Current measurements and future prospects for light-by-Light scattering and searches for Axion-like particles from ultra-peripheral PbPb collisions at CMS

Jeremi Niedziela (CERN)
• **Elastic photon-photon scattering** is a fundamental quantum-mechanical process. So far, it remains unobserved…

• the process could also proceed through new charged particles (**SUSY**) or new spin-even resonances (**axions, monopoles**).
Introduction

- **Elastic photon-photon scattering** is a fundamental quantum-mechanical process. So far, it remains unobserved...
- The process could also proceed through new charged particles (**SUSY**) or new spin-even resonances (**axions, monopoles**).
 - The only similar process experimentally confirmed: **Delbrück scattering** (γ deflection in the nucleus field),
 - The difficulty to observe this process comes from a **very low cross-section**: \(\sim \mathcal{O}(\alpha^4) \approx 10^{-9} \).
INTRODUCTION

• **Elastic photon-photon scattering** is a fundamental quantum-mechanical process. So far, it remains unobserved…

• the process could also proceed through new charged particles (SUSY) or new spin-even resonances (axions, monopoles).

 • the only similar process experimentally confirmed: **Delbrück scattering** (γ deflection in the nucleus field),
 • the difficulty to observe this process comes from a **very low cross-section**: $\sim \mathcal{O}(\alpha^4) \approx 10^{-9}$,

• several **experimental approaches** were proposed:
 ‣ **Compton** backscattered photons against laser photons,
 ‣ photon-photon collisions from **microwave waveguides, cavities of high-power lasers**,
 ‣ **photon colliders**: scattering laser-light off two e$^\pm$ beams,
 ‣ ultra-peripheral (electromagnetic) interactions of proton/lead beams at the LHC.
Introduction

Exclusive $\gamma \gamma \rightarrow \gamma \gamma$ is also sensitive to physics signals beyond the SM such as axions.

Axions
- Axions arise from Peccei-Quinn mechanism which promotes QCD mixing θ_{QCD} to a field,
- they solve in an elegant way the strong CP problem,
- they are a natural dark-matter candidates,
- characteristic two-photon vertex \rightarrow light shining through the wall experiments,
- original axions (small masses, symmetry breaking scale \approx EW scale) ruled out.

Axion Like Particles (ALPs)
- more general class of elementary pseudo-scalar particles, where mass-coupling relation is not fixed,
- axions or ALPs occur automatically in many extensions of SM.
Light-by-Light in UPCs

- Proposal: **use ultra peripheral heavy-ion collisions** (UPC of HI): $b > 2 \cdot R_{\text{Pb}}$,
- passing heavy ions generate **huge EM fields** (10^{14}T),
- **cross-section is amplified** by Z^4, for PbPb ($Z=82$) $\sigma_{\gamma\gamma \rightarrow \gamma\gamma}$ is $5 \cdot 10^7$ higher than for p-p or e$^+$e$^-$.

\[\text{Pb} \quad \text{Pb}^* \]

\[\text{Pb} \quad \text{Pb}^* \]
Light-by-Light in UPCs

- Proposal: **use ultra-peripheral heavy-ion collisions** (UPC of HI): $b > 2 \cdot R_{\text{Pb}}$,
- passing heavy ions generate **huge EM fields** (10^{14}T),
- **cross-section is amplified** by Z^4, for PbPb ($Z=82$) $\sigma_{\gamma\gamma \rightarrow \gamma\gamma}$ is $5 \cdot 10^7$ higher than for p-p or e$^+e^-$,

- **quasi-real photons** (coherence):
 $Q \sim \frac{1}{R} \approx 0.06 \text{ GeV (Pb)}, 0.28 \text{ GeV (p)},$
- **maximum γ energies** at LHC
 $\omega_{\text{max}} \sim \frac{\gamma L}{R} \approx 80 \text{ GeV (Pb)}, 2.5 \text{ TeV (p)}.$
Light-by-Light in UPCs

- Proposal: **use ultra-peripheral heavy-ion collisions** (UPC of HI): $b > 2 \cdot R_{Pb}$,
- passing heavy ions generate **huge EM fields** (10^{14} T),
- **cross-section is amplified** by Z^4, for PbPb ($Z=82$) $\sigma_{\gamma\gamma \rightarrow \gamma\gamma}$ is $5 \cdot 10^7$ higher than for p-p or e$^+e^-$,

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure}
\end{figure}

- **quasi-real photons** (coherence): $Q \sim l/R \approx 0.06$ GeV (Pb), 0.28 GeV (p),
- **maximum γ energies** at LHC $\omega_{max} \sim \gamma l/R \approx 80$ GeV (Pb), 2.5 TeV (p).

- generated with MadGraph v.5 MC generator;
- **W^\pm contributions** only relevant for $m_{\gamma\gamma} > 2 \cdot m_W$, **hadronic loops** only for $m_{\gamma\gamma} \lesssim 2$ GeV,
- generated **cross-section**: $\sigma_{\gamma\gamma \rightarrow \gamma\gamma} = 1.85$ μb ($|\eta| < 5.0$, $m_{\gamma\gamma} > 2.5$ GeV).
BACKGROUND PROCESSES

Exclusive QED e^+e^-
- electrons may be misidentified as photons if they undergo hard bremsstrahlung and they are not reconstructed,
- generated with STARLIGHT,
- $\sigma_{\gamma\gamma\to ee} = 20.6$ mb (without p_T and η cuts),
- can be reduced with tight γ identification cuts.

Central Exclusive Production (CEP)
- generated with SUPERCHIC 2.0,
- large theoretical uncertainty due to modeling of rapidity gap survival probability (normalized from data in control-region),
- $\sigma_{gg\to \gamma\gamma} = 15$ mb (without p_T and η cuts),
- larger p_T exchange than LbL, photons less back-to-back. Suppressed by acoplanarity cuts.
• Photons from light-by-light scattering measurable in CMS over $|\eta|<2.4$, exclusivity condition over $|\eta|<5.2$,
• final state - just two tower in the ECAL, no activity in the tracker, hadron calorimeters, muon detectors.

Electromagnetic Calorimeter
- Barrel EB ($|\eta| < 1.479$)
- End-cap EE ($1.479 < |\eta| < 3.0$)
- $\approx 76,000$ scintillating PbWO$_4$ crystals

Hadron Calorimeter
- Barrel HB ($|\eta| < 1.3$)
- End-cap HE ($1.3 < |\eta| < 3.0$)
- Brass + Plastic scintillator
 ≈ 7000 channels

Hadron Forward Calorimeter
- HF ($2.9 < |\eta| < 5.2$)
- Steel + Quartz fibers
 ≈ 2000 channels
Data Sample

Data sample
- PbPb @ 5.02 TeV (2015),
- total integrated luminosity $L_{\text{int}} = 390 \, \mu\text{b}^{-1}$.

Trigger
- at least two photons/electrons in ECAL with $E_T > 2$ GeV each,
- at least one of the two Hadron Forward (HF) calos empty.

Reconstruction
- photons of interest in the low E_T (2-10 GeV) region,
- standard CMS high-E_T e/γ reco ($E_T > 10$ GeV) retuned for this analysis,
- pre-selecting events with exactly two photons with $E_T > 2$ GeV,
- identification of photons:
 - removal of decay photons by shower shape: $\sigma_{\eta\eta} < 0.02$ (0.06) in barrel (endcap),
 - cleaning spikes (direct ionization of the photodiode) - four neighboring hits must contain significant fraction (>5%) of the highest energy hit.
Data Selection

Neutral exclusivity cuts
- reject events with towers above noise threshold in ECAL, HCAL or HF ($|\eta|<5.2$) far from photons candidates:
 - $|\Delta\eta|>0.15, |\Delta\phi|>0.7$ (0.4) in EB (EE),
 - any tower in hadron calorimeters (HB, HE or HF).

Charged exclusivity cuts
- reject events with any charged particle with $p_T > 0.1$ GeV.

Acoplanarity
- definition: $A_\Phi = 1-\Delta\Phi_{\gamma\gamma}/\pi$,
- signal has very low acoplanarity ($A_\Phi < 0.008$), CEP has flat A_Φ in range 0-0.2,
- cut applied: $A_\Phi < 0.01$.

Other cuts
- diphoton $p_{\gamma\gamma} < 1$ GeV to reduce all non-exclusive photon backgrounds.
BACKGROUND ANALYSIS

QED e^+e^- background

- the same analysis repeated, now requiring exclusive e^+e^- pair instead of $\gamma\gamma$,
- **kinematic distributions** reproduced well by the Starlight MC generator (except increasing acoplanarity tail from $\gamma\gamma \rightarrow e^+e^-(\gamma)$),
- **confirms quality** of:
 - electron/photon reconstruction,
 - event selection criteria,
 - MC predictions for PbPb UPCs,
- estimated e^+e^- background after cuts: 1.0 ± 0.3 events.
CEP + other residual backgrounds

- normalized from acoplanarity measured in data for $A_\Phi > 0.02$, where LbL is negligible,
- acoplanarity cut ($A_\Phi < 0.01$) removes most of the CEP background,
- estimated CEP background after cuts: \(3.0 \pm 1.1\) events.
Kinematic Distributions

Measured distributions reproduced well by the sum of LbL signal and QED + CEP backgrounds:
RESULTS

Number of events

- signal region: $|\eta| < 2.4$, $E_T > 2$ GeV, $m_{\gamma\gamma} > 5$ GeV,
- observed: **14 light-by-light events**,
- expected: **11.1 ± 1.1** (th) signal and **4.0 ± 1.2** (stat) background events,
- significance (from acoplanarity distribution) → observed: **4.1\sigma** (expected: 4.4\sigma)
RESULTS

Number of events
- signal region: $|\eta| < 2.4$, $E_T > 2$ GeV, $m_{\gamma\gamma} > 5$ GeV,
- observed: **14 light-by-light events**,
- expected: **11.1 ± 1.1 (th) signal** and **4.0 ± 1.2 (stat) background** events,
- significance (from acoplanarity distribution) → observed: **4.1\(\sigma\)** (expected: **4.4\(\sigma\)**)

Lbl to QED cross-sections ratio
- $\sigma_{\gamma\gamma\rightarrow\gamma\gamma}/\sigma_{\gamma\gamma\rightarrow e^+e^-}$ extracted, taking into account:
 - efficiency of the trigger,
 - γ/electron reconstruction and identification efficiency,
 - stat. uncertainty on MC background estimation,
- exclusivity (neutral and charged) uncertainties cancel out,
- measured:
 $$\frac{\sigma_{\gamma\gamma\rightarrow\gamma\gamma}}{\sigma_{\gamma\gamma\rightarrow e^+e^-}} = [25.0 \pm 9.6 \text{ (stat)} \pm 5.8 \text{ (syst)}] \times 10^{-6}$$

Summary of Efficiencies

<table>
<thead>
<tr>
<th>Component</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon reconstruction and identification</td>
<td>(2 \times 9)%</td>
</tr>
<tr>
<td>Electron reconstruction and identification</td>
<td>(2 \times 2.5)%</td>
</tr>
<tr>
<td>Trigger</td>
<td>12%</td>
</tr>
<tr>
<td>MC backgrounds (stat.)</td>
<td>8%</td>
</tr>
<tr>
<td>Total</td>
<td>24%</td>
</tr>
</tbody>
</table>
RESULTS

Number of events

• signal region: \(|\eta| < 2.4, E_T > 2 \text{ GeV}, m_{\gamma\gamma} > 5 \text{ GeV},

• observed: \textbf{14 light-by-light events},

• expected: \textbf{11.1 ± 1.1 (th) signal and 4.0 ± 1.2 (stat) background} events,

• significance (from acoplanarity distribution) → observed: \textbf{4.1 \sigma} (expected: 4.4 \sigma)

Fiducial LbL cross section

• from STARLIGHT, \(\sigma_{\gamma\gamma\rightarrow e^+e^-} = 4.82 \pm 0.15 \text{ (th) mb},

• expected: \textbf{138 ± 14 nb},

• measured: \textbf{120 ± 46 (stat) ± 28 (syst) ± 4 (th) nb}.

LbL to QED cross-sections ratio

• \(\sigma_{\gamma\gamma\rightarrow\gamma\gamma}/\sigma_{\gamma\gamma\rightarrow e^+e^-}\) extracted, taking into account:
 ‣ efficiency of the trigger,
 ‣ \(\gamma/\text{electron reconstruction and identification efficiency},
 ‣ \text{stat. uncertainty on MC background estimation},

• exclusivity (neutral and charged) uncertainties cancel out,

• measured:

\[\sigma_{\gamma\gamma\rightarrow\gamma\gamma}/\sigma_{\gamma\gamma\rightarrow e^+e^-} = [25.0 \pm 9.6 \text{ (stat) ± 5.8 (syst)}] \times 10^{-6}\]

color box: Photon reconstruction and identification: (2 \times 9)\% \nElectron reconstruction and identification: (2 \times 2.5)\% \nTrigger: 12\% \nMC backgrounds (stat.): 8\% \nTotal: 24\%

Legend:

Data
LbL \(\gamma\gamma \rightarrow \gamma\gamma\) (MC)
CEP (gg \(\rightarrow \gamma\gamma\)) + other bkg
QED \(\gamma\gamma \rightarrow e^+e^-\) (MC)
Axion-like particle searches

- Exclusive diphoton final-state from resonant CP-odd axion-like particles (ALPs) production and decay,
- LbL, QED and CEP considered as background in this analysis,

- ALP samples
 - generated with STARLIGHT \((m_a = 5-90 \text{ GeV})\),
 - injected signals at various \(m_a\) analyzed after full detector simulation,
 - the same reconstruction procedure as in LbL analysis.
Axion-like particle searches

- no significant ALP excess observed in data above LbL+ backgrounds continuum,
- limits in $\sigma_{\gamma\gamma \rightarrow a \rightarrow \gamma\gamma}$ at 95% confidence, 100% $\gamma\gamma$ branching ratio
 (CLs criterion with a profile likelihood as a test statistic).

Graphical Representation:

- Observed
- Expected
 - 68% expected
 - 95% expected

Legend:

- CMS
- PbPb 390 μb$^{-1}$ (5.02 TeV)

Axes:
- m_a (GeV)
- 95% CL upp. lim. on $\sigma(\gamma\gamma \rightarrow a \rightarrow \gamma\gamma)$ (nb)

Diagram:

- Diagram illustrating the process with fermions propagating to photons.
AXION-LIKE PARTICLE SEARCHES

- Limits in cross-section → **limits in** $g_{a\gamma}$ vs. m_a plane ($g_{a\gamma} = 1/\Lambda$)
- left plot: coupling only to photons (with operator $\frac{1}{4\Lambda} aF\tilde{F}$),
- right plot: coupling to hypercharge (with operator $\frac{1}{4\Lambda \cos^2 \theta_W} aB\tilde{B}$),
- new limits on axion-like particles over $m_a = 5$-50 GeV.

\[\frac{1}{\Lambda} (\text{GeV}^{-1}) \equiv g_{a\gamma, aF\tilde{F}} \]

- Beam dumps
- $e^+e^- \rightarrow 2\gamma$ (OPAL)
- $pp \rightarrow 2\gamma$ (CMS)
- $pp \rightarrow 3\gamma$ (ATLAS)
- $pp \rightarrow 8\gamma$ (ATLAS)

Coupling to photons only

- PbPb (5.02 TeV) → $\gamma\gamma$, observed
- PbPb (5.02 TeV) → $\gamma\gamma$, expected

Coupling to hypercharge

- PbPb (5.02 TeV) → $\gamma\gamma$, observed
- PbPb (5.02 TeV) → $\gamma\gamma$, expected
PROSPECTS FOR HL-LHC

With the HL-LHC data:

• significantly higher number of events,
• extended reach in coupling-mass plane
 (4 times smaller couplings, masses up to 140 GeV).

<table>
<thead>
<tr>
<th></th>
<th>LHC</th>
<th>HL-LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{s_{NN}}$</td>
<td>5.02 TeV</td>
<td>5.02 TeV</td>
</tr>
<tr>
<td>L_{int}</td>
<td>0.4 nb$^{-1}$</td>
<td>10 nb$^{-1}$</td>
</tr>
<tr>
<td>Tracker acceptance</td>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>$N_{\gamma\gamma\rightarrow\gamma\gamma}$ events</td>
<td>14</td>
<td>640</td>
</tr>
</tbody>
</table>

![Graph showing the coupling-mass plane comparison between LHC and HL-LHC](image-url)
CONCLUSION

1. **Ultra-peripheral PbPb collisions** at LHC used to study **Light-by-Light** scattering,

2. QED and CEP identified as the main backgrounds,

3. Measurement of two-photon events with no other significant activity performed on 390 \(\mu b^{-1} \) PbPb @ 5.02 TeV,

4. **Evidence of LbL scattering**: 4.1 (4.4) sigma significance observed (expected)

5. **14 Light-by-Light events observed** - consistent with the SM predictions,

6. **Measured fiducial cross section**

\[\sigma_{\gamma\gamma \rightarrow \gamma\gamma} = 120 \pm 46 \text{ (stat)} \pm 4 \text{ (th)} \text{ nb} \]
- consistent with the SM predictions,

7. No significant excess in \(m_{\gamma\gamma} \) distribution
 \(\rightarrow \) competitive **limits on axion-like particles.**

8. **HL-LHC** will extend capabilities to study LbL and searches for ALPs