

Current measurements and future prospects for light-by-Light scattering and searches for Axion-like particles from ultra-peripheral PbPb collisions at CMS

Jeremi Niedziela (CERN)

- Elastic photon-photon scattering is a fundamental quantum-mechanical process.
 So far, it remains unobserved...
- the process could also proceed through new charged particles (SUSY) or new spin-even resonances (axions, monopoles).

- Elastic photon-photon scattering is a fundamental quantum-mechanical process.
 So far, it remains unobserved...
- the process could also proceed through new charged particles (SUSY) or new spin-even resonances (axions, monopoles).

- the only similar process experimentally confirmed: Delbrück scattering (γ deflection in the nucleus field),
 the difficulty to observe this process comes from a
 - **very low cross-section**: $\sim O(\alpha^4) \approx 10^{-9}$,

- Elastic photon-photon scattering is a fundamental quantum-mechanical process. So far, it remains unobserved...
- the process could also proceed through new charged particles (SUSY) or new spin-even resonances (axions, monopoles).

- the only similar process experimentally confirmed:
 Delbrück scattering (γ deflection in the nucleus field),
 - the difficulty to observe this process comes from a **very low cross-section**: $\sim O(\alpha^4) \approx 10^{-9}$,

- several **experimental approaches** were proposed:
 - Compton backscattered photons agains laser photons,
 - photon-photon collisions from microwave waveguides, cavities of high-power lasers,
 - photon colliders: scattering laser-light off two e[±] beams,
 - ultra-peripheral (electromagnetic) interactions of proton/lead beams at the LHC.

Exclusive $\gamma\gamma \rightarrow \gamma\gamma$ is also sensitive to physics signals beyond the SM such as axions.

Axions

- Axions arise from Peccei-Quinn mechanism which promotes QCD mixing $heta_{ ext{QCD}}$ to a field,
- they solve in an elegant way the strong CP problem,
- they are a natural dark-matter candidates,
- characteristic two-photon vertex \rightarrow light shining through the wall experiments,
- original axions (small masses, symmetry breaking scale \thickapprox EW scale) ruled out.

Axion Like Particles (ALPs)

- more general class of elementary pseudo-scalar particles, where mass-coupling relation is not fixed,
- axions or ALPs occur automatically in many extensions of SM.

LIGHT-BY-LIGHT IN UPCS

- Proposal: use ultra-peripheral heavy-ion collisions (UPC of HI): $b > 2 \cdot R_{Pb}$,
- passing heavy ions generate huge EM fields (1014T),
- cross-section is amplified by Z⁴, for PbPb (Z=82) $\sigma_{YY \rightarrow YY}$ is 5·10⁷ higher than for p-p or e⁺e⁻,

LIGHT-BY-LIGHT IN UPCS

- Proposal: use ultra-peripheral heavy-ion collisions (UPC of HI): $b > 2 \cdot R_{Pb}$,
- passing heavy ions generate huge EM fields (1014T),
- cross-section is amplified by Z⁴, for PbPb (Z=82) $\sigma_{YY \rightarrow YY}$ is 5·10⁷ higher than for p-p or e⁺e⁻,

- quasi-real photons (coherence):
 Q~I/R≈0.06 GeV (Pb), 0.28 GeV (p),
- maximum γ energies at LHC
 ω_{max}~γ_L/R≈80 GeV (Pb), 2.5 TeV (p).

LIGHT-BY-LIGHT IN UPCS

- Proposal: use ultra-peripheral heavy-ion collisions (UPC of HI): $b > 2 \cdot R_{Pb}$,
- passing heavy ions generate huge EM fields (1014T),
- cross-section is amplified by Z⁴, for PbPb (Z=82) $\sigma_{YY \rightarrow YY}$ is 5·10⁷ higher than for p-p or e⁺e⁻,

- quasi-real photons (coherence):
 Q~I/R≈0.06 GeV (Pb), 0.28 GeV (p),
- maximum γ energies at LHC
 ω_{max}~γ_L/R≈80 GeV (Pb), 2.5 TeV (p).

- generated with MadGraph v.5 MC generator,
- W[±] contributions only relevant for $m_{YY} > 2 \cdot m_{W}$, hadronic loops only for $m_{YY} \preceq 2$ GeV,
- generated **cross-section**: $\sigma_{YY \rightarrow YY} = 1.85 \ \mu b \ (|\eta| < 5.0, m_{YY} > 2.5 \ GeV).$

Background processes

Exclusive QED e⁺e⁻

- electrons may be misidentified as photons if they undergo hard bremsstrahlung and they are not reconstructed,
- generated with STARLIGHT,
- $\sigma_{\gamma\gamma \rightarrow ee} = 20.6 \text{ mb}$ (without p_T and η cuts),
- can be reduced with tight γ identification cuts.

Central Exclusive Production (CEP)

- generated with SUPERCHIC 2.0,
- large theoretical uncertainty due to modeling of rapidity gap survival probability (normalized from data in control-region),
- $\sigma_{gg \rightarrow YY} = 15 \ \mu b$ (without p_T and η cuts),
- larger p⊤ exchange than LbL, photons less back-to-back.
 Suppressed by acoplanarity cuts.

CMS DETECTOR

- Photons from light-by-light scattering measurable in CMS over $|\eta| < 2.4$, exclusivity condition over $|\eta| < 5.2$,
- final state just two tower in the ECAL, no activity in the tracker, hadron calorimeters, muon detectors.

Hadron Forward Calorimeter HF (2.9 $|\eta| < 5.2$) **Electromagnetic Calorimeter** Steel + Quartz fibers Barrel EB ($|\eta| < 1.479$) ≈2000 channels End-cap EE (1.479 < $|\eta|$ < 3.0) ≈76 000 scintillating PbWO₄ crystals Hadron Calorimeter Barrel HB ($|\mathbf{\eta}| < 1.3$) End-cap HE (1.3 < $|\eta|$ < 3.0) Brass + Plastic scintillator \approx 7000 channels

Data sample

Data sample

- PbPb @ 5.02 TeV (2015),
- total integrated luminosity $L_{int} = 390 \ \mu b^{-1}$.

Trigger

- at least two photons/electrons in ECAL with $E_{T} > 2 \mbox{ GeV}$ each,
- at least one of the two Hadron Forward (HF) calos empty.

Reconstruction

- photons of interest in the low E_T (2-10 GeV) region,
- standard CMS high-E_T e/ γ reco (E_T > 10 GeV) retuned for this analysis,
- pre-selecting events with exactly two photons with $E_T > 2$ GeV,
- identification of photons:
 - removal of decay photons by shower shape: $\sigma_{i\eta i\eta} < 0.02 \ (0.06)$ in barrel (endcap),
 - cleaning spikes (direct ionization of the photodiode) four neighboring hits must contain significant fraction (>5%) of the highest energy hit.

Data selection

Neutral exclusivity cuts

- reject events with towers above noice threshold in ECAL, HCAL or HF ($|\eta|$ < 5.2) far from photons candidates:
 - |Δη|>0.15, |ΔΦ|>0.7 (0.4) in EB (EE),
 - any tower in hadron calorimeters (HB, HE or HF).

Charged exclusivity cuts

• reject events with any charged particle with $p_T > 0.1$ GeV.

Acoplanarity

- definition: $A_{\Phi} = | -\Delta \Phi_{YY} / \pi$,
- signal has very low acoplanarity (A $_{\Phi}$ < 0.008), CEP has flat A $_{\Phi}$ in range 0-0.2,
- cut applied: $A_{\Phi} < 0.01$.

Other cuts

- diphoton $p_{YY} < 1$ GeV to reduce all non-exclusive photon backgrounds.

Background analysis

QED e⁺e⁻ background

- the same analysis repeated, now requiring exclusive **e+e- pair instead of YY**,
- **kinematic distributions** reproduced well by the Starlight MC generator (except increasing acoplanarity tail from $\gamma \gamma \rightarrow e^+e^-(\gamma)$),
- confirms quality of:
 - electron/photon reconstruction,
 - event selection criteria,
 - MC predictions for PbPb UPCs,
- estimated e⁺e⁻ background after cuts:

1.0 ± 0.3 events.

Background analysis

CEP + other residual backgrounds

- normalized from acoplanarity measured in data for $A_{\Phi} > 0.02$, where LbL is negligible,
- acoplanarity cut (A $_{\Phi}$ < 0.01) removes most of the CEP background,
- estimated CEP background after cuts:
 - 3.0 ± 1.1 events.

Kinematic distributions

Measured distributions reproduced well by the sum of LbL signal and QED + CEP backgrounds:

Results

Number of events

- signal region: $|\pmb{\eta}|<$ 2.4, $E_T>$ 2 GeV, $m_{\pmb{\gamma}\pmb{\gamma}}>$ 5 GeV,
- observed: 14 light-by-light events,
- expected: II.I ± I.I (th) signal and 4.0 ± I.2 (stat) background events,
- significance (from acoplanarity distribution) \rightarrow observed: **4.1** σ (expected: 4.4 σ)

Results

Number of events

- signal region: $|\pmb{\eta}|<$ 2.4, $E_T>2$ GeV, $m_{\pmb{\gamma}\pmb{\gamma}}>$ 5 GeV,
- observed: I4 light-by-light events,
- expected: II.I ± I.I (th) signal and 4.0 ± I.2 (stat) background events,
- significance (from acoplanarity distribution) \rightarrow observed: **4.1** σ (expected: 4.4 σ)

LbL to QED cross-sections ratio

- $\sigma_{\gamma\gamma \to \gamma\gamma}/\sigma_{\gamma\gamma \to e^+e^-}$ extracted, taking into account:
 - efficiency of the trigger,
 - γ /electron reconstruction and identification efficiency,
 - stat. uncertainty on MC background estimation,
- exclusivity (neutral and charged) uncertainties cancel out,
- measured:

$\sigma_{YY \to YY} / \sigma_{YY \to e^+e^-} = [25.0 \pm 9.6 \text{ (stat)} \pm 5.8 \text{ (syst)}] \times 10^{-6}$

Photon reconstruction and identification	(2 × 9)%
Electron reconstruction and identification	(2 × 2.5)%
Trigger	12%
MC backgrounds (stat.)	8%
Total	24%

Results

Number of events

- signal region: $|\pmb{\eta}|<$ 2.4, $E_T>2$ GeV, $m_{\pmb{Y}\pmb{Y}}>$ 5 GeV,
- observed: I4 light-by-light events,
- expected: II.I ± I.I (th) signal and 4.0 ± I.2 (stat) background events,
- significance (from acoplanarity distribution) \rightarrow observed: **4.1** σ (expected: 4.4 σ)

Fiducial LbL cross section

- from STARLIGHT, $\sigma_{YY \rightarrow e^+e^-} =$ 4.82 \pm 0.15 (th) mb,
- expected: **138 ± 14 nb**,
- measured: 120 ± 46 (stat) ± 28 (syst) ± 4 (th) nb.

LbL to QED cross-sections ratio

- $\sigma_{\gamma\gamma \to \gamma\gamma}/\sigma_{\gamma\gamma \to e^+e^-}$ extracted, taking into account:
 - efficiency of the trigger,
 - ${\scriptstyle \blacktriangleright}$ γ /electron reconstruction and identification efficiency,
 - stat. uncertainty on MC background estimation,
- exclusivity (neutral and charged) uncertainties cancel out,
- measured:

$\sigma_{YY \to YY} / \sigma_{YY \to e^+e^-} = [25.0 \pm 9.6 \text{ (stat)} \pm 5.8 \text{ (syst)}] \times 10^{-6}$

Photon reconstruction and identification	(2 × 9)%
Electron reconstruction and identification	(2 × 2.5)%
Trigger	12%
MC backgrounds (stat.)	8%
Total	24%

AXION-LIKE PARTICLE SEARCHES

- Exclusive diphoton final-state from resonant CP-odd **axion-like particles** (ALPs) production and decay,
- LbL, QED and CEP considered as background in this analysis,
- ALP samples
 - generated with STARLIGHT ($m_a = 5-90$ GeV),
 - injected signals at various ma analyzed after full detector simulation,
 - the same reconstruction procedure as in LbL analysis.

Axion-like particle searches

- no significant ALP excess observed in data above LbL+ backgrounds continuum,
- **limits in** $\sigma_{YY \to a \to YY}$ at 95% confidence, 100% $\gamma\gamma$ branching ratio (CLs criterion with a profile likelihood as a test statistics).

Axion-like particle searches

- Limits in cross-section \rightarrow limits in g_{aY} vs. m_a plane ($g_{aY} = 1/\Lambda$)
- left plot: coupling only to photons (with operator $\frac{1}{4\Lambda}aF\tilde{F}$),
- right plot: coupling to hypercharge (with operator $\frac{1}{4\Lambda cos^2\theta_W}aB\tilde{B}$),
- **new limits** on axion-like particles over $m_a = 5-50$ GeV.

PROSPECTS FOR HL-LHC

With the **HL-LHC data**:

- significantly higher number of events,
- extended reach in coupling-mass plane
 (4 times smaller couplings, masses up to 140 GeV).

	LHC	HL-LHC
$\sqrt{S_{NN}}$	5.02 TeV	5.02 TeV
L _{int}	0.4 nb-1	10 nb-1
Tracker acceptance	η <2.4	η <4.0
N _{YY→YY} events	4	640

- I. Ultra-peripheral PbPb collisions at LHC used to study Light-by-Light scattering,
- 2. QED and CEP identified as the main backgrounds,
- 3. Measurement of two-photon events with no other significant activity performed on 390 μ b⁻¹ PbPb @ 5.02 TeV,
- 4. Evidence of LbL scattering: 4.1 (4.4) sigma significance observed (expected)
- 5. 14 Light-by-Light events observed consistent with the SM predictions,
- 6. Measured fiducial cross section
 - $\sigma_{YY \rightarrow YY} = 120 \pm 46 \text{ (stat)} \pm 4 \text{ (th) nb}$
 - consistent with the SM predictions,
- 7. No significant excess in m_{YY} distribution
 - → competitive **limits on axion-like particles**.
- 8. **HL-LHC** will extend capabilities to study LbL and searches for ALPs

