
Shaving Theories with Occam’s 
Razor:  
Bayesian Model Comparison 

www.robertotrotta.com

@R_Trotta Roberto Trotta 
Astrophysics & Data Science Institute 
Imperial College London

http://www.robertotrotta.com


Roberto Trotta 

Frequentist hypothesis testing

• Warning: frequentist hypothesis testing (e.g., likelihood ratio test) cannot be 
interpreted as a statement about the probability of the hypothesis! 


• Example: to test the null hypothesis H0: θ = 0, draw n normally distributed points (with 
known variance σ2). The χ2 is distributed as a chi-square distribution with (n-1) 
degrees of freedom (dof). Pick a significance level α (or p-value, e.g. α = 0.05). If P(χ2  

> χ2obs) < α reject the null hypothesis.

• This is a statement about the likelihood of observing data as extreme or more extreme 

than have been measured assuming the null hypothesis is correct.

• It is not a statement about the probability of the null hypothesis itself and cannot 

be interpreted as such! (or you’ll make gross mistakes)   
• The use of p-values implies that a hypothesis that may be true can be rejected 

because it has not predicted observable results that have not actually occurred.  
(Jeffreys, 1961)



Exercise on hypothesis testing: Is the coin fair? 
Two experiments are performed:  
1. in the Blue Experiment, the coin is flipped N 
times, recording r heads. 
2. in the Red Experiment, the coin is flipped until 
r heads are recorded.  
Both experiments report the same data:  
T T H T H T T T T T T H  

Blue Team: N=12 is fixed, r the random variable 
Red Team: r=3 is fixed, N the random variable  

Question: What is the p-value for the null hypothesis?  
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Solution: Blue Experiment  

• N here is fixed, r is the random variable 


• The TS is the number of H recorded. Given that r=3 (i.e., smaller than you would 
expect under the null), a small TS indicates that the data are improbable under the 
null hypothesis that theta=1/2. 
 

• Using N = 12, robs = 3, the p-value is: 


• This result is not significant at the 5% level (p-value = 0.05)

P (TS  TSobs) =
robsX

r=0

P (r|N, ✓ =
1

2
) =

robsX

r=0

✓
N

r

◆
1

2N
= 0.073

P (TS  TSobs) = P (r  robs|N, ✓ =
1

2
)
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Solution: Red Experiment  

• r here is fixed, N is the random variable 


• The TS is the number of flips required until we get r=3 heads.  In this case, a large 
value of the TS (i.e., having to wait for a long number of flips) indicates that the data 
are improbable under the null hypothesis that theta=1/2. 
 
 

• Using r = 3, Nobs = 12, the p-value is:  
 
 
 
 
 

• This result is significant at the 5% level (p-value = 0.05)

P (TS � TSobs) = P (N � Nobs|r, ✓ =
1

2
) = 1� P (N < Nobs|r, ✓ =

1

2
)

P (N < Nobs|r, ✓ =
1

2
) =

Nobs�1X

N=r

✓
N � 1

r � 1

◆
1

2N
= 0.967

P (TS  TSobs) = 0.033
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The Bayesian Calculation

• We compare M0 with theta=1/2 to M1 where theta is a free parameter. 


• We choose a uniform prior [0,1] for theta under M1 (other choices are possible).


• Compute the Bayesian evidence under M1:  
 
 

• Compute the Bayesian evidence under M0 (notice M0 has no free parameters):   
 
 

• The Bayes factor (using N=12, r=3) gives almost no evidence in favour of M1!  
 
 
 

P (d|M0) =

✓
N

r

◆
1

2N

B10 =
P (d|M1)

P (d|M0)
=

r!(N � r)!

(N + 1)!
2N = 1.43

P (d|M1) =

Z
d✓L(✓)P (✓|M1) =

Z 1

0
d✓

✓
N

r

◆
✓r(1� ✓)N�r =

✓
N

r

◆
r!(N � r)!

(N + 1)!
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The significance of significance
• Important: A 2-sigma result does not wrongly reject the null hypothesis 5% of the 

time: at least 29% of 2-sigma results are wrong! 

• Take an equal mixture of H0, H1 


• Simulate data, perform hypothesis testing for H0


• Select results rejecting H0 at (or within a small range from) 1-α CL 
(this is the prescription by Fisher)


• What fraction of those results did actually come from H0 ("true nulls", should not 
have been rejected)?

Recommended reading:  
Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)



Bayesian model comparison
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The 3 levels of inference

LEVEL 1  
I have selected a model M 

and prior P(θ|M)

LEVEL 2  
Actually, there are several 

possible models: M0, M1,...

Parameter inference 
What are the favourite 

values of the 
parameters?  

(assumes M is true)

Model comparison 
What is the relative 

plausibility of M0, M1,... 
in light of the data?

odds = P(M0|d)
P(M1|d)

LEVEL 3  
None of the models  
is clearly the best

Model averaging 
What is the inference on 

the parameters 
accounting for model 

uncertainty?

P (�|d) =
�

i P (Mi|d)P (�|d, Mi)P (�|d, M) = P (d|�,M)P (�|M)
P (d|M)
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Examples of model comparison questions

Many scientific questions are 
of the model comparison type

ASTROPHYSICS 
Exoplanets detection 

Is there a line in this spectrum? 
Is there a source in this image?

COSMOLOGY 
Is the Universe flat? 

Does dark energy evolve? 
Are there anomalies in the CMB? 
Which inflationary model is ‘best’? 

Is there evidence for modified gravity? 
Are the initial conditions adiabatic?

ASTROPARTICLE 
Gravitational waves detection 

Do cosmic rays correlate with AGNs?  
Which SUSY model is ‘best’? 

Is there evidence for DM modulation? 
Is there a DM signal in gamma ray/

neutrino data?
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Level 2: model comparison

Bayesian evidence or model likelihood

P (d|M) =
�
� d�P (d|�, M)P (�|M)

The evidence is the integral of the likelihood over the prior: 

 Bayes’ Theorem delivers the model’s posterior:

P (M |d) = P (d|M)P (M)
P (d)

When we are comparing two models:

P (M0|d)
P (M1|d) = P (d|M0)

P (d|M1)
P (M0)
P (M1)

Posterior odds = Bayes factor × prior odds

The Bayes factor:

P (�|d, M) = P (d|�,M)P (�|M)
P (d|M)

B01 � P (d|M0)
P (d|M1)
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Scale for the strength of evidence
• A (slightly modified) Jeffreys’ scale to assess the strength of evidence

|lnB| relative odds favoured model’s 
probability Interpretation

< 1.0 < 3:1 < 0.750 not worth 
mentioning 

< 2.5 < 12:1 0.923 weak

< 5.0 < 150:1 0.993 moderate

> 5.0 > 150:1 > 0.993 strong



Bayesian model comparison of 193 models  
Higgs inflation as reference model

disfavoured favoured

Martin,RT+14
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An automatic Occam’s razor

• Bayes factor balances quality of fit vs extra model complexity. 

• It rewards highly predictive models, penalizing “wasted” parameter space 

Δθ

δθ

Prior

Likelihood

Occam’s factor

�̂

P (d|M) =
R

d✓L(✓)P (✓|M)

⇡ P (✓̂)�✓L(✓̂)

⇡ �✓
�✓ L(✓̂)✓̂
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The evidence as predictive probability

• The evidence can be understood as a function of d to give the predictive probability 
for the data under the model M: 

More complex model M1

Simpler model M0

P(d|M)

d

Observed (case 1) Observed (case 2) In case 1, M0 is 
preferred (as it made a 
sharp prediction that 
has been verified) 
 
In case 2, M1 is 
preferred as its 
additional complexity is 
required by the data



Simple example: nested models

• This happens often in practice: 
we have a more complex 
model, M1 with prior P(θ|M1), 
which reduces to a simpler 
model (M0) for a certain value of 
the parameter,  
e.g. θ = θ* = 0 (nested models)


• Is the extra complexity of M1 

warranted by the data?  

Δθ

δθ

Prior

Likelihood

θ* = 0 �̂



Δθ

δθ

Prior

Likelihood

θ* = 0 �̂

Define: � � ⇥̂�⇥�

�⇥

For “informative” data: 

lnB01 ⇥ ln �⇥
�⇥ �

⇤2

2

wasted parameter 
space 

(favours simpler model) 

mismatch of 
prediction with 
observed data 
(favours more 

complex model)

Simple example: nested models
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The rough guide to model comparison
wider prior (fixed data)

I10 � log10
�⇥
�⇥

Trotta (2008)

larger sample (fixed prior and significance)

WMAP1

WMAP3

Planck

Δθ = Prior width  
𝛿θ = Likelihood width



Roberto Trotta 

“Prior-free” evidence bounds
• What if we do not know how to set the prior? For nested models, we can still choose a 

prior that will maximise the support for the more complex model: 

maximum evidence for Model 1 

wider prior (fixed data)

larger sample (fixed prior and significance)
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Maximum evidence for a detection

• The absolute upper bound: put all prior mass for the alternative onto the observed 
maximum likelihood value. Then 
 

• More reasonable class of priors: symmetric and unimodal around Ψ=0, then  
(α = significance level)

If the upper bound is small, no other choice of prior 
will make the extra parameter significant.

B < exp(��2/2)

B < �1
exp(1)� ln �

 Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)
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How to interpret the “number of sigma’s”

α sigma Absolute bound 
on lnB (B)

“Reasonable” 
bound on lnB 

(B)

0.05 2
2.0 
(7:1) 
weak

0.9 
(3:1) 

undecided

0.003 3
4.5 

(90:1) 
moderate

3.0 
(21:1) 

moderate

0.0003 3.6
6.48 

(650:1) 
strong

5.0  
(150:1) 
strong
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How to assess p-values
Rule of thumb:  

interpret a n-sigma result as a (n-1)-sigma result

Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)
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Computing the model likelihood  

• Usually computational demanding: it’s a multi-dimensional integral, averaging the 
likelihood over the (possibly much wider) prior


• I’ll present two methods used by cosmologists: 


• Savage-Dickey density ratio (Dickey 1971): Gives the Bayes factor between 
nested models (under mild conditions). Can be usually derived from posterior 
samples of the larger (higher D) model. 


• Nested sampling (Skilling 2004): Transforms the D-dim integral in 1D integration. 
Can be used generally (within limitations of the efficiency of the sampling method 
adopted).

P (d|M) =
�
� d�P (d|�, M)P (�|M)Model likelihood:

Bayes factor: B01 � P (d|M0)
P (d|M1)
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The Savage-Dickey density ratio

• This method works for nested models and gives the Bayes factor analytically.

• Assumptions: 


• Nested models: M1 with parameters (Ψ,𝜔) reduces to M0 for e.g. 𝜔=𝜔✶


• Separable priors: the prior π1(Ψ,𝜔|M1) is uncorrelated with  π0(Ψ|M0)


• Result: 

Prior

Marginal posterior 
under M1 

𝜔 = 𝜔✶

Dickey J. M., 1971, Ann. Math. Stat., 42, 204

• The Bayes factor is the ratio of the 
normalised (1D) marginal posterior on the 
additional parameter in M1 over its prior, 
evaluated at the value of the parameter for 
which M1 reduces to M0.

B01 =
p(!?|d)
⇡1(!?)
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Derivation of the SDDR  

p(!?|d) =
p(!?, |d)
p( |!?, d)

Divide and multiply B01 by: 

B01 = p(!?|d)
Z

d 
⇡0( )p(d| ,!?)

P (M1|d)
p( |!?, d)

p(!?, |d)

Since: 

p(!?, |d) =
p(d|!?, )⇡1(!?, )

P (M1|d)
B01 = p(!?|d)

Z
d 

⇡0( )p( |!?, d)

⇡1(!?, )

⇡1(!, ) = ⇡1(!)⇡0( )

Assuming separable 
priors: B01 =

p(!?|d)
⇡1(!?)

Z
d p( |!?, d) =

p(!?|d)
⇡1(!?)

RT, Mon.Not.Roy.Astron.Soc. 378 (2007) 72-82 

P (d|M1) =

Z
d d!⇡1( ,!)p(d| ,!)P (d|M0) =

Z
d ⇡0( )p(d| ,!?)
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SDDR: Some comments
• For separable priors (and nested models), the common parameters do not matter for 

the value of the Bayes factor 

• No need to spend time/resources to average the likelihoods over the common 

parameters 

• Role of the prior on the additional parameter is clarified: the wider, the stronger the 

Occam’s razor effect (due to dilution of the predictive power of model 1)

• Sensitivity analysis simplified: only the prior/scale on the additional parameter 

between the models needs to be considered. 

• Notice: SDDR does not assume Gaussianity, but it does require sufficiently detailed 

sampling of the posterior to evaluate reliably its value at 𝜔=𝜔✶. 

𝜔 = 𝜔✶ 𝜔 = 𝜔✶

Good Bad

?
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Accuracy tests (Normal case)
• Tests with variable dimensionality 

(D) and number of MCMC samples 

• λ is the distance of peak posterior 

from 𝜔✶ in units of posterior std dev  


• SDDR accurate with standard 
MCMC sampling up to 20-D and 
λ=3 


• Accurate estimates further in the 
tails might required dedicated 
sampling schemes

𝜔 = 𝜔✶

λ = (𝜔ML-𝜔✶)/σ

RT, MNRAS, 378, 72-82 (2007)
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Nested Sampling 

• Proposed by John Skilling in 
2004: the idea is to convert a 
D-dimensional integral in a 1D 
integral that can be done 
easily.


• As a by-product, it also 
produces posterior samples: 
model likelihood and 
parameter inference obtained 
simultaneously

Mukherjee+06

X = Prior fraction

L(X) = likelihood value for 
iso-likelihood contour 

enclosing X prior fraction
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Nested Sampling basics 

x1

L(x)

0

1

2
θ

θ

Figure 1: **** Possibly change fig to the one in Feroz et al**** Schematic illustration of the nested
sampling algorithm for the computation of the Bayesian evidence. Levels of constant likelihood in
the two–dimensional parameter space shown at the top right are mapped onto elements of increasing
likelihood as a function of the enclosed prior volume X , with p(m)dm = dX . The evidence is then
computed by integrating the one–dimensional function L(X) from 0 to 1 (from [?])

.

scans). Therefore we adopt NS as an efficient sampler of the posterior. We have compared

the results with our MCMC algorithm and found that they are identical (up to numerical

noise).

2.4 Statistical measures

From the above sequence of samples, obtaining Monte Carlo estimates of expectations for

any function of the parameters becomes a trivial task. For example, the posterior mean is

given by (where ⟨·⟩ denotes the expectation value with respect to the posterior)

⟨m⟩ ≈
∫

p(m|d)mdm =
1

M

M−1∑

t=0

m(t), (2.8)

where the equality with the mean of the samples follows because the samples m(t) are gen-

erated from the posterior by construction. In general, one can easily obtain the expectation

value of any function of the parameters f(m) as

⟨f(m)⟩ ≈
1

M

M−1∑

t=0

f(m(t)). (2.9)

It is usually interesting to summarize the results of the inference by giving the 1–dimensional

marginal probability for the j–th element of m, mj. Taking without loss of generality j = 1

and a parameter space of dimensionality N , the marginal posterior for parameter m1 is

– 6 –

X(⇥) =
�
L(�)>⇥ P (�)d�

P (d) =

Z
d✓L(✓)P (✓) =

Z 1

0
L(X)dX

Skilling, AIP Conf.Proc. 735, 395 (2004); doi: 10.1063/1.1835238

Define X(λ) as the prior mass associated with likelihood 
values above λ

X(0) = 1 X(Lmax) = 0

This is a decreasing function of λ: 

dX is the prior mass associated with likelihoods [λ, λ+dλ]

An infinitesimal interval dX contributes λdx to the evidence, so that: 

where L(X) is the inverse of X(λ). 
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Nested Sampling basic
Suppose that we can evaluate Lj = L(Xj), for a sequence:

0 < Xm < · · · < X2 < X1 < 1

Then the model likelihood P(d) can be estimated numerically as: 

P (d) =
mX

j=1

wjLj

with a suitable set of weights, e.g. for the trapezium rule: 

wj =
1

2
(Xj�1 �Xj+1)
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Nested Sampling in Action 
(animation courtesy of David Parkinson)

X = Prior fraction

2D parameter space (uniform priors) 1D model likelihood integral 

Nested sampling pseudo-code 
Initialization  
• Draw N “live points” from the prior (typically, N ~ 2000)  
• Compute the likelihood for each live point  
[Loop beings]  

• Select the live point with the lowest likelihood value, μ 
• Replace it with a new live point θ drawn from the prior with the constraint L(θ) > μ 
• Save the previous live point, together with μ and the prior volume fraction X(μ) 
• If Lmax X < tolerance, exit  

[Loop ends]
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MultiNest sampling approach  
(Slide courtesy of Mike Hobson) 

Hard!
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Nested Sampling: Sampling Step 
• The hardest part is to sample uniformly from the prior subject to the hard 

constraint that the likelihood needs to be above a certain level.  

• Many specific implementations of this sampling step: 


• Single ellipsoidal sampling (Mukherjee+06)

• Metropolis nested sampling (Sivia&Skilling06)

• Clustered and simultaneous ellipsoidal sampling (Shaw+07) 

• Ellipsoidal sampling with k-means (Feroz&Hobson08)

• Rejection sampling (MultiNest, Feroz&Hobson09)

• Diffusive nested sampling (Brewer+11)

• Artificial neural networks (Graff+12)

• Galilean Sampling (Betancourt11; Feroz&Skilling13)

• Simultaneous ellipsoidal sampling with X-means (DIAMONDS, 

Corsaro&deRidder14)

• Slice Sampling nested sampling (PolyChord, Handley+15)

• Dynamic nested sampling (Higson+18)

• … there will be others, no doubt. 
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Sampling Step: Ellipsoid Fit  

• Simple MCMC (e.g. Metropolis-Hastings) works but can be inefficient

• Mukherjee+06: Take advantage of the existing live points. Fit an ellipsoid to the live 

point, enlarge it sufficiently (to account for non-ellipsoidal shape), then sample from 
it using an exact method:  


• This works, but is problematic/inefficient for multi-modal likelihoods and/or strong, 
non-linear degeneracies between parameters. 



Roberto Trotta 

Sampling Step: Multimodal Sampling 

• Feroz&Hobson08; Feroz+08: At each nested sampling iteration


• Partition active points into clusters 


• Construct ellipsoidal bounds to each cluster 


• Determine ellipsoid overlap 


• Remove point with lowest Li from active points; increment evidence.


• Pick ellipsoid randomly and sample new point with L> Li accounting for overlaps 


• Each isolated cluster gives local evidence 

• Global evidence is the sum of the local evidences 
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The MultiNest ellipsoidal sampling 
• The MultiNest algorithm (Feroz & Hobson, 2007, 2008) uses a multi-dimensional 

ellipsoidal decomposition of the remaining set of “live points” to approximate the 
prior volume above the target iso-likelihood contour. 

Multimodal likelihood  Highly degenerate likelihood  

target iso-likelihood 
contours

ellipsoidal 
approximation

multi-modal 
decomposition

Decreasing prior fraction X  
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Test: Gaussian Mixture Model 
(Slide courtesy of Mike Hobson) 
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Test: Egg-Box Likelihood 

• A more challenging example is the egg-box likelihood:


• Prior:  

L(✓1, ✓2) = exp

✓
2 + cos

✓
✓1
2

◆
cos

✓
✓2
2

◆◆5

✓i ⇠ U(0, 10⇡) (i = 1, 2)

(Animation: Farhan Feroz) 

Likelihood Sampling (30k likelihood evaluations)

logP (d) = 235.86± 0.06 (analytical = 235.88)
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Test: Multiple Gaussian Shells 
Co

ur
te

sy
 M

ike
 H

ob
so

n

D Nlike Efficiency
2 7000 70%
5 18000 51%
10 53000 34%
20 255000 15%
30 753000 8%

Likelihood Sampling
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Aside: Posterior Samples

• Samples from the posterior can be extracted as (free) by-product: take the 
sequence of sampled points θj and weight sample j by pj  = Lj ωj/P(d)


• MultiNest has only 2 tuning parameters: the number of live points and the tolerance 
for the stopping criterium (stop if Lmax Xi < tol P(d), where tol is the tolerance) 


• It can be used (and routinely is used) as fool-proof inference black-box: no need to 
tune e.g. proposal distribution as in conventional MCMC.

Multi-Modal marginal 
posterior distributions in 
an 8D supersymmetric 
model, sampled with 
MultiNest (Feroz,RT+11)
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Aside: Profile Likelihood 

• With higher number of live points and smaller tolerance (plus keeping all discarded 
samples) MultiNest also delivers good profile likelihood estimates (Feroz,RT+11): 

8D Gaussian Mixture Model - 
Profile Likelihood L(�1) = max�2L(�1, �2)
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Parallelisation and Efficiency 

• Sampling efficiency is less than unity since ellipsoidal approximation to the iso-
likelihood contour is imperfect and ellipsoids may overlap


• Parallel solution:  

• At each attempt to draw a replacement point, drawn NCPU candidates, with 
optimal number of CPUs given by 1/NCPU = efficiency 


• Limitations:  

• Performance improvement plateaus for NCPU >> 1/efficiency 


• For D>>30, small error in the ellipsoidal decomposition entails large drop in 
efficiency as most of the volume is near the surface 


• MultiNest thus (fundamentally) limited to D <= 30 dimensions 
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Neural Network Acceleration 

• A relatively straightforward idea: Use MultiNest discarded samples to train on-line a 
multi-layer Neural Network (NN) to learn the likelihood function.


• Periodically test the accuracy of predictions: when the NN is ready, replace (possibly 
expensive) likelihood calls with (fast) NN prediction.


• SkyNet: a feed-forward NN with N hidden layers, each with Mn nodes. 


• BAMBI (Blind Accelerated Multimodal Bayesian Inference): SkyNet integration with 
MultiNest 


• In cosmological applications, BAMBI typically accelerates the model likelihood 
computation by ~30% — useful, but not a game-changer. 


• Further usage of the resulted trained network (e.g. with different priors) delivers 
speed increases of a factor 4 to 50 (limited by error prediction calculation time). 

Graff+12 (BAMBI) and Graff+14 (SkyNet); Johannesson,RT+16
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PolyChord: Nested Sampling in high-D

• A new sampling step scheme is required to beat the limitations of the ellipsoidal 
decomposition at the heart of MultiNest 


• Slice Sampling (Neal00) in 1D: 

• Slice: All points with L(x)>L0


• From starting point x0, set  
initial bounds L/R by expanding  
from a parameter w


• Draw x1 randomly from within L/R 


• If x1 not in the slice, contract  
bound down to x1 and re-sample x1

Handley et al, Mon.Not.Roy.Astron.Soc. 450 (2015)1, L61-L65 
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High-D Slice Sampling 
• A degenerate contour is transformed into a contour with dimensions of order O(1) in 

all directions (“whitening”) 

• Linear skew transform defined by the inverse of the Cholesky decomposition of the 

live points’ covariance matrix 

• Direction selected at random, then slice sampling in 1D performed (w=1) 

• Repeat N times, with N of order O(D), generating a new point xN decorrelated from x0

Handley+15
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PolyChord: Performance 

• PolyChord number of likelihood evaluations scales at worst as O(D3) as opposed to 
exponential for MultiNest in high-D 
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Information criteria
• Several information criteria exist for approximate model comparison 

k = number of fitted parameters 
N = number of data points,  
-2 ln(Lmax) = best-fit chi-squared


• Akaike Information Criterium (AIC):


• Bayesian Information Criterium (BIC): 

• Deviance Information Criterium (DIC):
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Notes on information criteria
• The best model is the one which minimizes the AIC/BIC/DIC

• Warning: AIC and BIC penalize models differently as a function of the number of 

data points N.  
For N>7 BIC has a more strong penalty for models with a larger number of free 
parameters k.


• BIC is an approximation to the full Bayesian evidence with a default Gaussian prior 
equivalent to 1/N-th of the data in the large N limit. 


• DIC takes into account whether parameters are measured or not (via the Bayesian 
complexity, see later).


• When possible, computation of the Bayesian evidence is preferable (with explicit 
prior specification). 
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A “simple” example: how many sources?
Feroz and Hobson 

(2007) Signal + Noise
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A “simple” example: how many sources?
Feroz and Hobson 

(2007) Signal: 8 sources
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A “simple” example: how many sources?
Feroz and Hobson 

(2007) Bayesian reconstruction
7 out of 8 objects correctly identified.  

Mistake happens because 2 objects very close.



Cluster detection from Sunyaev-Zeldovich 
effect in cosmic microwave background maps 

Background 
+ 3 point radio sources

Background 
+ 3 point radio sources 

+ cluster cluster

~ 
2 

de
g

Feroz et al 2009



Background 
+ 3 point radio sources

Background 
+ 3 point radio sources 

+ cluster

Bayesian model comparison:  
R = P(cluster | data)/P(no cluster | data)

R = 0.35 ± 0.05 R ~ 1033

Cluster parameters also recovered (position, temperature, profile, etc)
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The cosmological concordance model

lnB < 0: favours ΛCDM
from Trotta (2008)
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Model complexity
• "Number of free parameters" is a relative concept. The relevant scale is set by the 

prior range

• How many parameters can the data support, regardless of whether their detection is 

significant?

• Bayesian complexity or effective number of parameters:

Kunz, RT & Parkinson, astro-ph/0602378, Phys. Rev. D 74, 023503 (2006)  
Following Spiegelhalter et al (2002)
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Polynomial fitting
• Data generated from a model with n = 6:

GOOD DATA
Max supported complexity ~ 9

INSUFFICIENT DATA
Max supported complexity ~ 4
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How many parameters does the CMB 
need?

b4+ns+τ 
measured & 

favoured

Ωκ 
measured & 
unnecessary

7 params  measured  

only 6 
sufficient

WMAP3+HST (WMAP5 qualitatively the same)
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Bayesian Model-averaging

Model averaged inferences
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P(θ|d) = ∑i P(θ|d,Mi)P(Mi|d)
An application to dark energy: 
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Key points
• Bayesian model comparison extends parameter inference to the space of models

• The Bayesian evidence (model likelihood) represents the change in the degree of 

belief in the model after we have seen the data

• Models are rewarded for their predictivity (automatic Occam’s razor)

• Prior specification is for model comparison a key ingredient of the model building 

step. If the prior cannot be meaningfully set, then the physics in the model is 
probably not good enough. 


• Bayesian model complexity can help (together with the Bayesian evidence) in 
assessing model performance.


