Magnetic monopoles from heavy ion collisions

December 4, 2018

Why magnetic monopoles?

There are good reasons to think monopoles might exist

They imply electric charge quantisation,

Dirac '31

$$\exists$$
 Monopoles $\Rightarrow q/e \in \mathbb{Z}$.

- Can be added to Standard Model with source term.
- Gravitational instantons for monopole pair production exist in Einstein-Maxwell theory.
 Garfinkle & Strominger '91
- Predicted by GUTs

't Hooft '74, Polyakov '74

$$G \rightarrow SU(3) \times SU(2) \times U(1),$$

and by string theory.

Gross & Perry '83

Types of magnetic monopoles

There are two kinds of magnetic monopoles:

- Composite,
- ② Elementary.

Composite magnetic monopoles

Starting with the Georgi-Glashow theory,

$$\mathcal{L} = -\frac{1}{4} F_a^{\mu\nu} F_{\mu\nu}^a + \frac{1}{2} (D\phi)_a^{\mu} (D\phi)_{\mu}^a + \frac{M^2}{2} \phi^a \phi^a - \frac{\lambda}{4} (\phi^a \phi^a)^2,$$

where a = 1, 2, 3. There is a localised, static solution to the equations of motion with

't Hooft '74. Polyakov '74

$$\phi^{a} = \frac{\mathbf{x}^{a}}{|\mathbf{x}|} \left(\frac{M}{\sqrt{\lambda}} + H(|\mathbf{x}|) \right),$$

 $A_i^a = \epsilon_{iaj} \mathbf{x}^j \left(-\frac{1}{e^{|\mathbf{x}|^2}} + W(|\mathbf{x}|) \right)$

The solution, a 't Hooft-Polyakov monopole, is a composed of elementary bosons and is heavier than them by $O(1/\alpha)$,

$$m \sim \frac{M}{\alpha}$$
.

Composite magnetic monopoles

For GUTs $M_X \sim 10^{16} {\rm GeV}.$

Fig. inspiration from Patrizii & Spurio '15.

Nonsingular origin, so no source term in Lagrangian

Mostly too heavy for LHC searches

Elementary magnetic monopoles

Consistent QFT of elementary monopoles exists

Cabibbo & Ferrari '62, Schwinger '66, Zwanzinger '71

Any mass is possible

Dirac '31, Wu & Yang '75, Greub & Petry '75

Singular at origin, so need source term in Lagrangian

Elementary magnetic monopoles

Introduction 00000•00

virtual pairs

Göbel '70, Goldhaber '81

Current best mass bound

- Sufficiently light magnetic monopoles would have been produced thermally during reheating (RH).
- From constraints on the flux in the universe today, it must be that $m/T_{RH} \gtrsim 45$. Turner et al. '82
- As reheating must have happened before Big Bang Nucleosynthesis (BBN), it must be that $T_{RH} \gtrsim T_{BBN} \approx 10 \mathrm{MeV}$.

 $m\gtrsim 0.45{\rm GeV}$

Key questions of this talk

• If composite magnetic monopoles exist, how can they be created?

If elementary magnetic monopoles exist, how can they be created?

Experimental cross section bounds

Figure: from Rajantie (2016).

Can we make composite monopoles in "small" particle collisions?

A simple picture of a monopole state, made up of Higgses,

$$|\mathsf{Monopole}\rangle \sim |H_1\rangle \otimes |H_2\rangle \otimes \cdots \otimes |H_{137}\rangle.$$

 Pair creation of monopoles from "small" particle collisions is determined by,

$$\begin{split} \langle \mathsf{Monopole}(\mathbf{v})|\hat{\mathcal{O}}|\mathsf{Monopole}(\mathbf{v}')\rangle \sim \\ & (137)^2 \left(\langle H(\mathbf{v})|H(\mathbf{v}')\rangle\right)^{136} \langle H(\mathbf{v})|\hat{\mathcal{O}}|H(\mathbf{v}')\rangle, \\ & \sim \mathrm{e}^{-136c} \approx \mathrm{e}^{-c/\alpha}. \end{split}$$
 Witten '79

• It has been argued that $c \approx 2$.

Drukier & Nussinov '82

Can we make composite monopoles in "small" particle collisions?

• From arguments overleaf, and squaring the amplitude,

$$\sigma_{M\bar{M}} \propto e^{-4/\alpha} \approx 10^{-238}$$
.

Composite monopoles will never be produced in pp collisions.

- Analogous suppression explicitly demonstrated for:
 - Kink production,

Levkov et al. '05, '11

Vacuum decays. Kuznetsov & Tinyakov '97, Bezrukov et al. '03

Can we make elementary monopoles in "small" particle collisions?

Strong coupling

Large charge of magnetic monopoles, $g=ng_D$, where $g_D:=2\pi/e$ and $n\in\mathbb{Z}$, invalidates perturbation theory.

$$\sigma_{tree} = \frac{g_q^2 g^2}{12\pi s} \ll \Delta \sigma_{1-loop} \sim \#g^2 \sigma_{tree}$$

Cross section for elementary monopoles is nonperturbative,

Can we make elementary monopoles in "small" particle collisions?

What about beyond perturbation theory?

- Dressed elementary monopoles are HUGE, having a size $R \sim 1/\alpha m \sim 137 \lambda_{\rm Compton}$.
- The overlap of a hard state with energy $E \ge 2m$ and a monopole pair state is thus exponentially small,

$$\langle E|M\bar{M}\rangle \sim \int dx \mathrm{e}^{-iEx} f_{M\bar{M}}(x),$$

 $\sim \mathrm{e}^{-ER} \lesssim \mathrm{e}^{-2 \times 137}.$

This suggests the same exponential suppression for elementary monopoles in pp collisions.

How else can we make magnetic monopoles?

Dual Schwinger process

- Spontaneous production of magnetic monopoles in strong magnetic fields.
 Affleck & Manton '82
- Rate of production enhanced by:
 - energy from thermal bath,
 - time dependence of magnetic field.

Conditions in heavy-ion collisions

Magnetic fields in heavy-ion collisions are the strongest known in the universe, $O(10{\rm GeV}^2)=O(10^{16}{\rm T})$ at LHC energies.

The cross section for heavy-ion collisions

Schwinger effect \rightarrow cross section

Magnetic monopole pair production cross section,

$$\frac{d\sigma_{M\bar{M}}}{db} = 2\pi b P(F_{\mu\nu})$$

where b is the impact parameter and $P(F_{\mu\nu})$ is the probability to produce a magnetic monopole in the electromagnetic field $F_{\mu\nu}$.

The calculation set-up

How do we calculate the production probability, $P(F_{n\nu})$?

- We work with an electromagnetic dual theory, at strong coupling.
- Worldline representation of QED (or scalar QED),

"sum over fields" \equiv "sum over worldlines",

$$\int \mathcal{D}A_{\mu}\mathcal{D}\psi\mathcal{D}\bar{\psi} \, e^{-S_{\text{QED}}[A_{\mu},\psi,\bar{\psi}]}$$

$$\equiv \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left(\prod_{m=0}^n \int \mathcal{D}x_m^{\mu}\right) \, e^{-S_{WL}[\{x_j\},\{x_k\}]}.$$

The calculation set-up

How do we calculate the production probability, $P(F_{\mu\nu})$?

• For sufficiently heavy monopoles, $m^2 \gg gB$, the leading term consists of the "quenched" Feynman diagrams,

$$P(F_{\mu\nu}) \sim \frac{1}{V} Im \left\{ \bigcirc + \bigcirc + \bigcirc + \cdots + \bigcirc + \cdots \right\}$$

• This is true even for $g \gg 1$, and allows for a controlled semiclassical expansion for $P(F_{\mu\nu})$ using worldline instantons.

Understanding the production probability

Viewed as a function of mass, m, for fixed g and $F_{\mu\nu}$,

$$P(F_{\mu\nu})(m) = \begin{cases} \text{slow} &, m \gtrsim m_{thr}(g, F_{\mu\nu}), \\ \text{fast} &, m \lesssim m_{thr}(g, F_{\mu\nu}). \end{cases}$$

OG & Rajantie '17

Conclusions

Magnetic monopole search in heavy ion collisions at SPS (He 1997)

- Pb-Pb collisions at $\sqrt{s_{NN}} \approx 17 {\rm GeV}$.
- Experimental bound derived,

$$\sigma_{M\bar{M}} \lesssim \sigma_{UB} = 1.9$$
nb.

• Only sensitive to $g \geq 2g_D$.

From this, and by comparison with the calculated cross section, we find the following mass bound,

$$m \gtrsim \left(2.0 + 2.6 \left(\frac{g}{g_D}\right)^{3/2}\right) \text{GeV}.$$

Higher energy heavy-ion collisions

Introduction

What to expect from higher energies?

$$B \propto \sqrt{s_{NN}}, \qquad \omega \propto \sqrt{s_{NN}}.$$

$$\omega \propto \sqrt{s_{NN}}$$
.

Strong spacetime dependence requires new calculations.

Experimental prospects

- MoEDAL, at LHC, is a dedicated experiment searching for magnetic monopoles. ALICE, ATLAS, CMS etc. also conduct magnetic monopole searches.
- LHC Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{TeV}$ happening November 2018

Magnetic monopole mass bounds

Figure: adapted from OG & Arttu Rajantie '17.

Theoretical prospects

Theory to-do list:

 Non-constant electromagnetic fields at higher collision energies.

OG, Ho & Rajantie forthcoming

- Kinematic distribution for produced monopoles.
- Finite size corrections.

• If **composite** magnetic monopoles exist, how can they be created?

```
pp collisions, e^+e^- collisions ...

PbPb collisions \checkmark, AuAu collisions \checkmark,...
```

If elementary magnetic monopoles exist, how can they be created?

```
pp collisions? e^+e^- collisions? ... PbPb collisions \checkmark , AuAu collisions \checkmark , ...
```

• If **composite** magnetic monopoles exist, how can they be created?

```
pp collisions, e^+e^- collisions ...

PbPb collisions \checkmark, AuAu collisions \checkmark,...
```

If elementary magnetic monopoles exist, how can they be created?

```
pp collisions? e^+e^- collisions? ... PbPb collisions \checkmark, AuAu collisions \checkmark,... Thank you for listening!
```