

Searching for Long Lived Particles at LHCb

Federico Leo Redi (EPFL) - on behalf of the LHCb Collaboration 4 and 5 XII 2018, Université catholique de Louvain

Introduction

- Naturalness does not seem to be a guiding principle of Nature
- There are some anomalies in flavour physics which (if true) seem again to point out that our theory prejudice was wrong
- We should therefore not forget that we have a 2D problem (Mass VS Coupling)
- Low coupling → Long Lived

Landscape today

- The intensity frontier is a **broad** and **diverse**, yet **connected**, set of science opportunities
 - Light Dark Matter (LDM) Portals to Hidden Sector (HS) (dark photons, dark scalars) Axion Like Particles (ALP) Heavy Neutral Leptons (HNL)
- In this talk, I will concentrate on HS particles, specifically Long Lived Particles (LLP) at LHCb.
- Landscape: LHC results in brief:
 - Parameter space for popular **BSM** models is **decreasing rapidly**, but only < 5% of the complete HL-LHC data set has been delivered so far
 - NP discovery still may happen!
 - LHCb reported intriguing hints for the violation of lepton flavour universality
 - In b→cµv / b→cτv, and in b→se+e- / b→sµ+µ- decays
 - Clear evidence of BSM physics if substantiated with further studies (possibly by BELLE II)

Exploring the dark sector

- In the dark sector: $L = L_{SM} + L_{mediator} + L_{HS}$
 - Hidden Sector decay rates into SM final states is suppressed Branching ratios of O(10⁻¹⁰)

Long-lived objects

Interact very weakly with matter

- Experimental challenge is background suppression
- Full reconstruction and PID are essential to minimise model dependence
- Two strategies of searching for mediators at accelerators:
 - Not decaying in the detector (missing energy and scattering technique)
 - Decaying in the detector (reconstruction of decay vertex)
- **Two** means of production:
 - Produced in pp collisions (displaced di-jets and di-leptons)
 - Produced in B/D decays (displaced di-leptons)

Bonus: Dark bosons: PRL 115, 161802 (2015) PRD. 95, 071101 (2017)

The LHCb detector / 1

 LHCb is a dedicated flavour experiment in the forward region at the LHC (1.9 $< \eta < 4.9$) (~1°-15°)

Precise vertex reconstruction ~ 10 µm vertex resolution in transverse plane

Jet reconstruction efficiency > 80% (pT>15 GeV)

Muons clearly identified and triggered: ~ 90% µ± efficiency

Great mass resolution: typically 7-20 MeV

Low pt trigger means low masses accessible. Ex: ptu > 1.5 GeV

The LHCb detector / 2

- Lower luminosity (and low pile-up)
 - ~1/8 of ATLAS/CMS in Run 1
 - ~1/20 of ATLAS/CMS in **Run 2**
- Real-time reconstruction for all charged particles with pT > 0.5 GeV
- Real-time calibration & alignment
- Full real-time reconstruction for all particles available to select events
- We go from 1 TB/s (post zero suppression) to 0.7 GB/s (mix of full + partial events)
- LHCb will move to a trigger-less readout system for LHC Run 3 (2021-2023), and process 5 TB/s in real time on the CPU farm

Searching for Dark Photons / 1

Phys. Rev. Lett. 120, 061801 (2018)

- Search for dark photons decaying into a pair of muons
- Used **1.6 fb⁻¹** of 2016 LHCb data (13 TeV)
- Kinetic mixing of the dark photon (A') with off-shell photon (γ^*) by a factor ϵ :
 - A' inherits the production mode mechanisms from γ*
 - A' $\rightarrow \mu^+\mu^-$ can be **normalised** to $\gamma^* \rightarrow \mu^+\mu^-$
 - No use of MC → no systematics from MC → fully data-driven analysis
- Separate y* signal from background and measure its fraction
- Prompt-like search (up to 70 GeV/c²) → displaced search (214-350 MeV/c²)
 - A' is long-lived only if the mixing factor is really small

Searching for Dark Photons / 2

Phys. Rev. Lett. 120, 061801 (2018)

- Suppressing misidentified (nonmuon) backgrounds and reducing the event size enough to record the prompt-dimuon sample
- Accomplished these by moving to real-time calibration in Run 2
- Hardware trigger is still there, and only ~10% efficient at low pT

Searching for Dark Photons / 3

- Background dominated by material interactions for displaced searches at LHCb
- Precise knowledge of the location of the material in the LHCb VELO is essential to reduce the background in searches for long-lived exotic particles
- LHCb data calibration process can align active sensor elements, an alternative approach is required to fully map the VELO material

JINST 13, P06008 (2018)

250

- (Prompt: no excess is measured)
- Looser requirements on muon transverse momentum
- Material background mainly from photon conversions
- Isolation decision tree from B⁰s→µ+µ- search
 - Suppress events with additional number of tracks, i.e. µ from b-hadron decays
- Fit in bins of mass and lifetime use consistency of decay topology χ^2
- Extract p-values and confidence intervals from the fit
- No significant excess found, small parameter space region excluded
- First limit ever not from beam dump

Phys. Rev. Lett. 120, 061801 (2018)

300

m(A') [MeV]

350

Phys. Rev. Lett. 120, 061801 (2018)

• The 2016 dimuon results are consistent with (better than) predictions for prompt (long-lived) dark photons as discussed in [1603.08926]. We implemented huge improvements in the 2017 triggers for low masses, so plan quick turn around on updated dimuon search - then onto electrons.

- · Searches for the decays of heavy mesons to final states with two same sign leptons
- Complementary to other searches, such as in neutrino-less double β decay (only coupling to e^-)
- LHCb searches (will) constrain models like the type-I seesaw model with three right-handed neutrinos (e.g. HNL of Shaposhnikov et al.)
- Very stringent limits are possible for rare B and D decays
- Particularly true for off-shell Majorana neutrinos
 - Phys.Rev.Lett. 112 (2014) 131802: $h = \pi$, with 3.0 fb-1 (7 TeV and 8 TeV)
 - Phys.Rev. D85 (2012) 112004: $h = D, \, D*, \, Ds \, and \, D0\pi, \, with \, {\sim}40 \, pb-1 \, (7 \, TeV)$
 - Phys.Rev.Lett. 108 (2012) 101601: $h = K \text{ or } \pi$, with ~36 pb-1 (7 TeV)

Off-shell Majorana neutrinos at LHCb / 2

- Theoretical interpretation is extremely challenging
- LHCb and Belle limits revised in: Phys. Rev. D94, 113007 (2016)
 Phys. Rev. D95, 099903 (2017)
- Analysis of inclusive production of Majorana neutrinos is completed on Run 1 and ongoing on Run 2
- Possibility to explore further (mixing with e-, opposite sign muons...)

Eur. Phys. J. C77 (2017) 812

Massive LLP decaying to jet pairs / 1

- Search for LLP, SM Higgs boson acts as a portal, hidden-valley pion (π_v)
- Experimental signature is a single displaced vertex with two associated jets, trigger on displaced vertex
- Uses 2 invfb of 7 and 8 TeV data
- Quality requirement on jets and di-jet pointing
- Material veto + selection optimised as a function of transverse distance from beam axis (Rxy)
- Search uses 6 bins of Rxy

Massive LLP decaying to jet pairs / 2

Published on Run 1; Done for Run 2; Prospect for Run 3 published soon

Eur. Phys. J. C77 (2017) 812

LLP Decaying Semileptonically

- Massive LLP into µ and quark pair (to jets pair)
- Uses full Run 1 dataset mass in range
 20-80 GeV/c2. Lifetime in range 5-100 ps
- Background dominated by combinatorial strong MVA and tight selection
- Several models: mSUGRA RPV neutralino, Majorana neutrino, simplified topologies
- No excess is observed, rejecting
 BR(H→xx)>10% down to m_x=40 GeV,
 T_x=100 ps

- · LHCb has an extensive program of searches even beyond flavour physics
 - · Searches for on-shell new physics from heavy flavour decays
 - · Searches for long-lived particles with low mass and short lifetime
 - · Searches for dimuon resonances in very broad parameter space
- Bright future ahead:
 - 3 fb-1 in Run 1, 6 fb-1 in Run 2 (with larger cross-sections)
 - A lot of potential in the upgraded trigger (also 5x luminosity)

2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	203+
LS2		RUN III			LS3			RUNIV			LS4		RUNV	
LHCb 40 MHz Upgrade Phase I		L = 2e33			LHCb Consolidation						LHCb Upgrade Phase II (proposed)		L = 2e34; 300 invfb (proposed)	

Thanks Federico Leo Redi

LCHb track types

Phys. Rev. Lett. 120, 061801 (2018)

- No significant excess found exclusion regions at 90% C.L.
- First limits on masses above 10 GeV & competitive limits below 0.5 GeV

