BSM physics via $\gamma\gamma$ collisions with ions at the LHC

Heavy-ions & Hidden Sectors UC Louvain, 4th December 2018 David d'Enterria (CERN)

BSM searches with protons/ions at the LHC

- Physics beyond the Standard Model (BSM) needed to explain many open empirical and/or theoretical problems in HEP:
 - Empirical: Dark-matter, matter-antimatter asymmetry, v's masses
 - Theoretical: Higgs mass fine-tuning, θ_{QCD} , origin of fermion families/ mixings, charge quantization, cosmological constant, quantum gravity,...
- Most of the solutions to all these problems require new particles and/or new interactions (SUSY, WIMP, v_R , axions, monopoles,..). LHC reach:
 - BSM at high masses: Increase the sqrt(s) as much as possible.
 - BSM at low couplings: Increase the luminosity as much as possible.
 Hiding well? Reduce pileup, kin. thresholds. Look at exclusive final-states.
- Heavy-ions collisions have 2 important drawbacks:
- Low sqrt(s): PbPb runs at 5.5 TeV compared to 14-TeV pp [×2.5 less]
- Low lumis: $L_{pbpb} = A^2 \cdot 6 \cdot 10^{27} \text{ cm}^{-1} \text{s}^{-2} = 2.5 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1} << L_{pb} = 2 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1} [\times 100 \text{ less}]$
- Heavy-ions collisions have 2 advantages:

- [integrated: $\times 10^3$ less]
- No pileup: Excellent vertexing, Lower kin. trigger thresholds [\times 2? lower p_{τ} values]
- Large γ lumis: $L_{pbPb}(\gamma\gamma)/L_{pp}(\gamma\gamma) = Z^4 \times L_{pbPb}/L_{pp} = 4.5 \cdot 10^7 \times (6 \cdot 10^{27}/2 \cdot 10^{34}) \sim 12 [\times 10 \text{ more}]$

Photon-photon collisions at the LHC

Electromagnetic ultra-peripheral collisions (UPC): b_{min}>R_A+R_B

HE ions create huge EM fields (10¹⁴ T) from coherent action of Z protons:

Weizsäcker-Williams (EPA) power-law photon flux:

Photon-photon collisions at the LHC

- Electromagnetic ultra-peripheral collisions (UPC): b_{min}>R_A+R_B
- HE ions generate huge EM fields (10^{14} T) from coherent action of Z=82 p:

• Huge photon fluxes: $\sigma(\gamma - \gamma) \sim Z^4$ (~5.10⁷ for PbPb) larger than p,e[±]

Beam-energy dependence: Photon luminosities increase as ∞log³(√s)

Quasi-real photons (coherence): Q ~ 1/R ~ 0.06 GeV (Pb), 0.28 GeV (p)
 Maximum γ energies (LHC): ω < ω_{max} ≈ ^γ/_R ~ 80 GeV (Pb), ~ 2.5 TeV (p)

System	$\sqrt{s_{\rm NN}}$ (TeV)	γ	R _A (fm)	$\omega_{\rm max}$ (GeV)	$\sqrt{s_{\gamma\gamma}^{\max}}$ (GeV)
<i>p</i> - <i>p</i>	14	7455	0.7	2450	4500
<i>p</i> -Pb	8.8	4690	7.1	130	260
Pb-Pb	5.5	2930	7.1	80	160

Photon-photon collisions at the FCC

- Electromagnetic ultra-peripheral collisions (UPC): b_{min}>R_A+R_B
- HE ions generate huge EM fields (10^{14} T) from coherent action of Z=82 p:

 Huge photon fluxes:
 σ(γ -γ) ~ Z⁴ (~5·10⁷ for PbPb) larger than p,e[±]

■ Beam-energy dependence: Photon luminosities increase as ∝log³(√s)

Quasi-real photons (coherence): $Q \sim 1/R \sim 0.06 \text{ GeV}$ (Pb), 0.28 GeV (p)

Maximum γ energies	(FCC): $\omega < \omega_{max} \approx \frac{1}{\mu}$	¹ / _R ∼ 0.6 TeV (Pb), ∼ 18 TeV (p)
---------------------------	--	--

System	$\sqrt{s_{_{ m NN}}}$ (TeV)	$\mathcal{L}_{AB} \cdot \Delta t$ (per year)	γ (×10 ³)	$\omega_{\rm max}$ (TeV)	$rac{\sqrt{s_{\gamma\gamma}^{ m max}}}{ m (TeV)}$
р-р	100	$1 { m ~fb^{-1}}$	53.	17.6	35.2
p-Pb	64	1 pb^{-1}	33.5	0.95	1.9
Pb-Pb	39	5 nb^{-1}	21.	0.60	1.2

Effective $\gamma\gamma$ luminosities at the LHC

Thanks to Z⁴ = 5·10⁷ factor, PbPb γγ luminosities are well above the pp ones up to W_w~45 (100) GeV assuming fwd. proton-taggers at 420m (220m)

Effective $\gamma\gamma$ luminosities at the LHC

Competitive mass range for BSM searches in UPCs PbPb collisions:

 W_w ~ 0.5–45 GeV
 (W_w^{min}~0.5 GeV for ALICE/LHCb, 4 GeV for ATLAS/CMS)

Which BSM physics via $\gamma\gamma \rightarrow X$ collisions?

New physics signals via photon-photon fusion:

New charged particle: $\gamma \gamma \rightarrow (X^{\pm} \text{ loop}) \rightarrow SM SM$ New charged pairs: $\gamma \gamma \rightarrow X^{+}X^{-}$ New scalar particles: $\gamma \gamma \rightarrow a$ New tensor particles: $\gamma \gamma \rightarrow G$

PbPb

Examples (photon-collider "golden channels"):

	$\gamma\gamma \to \tilde{f}\bar{\tilde{f}}, \tilde{\chi}^+\tilde{\chi}^-$	pairs of sfermions, charginos	NO m	ו,⊳45 GeV
	$\gamma \gamma ightarrow ilde{g} ilde{g}$	pairs of gluinos	NO M	× 1.>45 GeV
	$\gamma\gamma \rightarrow M^+ M^-$	pairs of monopoles	m _v <45 Ge\	[×] >45 GeV
γ	$\gamma\gamma \to H^+H^-$	pairs of charged-Higgs	NO	YES?
10	$\gamma\gamma ightarrow W^+W^-$	anom. W inter., extra dimensions	NO	YES
	$\gamma\gamma \to 4W/(Z)$	WW scatt., quartic anom. W,Z	NO	NO (σ <ab)< td=""></ab)<>
	$\gamma\gamma ightarrow tar{t}$	anomalous top quark interactions	NO	NO (σ <ab)< td=""></ab)<>
	$\gamma\gamma \rightarrow \gamma\gamma$	Born-Infeld QED, non-conmutat. theories) <45 GeV	>45 GeV
	$\gamma\gamma ightarrow \phi$	Scalars (axions, radions,)	<45 GeV	>45 GeV
155	$\gamma\gamma ightarrow G$	Tensors (gravitons,)	<45 GeV	>45 GeV
	$\gamma\gamma ightarrow S[t\bar{t}\bar{t}]$	-onia (monopolium, $ ilde{t ilde{t}}$ stoponium)	<45 GeV	>45 GeV
	$\gamma\gamma ightarrow H, A ightarrow bb$	MSSM heavy Higgs, interm. $\tan \beta$	NO	>45 GeV

HI & Hidden Sectors, UCLouvain, Dec 2018

pp (tagged)

First BSM searches & limits from $\gamma\gamma \rightarrow \gamma\gamma$

ATLAS, CMS measured 13, 14 exclusive di- γ counts (2.6, 3.8 backgds)

9/10

Summary: BSM searches via UPC PbPb@LHC

Competitive mass range for BSM in UPCs PbPb: m_{wax}=0.5–45 GeV

Back-up slides