenna
- In collinear and soft limits must reproduce DGLAP splitting
- Quarks cannot change helicity
- The hard branch cannot change helicity
- An initial gluon can change helicity
 - The radiated particle goes into the PDF (i.e. hard process)

- All antennae have to be positive-definite
- Sum of all antennae must equal the unpolarised antenna
- In collinear and soft limits must reproduce DGLAP splitting
- Quarks cannot change helicity
- The hard branch cannot change helicity
- An initial gluon can change helicity
 - The radiated particle goes into the PDF (i.e. hard process)

- All antennae have to be positive-definite
- Sum of all antennae must equal the unpolarised antenna
- In collinear and soft limits must reproduce DGLAP splitting
- Quarks cannot change helicity
- The hard branch cannot change helicity
- An initial gluon can change helicity
 - The radiated particle goes into the PDF (i.e. hard process)

Speed Test of Shower

Helicity shower better for 2 ME-corrected legs At 3 ME-corrected legs, MHV saves 15%

Andrew Lifson (Lund)

MHV Amplitudes in Vincia

January 25th 2019 23 / 27

Speed Test of Shower

Helicity shower better fo⊳ 2 ME-corrected legs

At 3 ME-corrected legs, MHV saves 15%

Andrew Lifson (Lund)

MHV Amplitudes in Vincia

January 25th 2019 23 / 27

Speed Test of Shower

Helicity shower better fo⊳ 2 ME-corrected legs At 3 ME-corrected legs, MHV saves 15%

Andrew Lifson (Lund)

MHV Amplitudes in Vincia

January 25th 2019 23 / 27

E ects on Late Branchingsgg! gg

Corrected rst 2 emissions Large d_{56} (large $log_{10}(d_{56}=d_{12}) = 0$) expect MECs important Pythia has no MECs Vincia and Pythia showers intrinsically di erent

Polarising with MHV Amplitudes

$$P(hji) = P_{h^0 V C_i^{h^0}} = \frac{F_{C}^{h} L C_i^{h}}{P_{j} L C_j^{h}} P_{h^0} \frac{F_{C}^{h^0} L C_i^{h^0}}{P_{k} L C_k^{h^0}}$$

Usually polarise 2 2 or 2! 3, i.e. MHV MHV kinematics can be factorised into helicity and colour parts

1

Polarising with MHV Amplitudes

$$P(hji) = P_{h_{0} \vee C_{i}^{h_{0}}} = \frac{FC^{h}LC_{i}^{h}}{P_{j}LC_{j}^{h}} P_{h_{0}} \frac{FC^{h_{0}}LC_{i}^{h_{0}}}{P_{k}LC_{k}^{h_{0}}}$$

Usually polarise 2 2 or 2! 3, i.e. MHV MHV kinematics can be factorised into helicity and colour parts

1

$$FC^{h} = jA_{n}^{h}(1; ...; n)j^{2} \xrightarrow{X} \frac{1}{h(1)(2)i:..h(n)(1)i}C((t^{1}); ...; (t^{n}))^{2}$$
$$= jA_{n}^{h}j^{2} \xrightarrow{X} F()^{2}$$
$$LC_{i}^{h} = jA_{n}^{h}j^{2}jF(_{i})j^{2}$$
Backup Slides

Polarising with MHV Amplitudes

$$P(hji) = P \frac{VC_{i}^{h}}{h^{0}VC_{i}^{h^{0}}} = \frac{FC^{h}LC_{i}^{h}}{jLC_{j}^{h}} P_{h^{0}} \frac{FC^{h^{0}}LC_{i}^{h^{0}}}{P_{k}LC_{k}^{h^{0}}} =$$

Usually polarise 2 2 or 2! 3, i.e. MHV MHV kinematics can be factorised into helicity and colour parts

$$FC^{h} = jA_{n}^{h}(1; ...; n)j^{2} \xrightarrow{X} \frac{1}{h(1)(2)i ...h(n)(1)i}C((t^{1}); ...; (t^{n}))^{2}$$
$$= jA_{n}^{h}j^{2} \xrightarrow{X} F()^{2}$$
$$LC_{i}^{h} = jA_{n}^{h}j^{2}jF(_{i})j^{2}$$

Requires ME of all possible histories

Many of these historical MEs are MHV th(2), 2) If nal-state is MHV, all historical states are either:

(n 2) , 1 , i.e. unphysical

(n 3), 2, i.e. MHV

So MHV multi-parton states are recursively faster If not MHV, use MG4 (currently implementing MG5 interface) May be able to speed up much more using NMHV

- Requires ME of all possible histories
- Many of these historical MEs are MHV $((n \ 2) \ , 2 \)$
- If final-state is MHV, all historical states are either:
 - $(n \quad 2)$, 1 , i.e. unphysical
 - (*n* 3) , 2 , i.e. MHV
- So MHV multi-parton states are recursively faster
- If not MHV, use MG4 (currently implementing MG5 interface)
 - May be able to speed up much more using NMHV

- Requires ME of all possible histories
- Many of these historical MEs are MHV $((n \ 2) \ , 2 \)$
- If final-state is MHV, all historical states are either:
 - (n 2) , 1 , i.e. unphysical
 - (*n* 3) , 2 , i.e. MHV
- So MHV multi-parton states are recursively faster
- If not MHV, use MG4 (currently implementing MG5 interface)
 - May be able to speed up much more using NMHV

- Requires ME of all possible histories
- Many of these historical MEs are MHV $((n \ 2) \ , 2 \)$
- If final-state is MHV, all historical states are either:
 - (n 2) , 1 , i.e. unphysical
 - (n 3) , 2 , i.e. MHV
- So MHV multi-parton states are recursively faster
- If not MHV, use MG4 (currently implementing MG5 interface)
 - May be able to speed up much more using NMHV

- Requires ME of all possible histories
- Many of these historical MEs are MHV $((n \ 2) \ , 2 \)$
- If final-state is MHV, all historical states are either:
 - (n 2) , 1 , i.e. unphysical
 - (n 3) , 2 , i.e. MHV

• So MHV multi-parton states are recursively faster

• If not MHV, use MG4 (currently implementing MG5 interface)

May be able to speed up much more using NMHV

- Requires ME of all possible histories
- Many of these historical MEs are MHV $((n \ 2) \ , 2 \)$
- If final-state is MHV, all historical states are either:
 - (n 2) , 1 , i.e. unphysical
 - (n 3) , 2 , i.e. MHV
- So MHV multi-parton states are recursively faster
- If not MHV, use MG4 (currently implementing MG5 interface)
 - May be able to speed up much more using NMHV