Bayesian Hierarchical Models and Applications to Supernova Type Ia/ Cosmology

🔰 @R_Trotta

Roberto Trotta Astrophysics & Data Science Institute Imperial College London

www.robertotrotta.com

Imperial College London The ACDM cosmological concordance model is built on three pillars:

1.INFLATION:

A burst of exponential expansion in the first ~10⁻³² s after the Big Bang, probably powered by a yet unknown scalar field.

2.DARK MATTER:

The growth of structure in the Universe and the observed gravitational effects require a massive, neutral, non-baryonic yet unknown particle making up ~25% of the energy density.

3.DARK ENERGY:

The accelerated cosmic expansion (together with the flat Universe implied by the Cosmic Microwave Background) requires a smooth yet unknown field with negative equation of state, making up ~70% of the energy density.

The FRW Universe

The simplest model is that of a spatially flat, homogeneous and isotropic expanding Universe (the FRW model):

$$ds^{2} = c^{2}dt^{2} - a^{2}(t) \left[dx^{2} + dy^{2} + dz^{2} \right]$$

where a(t) is the "scale factor".

Light from distant objects is "redshifted":

Redshift gives the amount by which the scale factor has grown:

(normalization: a = 1 today, when z=0)

$$\frac{\lambda_{\rm obs}}{\lambda_0} = 1 + z$$

$$1 + z = \frac{1}{a}$$

General Relativity gives a differential equation (Friedmann Equation) for the evolution of the scale factor as a function of the "cosmological parameters":

$$\left(\frac{\dot{a}}{a}\right)^2 = H_0^2 \left(\frac{\Omega_m}{a^3} + \frac{\Omega_r}{a^4} + \frac{\Omega_\kappa}{a^2} + \Omega_\Lambda\right)$$

Cosmological parameters:

Ω_m: Matter parameter

- Ω_r : Radiation parameter
- Ω_{κ} : Curvature parameter (= 0 for a flat Universe)
- Ω_{Λ} : Cosmological constant parameter

H₀ (km/s/Mpc): Hubble parameter

(further parameters describe the initial conditions)

Goal:

to observationally determine the cosmological parameters

Roberto Trotta

Distances in the Universe

Imperial College London

Two different (observationally based) definitions for "distance":

LUMINOSITY DISTANCE **ANGULAR DIAMETER DISTANCE** dL dA $F = \frac{L}{4\pi d_L^2(z)}$ $\delta \vartheta$ d_A Source

For any metric theory of gravity: $d_L(z) = (1+z)^2 d_A(z)$

Roberto Trotta

Distance-redshift relation

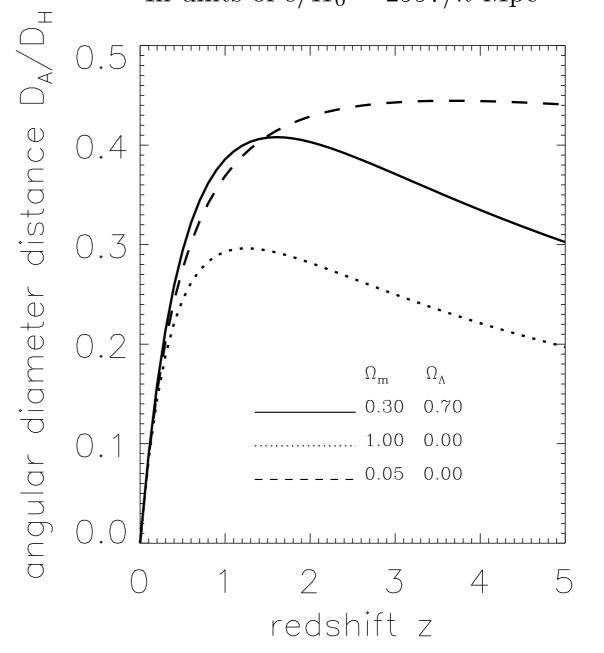
The distance-redshift relation depends on the cosmological parameters

Strategy:

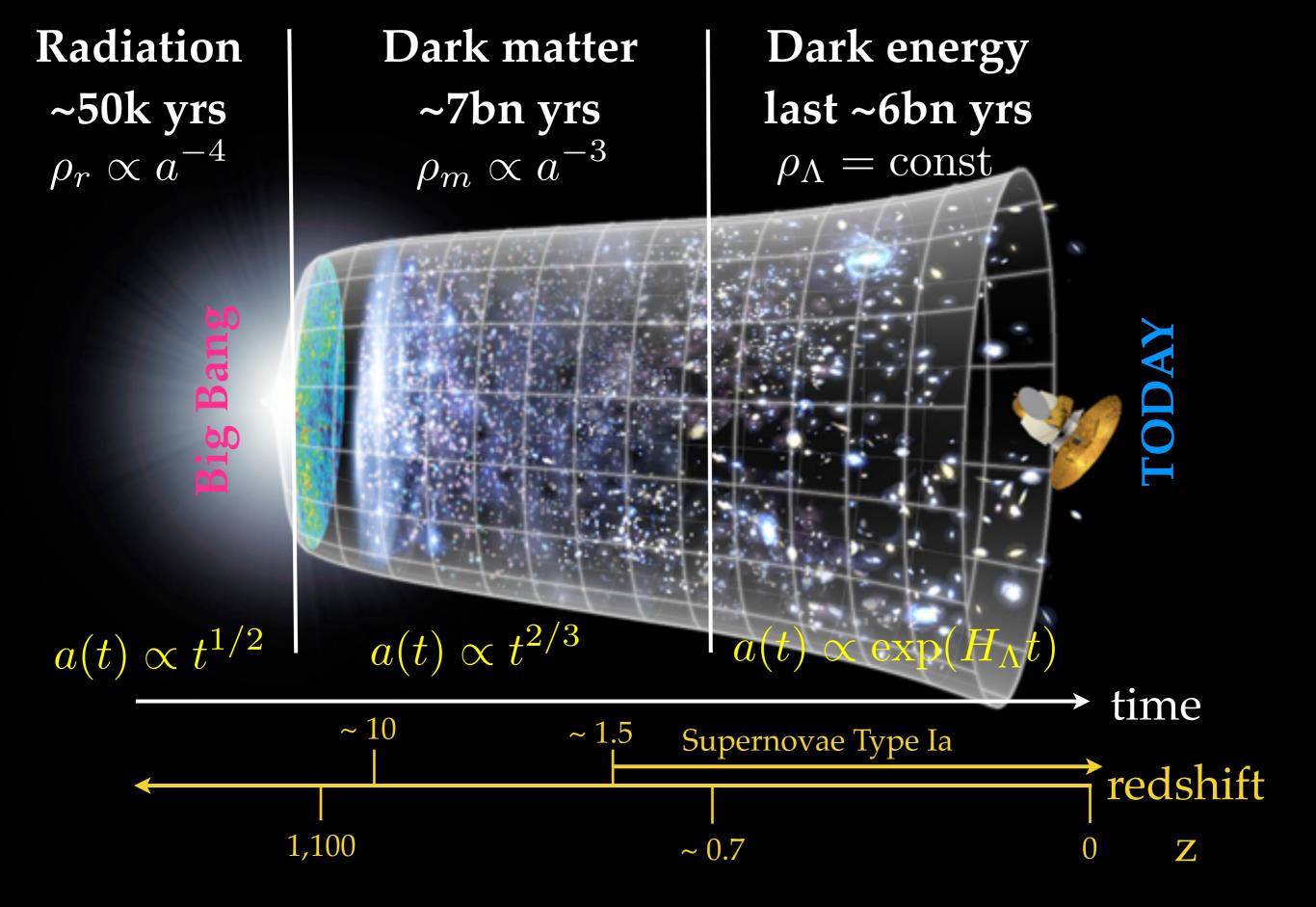
measure redshift (~"easy") and distance (hard), to infer the cosmological parameters controlling the redshiftdistance relationships

In this example:

the matter content: Ω_m the dark energy content: Ω_Λ the Hubble parameter: $H_o = 100h$ km/s/Mpc In units of $c/H_0 = 2997/h$ Mpc



Imperial College London



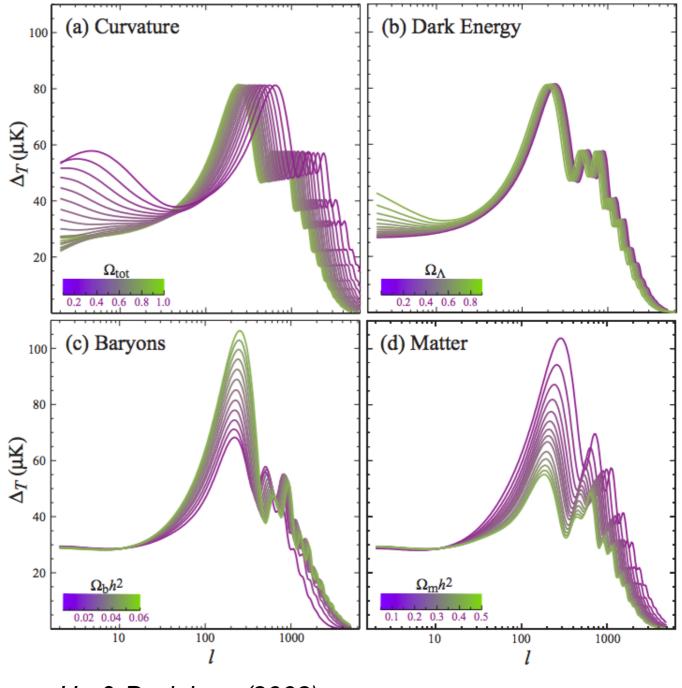
Precision cosmology

Comparison of theoretical model to CMB+BAO+SNIa data gives sub-percent accuracy on Cosmological Parameters:

> $\Omega_m = 0.316 \pm 0.009$ $H_0 = 67.8 \pm 0.9 \text{ km/s/Mpc}$ $\Omega_\Lambda = 0.684 \pm 0.009$ $|\Omega_\kappa| < 0.005$ Age = 13.796 ± 0.029 Gyr

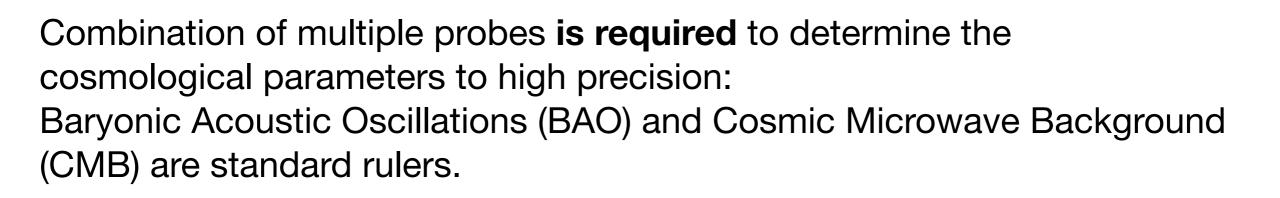
Planck Collaboration (2015)

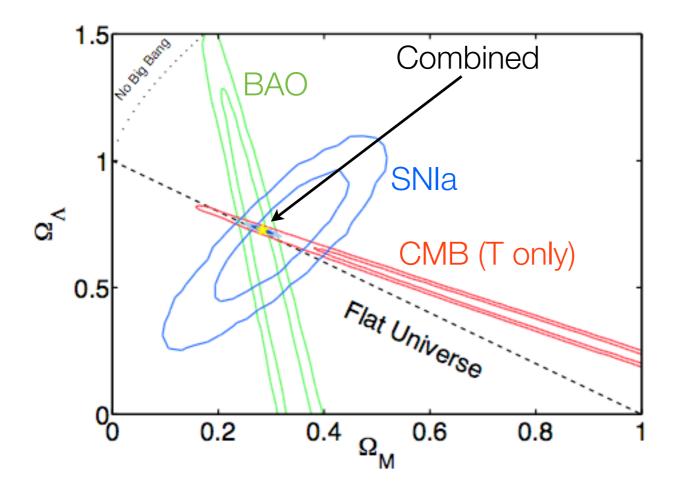
How accurate is this?



Hu & Dodelson (2002)

Cosmological constraints





Ref: March et al, MNRAS 418(4):2308-2329, (2011)

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho(t) + 3\frac{p}{c^2}\right)$$

Imperial College

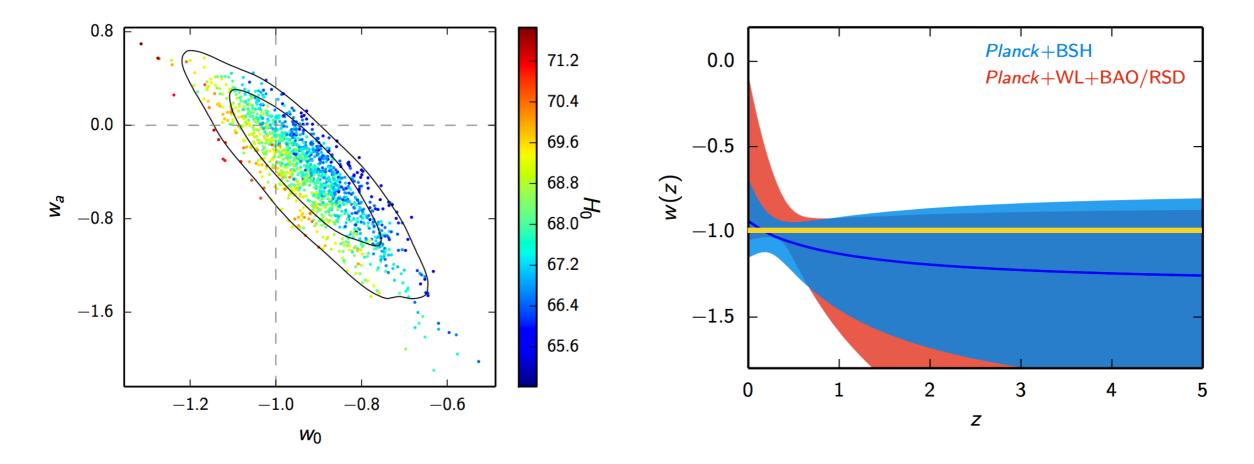
London

$$\ddot{a} > 0$$
 for $w = \frac{p}{\rho c^2} < -\frac{1}{3}$

w = -1 (cosmological constant): accelerating expansion

Constraints on dark energy

Constraints on the parameter (w_0 , w_a) for the dark energy equation of state (w = P/rho) parameterization: $w(z) = w_0 + z/(1+z) w_a$ The cosmological constant corresponds to (w_0 , w_a) = (-1, 0) and has w(z) = const



Left: Planck Collaboration 2015: Cosmological parameters, arXiv: 1502.01589. Right: Planck Collaboration 2015: Dark energy and modified gravity, arXiv: 1502.01590

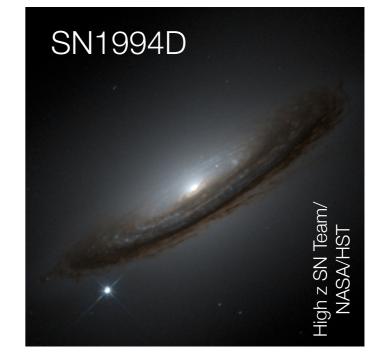
Roberto Trotta

Type la supernovae

- CO White Dwarf (WD): compact CO remnant of star (M < 2.5 M_{Sun}), supported by electron degeneracy pressure. M ~ 0.6 M_{Sun}, radius ~ Earth, density ~ 1 tonne/cm³
- Supernovae type Ia (SNIa): No H, Si lines. Probably the runaway thermonuclear explosion of a CO WD accreting mass approaching the Chandrasekhar limit (~1.4 solar masses), thus igniting C fusion. "Standard" candles?

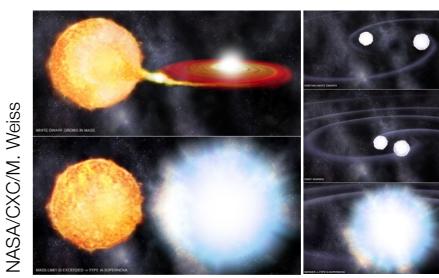
 Progenitor models: Single Degenerate (WD + Main sequence or Red giant or a He star companion) vs Double Degenerate (WD + WD merger)

Possibly, a mixture of both

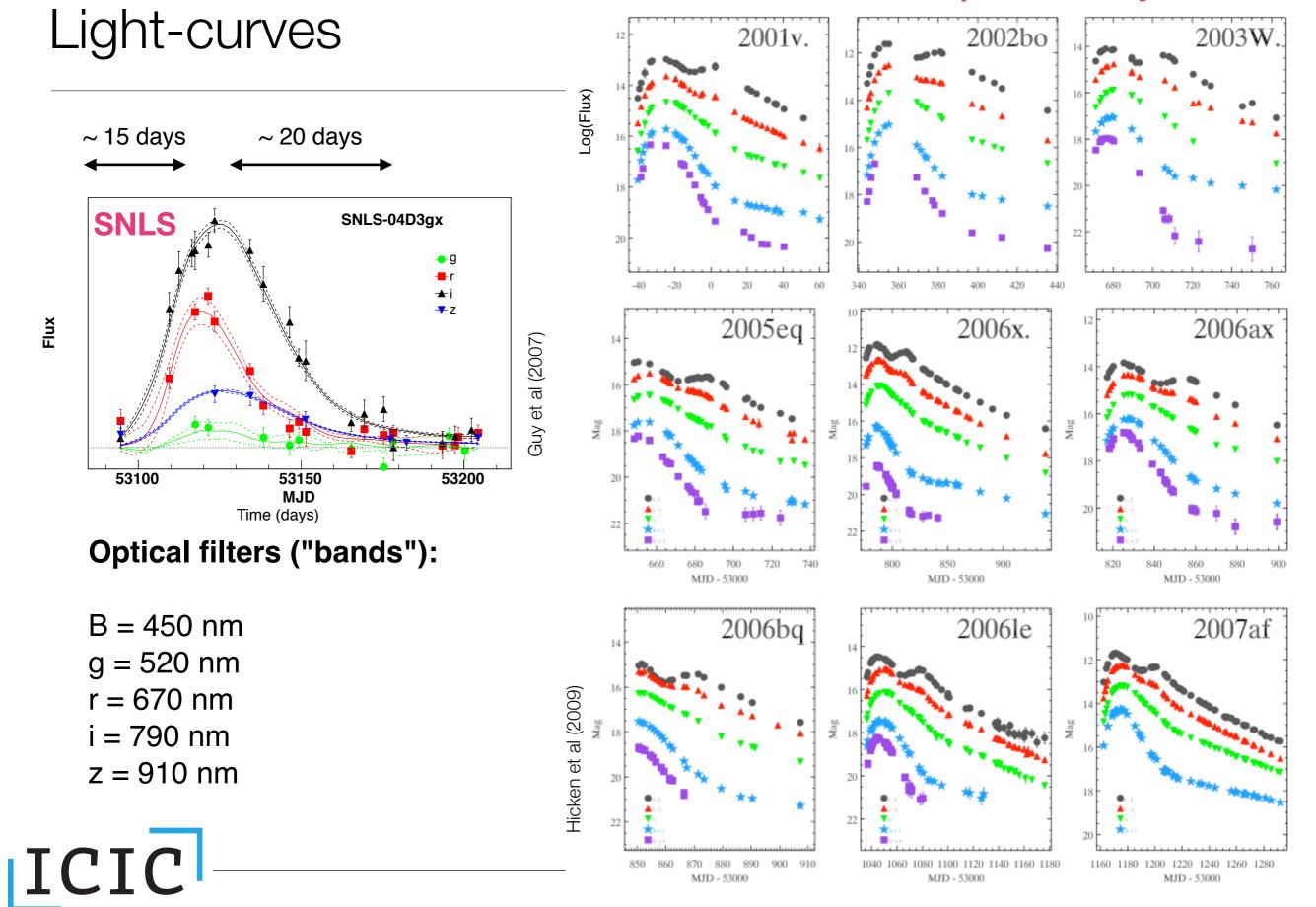


Single degenerate

Double degenerate

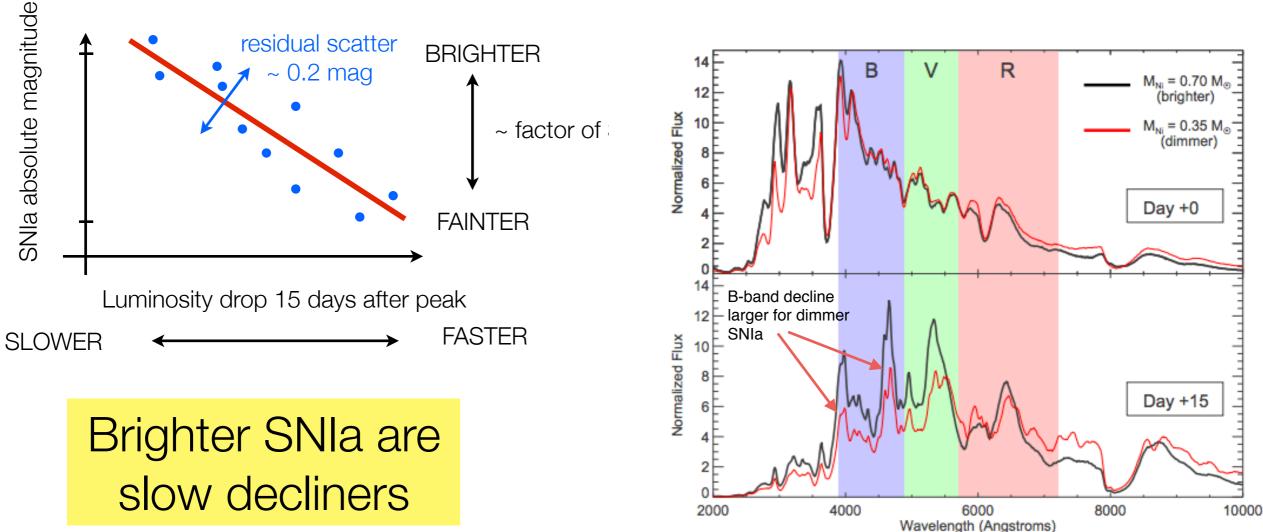


CfA3 185 multi-band optical nearby SNIa



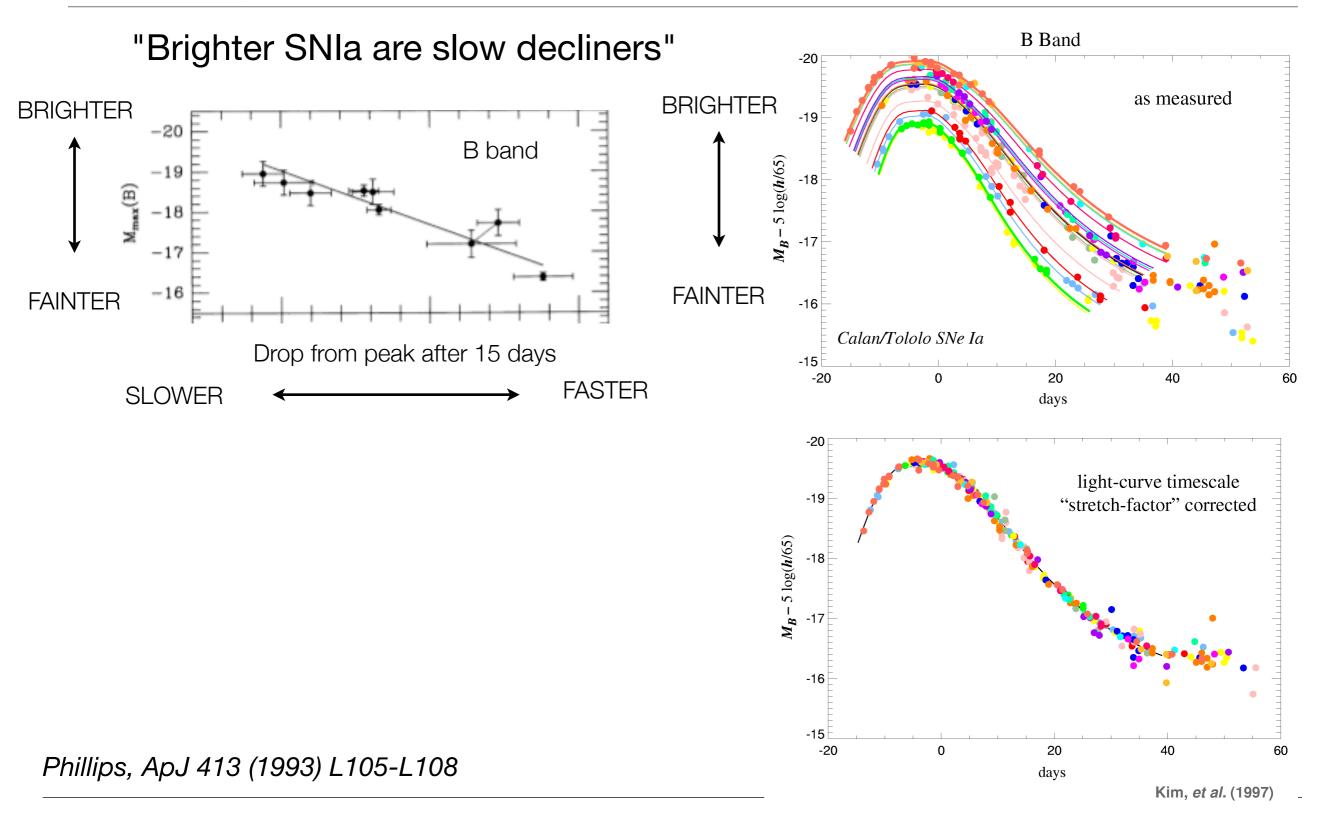
Brightness-width relationship

Peak magnitude scatter can be reduced by exploiting phenomenological correlations with the shape (and colour) of the LC (Phillips93, Tripp98, Riess+96,...)



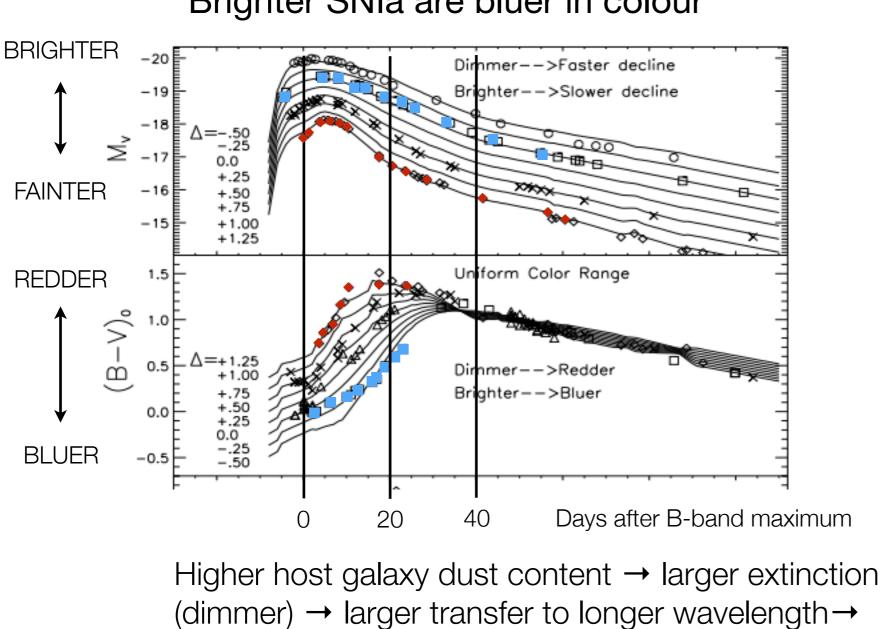
Dimmer SNIa are cooler \rightarrow Earlier recombination \rightarrow earlier colour transfer from B-band to red via line blanketing of iron-group elements \rightarrow faster B-band decline

"Stretch correction"



Roberto Trotta

"Color correction"



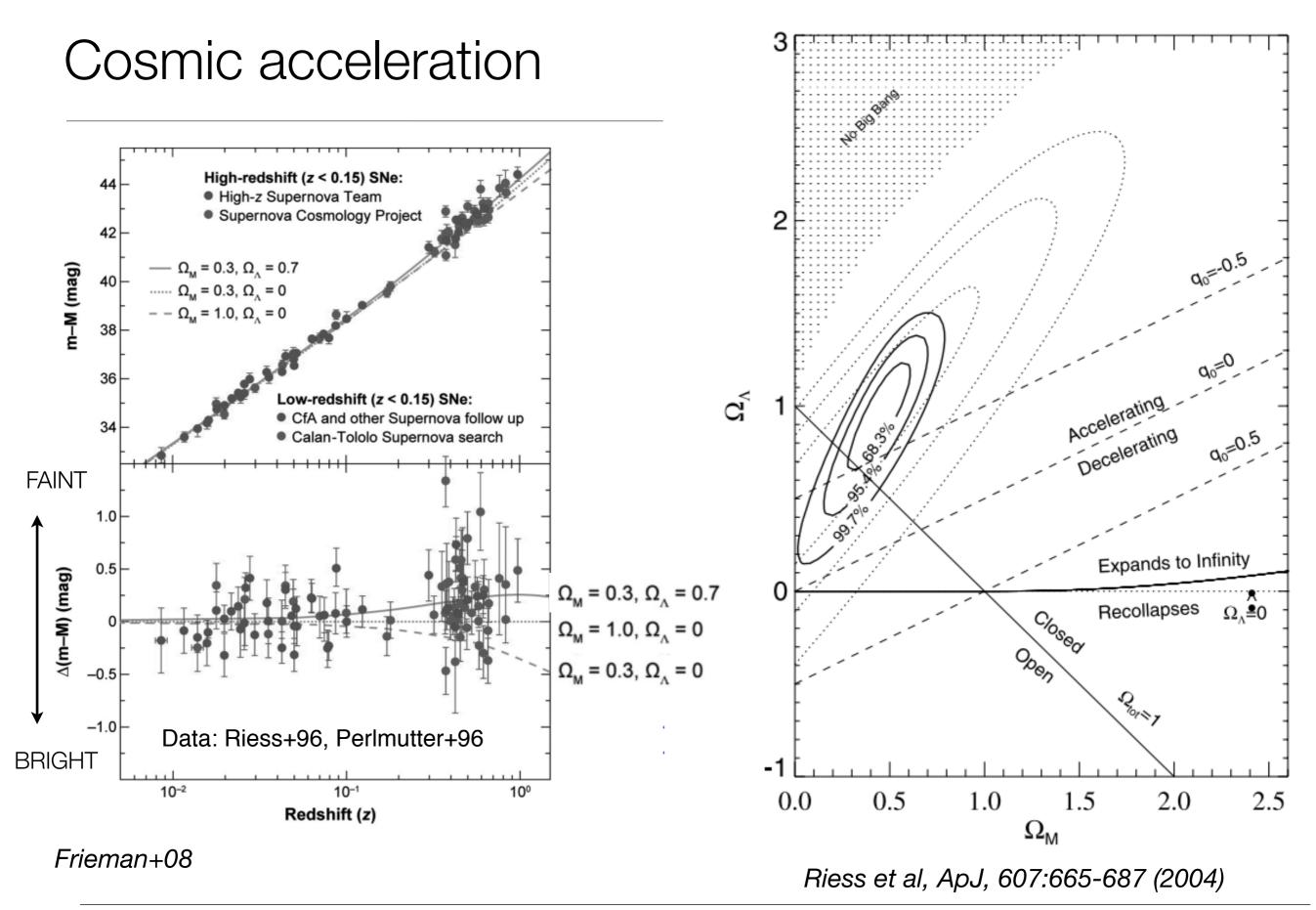
"Brighter SNIa are bluer in colour"

Typical values for the slope of the dust absorption law with wavelength ($R_V \sim 1.1-2.5$) are in tension with values for Milky Way dust ($R_V = 3.1$)

Mandel et al (1609.04470) show that this is due to the colour correction not being exactly linear. Idea: split intrinsic colour variability from dust reddening/dimming

Riess+1996

redder



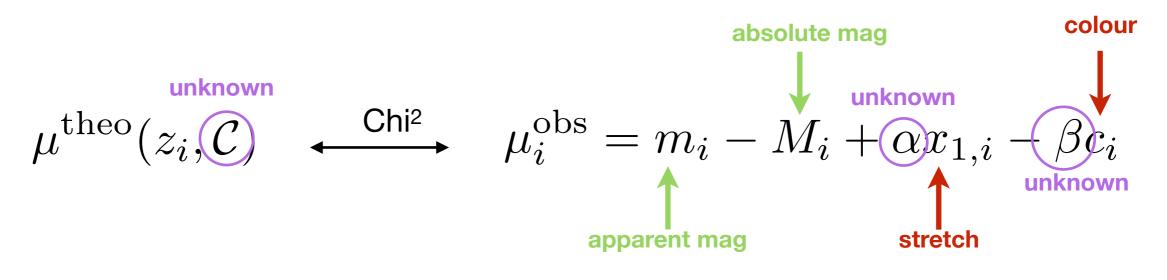
SNIa sample

Betoule+ 2014: 740 spectroscopically confirmed SNIa, out to z ~ 1.4, with joint re-analysis of LC fits "Joint Light-Curve Analysis" (JLA) sample 46 HS1 00 44 42 $\mathcal{M}(G) + \alpha X_1$ SNLS 40 SDSS Rest+ 2013: 112 PS1 at high-z 38 (blue) + 201 low-z SNIa (red) **44** 🖥 *⁸ 36 $\begin{array}{l} \Omega_{\rm M} = \! 0.3, \Omega_{\rm DE} \! = \! 0.7 \\ \Omega_{\rm M} = \! 0.3, \Omega_{\rm DE} \! = \! 0.0 \\ \Omega_{\rm M} \! = \! 1.0, \Omega_{\rm DE} \! = \! 0.0 \end{array}$ 43 Low-z II 42 ₽-u 34 μ 41 40 PS1 • Low-z • 39 0.4 $\mu_{\Lambda CDM}$ 38 0.6 0.2 0.0 0.4 N-N 0.0 -0.2 10^{-2} 10⁻¹ 10^{0} -0.6 0.6 0.7 Z 0.0 0.1 0.2 0.3 0.5 0.4 z ICIC

Roberto Trotta

Cosmological fit

Standard analysis minimizes the Chi² between the theoretical distance modulus (left) and the observed one (after colour and stretch corrections, from SALT2):



Error budget contains:

- Statistical errors (measurements of mag, stretch and colour corrections)
- Systematic errors (flux calibration, peculiar velocities, lensing, ...)
- "Residual dispersion" σ_{int}: everything else, including intrinsic variability in SNIa

Problems of the standard analysis

Imperial College London

$$-2\log \mathcal{L} = \chi^2 = \sum_{i} \frac{\left(\mu(z_i, \mathcal{C}) - \left[\hat{m}_{B,i} - M + \alpha \hat{x}_{1,i} - \beta \hat{c}_i\right]\right)^2}{\sigma_{\text{int}}^2 + \sigma_{\text{fit}}^2}$$

 $\sigma_{\rm fit}^2 = \sigma_{m_B}^2 + \alpha^2 \sigma_{x_1}^2 + \beta^2 \sigma_c^2 + \text{correlations}$

X Likelihood is Gaussian in the data!

X Normalization

X Unknown parameters appear in the variance

X Chi²/dof = 1 enforced: no model checking

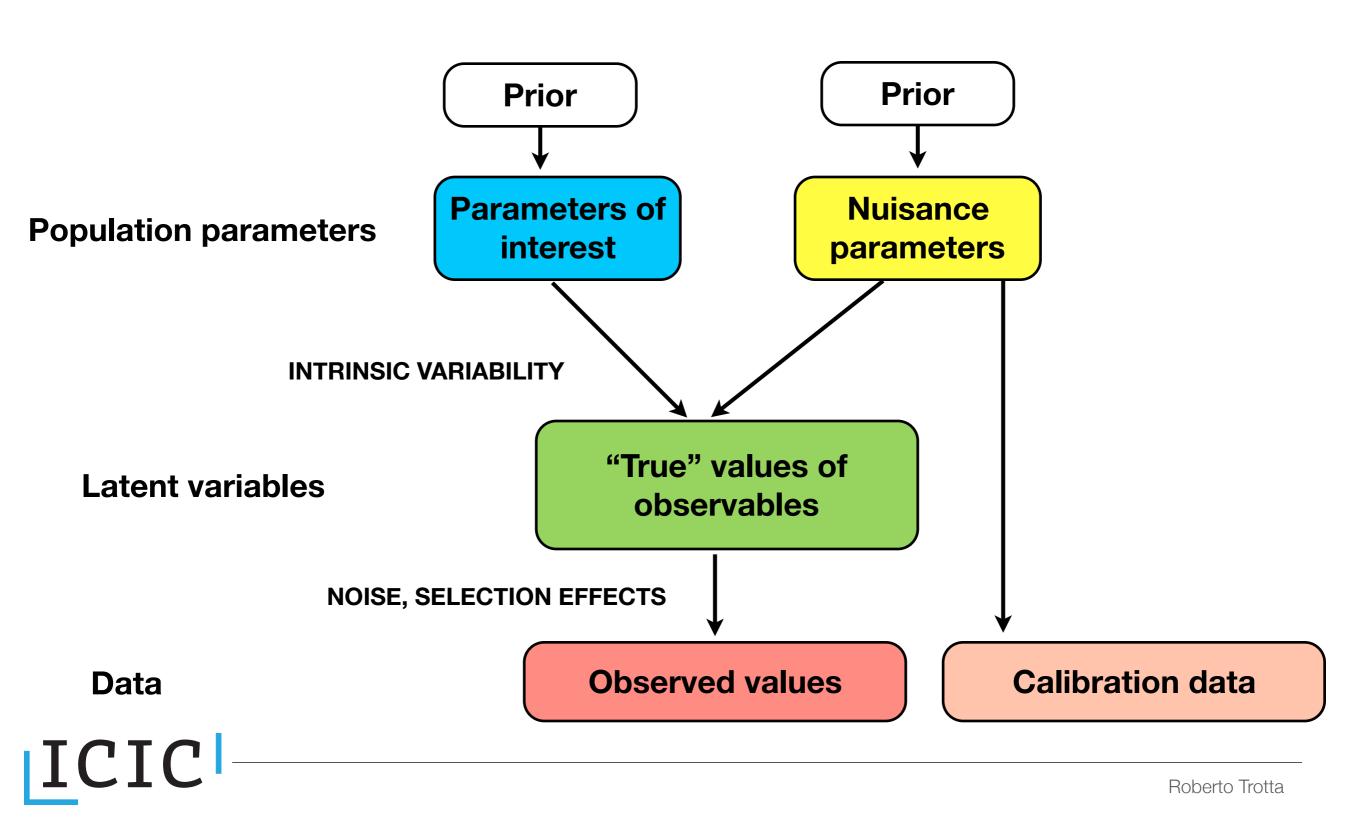
X Incorrect likelihood prevents use of powerful MCMC/ evidence calculations

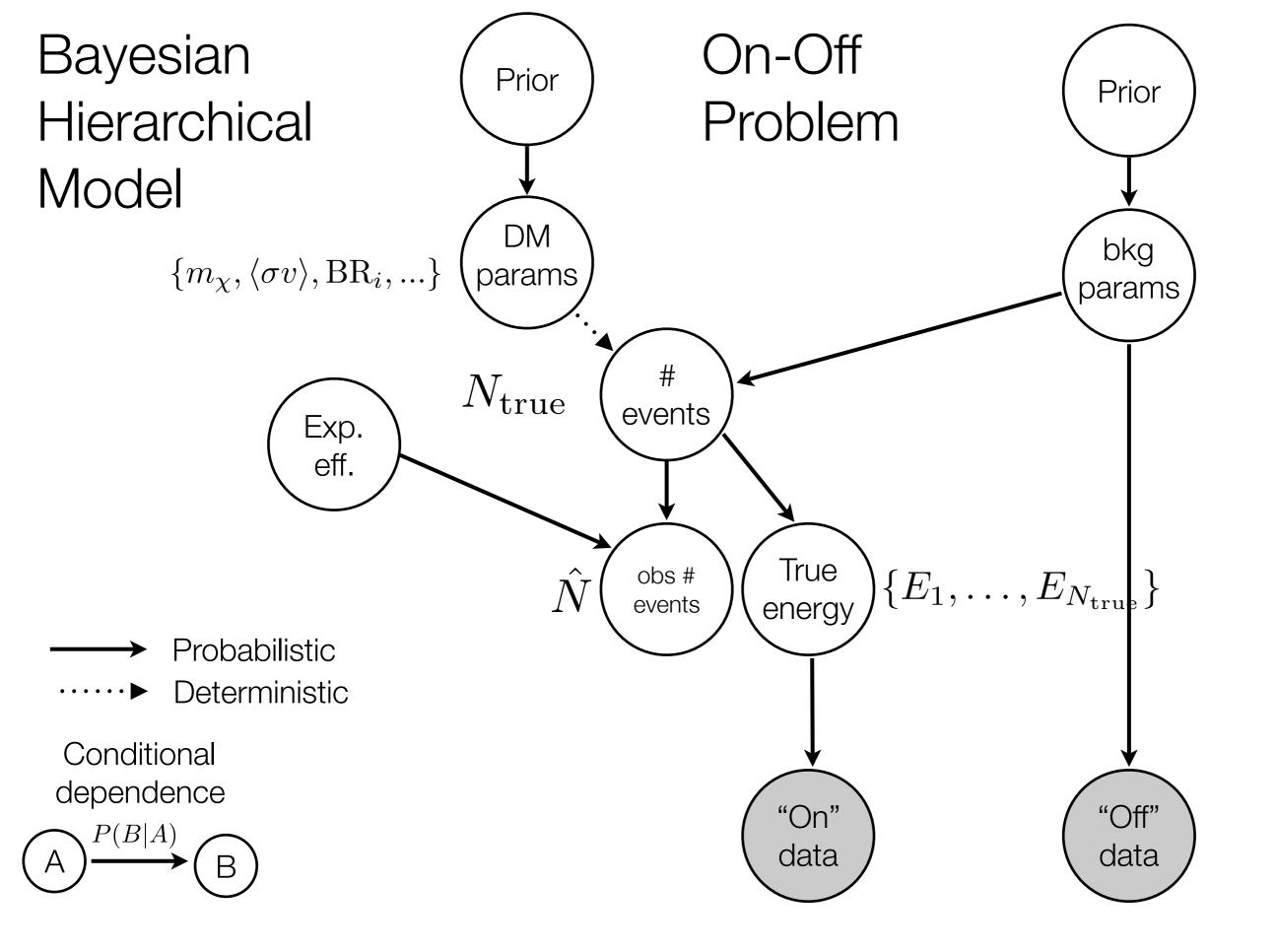
March, RT+11; Rubin+15

SNIa cosmology error budget is already dominated by "systematics":

- X Flux calibrations (Betoule+14, JLA paper)
- X Selection effects (Rubin+15 for a Bayesian approach)
- X Contamination by non-la's (Kunz+07, Kessler & Scolnic16)
- ✓ Redshift evolution of Phillips corrections
- ✓ Non-linear corrections
- ✓ Multiple populations
- ✓ Dust extinction modeling
- ✓ Environmental properties

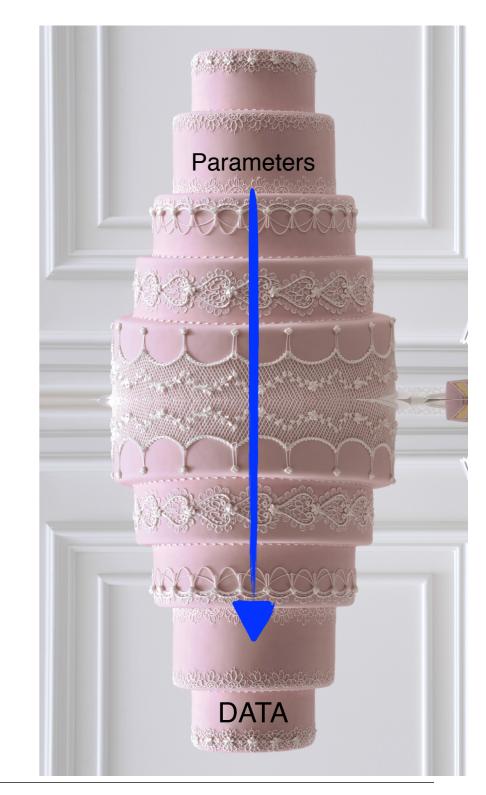
Explicit modeling of "systematics" transforms them into manageable statistical errors





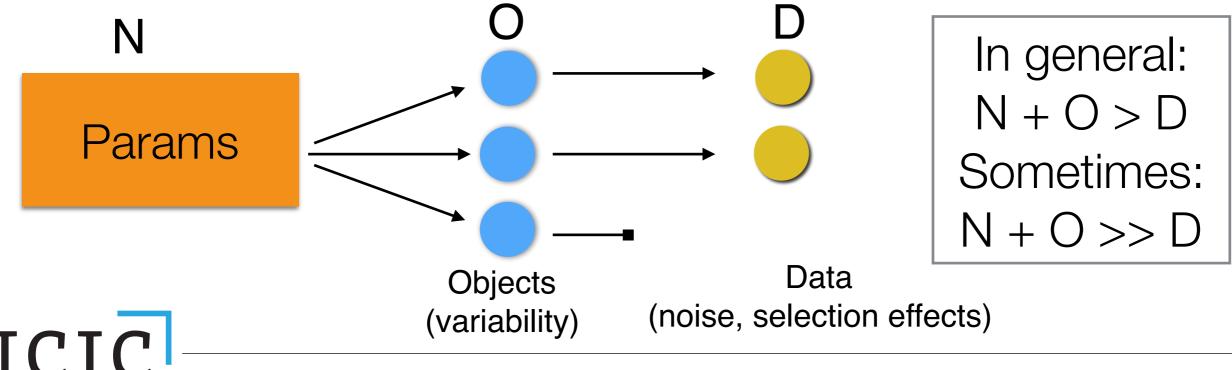
Why "Hierarchical"?

- In cosmology, we have many problems of interest where the "objects" of study are used as tracers for underlying phenomena
- Eg:
 - SNIa's to measure d_L
 - Galaxies to measure velocity fields, BAOs, growth of structure, lensing, ...
 - Galaxy properties to measure scaling relationships
 - Stars to measure Milky Way gravitational potential/dark matter
- In many cases, we might or might not be interested in the objects themselves — insofar as they give us accurate (and unbiased) tracers for the physics we want to study



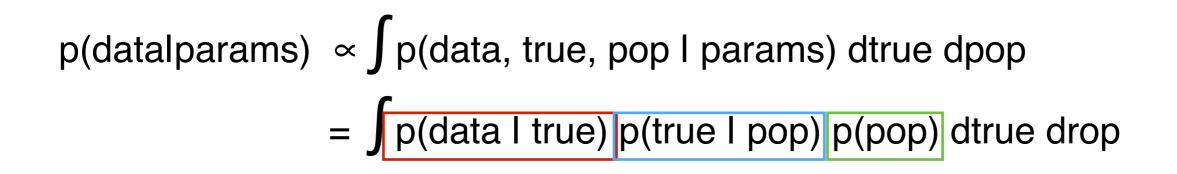
Why "Models"?

- By "model" in this context I mean a probabilistic representation of how the measured data arise from the theory
- We always need models: They incorporate our understanding of how the measurement process (and its subtleties, e.g. section effects) "filters" our view of the underlying physical process
- The more refined the model, the more information we can extract from the data: measurement noise is unavoidable (at some level), but supplementing our inferential setup with a probabilistic model takes some "heavy lifting" away from the data
- The key is to realise that there is a difference between "measurement noise" and intrinsic variability — and each needs to be modelled individually



The posterior distribution can be expanded in the usual Bayesian way:

 $p(params | data) \propto p(data | params)p(params)$



Intrinsic variability

Population-level priors

Imperial College

London

- Gaussian linear model
- Intuition can be gained from the "simple" problem of linear regression in the presence of measurement errors on both the dependent and independent variable and intrinsic scatter in the relationship (e.g., Gull 1989, Gelman et al 2004, Kelly 2007):
 - $y_i = b + ax_i$
 - $x_i \sim p(x|\Psi) = \mathcal{N}_{x_i}(x_\star, R_x)$
 - $y_i | x_i \sim \mathcal{N}_{y_i}(b + ax_i, \sigma^2)$

Model: unknown parameters of interest (a,b)

> POPULATION DISTRIBUTION

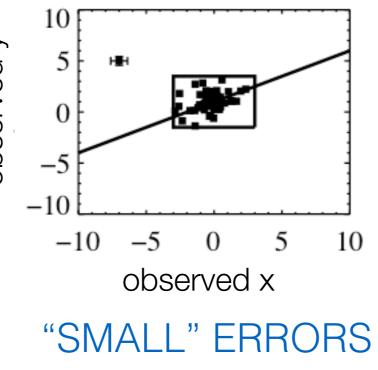
INTRINSIC VARIABILITY

 $\hat{x}_i, \hat{y}_i | x_i, y_i \sim \mathcal{N}_{\hat{x}_i, \hat{y}_i}([x_i, y_i], \Sigma^2)$

MEASUREMENT ERROR

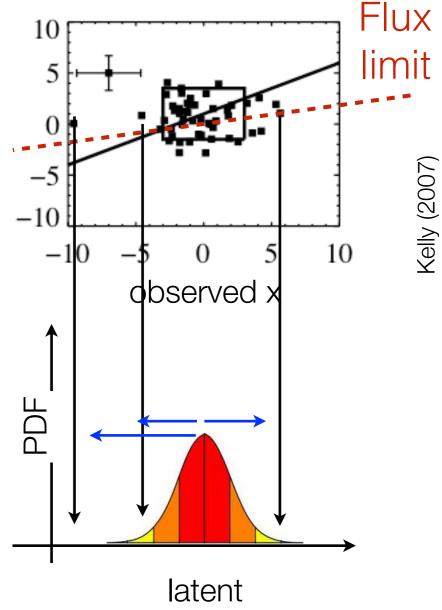
INTRINSIC VARIABILITY

http://www.second second secon



- Modeling the latent distribution of the independent variable accounts for "Malmquist bias" of the second kind
- An observed x value far from the origin is more probable to arise from up-scattering of a lower latent x value (due to noise) than downscattering of a higher (less frequent) x value

+ MEASUREMENT ERROR

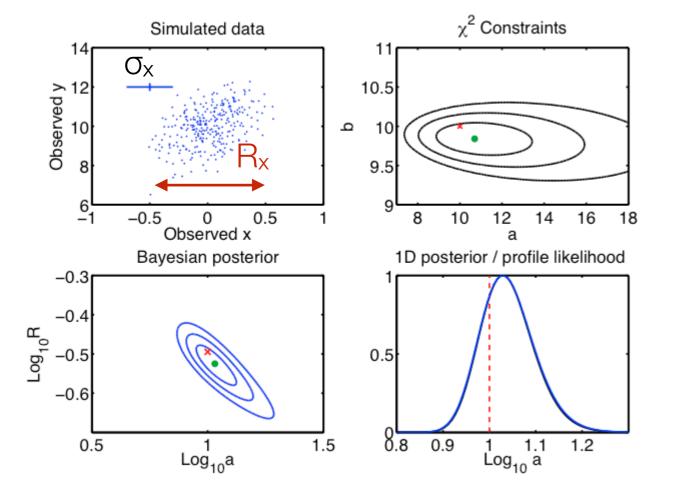


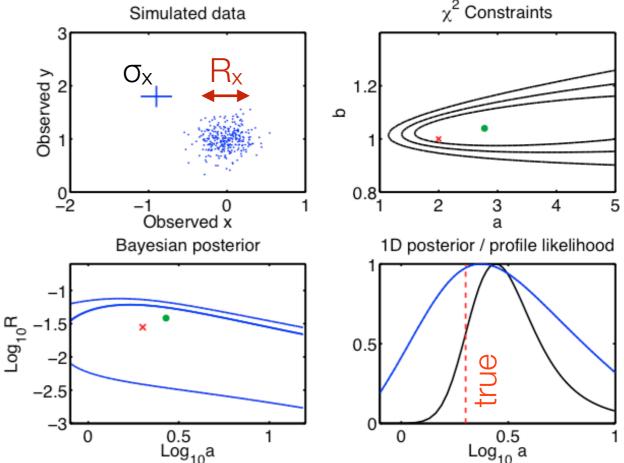
latent distrib'on

"LARGE" ERRORS

The key parameter is noise (σ_x) to population (R_x) characteristic variability scale ratio

$$\sigma_x/R_x <<1$$
 $y_i = b + ax_i$ $\sigma_x/R_x \sim 1$



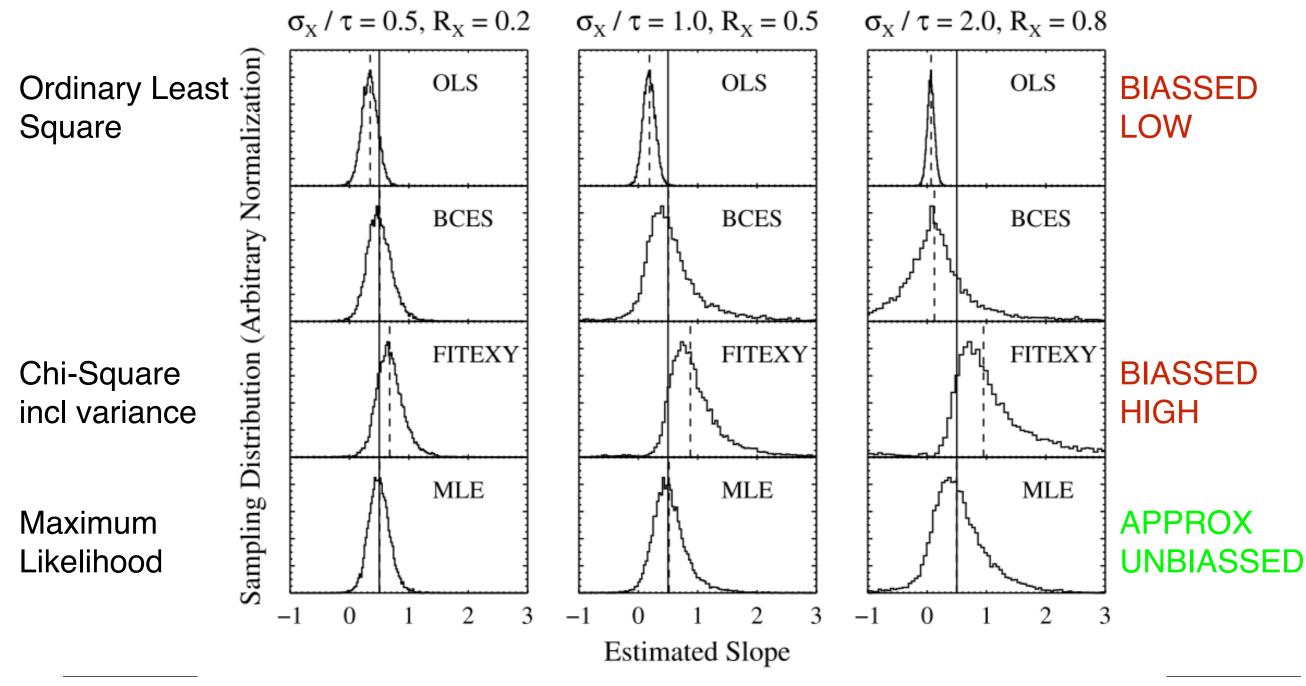


Bayesian (black) marginal posterior identical to Chi-Squared (blue) Bayesian marginal posterior broader but less biased than Chi-Squared

Slope reconstruction

Imperial College London

 $R_x = \sigma_x^2/Var(x)$: ratio of the covariate measurement variance to observed variance



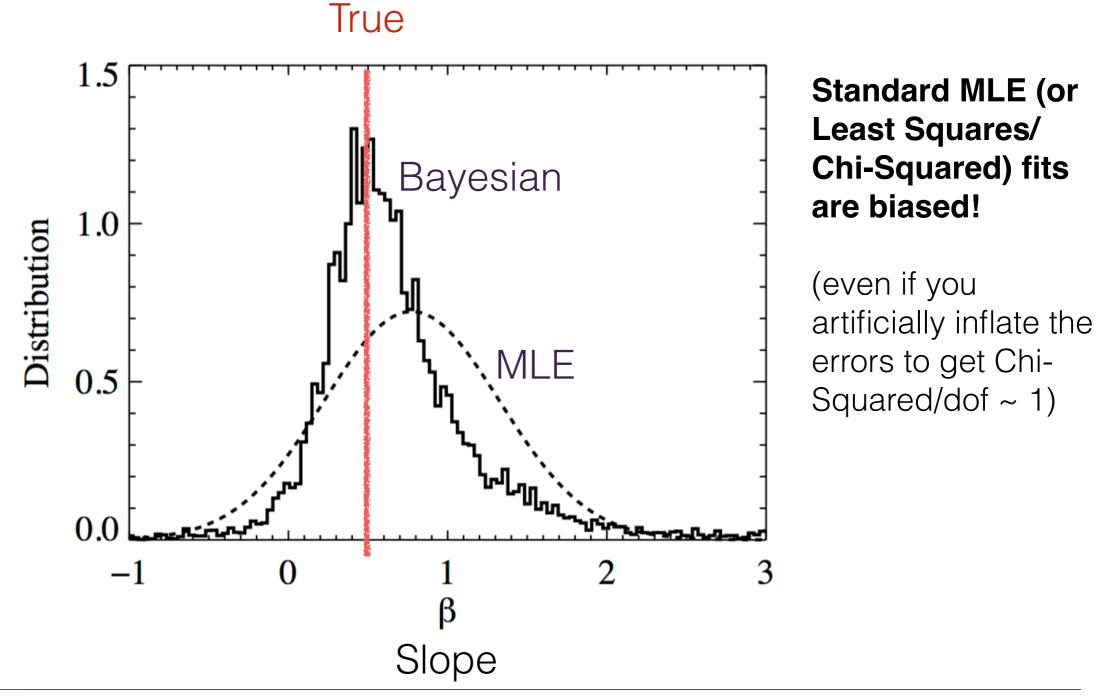
Kelly, Astr. J., 665, 1489-1506 (2007)

Roberto Trotta

Why should you care?

Imperial College London

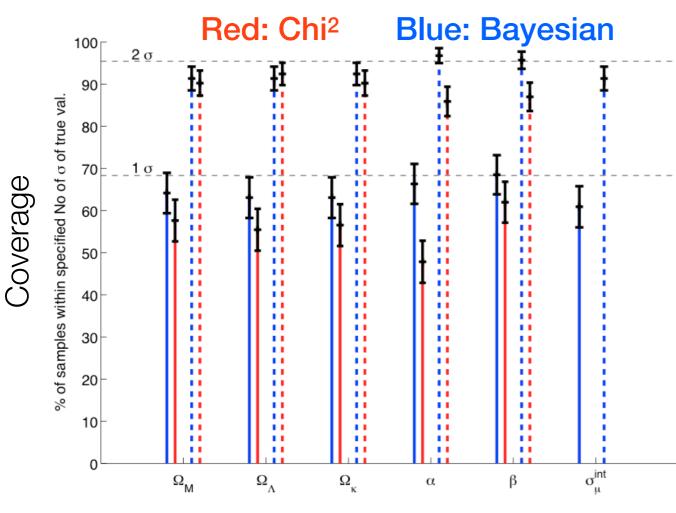
 $R_x = \sigma_x^2/Var(x) = 1$ in this example: Comparing the MLE (dashed) with the Bayesian Hierarchical Model Posterior (histogram)



Kelly, Astr. J., 665, 1489-1506 (2007)

Supernovae Type la Cosmology example

- Coverage of Bayesian 1D marginal posterior CR and of 1D Chi² profile likelihood CI computed from 100 realizations
- Bias and mean squared error (MSE) defined as
 - $\hat{\theta}$ is the posterior mean (Bayesian) or the maximum likelihood value (Chi²).



bias =
$$\langle \hat{\theta} - \theta_{\text{true}} \rangle$$

MSE = bias² + Var.

Results:

Coverage: generally improved (but still some undercoverage observed)

Bias: reduced by a factor ~ 2-3 for most parameters

MSE: reduced by a factor 1.5-3.0 for all parameters

Imperial College

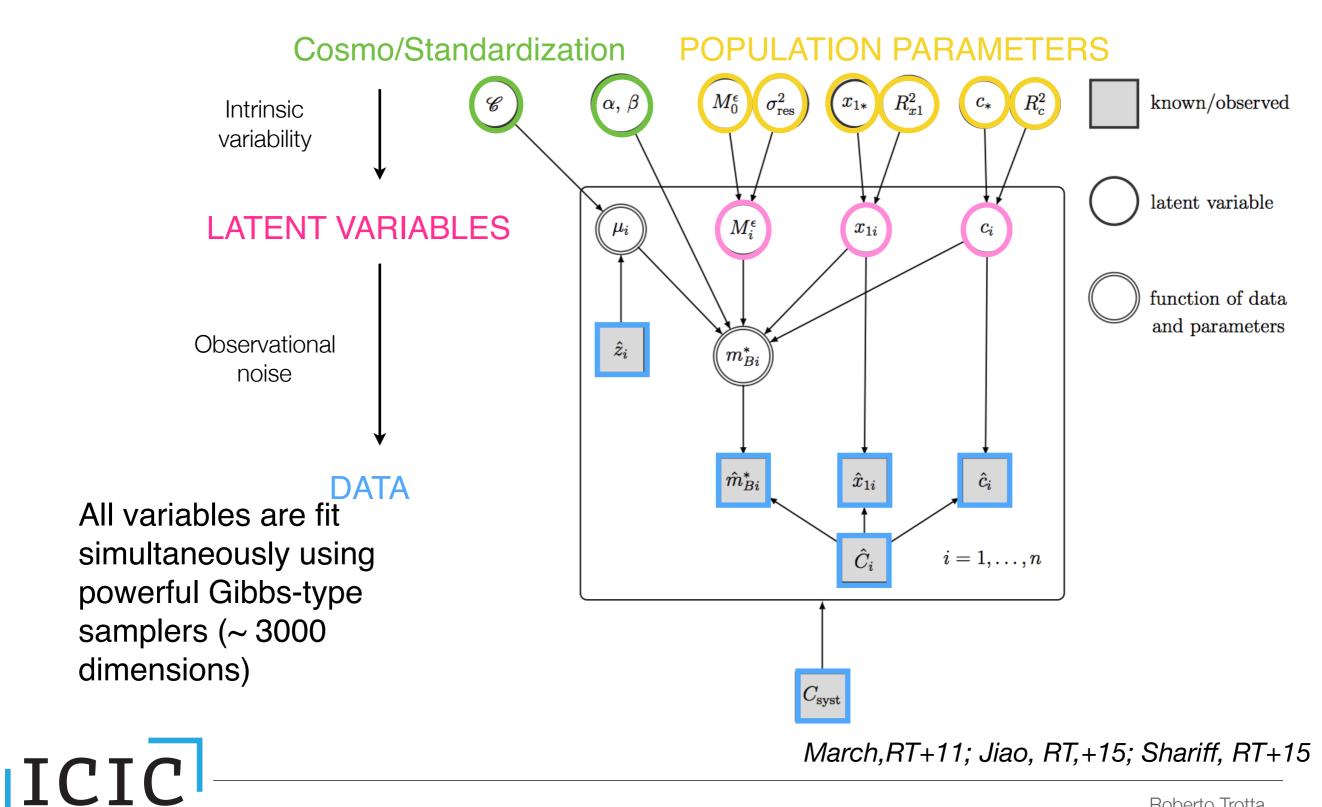
London

BAHAMAS

BAyesian **H**ier**A**rchical **M**odeling for the

Analysis of Supernova cosmology ArXiv: 1510.05954

Imperial College London



- Introduction of an explicit layer of latent variables increases massively the dimensionality of the parameter space that needs to be sampled (eg: SNIa , 3 x N, N ~ 700, the number of SNIa's observed; >> for BayesSN, ~ 50,000)
- For Gaussian linear models, latent variables can be marginalised out analytically
- But: selection effects break Gaussianity, hence require an explicit numerical sampling scheme

Sampling scheme	Ok?	Note	
Metropolis-Hastings	×	Hopeless efficiency	
Gibbs	\checkmark	Exploits conditional structure	
Hamiltonian MC	\checkmark	Good but requires gradient	
Nested sampling	×	Too large dimensionality	

 The Partially Collapsed Gibbs (PCG) sampler replaces complete conditional distributions in Gibbs by complete conditionals of marginal distribution of the joint target. This reduction of conditioning can improve convergence.

Construction of the PCG Sampler :

(a) Gibbs Sampler	(b) Marginalizati	ion (c) Pe	rmute	(d) Trim
1. $p(\psi_1 \psi'_2, \psi'_3, \psi'_4)$ 2. $p(\psi_2 \psi_1, \psi'_3, \psi'_4)$ 3. $p(\psi_3, \psi_4 \psi_1, \psi_2)$	1. $p(\psi_1, \psi_3^* \psi_2', \psi_3')$ 2. $p(\psi_2 \psi_1, \psi_3^*, \psi_3')$ 3. $p(\psi_3, \psi_4 \psi_1, \psi_3)$	ψ_4') 2. $p(\psi_1, \psi_2)$	$ \psi_3^\star \psi_2,\psi_4'\rangle$	1. $p(\psi_2 \psi'_1,\psi'_3,\psi'_4)$ 2. $p(\psi_1 \psi_2,\psi'_4)$ 3. $p(\psi_3,\psi_4 \psi_1,\psi_2)$
Jointly upd	ated pe	Steps ermutation		lytical nalisation

- In BAHAMAS, we use an Ancillarity-Sufficiency Interweaving Strategy (ASIS) and a Partially Collapsed Gibbs (PCG) sampler to improve efficiency (Jiao&vanDyk16, vanDyk&Park08; Yu&Meng11)
- ASIS: A special Data Augmentation scheme: we introduce "missing data" (aka "messenger field") Y_{mis,S} or Y_{mis,A} so that:
 - $p(Y_{\text{obs}}|Y_{\text{mis},S},\theta)$ is free of θ $p(Y_{\text{mis},A}|\theta)$ does not depend on θ

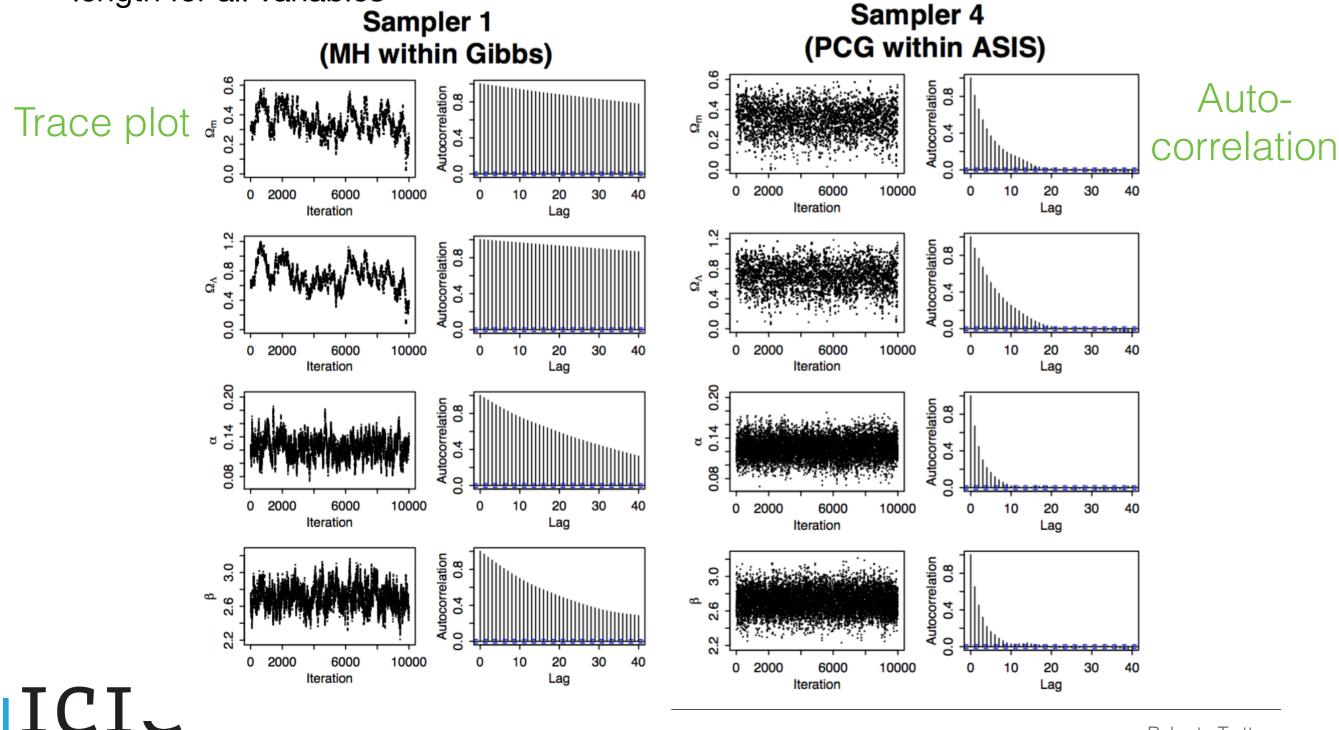
ASIS Sampler, with target p(θIYobs) :

$$\begin{array}{ll} \text{Step 1:} & Y_{\text{mis},S}^{(t+1)} \sim p(Y_{\text{mis},S} | \boldsymbol{\theta}^{(t)}, Y_{\text{obs}}), \\ \text{Step 2:} & \boldsymbol{\theta}^{(t+1/2)} \sim p(\boldsymbol{\theta} | Y_{\text{mis},S}^{(t+1)}, Y_{\text{obs}}); Y_{\text{mis},A}^{(t+1)} = \mathscr{F}_{\boldsymbol{\theta}^{(t+1/2)}}(Y_{\text{mis},S}^{(t+1)}), \\ \text{Step 3:} & \boldsymbol{\theta}^{(t+1)} \sim p(\boldsymbol{\theta} | Y_{\text{mis},A}^{(t+1)}, Y_{\text{obs}}), \end{array}$$

Performance improvement

Imperial College London

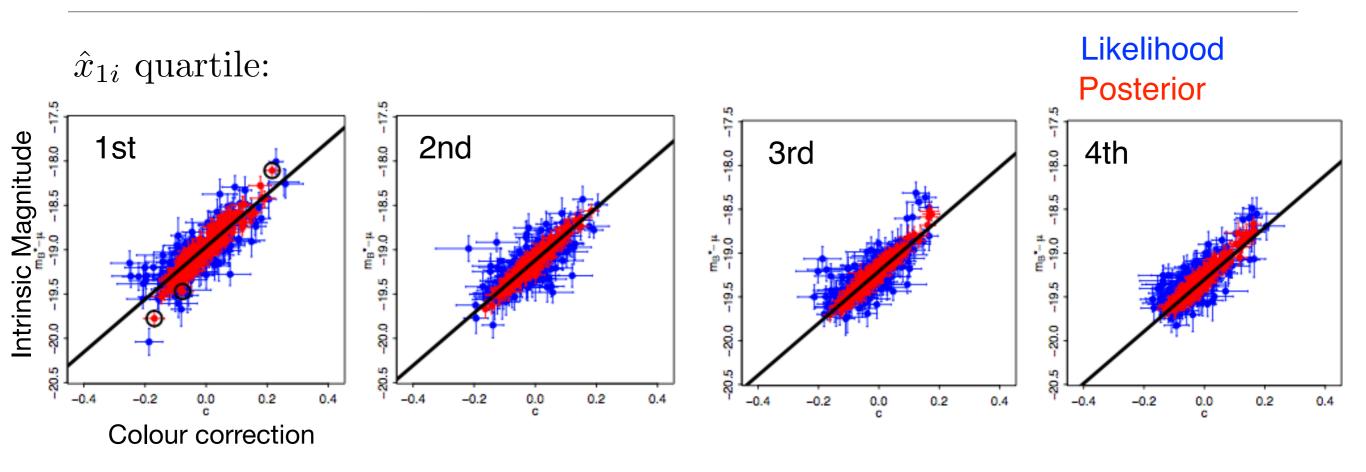
 Adopting both ASIS and PCG improved mixing while noticeably reducing correlation length for all variables



Roberto Trotta

Borrowing of strength

Imperial College London

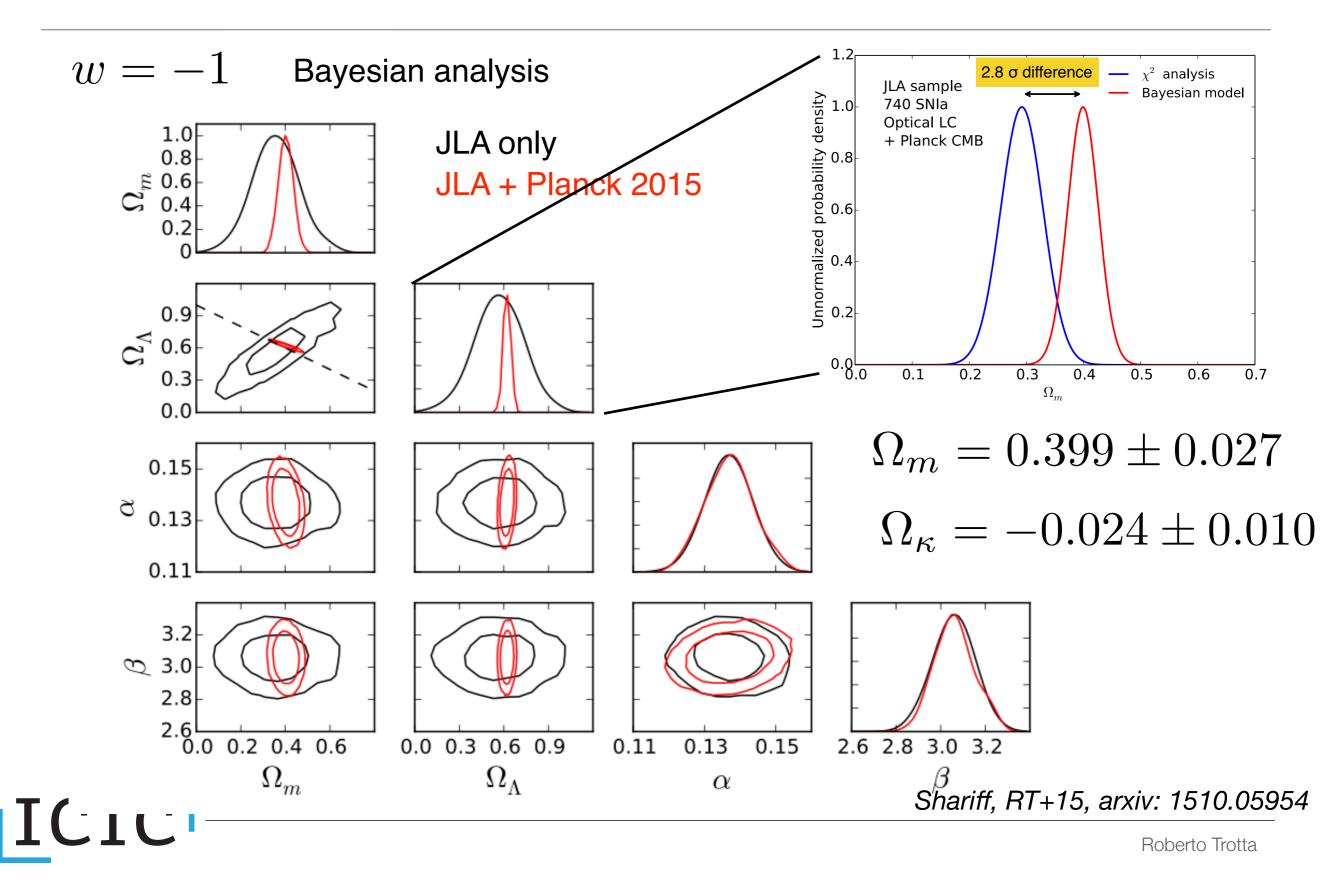


The posterior estimates (red) exhibit smaller residual scatter when compared to the likelihood (blue), around the regression line: "borrowing of strength" from the structure of the hierarchical model.

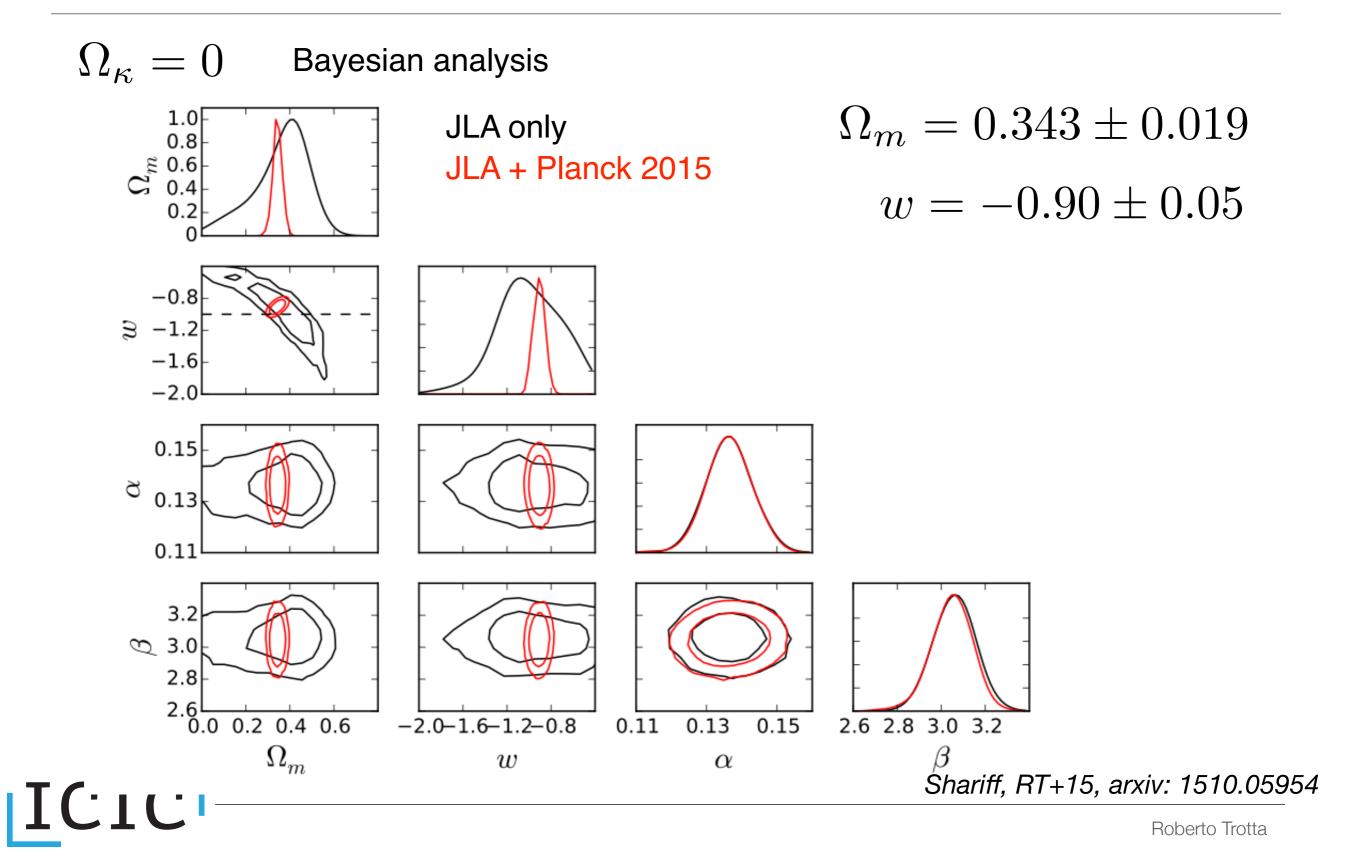
The Bayesian hierarchical model (*BAHAMAS*) has smaller bias, smaller MSE, better coverage than the standard Chi² (March, RT+11)

Shariff, RT+15, arxiv: 1510.05954

Cosmological parameters from JLA



Cosmological parameters from JLA

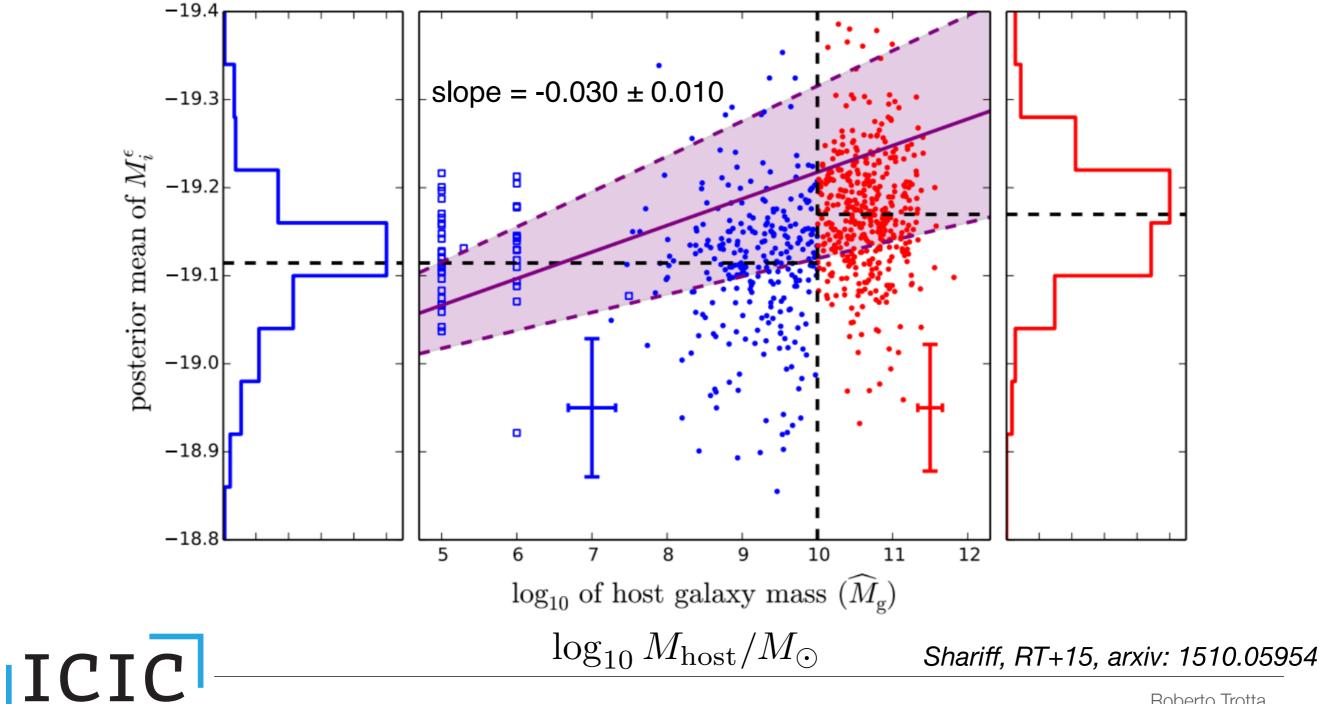


Imperial College

London

Host-galaxy mass as additional covariate

2-sigma preference for host-galaxy environmental segregation (Kelly+10, Sullivan+10, Rigault+13, Rigault+15) does not change cosmological inferences



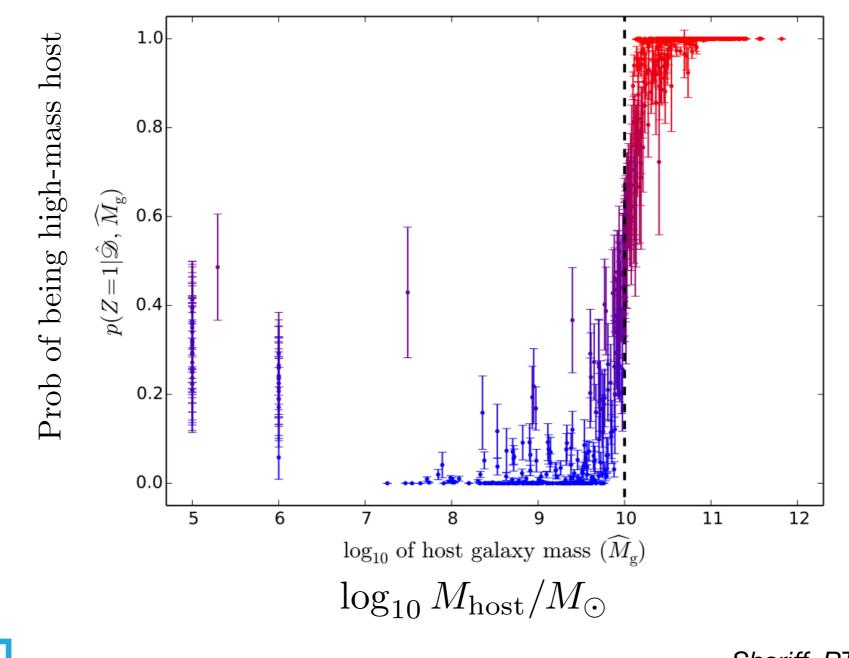
Roberto Trotta

Imperial College

London

Probabilistic classification of hosts

Low/High host-galaxy mass preference survives a probabilistic treatment of the host-mass measurement:

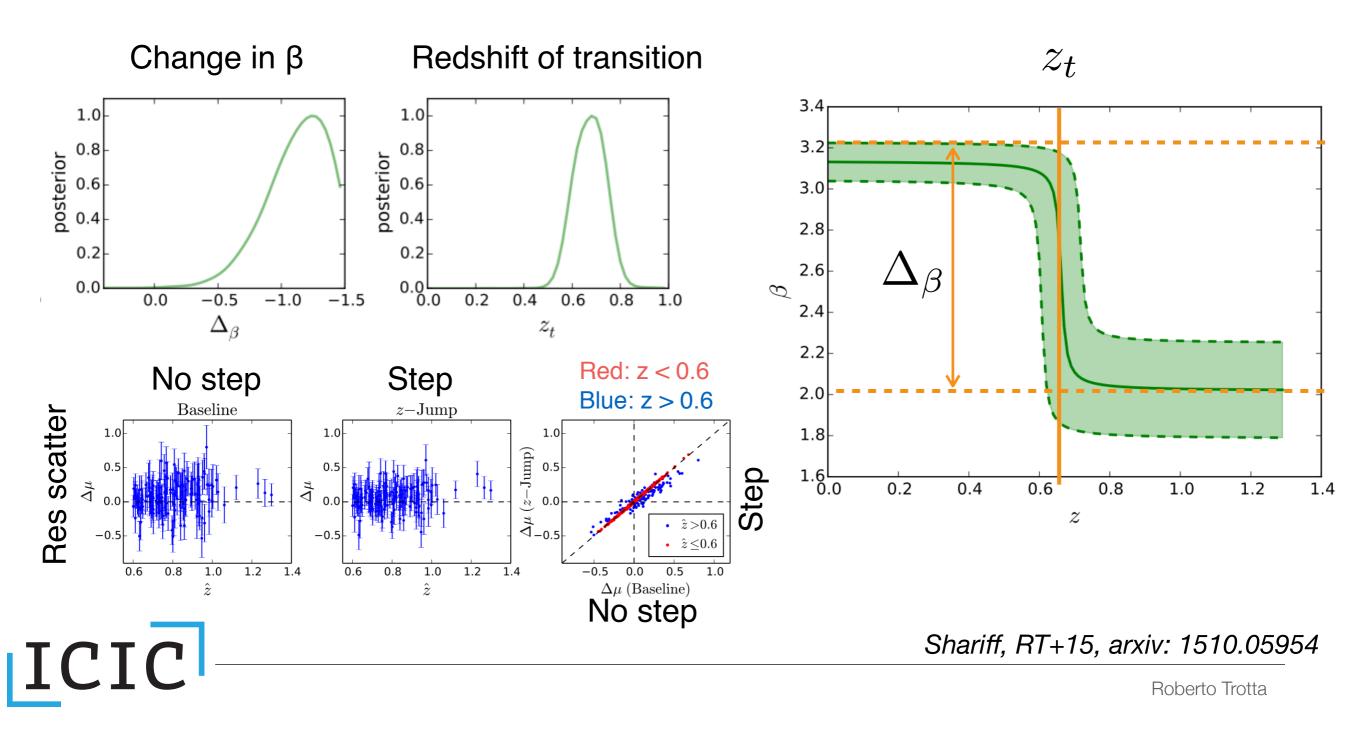


Roberto Trotta

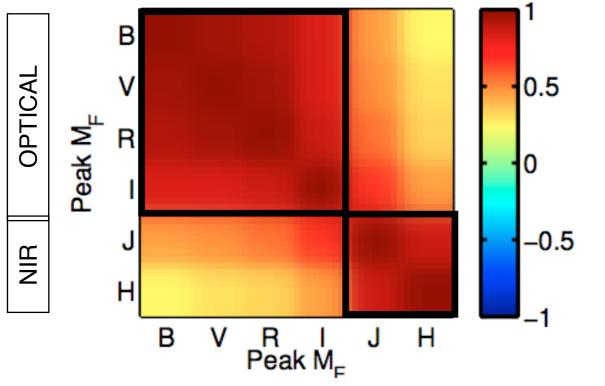
z-evolution of colour correction

Strong preference (~ 4-sigma) for a transition from $\beta \sim 3.1$ to $\beta \sim 2$ at $z \sim 0.7$.

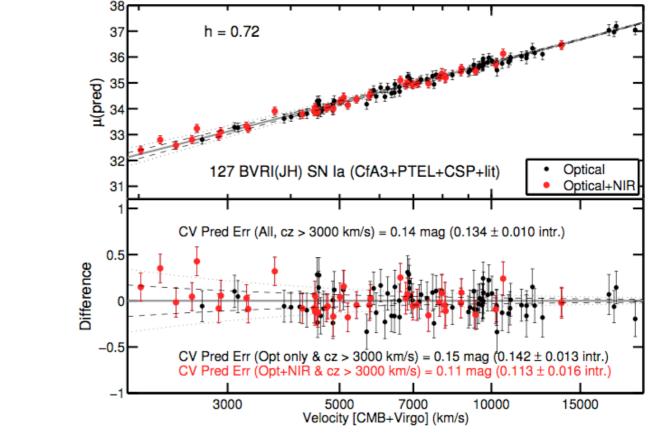
This however does not change cosmological inferences.



NIR and optical uncorrelated: extra information in the NIR!



Hubble diagram: residual scatter reduced by ~2 using optical+NIR LC

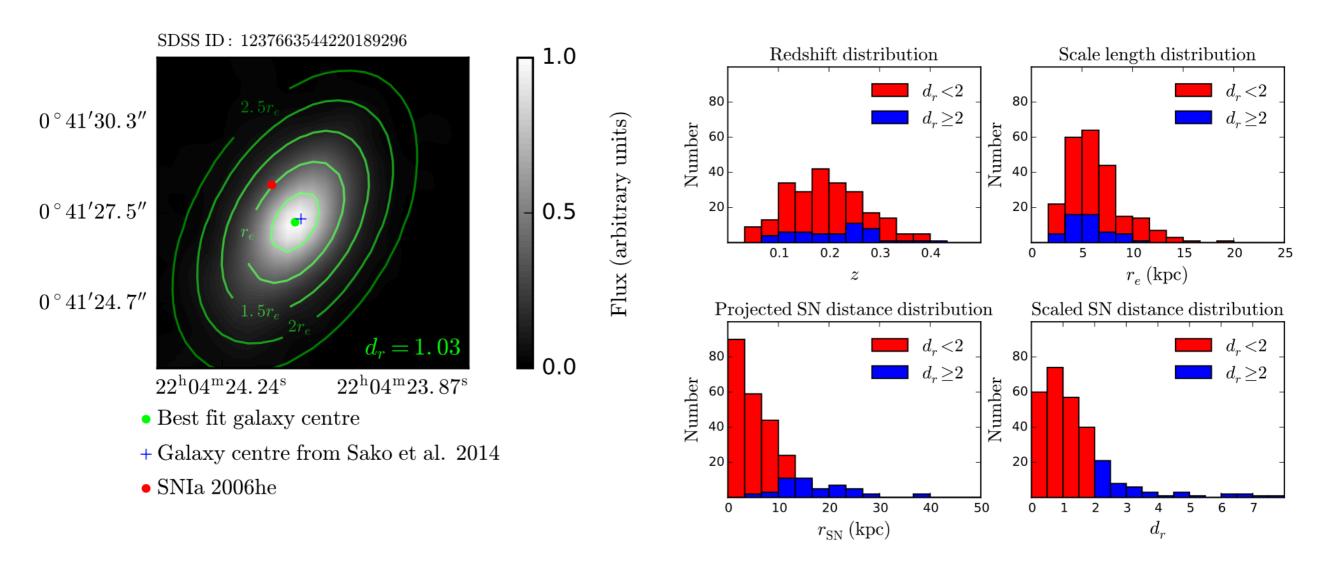


But: You need to go to space to get z~1 rest-frame NIR! (RAISIN/RAISIN 2 with HST, Kirshner+)

Mandel+09,11

SNIa's in the outskirts of galaxies are better standard candles

Looking for SNIa in the outskirts (= less dusty/more homogeneous) regions of galaxies (280 SDSS host galaxies fitted): measured the galactocentric SN distance normalised to the host's scale length, d_r

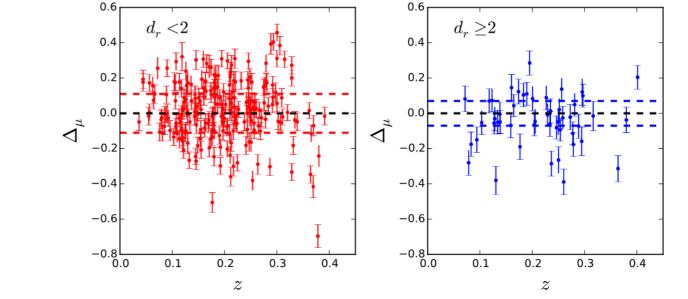


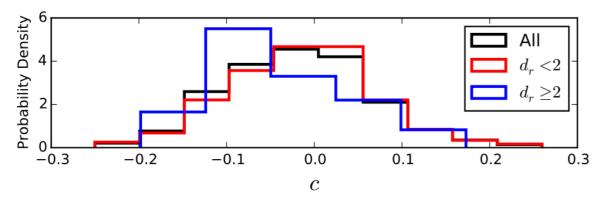
Hill, RT+ 2018 (1612.04417), Galbany+12

Segregation by distance to host centre

Projected distance to the host centre in units of half-light radius (d_r)

Significant difference (95% CL) in the colour correction between the two samples: high d_r SNIas are bluer. Residual scatter in the highdistance (d_r >2) sub-sample is reduced by ~30%

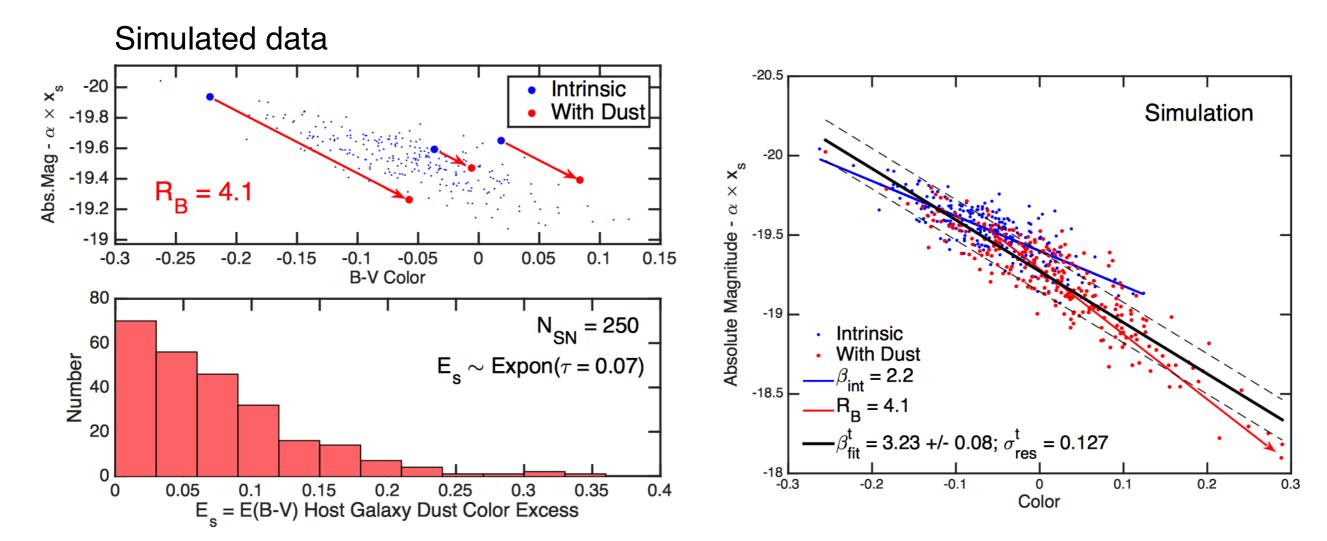




Mandel+16

Imperial College London

Take advantage of the fact that dust only absorbs and reddens to split colour into intrinsic and dust-related. The usual linear fit returns a slope that is not the intrinsic slope, nor the dust slope, but an average between the two.



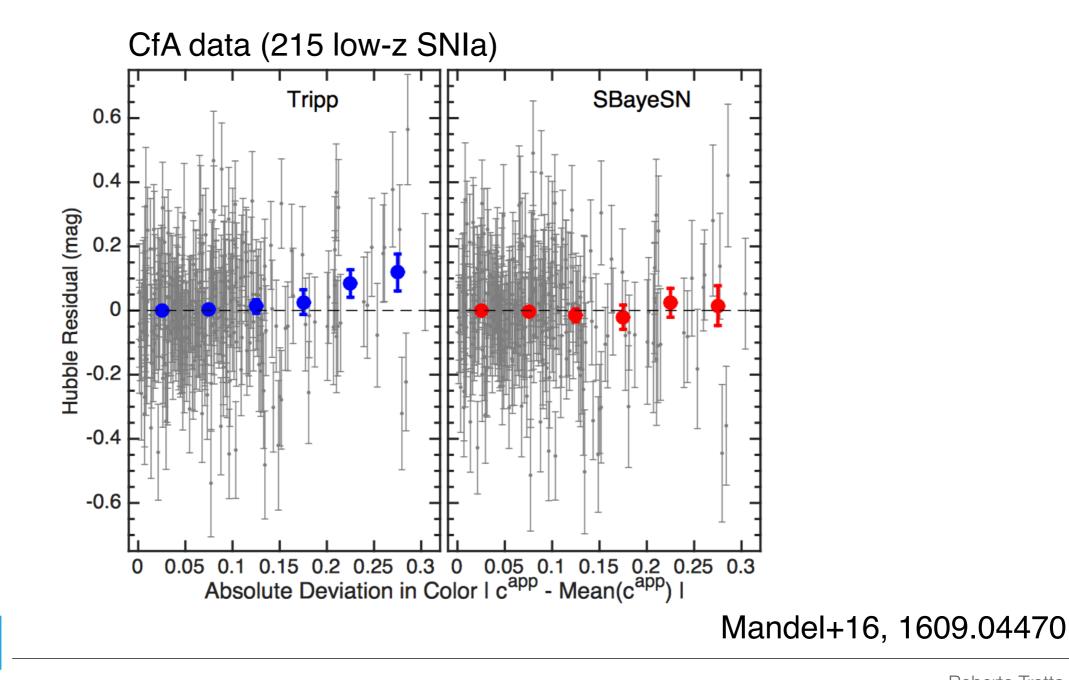
Mandel+16, 1609.04470

Roberto Trotta

Mandel+16: Implications

Imperial College London

The non-linear colour fit reduces Hubble residuals for very red/very blue objects wrt the conventional Tripp linear formula. This might have important implications for cosmological fits, with systematic corrections of up to ~ 0.1 mag.

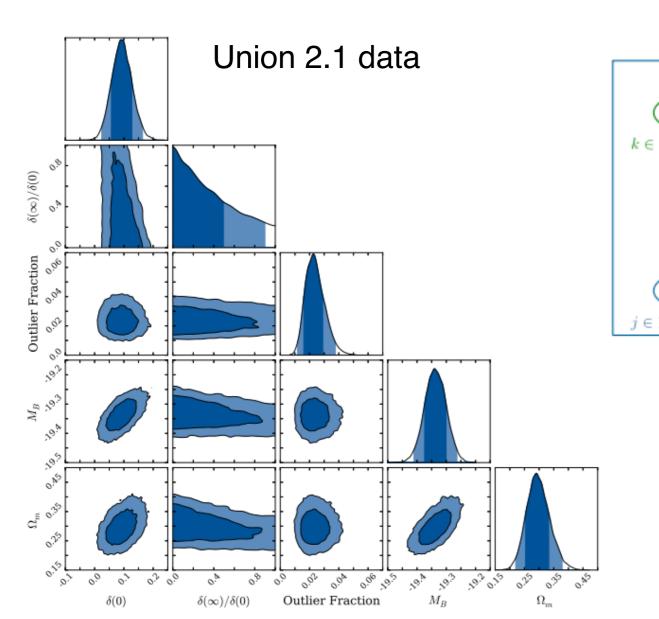


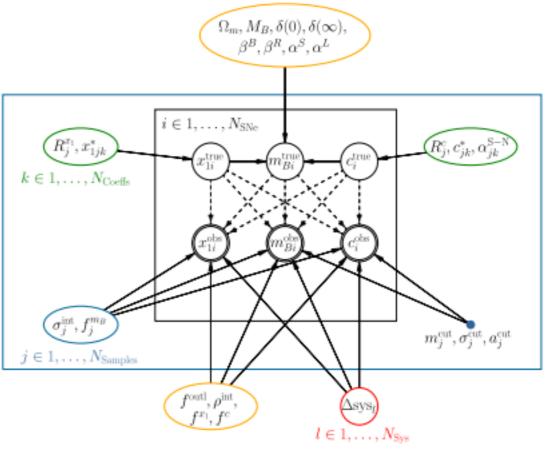
Roberto Trotta

UNITY (Rubin+15)

Imperial College London

Extension of the Bayesian method of March+11 to include outliers, selection effects and host-galaxy mass:



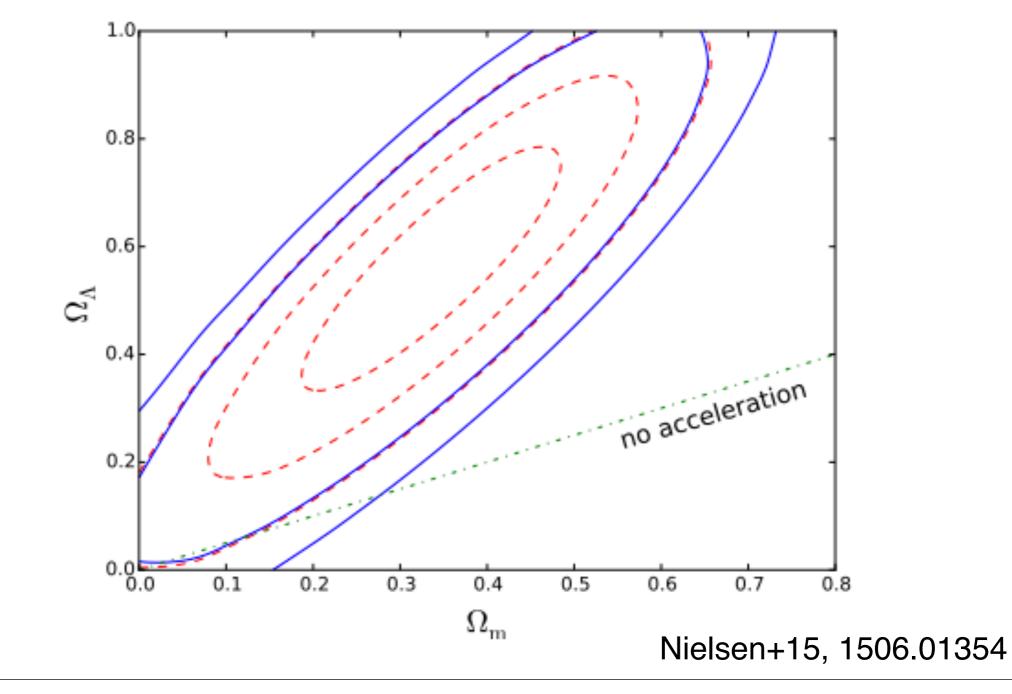


Rubin+15 (SCP) 1507.01602

Nielsen+15

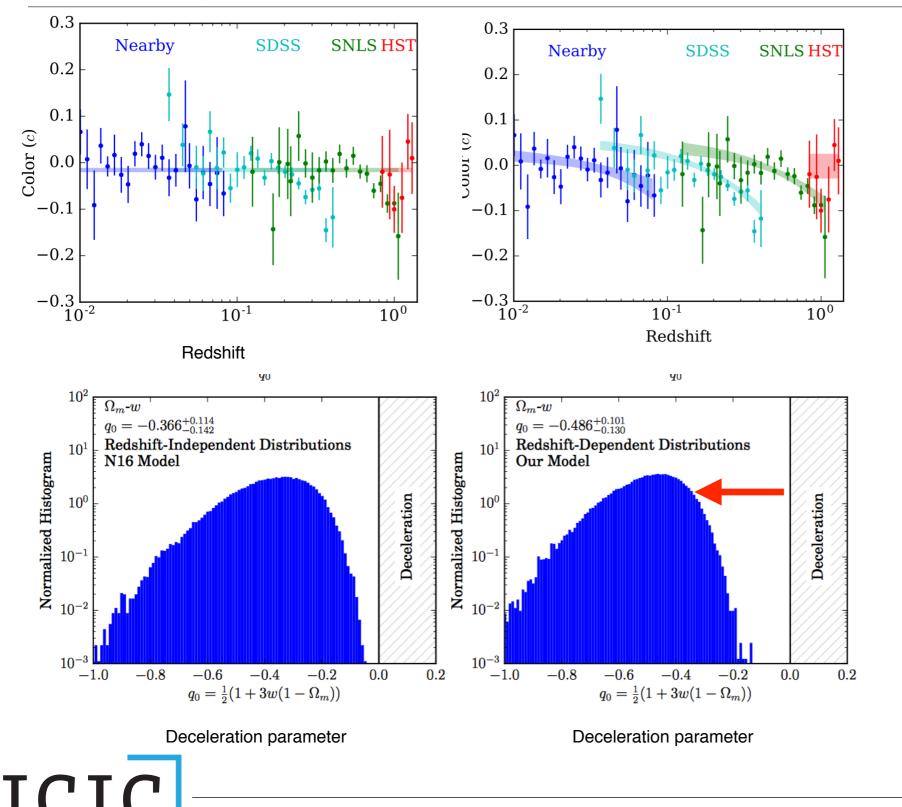
Imperial College London

Profile likelihood analysis of an effective likelihood (similar to BHM) claims only a ~3-sigma preference for non-zero acceleration (red/dashed):



Rubin & Hayden16

Imperial College London



Claim that modelling the redshift drift of colour (due to selection effect) moves the cosmological constraints from JLA back to the "standard" values

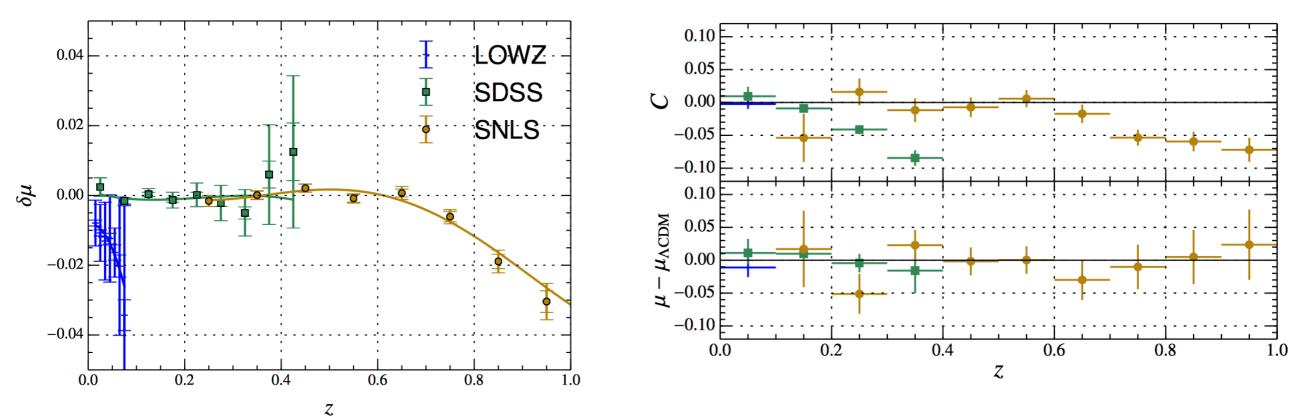
Rubin & Hayden16, 1610.089

Roberto Trotta

Selection Effects

Due to magnitude-limited observations, slow declining and bluer SNIa (i.e., brighter) are observed more easily \rightarrow Malmquist (1925) bias (i.e., truncation)

Current solution: MC the selection bias, then "correct back" magnitudes to compensate for it



Magnitude

Colour

Betoule et al, Astron.Astrophys. 568 (2014) A22

Partition data y into "observed" and "missed":

$$y = \{y_{obs}, y_{mis}\}$$
$$y_{obs} = \{y_i | I_i = 1, i \in [1, \dots, N]\}$$
$$y_{mis} = \{y_i | I_i = 0, i \in [1, \dots, N]\}$$

The observed data likelihood is obtained by integrating over the missed observations in the complete data likelihood

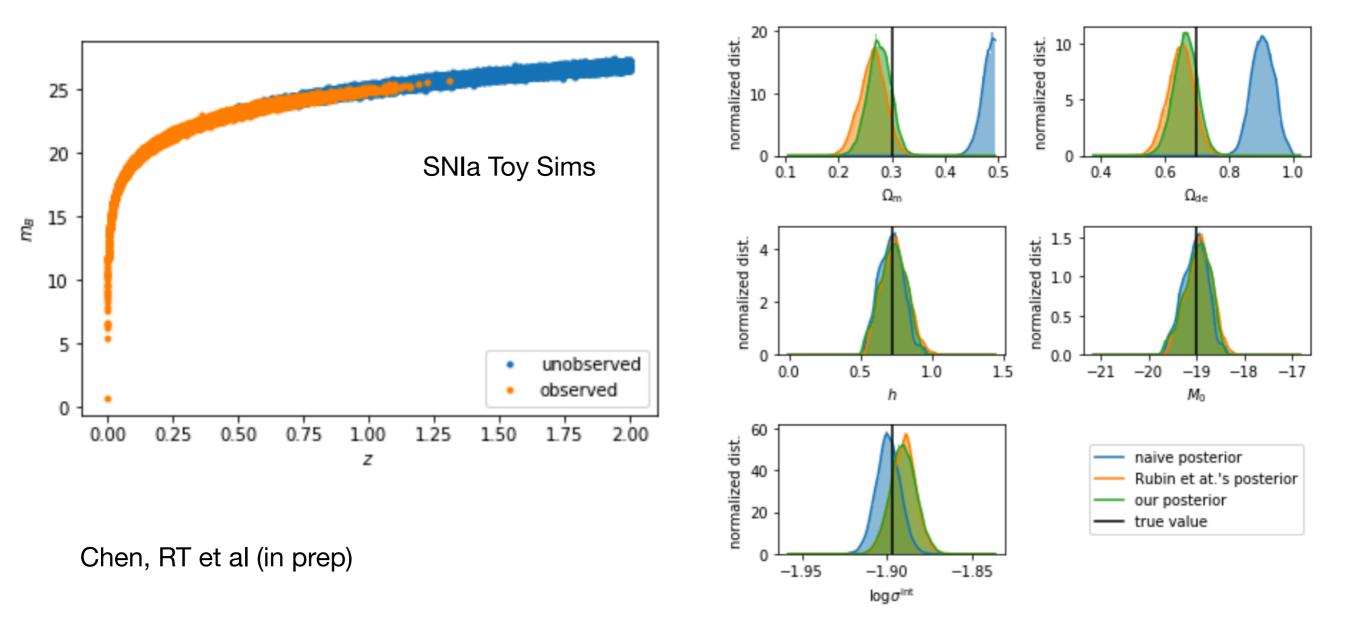
$$p(y_{\text{obs}}, I|\theta, \phi) = \int dy_{\text{mis}} p(y, I|\theta, \phi)$$

 θ =parameters of interest ϕ =parameters of the data collection procedure

Posterior conditional on the observed data:

$$p(\theta|y_{\rm obs}, I) \propto \int d\phi p(\theta, \phi) \int dy_{\rm mis} p(y|\theta) p(I|y, \phi)$$

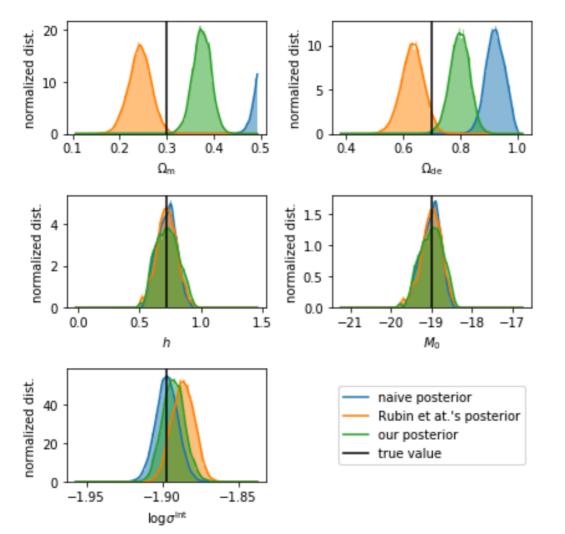
If we know the selection function, the procedure of Rubin et al (2015) leads to correct results (so does ours, of course):

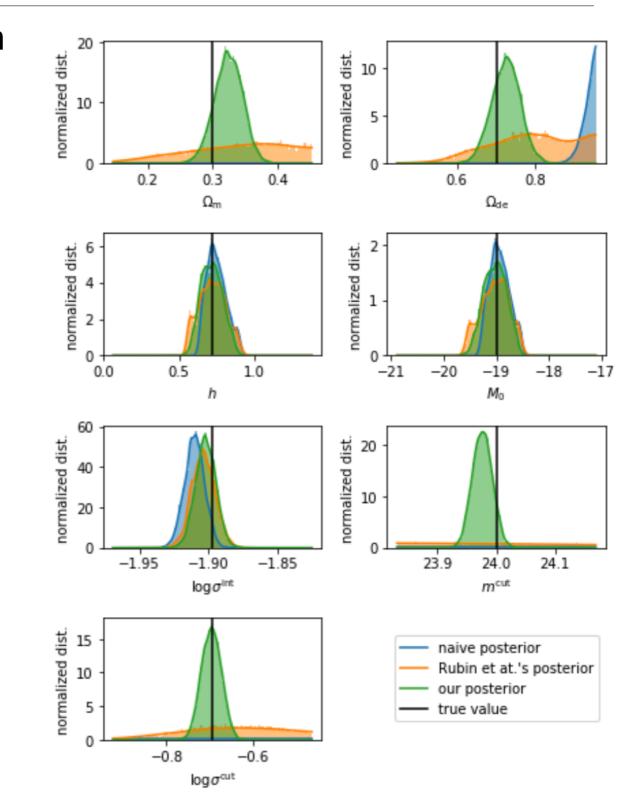


Selection Function Needs Inferring

Imperial College London

Using wrong parameters of the selection function leads to systematic bias in the cosmological parameters (left). Solution: Infer the selection function simultaneously (right)

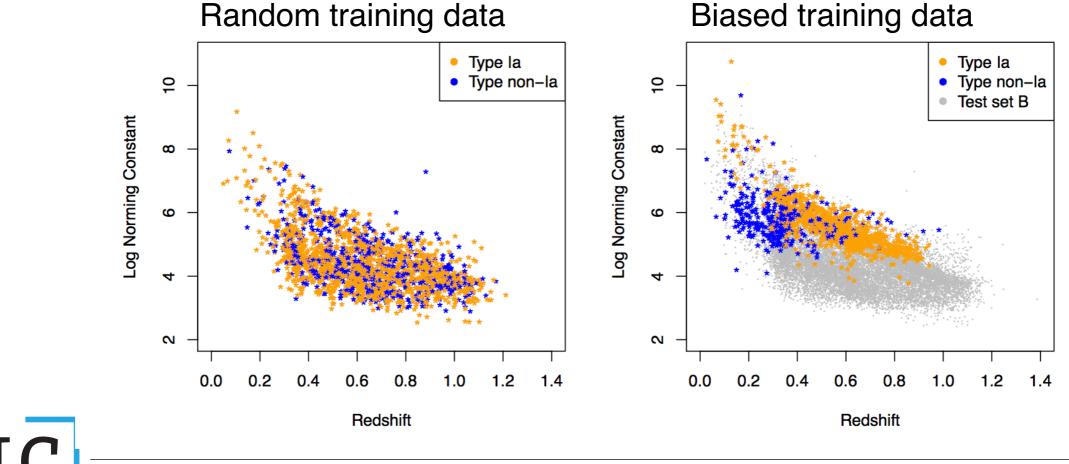




The future: photometric SNIa cosmology

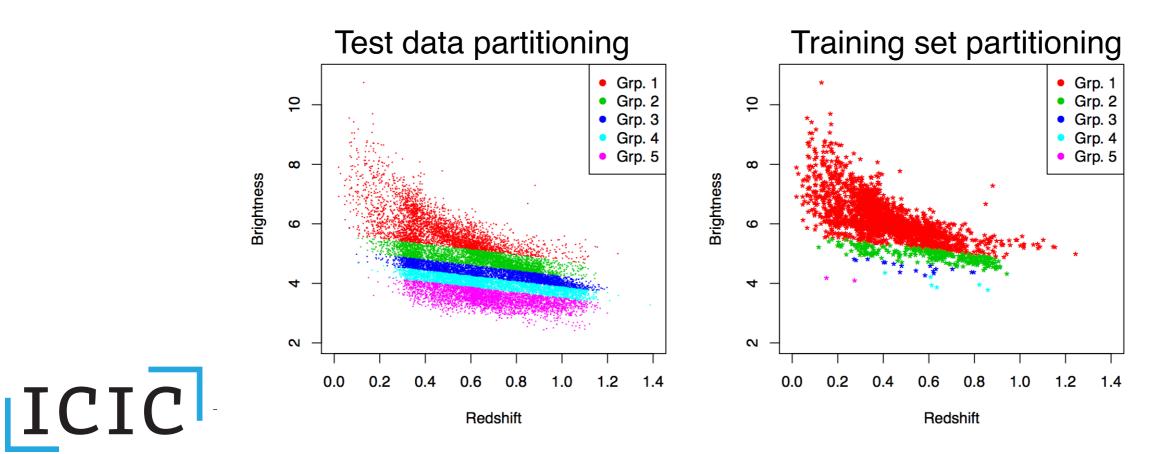
Imperial College London

- SNIa identification relies on observationally expensive spectroscopy
- In the future, we won't have spectra for all SNIa candidates (DES: 3000 SNIa over 5 yrs; LSST: 10,000 SNIa/yr)
- SNIa classification will be needed based on multi-band imaging alone -> "SN Classification Challenge" (Kessler+10)
- **Problem:** Training set is biased. Especially at high z, more SNIa's than in the population, hence non representative



STACCATO

- Our solution (Revsbech, RT, van Dyk in prep): SynThetically Augmented Light Curve ClassificATiOn proceeds as follows:
 - Fit light curve with Gaussian Process (GP)
 - Compute Diffusion Map (to quantify similarities between LCs), Richards+12
 - Perform Random Forest Classification
 - New: Group SNs according to Propensity Score (probability of belonging to the training set) to reduce bias between training and test set

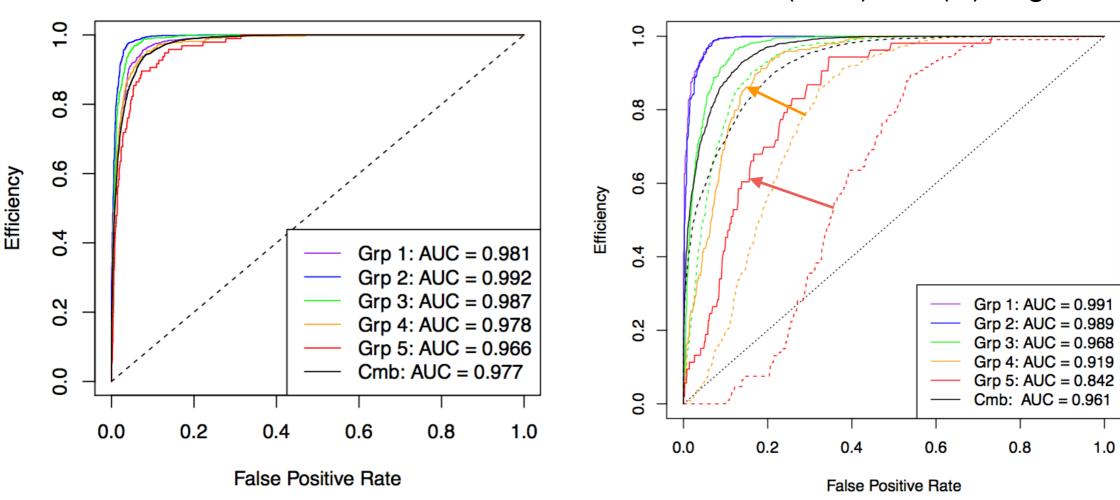


Augmenting LCs via GP resampling

• The final step in STACCATO is to augment the training set by synthetically sampling LC's from the fitted GP according to the Propensity Scores.

STACCATO

- Evaluated using Area under the ROC Curve (AUC):
 - 'Gold Standard' (unbiased training set) = 0.977 vs STACCATO = 0.961



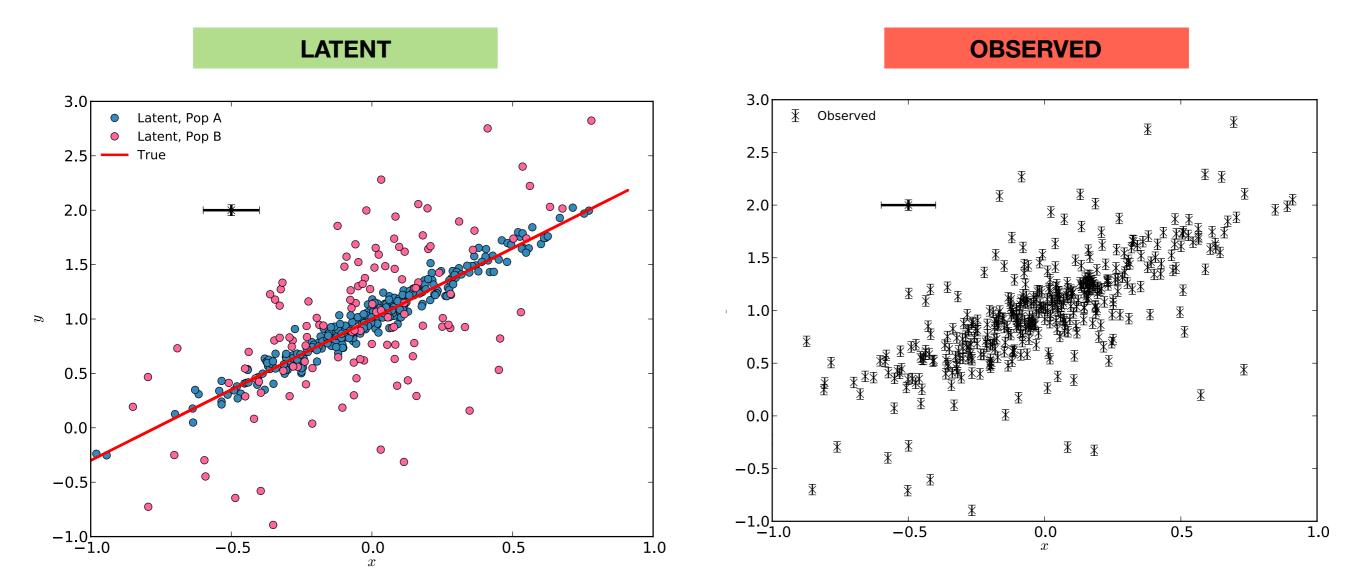
Gold Standard

dashed (solid) w/o (w) augmentation

Object-by-object classification: example

ICI

• "Events" come from two different populations (with different intrinsic scatter around the same linear model), but we ignore which is which:

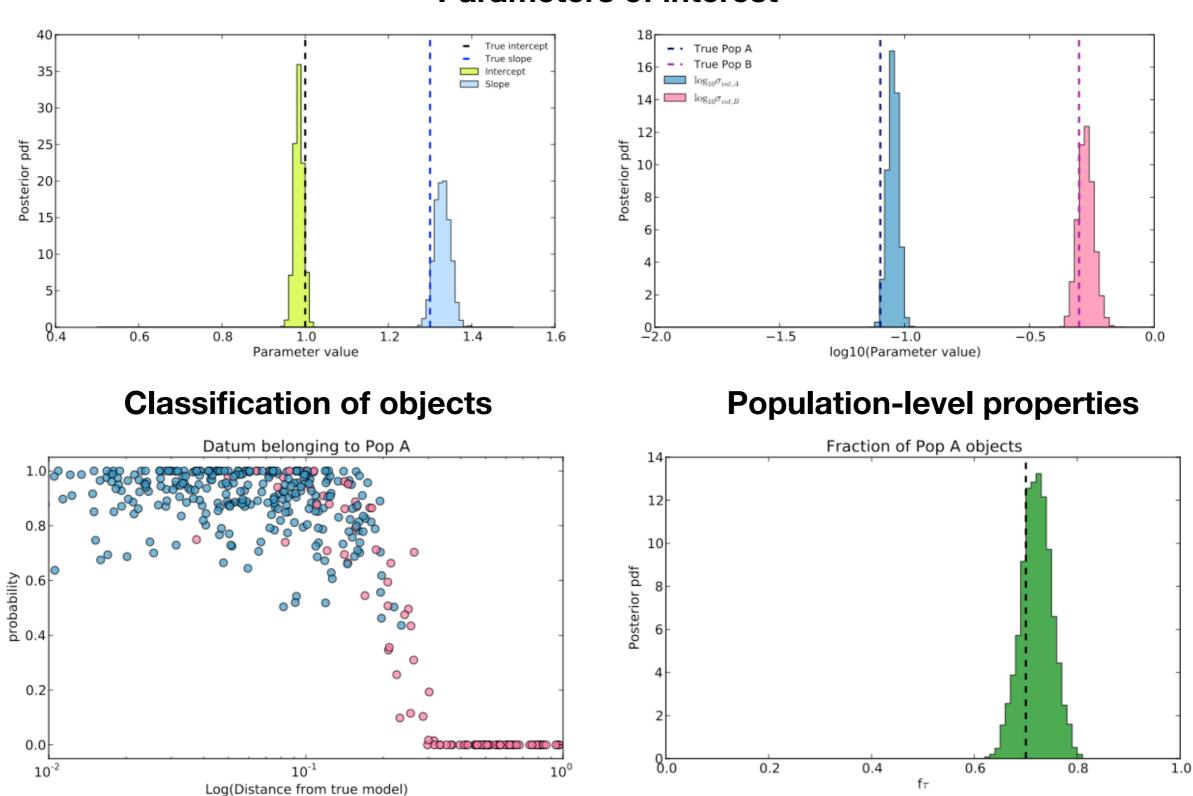


Roberto Trotta

Imperial College

London

Hierarchical model reconstruction



Parameters of interest

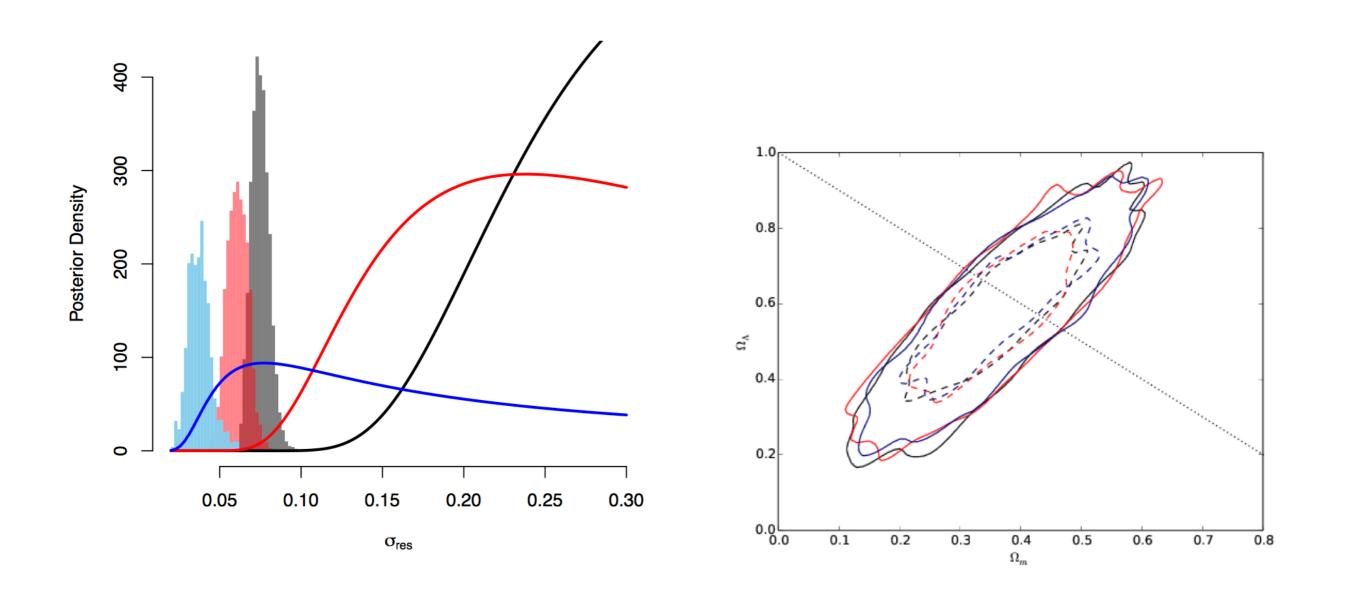
THANK YOU!

- SNIa cosmology has reached maturity: Further advances hindered by "systematics" that need to be modelled explicitly. From Precision to Accuracy.
- A Bayesian hierarchical model approach (BAHAMAS) yields strangely discrepant results wrt the standard analysis
- We find ~ 2-sigma discrepancies in w, Ω_m , Ω_κ
- SNIa's in the outskirts of galaxies are potentially better standard candles
- The future of SNIa's cosmology requires more sophisticated statistical approaches being implemented

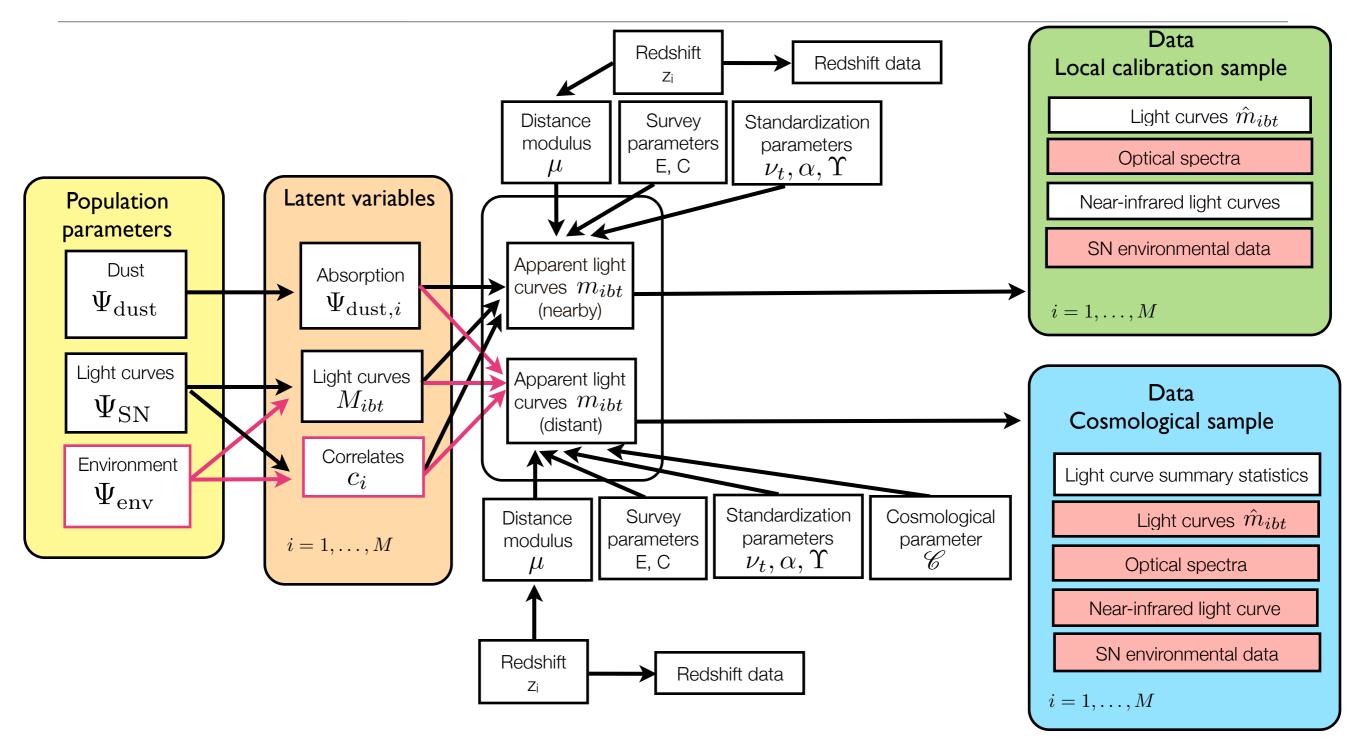
BACKUP SLIDES

Prior robustness

Imperial College London

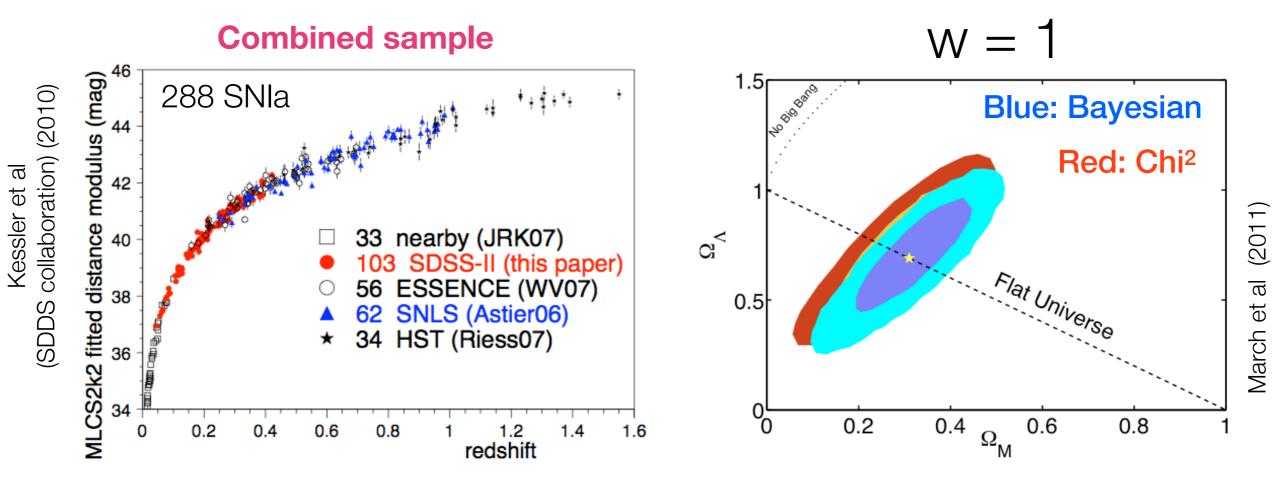


The complete hierarchical model

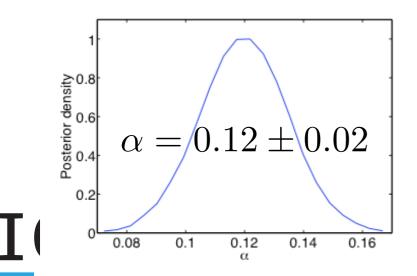


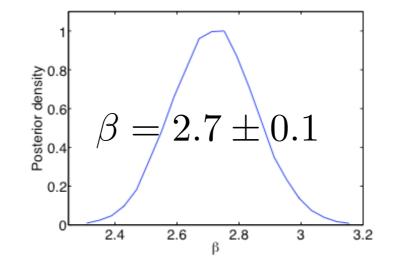
Red arrows/boxes indicate elements/data that have never been explored before in such a multi-level setting

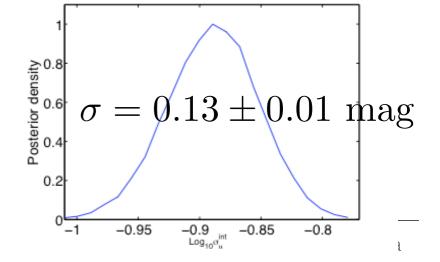
Cosmology results (Union)



Marginal posteriors



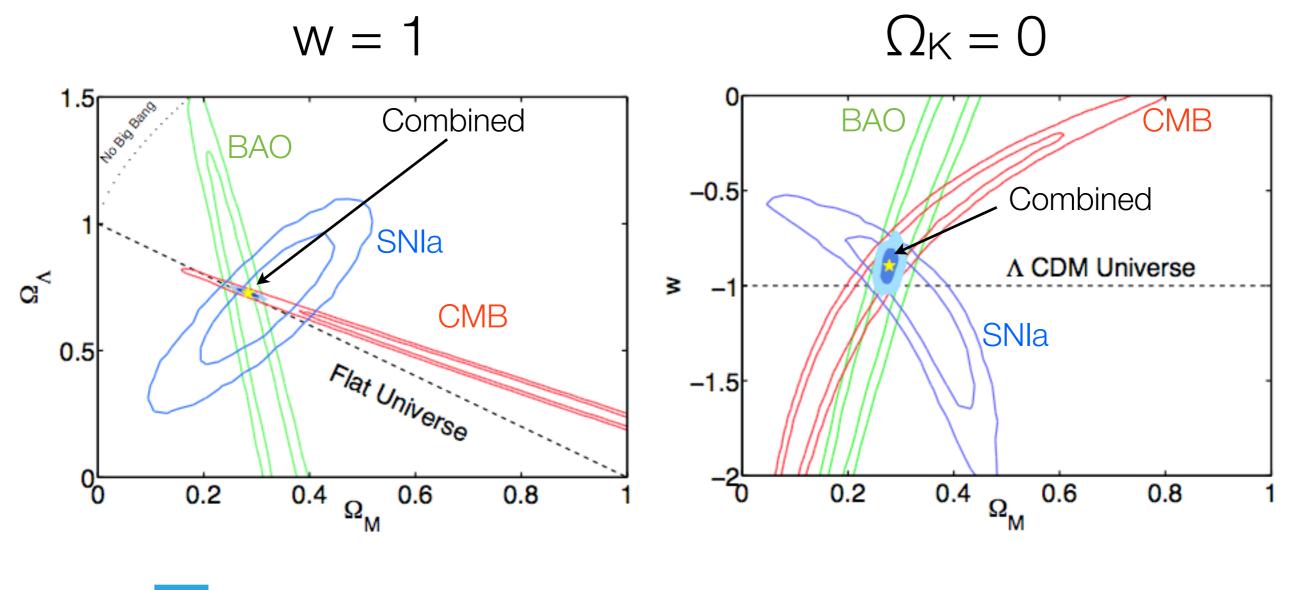




Combined constraints

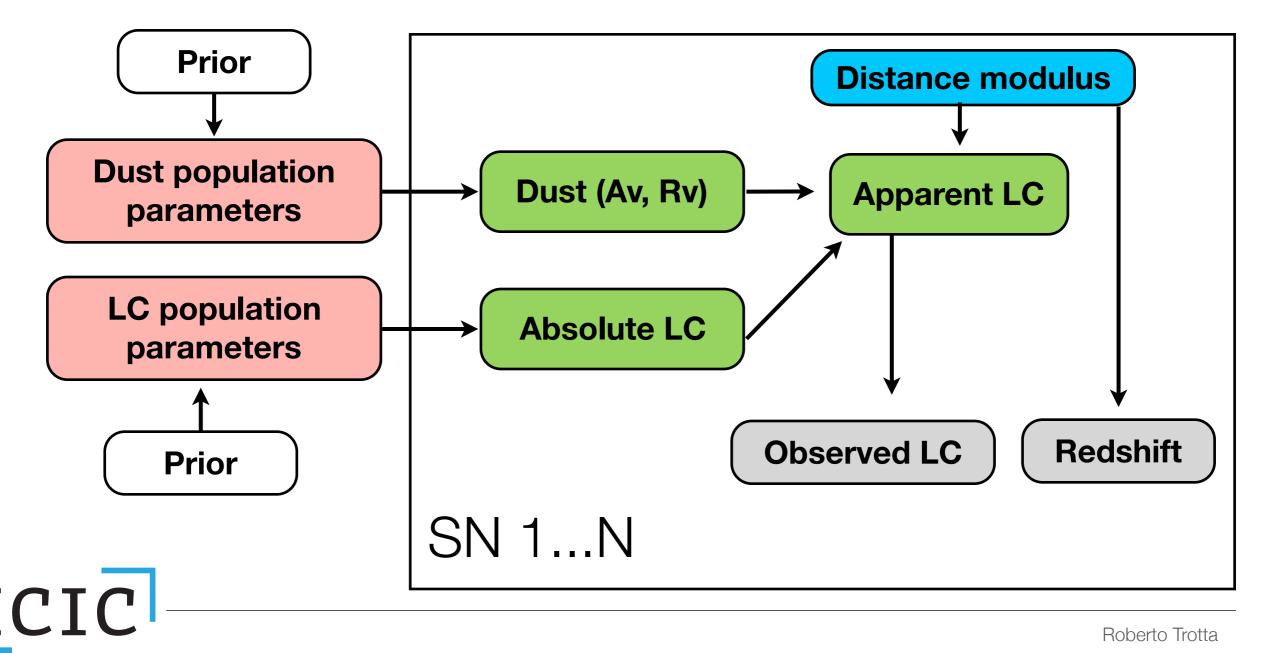
Imperial College London

• Combined cosmological constraints on matter and dark energy content:



The BayeSN approach

 Developed by K. Mandel (Mandel et al, 2009, 2011) and collaborators: fully Bayesian approach to LC fitting, including random errors, population structure, intrinsic variations/correlations, dust extinction and reddening, incomplete data



From lightcurves to distances

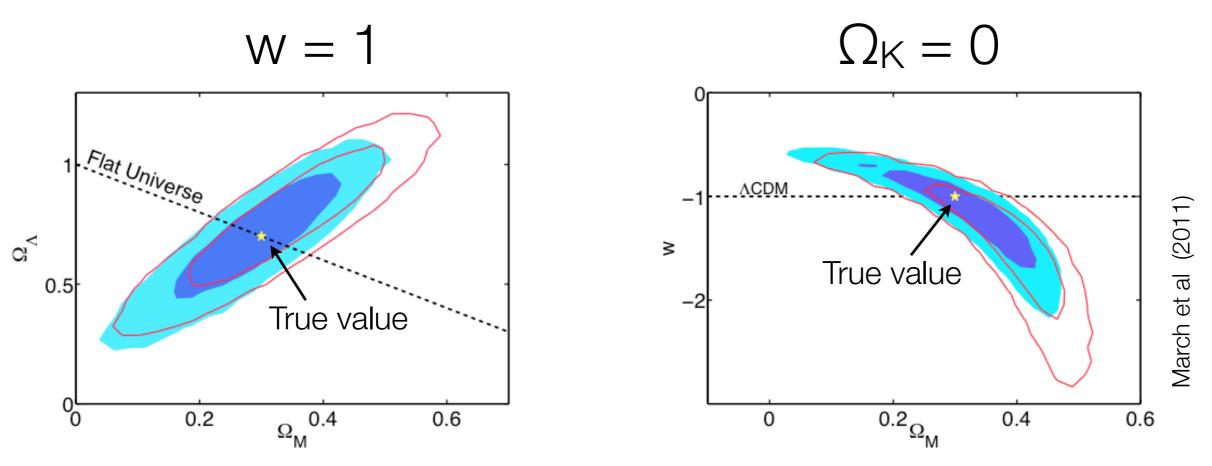
- There are a few different lightcurve (LC) fitters on the market, with different philosophies/statistical approaches:
- MLCS2k2 (Jha et al, 2007): color (A_V) and LC shape (Δ) parameters fitted simultaneously with cosmology. Color correction includes a dust extinction law correction.
- SALT/SiFTO/SALT2 (Guy et al, 2007): LC shape (x_1) and colour (c) correction extracted from LC alongside apparent B-band magnitude (m_B) + covariance matrix. The distance modulus

$$\mu = m_B - M + \alpha \times \text{width} - \beta \times \text{colour}$$

is subsequently estimated with cosmological parameters and remaining "intrinsic" scatter.

• **BayeSN** (Mandel et al, 2009, 2011): Fully Bayesian hierarchical modeling of LC, including population-level distributions (see later).

Marginal posterior (simulated data)



Red/empty: Chi² (68%, 95% CL)

Blue/filled: Bayesian (68%, 95% credible regions)

Bayesian posterior is noticeably different from the Chi² CL: which one is "best"?

