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The cosmological concordance model 

1.INFLATION:  
A burst of exponential expansion in the first ~10-32 s after the Big Bang, probably 
powered by a yet unknown scalar field. 


2.DARK MATTER:  
The growth of structure in the Universe and the observed gravitational effects 
require a massive, neutral, non-baryonic yet unknown particle making up ~25% of 
the energy density.


3.DARK ENERGY:  
The accelerated cosmic expansion (together with the flat Universe implied by the 
Cosmic Microwave Background) requires a smooth yet unknown field with negative 
equation of state, making up ~70% of the energy density.

The ΛCDM cosmological concordance model is built on three pillars:
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The FRW Universe

Light from distant objects is “redshifted”: 
 �obs

�0
= 1 + z

The simplest model is that of a spatially flat, homogeneous and 
isotropic expanding Universe (the FRW model):


ds2 = c2dt2 � a2(t)
⇥
dx2 + dy2 + dz2

⇤

where a(t) is the “scale factor”. 


Redshift gives the amount by which the 
scale factor has grown: 

(normalization: a = 1 today, when z=0) 


1 + z =
1

a
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The cosmological parameters 

General Relativity gives a differential equation (Friedmann Equation) for the 
evolution of the scale factor as a function of the “cosmological parameters”: 

Cosmological parameters: 

Ωm: Matter parameter

Ωr:  Radiation parameter 

Ωκ: Curvature parameter (= 0 for a flat Universe)

ΩΛ: Cosmological constant parameter


H0 (km/s/Mpc): Hubble parameter


(further parameters describe the initial conditions) 

Goal: 

to observationally 
determine the 
cosmological 
parameters

(
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Distances in the Universe

Two different (observationally based) definitions for “distance”:

F =
L

4⇡d2L(z)

LUMINOSITY DISTANCE 
dL 

ANGULAR DIAMETER DISTANCE 
dA 

dL(z) = (1 + z)2dA(z)For any metric theory of gravity: 

dA

�# =
`

dA(z)
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Distance-redshift relation 

Strategy:  
measure redshift (~"easy") 
and distance (hard), to infer 
the cosmological parameters 
controlling the redshift-
distance relationships


In this example: 


the matter content: Ωm

the dark energy content: ΩΛ

the Hubble parameter: 

Ho = 100h km/s/Mpc 


4 — Cosmography

Figure 4.2: Distance measures and the age of the Universe in di↵erent cosmologies.
Distances are measured in units of c/H0 and times in units of 1/H0.

36 J. R. Pritchard

4 — Cosmography

Figure 4.2: Distance measures and the age of the Universe in di↵erent cosmologies.
Distances are measured in units of c/H0 and times in units of 1/H0.

36 J. R. Pritchard

The distance-redshift relation depends on the cosmological parameters

In units of c/H0 = 2997/h Mpc
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TO
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AY

Radiation
~50k yrs

Dark matter
~7bn yrs

Dark energy
last ~6bn yrs

⇢r / a�4 ⇢m / a�3 ⇢⇤ = const
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g 
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ng

redshift  
z1,100

~ 10

~ 0.7 0

Supernovae Type Ia

a(t) / t2/3a(t) / t1/2 a(t) / exp(H⇤t)

~ 1.5
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Comparison of theoretical 
model to CMB+BAO+SNIa 
data gives sub-percent 
accuracy on Cosmological 
Parameters: 

Hu & Dodelson (2002)

Precision cosmology 

Planck Collaboration (2015)

How accurate is this?
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Combination of multiple probes is required to determine the 
cosmological parameters to high precision: 

Baryonic Acoustic Oscillations (BAO) and Cosmic Microwave Background 
(CMB) are standard rulers. 

Ref: March et al, MNRAS 418(4):2308-2329, (2011)

Cosmological constraints

CMB (T only)

BAO

SNIa

Combined

ä > 0 for w =
p

⇢c2
< �1

3

w = -1 (cosmological constant): 
accelerating expansion 
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Constraints on dark energy
Constraints on the parameter (w0, wa) for the dark energy equation of 
state (w = P/rho) parameterization: w(z) = w0 + z/(1+z) wa 

The cosmological constant corresponds to 

(w0, wa) = (-1, 0) and has w(z) = const

Left: Planck Collaboration 2015: Cosmological parameters, arXiv: 1502.01589.  
Right: Planck Collaboration 2015: Dark energy and modified gravity, arXiv: 1502.01590
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Type Ia supernovae 

• CO White Dwarf (WD): compact CO remnant of 
star (M < 2.5 MSun), supported by electron 
degeneracy pressure. M ~ 0.6 MSun, radius ~ 
Earth, density ~ 1 tonne/cm3


• Supernovae type Ia (SNIa): No H, Si lines. 
Probably the runaway thermonuclear explosion of 
a CO WD accreting mass approaching the 
Chandrasekhar limit (~1.4 solar masses), thus 
igniting C fusion. "Standard" candles? 


• Progenitor models:   
Single Degenerate (WD + Main sequence or Red 
giant or a He star companion) vs  
Double Degenerate (WD + WD merger)


• Possibly, a mixture of both 
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Progenitors of Type 1a Supernovae?

Images:NASA/CXC/M Weiss.

Accretion Merger

bimodal population?
Imperial College
London arXiv:1102.3237

r.trotta@imperial.ac.uk

Single 
degenerate

Double 
degenerate

Progenitors of Type 1a Supernovae?

Images:NASA/CXC/M Weiss.

Accretion Merger

bimodal population?
Imperial College
London arXiv:1102.3237

r.trotta@imperial.ac.uk



Roberto Trotta 

@R_Trotta

Light-curves 

J. Guy et al, SNLS Collaboration: SALT2 11
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Fig. 6 Estimated standard deviation of model photometric errors
as a function of phase, for several rest-frame wavelength ranges
roughly corresponding from top to bottom to U, B, V , R and
I−bands. Those model errors were evaluated from the scatter of
residuals to the single light-curve fit.
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Fig. 7 Difference between observed peakmagnitude in each band
of each SN from table 2 and the model prediction as a function
of the rest-frame effective wavelength of the filter used (gray tri-
angles : SNLS SNe, gray squares : nearby SNe). The large black
symbols represent the estimated dispersion in each wavelength
bin (triangles for SNLS, and squares for nearby SNe). The large
circles show the average difference in each wavelength bin for all
SNe and the solid curve is a polynomial fit to the dispersion used
as an estimate of the K-correction scatter. Since uncertainties on
B and V magnitudes at maximum enter in the normalization and
color evaluation of the model, K-correction uncertainties are set
to zero for B and V− band wavelengths.
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Fig. 8 Observed light-curves points of the SN Ia SNLS-04D3gx
at z=0.91 along with the light-curves derived from the model
(solid line, trained without this SN). The dashed lines represent
the 1 σ uncertainties of the model (both uncorrelated and K-
correction errors).
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Optical filters ("bands"):

B = 450 nm
g = 520 nm
r = 670 nm
i = 790 nm
z = 910 nm

~ 15 days ~ 20 days
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Brightness-width relationship 
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BRIGHTER

FAINTER

~ factor of 3

residual scatter  
~ 0.2 mag

Brighter SNIa are 
slow decliners

Peak magnitude scatter can be reduced by exploiting phenomenological 
correlations with the shape (and colour) of the LC (Phillips93,Tripp98, Riess+96,...)

Luminosity drop 15 days after peak
SLOWER FASTER 

Dimmer SNIa are cooler → Earlier recombination → earlier colour transfer from B-band 
to red via line blanketing of iron-group elements → faster B-band decline
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B-band decline
larger for dimmer 
SNIa
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"Stretch correction"
"Brighter SNIa are slow decliners"

BRIGHTER

FAINTER

B band

Phillips, ApJ 413 (1993) L105-L108 

Drop from peak after 15 days
SLOWER FASTER 

BRIGHTER

FAINTER
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"Color correction"

"Brighter SNIa are bluer in colour"
BRIGHTER

FAINTER

Riess+1996

0 Days after B-band maximum 

REDDER

BLUER

20 40

Higher host galaxy dust content → larger extinction 
(dimmer) → larger transfer to longer wavelength→ 
redder

Typical values for the 
slope of the dust 
absorption law with 
wavelength (RV ~ 
1.1-2.5) are in tension 
with values for Milky 
Way dust (RV = 3.1) 

Mandel et al 
(1609.04470) show that 
this is due to the colour 
correction not being 
exactly linear.  Idea: 
split intrinsic colour 
variability from dust 
reddening/dimming 
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Riess et al, ApJ, 607:665-687 (2004)

Cosmic acceleration

Frieman+08

FAINT

BRIGHT
Data: Riess+96, Perlmutter+96
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SNIa sample
Betoule+ 2014: 740 spectroscopically confirmed SNIa, out to z ~ 
1.4, with joint re-analysis of LC fits


Rest+ 2013:  112 PS1 at high-z 
(blue) + 201 low-z SNIa (red)

"Joint Light-Curve Analysis" (JLA) sample 
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Cosmological fit
Standard analysis minimizes the Chi2 between the theoretical distance modulus (left) 
and the observed one (after colour and stretch corrections, from SALT2):

µtheo(zi, C) µobs
i = mi �Mi + ↵x1,i � �ci

stretch

colourabsolute mag

apparent mag

Chi2

Error budget contains: 

• Statistical errors (measurements of mag, stretch and colour corrections)

• Systematic errors (flux calibration, peculiar velocities, lensing, ...)

• "Residual dispersion" σint: everything else, including intrinsic variability in SNIa 


unknown

unknown

unknown
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Problems of the standard analysis

�2 logL = �2 =
X

i

(µ(zi, C)� [m̂B,i �M + ↵x̂1,i � �ĉi])
2

�2
int + �2

fit

X Likelihood is Gaussian in the data! 

X Normalization 

X Unknown parameters appear in the variance

X Chi2/dof = 1 enforced: no model checking 

X Incorrect likelihood prevents use of powerful MCMC/

evidence calculations 


�2
fit = �2

mB
+ ↵2�2

x1
+ �2�2

c + correlations

March, RT+11; Rubin+15



SNIa cosmology error budget is already dominated 
by "systematics":

X Flux calibrations (Betoule+14, JLA paper)

X Selection effects (Rubin+15 for a Bayesian approach) 

X Contamination by non-Ia's (Kunz+07, Kessler & 

Scolnic16)

✓ Redshift evolution of Phillips corrections

✓ Non-linear corrections 

✓ Multiple populations 

✓ Dust extinction modeling 

✓ Environmental properties  

Explicit modeling of "systematics" transforms them 
into manageable statistical errors
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Bayesian hierarchical models

“True” values of 
observables

Population parameters 

Prior

Parameters of 
interest

Prior

INTRINSIC VARIABILITY

NOISE, SELECTION EFFECTS

Nuisance  
parameters

Latent variables

Data Observed values Calibration data



Prior

DM 
params{m�, h�vi,BRi, ...}

# 
events 

True 
energy

“On” 
data

obs # 
events

Ntrue

N̂ {E1, . . . , ENtrue}
Probabilistic
Deterministic

Exp. 
eff.

A B
P (B|A)

Conditional 
dependence 

Bayesian 
Hierarchical   
Model

Prior

bkg 
params

“Off” 
data

On-Off 
Problem
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Why “Hierarchical”? 
• In cosmology, we have many problems of interest 

where the “objects” of study are used as tracers for 
underlying phenomena


• Eg: 


• SNIa’s to measure d_L


• Galaxies to measure velocity fields, BAOs, growth 
of structure, lensing, … 


• Galaxy properties to measure scaling 
relationships 


• Stars to measure Milky Way gravitational 
potential/dark matter 


• …

• In many cases, we might or might not be interested 

in the objects themselves — insofar as they give us 
accurate (and unbiased) tracers for the physics we 
want to study 

Parameters

DATA
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Why “Models”? 
• By “model” in this context I mean a probabilistic representation of how the 

measured data arise from the theory

• We always need models: They incorporate our understanding of how the 

measurement process (and its subtleties, e.g. section effects) “filters” our view of 
the underlying physical process 


• The more refined the model, the more information we can extract from the data: 
measurement noise is unavoidable (at some level), but supplementing our inferential 
setup with a probabilistic model takes some “heavy lifting” away from the data 


• The key is to realise that there is a difference between “measurement noise” and 
intrinsic variability — and each needs to be modelled individually 

Params

Objects
(variability) 

Data 
(noise, selection effects)

N O D In general: 
N + O > D 

Sometimes: 
N + O >> D   
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Mathematical formulation

p(params | data) ∝ p(data | params)p(params)

p(data|params) ∝ ∫p(data, true, pop | params) dtrue dpop

                          =  ∫p(data | true) p(true | pop) p(pop) dtrue drop

Measurement errors

Intrinsic variability

Population-level priors

The posterior distribution can be expanded in the usual Bayesian way:
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Gaussian linear model 
• Intuition can be gained from the “simple” problem of linear regression in the 

presence of measurement errors on both the dependent and independent variable 
and intrinsic scatter in the relationship (e.g., Gull 1989, Gelman et al 2004, Kelly 
2007):  

yi = b+ axi

xi ⇠ p(x| ) = Nxi(x?, Rx)
POPULATION 

DISTRIBUTION

yi|xi ⇠ Nyi(b+ axi,�
2) INTRINSIC VARIABILITY

x̂i, ŷi|xi, yi ⇠ Nx̂i,ŷi([xi, yi],⌃
2) MEASUREMENT ERROR

Model: unknown 
parameters of 
interest (a,b) 
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• Modeling the latent distribution of the 
independent variable accounts for “Malmquist 
bias” of the second kind 


• An observed x value far from the origin is more 
probable to arise from up-scattering of a lower 
latent x value (due to noise) than down-
scattering of a higher (less frequent) x value 

Flux 
limit

TRUE VALUES “SMALL” ERRORS

“LARGE” ERRORS



The key parameter is noise (σx) to population (Rx) 
characteristic variability scale ratio 

σx/Rx <<1

Bayesian (black) marginal 
posterior identical to Chi-

Squared (blue)

tru
e

σx/Rx ~1

Bayesian marginal posterior 
broader but less biased than 

Chi-Squared M
ar

ch
, R

T 
et

 a
l (2

01
1)tru

e

yi = b+ axi

σx σx Rx

Rx
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Slope reconstruction
Rx = σx2/Var(x): ratio of the covariate measurement variance to observed variance  

Kelly, Astr. J., 665, 1489-1506 (2007)

Ordinary Least 
Square

Maximum 
Likelihood

BIASSED 
LOW

BIASSED 
HIGH

Chi-Square 
incl variance

APPROX 
UNBIASSED
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Why should you care? 
Rx = σx2/Var(x) = 1 in this example: Comparing the MLE (dashed) with  

the Bayesian Hierarchical Model Posterior (histogram)

Kelly, Astr. J., 665, 1489-1506 (2007)
Slope

True 

Bayesian 

MLE 

Standard MLE (or 
Least Squares/
Chi-Squared) fits 
are biased! 

(even if you 
artificially inflate the 
errors to get Chi-
Squared/dof ~ 1)
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Supernovae Type Ia Cosmology example
• Coverage of Bayesian 1D marginal posterior CR and of 1D Chi2 profile likelihood CI 

computed from 100 realizations


• Bias and mean squared error (MSE) defined as 
 
   is the posterior mean (Bayesian) or the  
   maximum likelihood value (Chi2).
✓̂

Co
ve

ra
ge

Red: Chi2 Blue: Bayesian Results: 

Coverage: generally improved 
(but still some undercoverage 
observed)


Bias: reduced by a factor ~ 2-3 
for most parameters


MSE: reduced by a factor 1.5-3.0 
for all parameters
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BAHAMAS

March,RT+11; Jiao, RT,+15; Shariff, RT+15

BAyesian HierArchical Modeling for the 
Analysis of Supernova cosmology

LATENT VARIABLES

Observational 
noise

DATA

Cosmo/Standardization POPULATION PARAMETERS
Intrinsic 
variability

ArXiv: 1510.05954

All variables are fit 
simultaneously using 
powerful Gibbs-type 
samplers (~ 3000 
dimensions)
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Sampling strategy

• Introduction of an explicit layer of latent variables increases massively the 
dimensionality of the parameter space that needs to be sampled (eg: SNIa , 3 x N, N 
~ 700, the number of SNIa’s observed; >> for BayesSN, ~ 50,000)


• For Gaussian linear models, latent variables can be marginalised out analytically 


• But: selection effects break Gaussianity, hence require an explicit numerical 
sampling scheme 

Sampling scheme Ok? Note
Metropolis-Hastings ✗ Hopeless efficiency 

Gibbs ✓ Exploits conditional structure

Hamiltonian MC ✓ Good but requires gradient

Nested sampling ✗ Too large dimensionality 
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Partially Collapsed Gibbs

• The Partially Collapsed Gibbs (PCG) sampler replaces complete conditional 
distributions in Gibbs by complete conditionals of marginal distribution of the 
joint target. This reduction of conditioning can improve convergence. 

Construction of the PCG Sampler :

Jointly updated Steps 
permutation

Analytical 
marginalisation
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ASIS sampling scheme 

• In BAHAMAS, we use an Ancillarity-Sufficiency Interweaving Strategy (ASIS) and a 
Partially Collapsed Gibbs (PCG) sampler to improve efficiency (Jiao&vanDyk16, 
vanDyk&Park08; Yu&Meng11) 


• ASIS: A special Data Augmentation scheme: we introduce “missing data” (aka 
“messenger field”) Ymis,S or Ymis,A so that: 

p(Yobs|Ymis,S , ✓) is free of ✓ p(Ymis,A|✓) does not depend on ✓

ASIS Sampler, with target p(θ|Yobs) :
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Performance improvement 
• Adopting both ASIS and PCG improved mixing while noticeably reducing correlation 

length for all variables

Trace plot Auto-
correlation
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Borrowing of strength 

The posterior estimates (red) exhibit smaller residual scatter when compared to the 
likelihood (blue), around the regression line: "borrowing of strength" from the 
structure of the hierarchical model.

The Bayesian hierarchical model (BAHAMAS) has smaller bias, smaller MSE, better 
coverage than the standard Chi2 (March,RT+11)


1st 2nd 3rd 4th

x̂1i quartile: Posterior 
Likelihood 

Shariff, RT+15, arxiv: 1510.05954

Colour correction
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Cosmological parameters from JLA

JLA only
JLA + Planck 2015

⌦m = 0.399± 0.027

⌦ = �0.024± 0.010

w = �1 Bayesian analysis

Shariff, RT+15, arxiv: 1510.05954

2.8 σ difference
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Cosmological parameters from JLA

JLA only
JLA + Planck 2015

⌦ = 0
⌦m = 0.343± 0.019

w = �0.90± 0.05

Bayesian analysis

Shariff, RT+15, arxiv: 1510.05954
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Host-galaxy mass as additional covariate

log10 Mhost/M�

2-sigma preference for host-galaxy environmental segregation (Kelly+10, 
Sullivan+10, Rigault+13, Rigault+15) does not change cosmological inferences

Shariff, RT+15, arxiv: 1510.05954

slope = -0.030 ± 0.010
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Probabilistic classification of hosts 
Low/High host-galaxy mass preference survives a probabilistic treatment of the 
host-mass measurement: 

log10 Mhost/M�

P
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b
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b
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n
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h
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h
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Shariff, RT+15, arxiv: 1510.05954
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z-evolution of colour correction 

Strong preference (~ 4-sigma) for a transition from β ∼ 3.1 to β ∼ 2 at z ∼ 0.7.

This however does not change cosmological inferences.


Redshift of transitionChange in β 

��

zt

No step Step

R
es
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No step
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ep

Shariff, RT+15, arxiv: 1510.05954

Red: z < 0.6
Blue: z > 0.6
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The advantage of NIR data 

NIR and optical uncorrelated: extra 
information in the NIR!

Mandel+09,11

O
PT

IC
AL

 
N

IR

Hubble diagram: residual scatter 
reduced by ~2 using optical+NIR LC

But: You need to go to space to get z~1 rest-frame NIR! 
(RAISIN/RAISIN 2 with HST, Kirshner+)
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SNIa’s in the outskirts of galaxies are better 
standard candles 
Looking for SNIa in the outskirts (= less dusty/more homogeneous) regions 
of galaxies (280 SDSS host galaxies fitted): measured the galactocentric SN 
distance normalised to the host’s scale length, dr  

Hill, RT+ 2018 (1612.04417), Galbany+12
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Segregation by distance to host centre
Projected distance to the host centre in units of half-light radius (dr)

Residual scatter in the high-
distance (dr >2)  sub-sample is 
reduced by ~30% 

Significant difference (95% CL) 
in the colour correction 
between the two samples: high 
dr SNIas are bluer.  



Roberto Trotta 

@R_Trotta

Mandel+16 
Take advantage of the fact that dust only absorbs and reddens to split colour into 
intrinsic and dust-related. The usual linear fit returns a slope that is not the intrinsic 
slope, nor the dust slope, but an average between the two.

Mandel+16, 1609.04470 

Simulated data 
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Mandel+16: Implications 
The non-linear colour fit reduces Hubble residuals for very red/very blue objects wrt 
the conventional Tripp linear formula. This might have important implications for 
cosmological fits, with systematic corrections of up to ~ 0.1 mag. 

Mandel+16, 1609.04470 

CfA data (215 low-z SNIa)



Roberto Trotta 

@R_Trotta

UNITY (Rubin+15)
Extension of the Bayesian method of March+11 to include outliers, selection 
effects and host-galaxy mass: 

Union 2.1 data

Rubin+15 (SCP) 1507.01602
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Nielsen+15
Profile likelihood analysis of an effective likelihood (similar to BHM) claims only a 
~3-sigma preference for non-zero acceleration (red/dashed):

Nielsen+15, 1506.01354
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Rubin & Hayden16 
Claim that modelling 
the redshift drift of 
colour (due to 
selection effect) 
moves the 
cosmological 
constraints from JLA 
back to the 
“standard” values

Rubin & Hayden16, 1610.08972 

Redshift

Deceleration parameter Deceleration parameter

http://arxiv.org/abs/arXiv:1610.08972
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Selection Effects 

Due to magnitude-limited observations, slow declining and bluer SNIa 
(i.e., brighter) are observed more easily → Malmquist (1925) bias (i.e., 
truncation)

Current solution: MC the selection bias, then “correct back” magnitudes 
to compensate for it 

Betoule et al, Astron.Astrophys. 568 (2014) A22  

Magnitude Colour  
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Bayesian Modelling of Selection Effects

Partition data y into “observed” and “missed”:

yobs = {yi|Ii = 1, i 2 [1, . . . , N ]}

ymis = {yi|Ii = 0, i 2 [1, . . . , N ]}

y = {yobs, ymis}

The observed data likelihood is obtained by integrating over the missed 
observations in the complete data likelihood 


p(yobs, I|✓,�) =
Z

dymisp(y, I|✓,�)
θ=parameters of interest

𝜙=parameters of the data 
collection procedure 

p(✓|yobs, I) /
Z

d�p(✓,�)

Z
dymisp(y|✓)p(I|y,�)

Posterior conditional on the observed data: 




Roberto Trotta 

Selection Function Exactly Known 

If we know the selection function, the procedure of Rubin et al (2015) leads to 
correct results (so does ours, of course):

SNIa Toy Sims 

Chen, RT et al (in prep)
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Selection Function Needs Inferring 
Using wrong parameters of the selection 
function leads to systematic bias in the 
cosmological parameters (left).

Solution: Infer the selection function 
simultaneously (right) 

Chen, RT et al (in prep)
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The future: photometric SNIa cosmology
• SNIa identification relies on observationally expensive spectroscopy 

• In the future, we won’t have spectra for all SNIa candidates (DES: 3000 SNIa over 5 

yrs; LSST: 10,000 SNIa/yr) 

• SNIa classification will be needed based on multi-band imaging alone -> “SN 

Classification Challenge” (Kessler+10)

• Problem: Training set is biased. Especially at high z, more SNIa’s than in the 

population, hence non representative  
Random training data Biased training data 
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STACCATO 
• Our solution (Revsbech, RT, van Dyk in prep): SynThetically Augmented Light Curve 

ClassificATiOn proceeds as follows:


• Fit light curve with Gaussian Process (GP)


• Compute Diffusion Map (to quantify similarities between LCs), Richards+12


• Perform Random Forest Classification 


• New: Group SNs according to Propensity Score (probability of belonging to the 
training set) to reduce bias between training and test set 

Test data partitioning Training set partitioning 
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Augmenting LCs via GP resampling  
• The final step in STACCATO is to augment the training set by synthetically sampling 

LC’s from the fitted GP according to the Propensity Scores. 

• Evaluated using Area under the ROC Curve (AUC): 


• ‘Gold Standard’ (unbiased training set) = 0.977 vs STACCATO = 0.961 

Gold Standard
STACCATO
dashed (solid) w/o (w) augmentation 
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Object-by-object classification: example
• “Events” come from two different populations (with different intrinsic scatter around 

the same linear model), but we ignore which is which: 

LATENT OBSERVED
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Hierarchical model reconstruction 
Parameters of interest

Classification of objects Population-level properties



Summary

๏ SNIa cosmology has reached maturity: Further 
advances hindered by "systematics" that need to be 
modelled explicitly. From Precision to Accuracy.


๏ A Bayesian hierarchical model approach (BAHAMAS) 
yields strangely discrepant results wrt the standard 
analysis


๏ We find ~ 2-sigma discrepancies in w, Ωm, Ωκ 


๏ SNIa’s in the outskirts of galaxies are potentially better 
standard candles  


๏ The future of SNIa’s cosmology requires more 
sophisticated statistical approaches being implemented


@R_Trotta

Thank you! 



BACKUP SLIDES  
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Prior robustness



The complete hierarchical model 

Latent variablesPopulation 
parameters

Data
Cosmological sample

Dust

Light curves 

Absorption  

Light curves 

Environment Correlates 
Light curve summary statistics

Optical spectra

Near-infrared light curves

SN environmental data

Redshift 
zi

Apparent light 
curves 

(nearby)

Apparent light 
curves    

(distant)

Redshift data

Optical spectra

Near-infrared light curve

SN environmental data

Data
Local calibration sample

Survey 
parameters 

E, C

 dust

 env

 SN

i = 1, . . . ,M

Distance 
modulus 

Redshift 
zi

Survey 
parameters 

E, C

Standardization 
parameters 

Cosmological 
parameter 

C

Light curves

i = 1, . . . ,M

Light curves

Redshift data
i = 1, . . . ,M

Mibt

mibt

mibt

m̂ibt

m̂ibt

µ

 dust,i

ci

⌫t,↵,⌥

Distance 
modulus 
µ

Standardization 
parameters 
⌫t,↵,⌥

Red arrows/boxes indicate elements/data that have never been explored before in such a multi-level setting
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Cosmology results (Union)

288 SNIa
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Combined sample w = 1
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Blue: Bayesian

Marginal posteriors
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Combined constraints

• Combined cosmological constraints on matter and dark energy content:

CMB

CMB
BAO

BAO

SNIa

SNIa

Combined

Combined

w = 1 ΩK = 0
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The BayeSN approach 

• Developed by K. Mandel (Mandel et al, 2009, 2011) and collaborators: fully Bayesian 
approach to LC fitting, including random errors, population structure, intrinsic 
variations/correlations, dust extinction and reddening, incomplete data 

Dust population 
parameters

LC population  
parameters

Prior

Prior

Dust (Av, Rv)

Distance modulus

Observed LC

Absolute LC

Apparent LC

Redshift

SN 1...N
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From lightcurves to distances

• There are a few different lightcurve (LC) fitters on the market, with different 
philosophies/statistical approaches:


• MLCS2k2 (Jha et al, 2007): color (AV) and LC shape (Δ) parameters fitted 
simultaneously with cosmology. Color correction includes a dust extinction law 
correction.


• SALT/SiFTO/SALT2 (Guy et al, 2007): LC shape (x1) and colour (c) correction 
extracted from LC alongside apparent B-band magnitude (mB) + covariance matrix. 
The distance modulus 
 
 
is subsequently estimated with cosmological parameters and remaining “intrinsic” 
scatter. 


• BayeSN (Mandel et al, 2009, 2011): Fully Bayesian hierarchical modeling of LC, 
including population-level distributions (see later).

µ = mB �M + ↵⇥ width� � ⇥ colour
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Marginal posterior (simulated data)

w = 1 ΩK = 0

Red/empty: Chi2 (68%, 95% CL)
Blue/filled: Bayesian  (68%, 95% credible regions)

True value
True value

Bayesian posterior is noticeably different from the 
Chi2 CL: which one is “best”?
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