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Frequentist hypothesis testing imperial College

- Warning: frequentist hypothesis testing (e.g., likelihood ratio test) cannot be
interpreted as a statement about the probability of the hypothesis!

- Example: to test the null hypothesis Ho: 8 = 0, draw n normally distributed points (with
known variance o2). The ¥2 is distributed as a chi-square distribution with (n-7)
degrees of freedom (dof). Pick a significance level a (or p-value, e.g. a = 0.05). If P(x?
> ¥2obs) < @ reject the null hypothesis.

+ This is a statement about the likelihood of observing data as extreme or more extreme
than have been measured assuming the null hypothesis is correct.

* |t is not a statement about the probability of the null hypothesis itself and cannot
be interpreted as such! (or you’ll make gross mistakes)

« The use of p-values implies that a hypothesis that may be true can be rejected
because it has not predicted observable results that have not actually occurred.
(Jeffreys, 1961)
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—xercise on hypothesis testing: Is the coin fair?
Two experiments are performed:

1. in the Blue Experiment, the coin is flipped N
times, recording r heads.

Soth experiments report the same data:
TTHTHTTTTTTH

Blue Team: N=12 Is fixed, r the random variable
r=3 IS fixed, N the random variable

Question: What is the p-value for the null hypothesis?



Imperial College

Solution: Blue Experiment

* N here is fixed, r is the random variable

- The TS is the number of H recorded. Given that r=3 (i.e., smaller than you would
expect under the null), a small TS indicates that the data are improbable under the
null hypothesis that theta=1/2.

1

P(TS < TSobs) = P(r < rons| N, 0 = 7)

* Using N =12, rons = 3, the p-value is:

Tobs 1 T'obs N 1
P(TS < TSops) = Y P(r|N,f = >) = > (T ) v = 0.073
r=0 r=0

 This result is not significant at the 5% level (p-value = 0.05)

Roberto Trotta



Imperial College

Solution:

* r here is fixed, N is the random variable

- The TS is the number of flips required until we get r=3 heads. In this case, a large
value of the TS (i.e., having to wait for a long number of flips) indicates that the data

are improbable under the null hypothesis that theta=1/2.
1

1
P(T'S > TSobs) = P(N = Nops|r,0 = 5) = 1= P(N < Nobs|r, 6 = 7)

« Using r = 3, Nobs = 12, the p-value is:

Nobs_].
1 N -1\ 1
P(N < Nops|r,0 =)= > — = 0.967
(V< Nows|r, 0 = 3) <r—1)2N

N=r

P(TS < TSups) = 0.033

Roberto Trotta



The Bayesian Calculation oPeion _Otege

« We compare MO with theta=1/2 to M1 where theta is a free parameter.
« We choose a uniform prior [0,1] for theta under M1 (other choices are possible).

- Compute the Bayesian evidence under M1:

P(d|M;) = /d@ﬁ(@)P(é’\Ml) = /01 df (];[) (1 — )N = (JD Té%ﬁl;?

- Compute the Bayesian evidence under MO (notice MO has no free parameters):

P) = () 5

r

- The Bayes factor (using N=12, r=3) gives almost no evidence in favour of M1!
P(d|M (N —r)!

P RN -y
P(d| M) (N +1)!

Bi1o
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The significance of significance knpe il Colcge

« Important: A 2-sigma result does not wrongly reject the null hypothesis 5% of the
time: at least 29% of 2-sigma results are wrong!

- Take an equal mixture of Ho, H1
- Simulate data, perform hypothesis testing for Ho

- Select results rejecting Ho at (or within a small range from) 1-a CL
(this is the prescription by Fisher)

- What fraction of those results did actually come from Ho ("true nulls”, should not
have been rejected)?
p—value sigma fraction of true nulls lower bound

0.05 1.96 0.51 0.29
0.01 2.58 0.20 0.11
0.001 3.29 0.024 0.018

Recommended reading:
Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)
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Sayesian model comparison



PO)d, M) =

The 3 levels of iInference

LEVEL 1

| have selected a model M

and prior P(6|M)

N

Parameter inference
What are the favourite
values of the
parameters”?

(assumes M is true)

P(d|0,M)P (0| M)

P(d| M)

LEVEL 2

Actually, there are several
possible models: Mo, Mi,...

N

Model comparison
What is the relative
plausibility of Mo, Mi,...
in light of the data”?

P (Mo |d
odds = PEM(l)Id;

Imperial College

LEVEL 3
None of the models
IS clearly the best

N

Model averaging
What is the inference on
the parameters
accounting for model
uncertainty?

P(6|d) = S, P(M;|d)P(6|d, M;)

Roberto Trotta
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—xamples of model comparison questions

ASTROPARTICLE COSMOLOGY
Gravitational waves detection Is the Universe flat?
Do cosmic rays correlate with AGNs? Does dark energy evolve?
Which SUSY model is ‘best’? Are there anomalies in the CMB?
Is there evidence for DM modulation? Which inflationary model is ‘best’?
Is there a DM signal in gamma ray/ Is there evidence for modified gravity?
neutrino data? Are the initial conditions adiabatic?

Many scientific questions are
of the model comparison type

ASTROPHYSICS
Exoplanets detection
Is there a line in this spectrum?

Is there a source in this image”?

Roberto Trotta



Level 2: model comparison imperial College

P(0]d, M) = Pw“m

Bayesian evidence or model likelihood

The evidence is the integral of the likelihood over the prior:
P(dIM) = [, dOP(d|6, M)P(0| M)
Bayes’ Theorem delivers the model’s posterior:

P(M|d) = P(d|M)P(M)

P(d)
When we are comparing two models: The Bayes factor:
P(Mo|d) _ P(d|Mo) P(Mo) Ba, = P(d|My)
P(Mi|d) — P(d[My) P(M) 01 = P(d|M,)

Posterior odds = Bayes factor x prior odds
ICIC!
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Scale for the strength of evidence

Imperial College

- A (slightly modified) Jeffreys’ scale to assess the strength of evidence

INB] relative odds fav%ﬂfgagﬁsers Interpretation
<1.0 < 3:1 < 0.750 Qg;m%ritnhg
<2.5 < 12:1 0.923 weak

< 5.0 < 150:1 0.993 moderate
> 5.0 > 150:1 > (0.993 strong

ICIC!
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An automatic Occam’s razor imperial College

- Bayes factor balances quality of fit vs extra model complexity.
* It rewards highly predictive models, penalizing “wasted” parameter space

P(d|M) = fd@L P(0|M)
Likelihood (0)66.L(0)

Prior Occam'’s factor

O

ICIC!



The evidence as predictive probability inpenial Colege

« The evidence can be understood as a function of d to give the predictive probability
for the data under the model M:

P(d|M) 4

Observed (case 1)
I

Simpler model Mo

Observed (case 2)

ICIC!

In case 1, MO Is
preferred (as it made a
sharp prediction that
has been verified)

In case 2, M1 is
preferred as its
additional complexity is
required by the data

Roberto Trotta



Simple example: nested models

 This happens often in practice:
we have a more complex Likelihood
model, M+ with prior P(6|M),
which reduces to a simpler
model (Mo) for a certain value of
the parameter,

e.g. 6 = 0" = 0 (nested models)

- Is the extra complexity of Mj

warranted by the data?

O

0 =0



Simple example: nested models

. . L é_e*
Deflne' )\ — 56 Likelihood

For “informative” data:

1. AB \?
mismatch of

wasted parameter

prediction with
observed data

(favours more 0* = (O
complex model)

space
(favours simpler model)

O



The rough guide to model comparison mperial College

ICI
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“Prior-free” evidence bounds ohdion 0ege

- What if we do not know how to set the prior? For nested models, we can still choose a
prior that will maximise the support for the more complex model:

wider prior (fixed data)

>

larger sample (fixed prior and significance)

I (bits) 21 24 28

» Model O favored | i ! o7 ] .

2 - ! —

° N i
m 0 - : -
c - : I -
o—t _o - Model 1 favored \ : 7
™ 1 | 1 1 I | 1 1 | I 1 1 I:l l lll 1 | | 1 1 | ]

-2 -1 0 1 2 3
Information gain N(base 10)

maximum evidence for Model 1

Roberto Trotta



Maximum evidence for a detection imperial College

_ondon

« The absolute upper bound: put all prior mass for the alternative onto the observed
maximum likelihood value. Then

B < exp(—x?/2)

* More reasonable class of priors: symmetric and unimodal around W=0, then
(a = significance level)

—1
B < exp(l)aln o

If the upper bound is small, no other choice of prior
will make the extra parameter significant.

Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)

Roberto Trotta



How to interpret the “number of sigma’s”

Imperial College

) Absolute bound FIEEERIEIE
a sigma bound on InB
on InB (B)
(B)
2.0 0.9
0.05 2 (7:1) (3:1)
weak undecided
4.5 3.0
0.003 3 (90:1) (21:1)
moderate moderate
6.48 5.0
0.0003 3.6 (650:1) (150:1)
strong strong

ICIC!
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How 1o assess p-values

Rule of thumb:

Imperial College

interpret a n-sigma result as a (n-1)-sigma result

1.0
r — — P=V\/glue
0-9* - —=— P-Value
\ of (t~1)
. \ ‘\ Bound on B
0.7 \ \ for GUS
0.6} \
0.5 |\
oal \
o3l \
\
0.2 \
0.l =
| 1 |
00 l | * 2 = 3 4

Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)

Figure 4. Comparison of B(x, Gys) and P Values.

Roberto Trotta



Computing the model likelihood knperial Collcge

Model likelihood: P(dM)=|,dOP(dl6, M)P(0|M
Q
Bayes factor: Bg1 = igj}%gg

 Usually computational demanding: it’s a multi-dimensional integral, averaging the
likelihood over the (possibly much wider) prior

* I'll present two methods used by cosmologists:

- Savage-Dickey density ratio (Dickey 1971): Gives the Bayes factor between
nested models (under mild conditions). Can be usually derived from posterior
samples of the larger (higher D) model.

* Nested sampling (Skilling 2004): Transforms the D-dim integral in 1D integration.
Can be used generally (within limitations of the efficiency of the sampling method
adopted).

I C I C Roberto Trotta



The Savage-Dickey density ratio e Cotege

Dickey J. M., 1971, Ann. Math. Stat., 42, 204

- This method works for nested models and gives the Bayes factor analytically.
« Assumptions:

- Nested models: M+ with parameters (W,w) reduces to Mg for e.g. w=w«
. Separable priors: the prior m1(W,w|M1) is uncorrelated with to(W|Mo)
p(wx|d)

Wl(w*)

Marginal posterior
under Mj

- Result: B(n —

« The Bayes factor is the ratio of the
normalised (1D) marginal posterior on the
additional parameter in M+ over its priot,
evaluated at the value of the parameter for
which M+ reduces to Mo.

IcIC!
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Derivation of the S

D

D

Imperial College

:%

RT, Mon.Not.Roy.Astron.Soc. 378 (2007) 72-82

P(d|My) :/d\I!wO(\I!)p(d]\If,w*) P(d|M,) = /d@dwm(@,w)p(dhﬂ,w)

Divide and multiply Bo1 by:

Since:

d|wy, U)my (wy, V)

O T

Assuming separable
priors:

7r1(w, \I}) — 7T1(CU)7T0(\I/)

(W, ¥|d)
(Vws, d)

P
pw*d:
(wxld) )

(U)p(d|V, wy) p(¥|wy, d)
P(Mld)  p(ws, ¥|d)

T
Boy = p(w,|d) / PR

(V)p(¥|wy,d)
1 (w*, \If)

Tr
Boy = p(w,|d) / PR

p(w4|d)
1 (cu*)

p(w4|d)
1 (w*)

/d\pr(‘I’\w*, d) =

ICIC!
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SDDR: Some comments imperial College

« For separable priors (and nested models), the common parameters do not matter for
the value of the Bayes factor

« No need to spend time/resources to average the likelihoods over the common
parameters

* Role of the prior on the additional parameter is clarified: the wider, the stronger the
Occam’s razor effect (due to dilution of the predictive power of model 1)

 Sensitivity analysis simplified: only the prior/scale on the additional parameter
between the models needs to be considered.

* Notice: SDDR does not assume Gaussianity, but it does require sufficiently detailed
sampling of the posterior to evaluate reliably its value at w=wx.

ICIC!



ACCUFa()y tests (Norma‘ Case) Imperial College

- Tests with variable dimensionality 104 108 108
(D) and number of MCMC samples 2 E A0 . e D=5 -
+ \is the distance of peak posterior T 0b AT Z e E
from w«in units of posterior std dev E 2F ,_4 : ] _
- SDDR accurate with standard -4 -':::: : I: = ::::i — =
MCMC sampling up to 20-D and 2 AT E. ................... D=10.. -
}\:3 :;5 0 -I}‘=2 ..... P o— ;: .............................................. -:
+ Accurate estimates further in the S T I — 1 ............... T
tails might required dedicated = ) P BT B B
sampling schemes 3 S N R S =11 S
A = (oML-w%)/O ;f; 0 —{}‘=2I ........... ST ,:, .................................... —eeeeT
SR e T ] ............... e -
<D -4 b0l

104 10 108

Number of samples

> RT, MNRAS, 378, 72-82 (2007)

IcIicl oo



Nested Sampling

Imperial College
London

* Proposed by John Skilling in
2004: the idea is to convert a
D-dimensional integral in a 1D
integral that can be done
easily.

« As a by-product, it also
produces posterior samples:
model likelihood and
parameter inference obtained
simultaneously

L(X) = likelihood value for
iso-likelihood contour
enclosing X prior fraction

L(x)4

X = Prior fraction

Mukherjee+06

ICIC!
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Imperial College

Nested Sampling basics

Skilling, AIP Conf.Proc. 735, 395 (2004); doi: 10.1063/1.1835238

Define X(A\) as the prior mass associated with likelihood
values above A L(x) |

X(A) = [ (g5 P(0)d6
This is a decreasing function of A:

X(0)=1  X(Lomax) =0

dX is the prior mass associated with likelihoods [\, A+dA]
An infinitesimal interval dX contributes Adx to the evidence, so that:

P(d) = / dOL(0)P(h) = /O 1 L(X)dX

where L(X) is the inverse of X(\).

ICIC!




Nested Sampling lbasic

Suppose that we can evaluate L; = L(X), for a sequence:

0< X, < ---<Xo< X7 <1

Then the model likelihood P(d) can be estimated numerically as:

P(d) =) w;L;
j=1

with a suitable set of weights, e.g. for the trapezium rule:

1
w; = §(X:i—1 — Xj41)

Imperial College

ICIC!
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Nested Sampling in Action Imperial College

(animation courtesy of David Parkinson)

2D parameter space (uniform priors) 1D model likelihood integral
107 0
8l . a . . 20}
. dog ol
;) . 3 T 60}
2 - - -80
o’ 0 : g -100
-2t g - -120t
-4 g L o~ .. -140}
&l T g -160
-8t 3 : -180}
"% r Bo' : 0 s ” 3 2 i :
i In(X)

Nested sampling pseudo-code
Initialization
e Draw N “live points” from the prior (typically, N ~ 2000)
e Compute the likelihood for each live point
[Loop beings]
e Select the live point with the lowest likelihood value, p
¢ Replace it with a new live point 8 drawn from the prior with the constraint L(6) > p
e Save the previous live point, together with u and the prior volume fraction X(u)
e |f Lmax X < tolerance, exit

C C [Loop ends]
I I Roberto Trotta




MultiNest sampling approach

Imperial College

(Slide courtesy of Mike Hobson)

Nested sampling approach to summation:

Oy e 1.
| zl." w B | 2.
o

A/ ) 3
° _ _?l ‘ 4
. :

\ 0,

L(z) !

Seti = O;initially Xg =1, F =0

Sample N points {6;} randomly from 7 (&)
and calculate their likelihoods

. Seti — 1+ 1
. Find point with lowest likelihood value (L;)
. Remaining prior volume X; = t,X;_1 where

Pr(t|N) = Nt; 1
orjust use (t;) = N/(N + 1)

6. Increment evidence £ — F + L;w;
7. Remove lowest point from active set
. Replace with new point sampled from 7 (0)

within hard-edged region L(0) > L;

. If LmaxX; < aFE (where some tolerance)

= FE — E + X; Z§V:1 L(6;)/N; stop
else goto 3

Roberto Trotta



Nested Samp“ng Samp“ng Step Imperial College

- The hardest part is to sample uniformly from the prior subject to the hard
constraint that the likelihood needs to be above a certain level.

« Many specific implementations of this sampling step:

 Single ellipsoidal sampling (Mukherjee+06)

- Metropolis nested sampling (Sivia&Skilling06)

- Clustered and simultaneous ellipsoidal sampling (Shaw+07)

- Ellipsoidal sampling with k-means (Feroz&Hobson08)

- Rejection sampling (MultiNest, Feroz&Hobson09)

- Diffusive nested sampling (Brewer+11)

- Artificial neural networks (Graff+12)

- Galilean Sampling (Betancourt11; Feroz&Skilling13)

« Simultaneous ellipsoidal sampling with X-means (DIAMONDS,

Corsaro&deRidder14)

+ Slice Sampling nested sampling (PolyChord, Handley+15)
« Dynamic nested sampling (Higson+18)
* ... there will be others, no doubt.

ICIC
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Sampling Step: Ellipsoid Fit imperial College

- Simple MCMC (e.g. Metropolis-Hastings) works but can be inefficient

« Mukherjee+06: Take advantage of the existing live points. Fit an ellipsoid to the live

point, enlarge it sufficiently (to account for non-ellipsoidal shape), then sample from
It using an exact method:

- This works, but is problematic/inefficient for multi-modal likelihoods and/or strong,
non-linear degeneracies between parameters.

ICIC!
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Sampling Step: Multimodal Sampling imperial College

* Feroz&Hobson08; Feroz+08: At each nested sampling iteration

 Partition active points into clusters

Construct ellipsoidal bounds to each cluster

Determine ellipsoid overlap

Remove point with lowest L;from active points; increment evidence.

Pick ellipsoid randomly and sample new point with L> Liaccounting for overlaps

- Each isolated cluster gives local evidence
- Global evidence is the sum of the local evidences

ICIC!




The MultiNest ellipsoidal sampling mperial College

- The MultiNest algorithm (Feroz & Hobson, 2007, 2008) uses a multi-dimensional
ellipsoidal decomposition of the remaining set of “live points” to approximate the
prior volume above the target iso-likelihood contour.

Multimodal likelihood Highly degenerate likelihood

B SESFA2E i
"\ /’%/'n;’ T I

target iso-likelihood ellipsoidal multi-modal
contours approximation decomposition

Decreasing prior fraction X

Roberto Trotta



Test: Gaussian Mixture Model kmperial College

(Slide courtesy of Mike Hobson)

Cluster 1

Cluster 2

Log-Likelihood(L) E‘, 33:: 2
Cluster 5

0 ¢
20 ¢
40
80 ¢
-80 @
100 F

e Likelihood = five 2-D Gaussians of varying widths and amplitudes; prior = uniform
e Analytic evidence integral log £ = —5.27

e Multimodal ellipsoidal nested sampling: log £ = —5.33 £ 0.11, Njj,e ~ 104

e Metropolis nested sampling: log E = —5.22 + 0.11, Njjke ~ 10°

e Thermodynamic integration (+ error): log E = —5.24 + 0.12, Njjie ~ 4 x 10°

ICIC!
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Test: Egg-Box Likelihood imperial College

(Animation: Farhan Feroz)
- A more challenging example is the egg-box likelihood:

01 02\
L(01,05) =exp | 2+ cos 5 Jeos| 5

+ Prior. 6, ~U(0,10m) (i=1,2)

log P(d) = 235.86 + 0.06 (analytical = 235.88)

250
200 -
150 | .
100

50

10

Likelihood Sampling (30k likelihood evaluations)

ICIC!
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Test: Multiple Gaussian Shells opea College

Paak |
Paak 2

Likethood

Courtesy Mike Hobson

Likelihood Sampling
D Nike Efficiency
2 7000 70%
5 18000 51%
10 53000 34%
20 255000 15%
30 753000 8%

ICIC!



Aside: Posterior Samples imperial College

- Samples from the posterior can be extracted as (free) by-product: take the
sequence of sampled points 0; and weight sample j by p; = Lj wy/P(d)

- MultiNest has only 2 tuning parameters: the number of live points and the tolerance
for the stopping criterium (stop if Lmax Xi < tol P(d), where tol is the tolerance)

- |t can be used (and routinely is used) as fool-proof inference black-box: no need to
tune e.g. proposal distribution as in conventional MCMC.

Multi-Modal marginal
posterior distributions Iin
an 8D supersymmetric
model, sampled with
MultiNest (Feroz,RT+11)

40 60
tanp

(a)
Roberto Trotta



Aside: Profile Likelihood imperial College

- With higher number of live points and smaller tolerance (plus keeping all discarded
samples) MultiNest also delivers good profile likelihood estimates (Feroz, RT+11):

8D Gaussian Mixture Model - o
Profile Likelihood L(61) = maxg, L (01, 02)

" nlive 4000, t01 0.5 -+
nlive 20000, tol 10 =+ ==
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Parallelisation and Efficiency ondon - c9¢

- Sampling efficiency is less than unity since ellipsoidal approximation to the iso-
likelihood contour is imperfect and ellipsoids may overlap

 Parallel solution:

« At each attempt to draw a replacement point, drawn Ncpu candidates, with
optimal number of CPUs given by 1/Ncpu = efficiency

- Limitations:
- Performance improvement plateaus for Ncpu >> 1/efficiency

* For D>>30, small error in the ellipsoidal decomposition entails large drop in
efficiency as most of the volume is near the surface

- MultiNest thus (fundamentally) limited to D <= 30 dimensions

Roberto Trotta



Neural Network Acceleration imperial College
Graff+12 (BAMBI) and Graff+14 (SkyNet); Johannesson,RT+16

A relatively straightforward idea: Use MultiNest discarded samples to train on-line a
multi-layer Neural Network (NN) to learn the likelihood function.

- Periodically test the accuracy of predictions: when the NN is ready, replace (possibly
expensive) likelihood calls with (fast) NN prediction.

- SkyNet: a feed-forward NN with N hidden layers, each with Mn nodes.

- BAMBI (Blind Accelerated Multimodal Bayesian Inference): SkyNet integration with
MultiNest

* In cosmological applications, BAMBI typically accelerates the model likelihood
computation by ~30% — useful, but not a game-changer.

+ Further usage of the resulted trained network (e.g. with different priors) delivers
speed increases of a factor 4 to 50 (limited by error prediction calculation time).

Roberto Trotta



PolyChord: Nested Sampling in high-D 1R85 e

Handley et al, Mon.Not.Roy.Astron.Soc. 450 (2015)1, L61-L65

- A new sampling step scheme is required to beat the limitations of the ellipsoidal
decomposition at the heart of MultiNest

- Slice Sampling (Neal00) in 1D:
- Slice: All points with L(x)>Lo
* From starting point Xo, set

initial bounds L/R by expanding
from a parameter w

* Draw x1 randomly from within L/R

* If X1 not in the slice, contract
bound down to x1 and re-sample xi

Roberto Trotta



HIgh—D Slice Samp“ng Imperial College

A degenerate contour is transformed into a contour with dimensions of order O(1) in
all directions (“whitening”)

Linear skew transform defined by the inverse of the Cholesky decomposition of the
live points’ covariance matrix

Direction selected at random, then slice sampling in 1D performed (w=1)

Repeat N times, with N of order O(D), generating a new point xn decorrelated from Xxo

Affine transformation y = Lx

.~ e R ‘. .

Sampling space

ity X0

Handley+15
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PolyChorad:

Performance

Imperial College

« PolyChord number of likelihood evaluations scales at worst as O(D3) as opposed to
exponential for MultiNest in high-D

Number of Likelihood evaluations, N,
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Information criteria Imperial College

- Several information criteria exist for approximate model comparison
K = number of fitted parameters
N = number of data points,
-2 In(Lmax) = best-fit chi-squared

- Akaike Information Criterium (AIC): AIC = —2In L.« + 2k
- Bayesian Information Criterium (BIC): BIC = —2InL,,.x +kIn N
* Deviance Information Criterium (DIC): DIC = —ZIID/K\L + 2C,

ICIC!
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Notes on information criteria kmperial College

* The best model is the one which minimizes the AIC/BIC/DIC

- Warning: AIC and BIC penalize models differently as a function of the number of
data points N.

For N>7 BIC has a more strong penalty for models with a larger number of free
parameters K.

+ BIC is an approximation to the full Bayesian evidence with a default Gaussian prior
equivalent to 1/N-th of the data in the large N limit.

- DIC takes into account whether parameters are measured or not (via the Bayesian
complexity, see later).

- When possible, computation of the Bayesian evidence is preferable (with explicit
prior specification).

ICIC
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A “simple” example: how many sources?  [Tpefial College

Feroz and Hobson

(2007) Signal + Noise
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A “simple” example: how many sources?  |Tpewa College

Feroz and Hobson

(2007) Signal: 8 sources
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A “simple” example: how many sources?  |Tpewa College

Feroz and Hobson

(2007) Sayesian reconstruction

7 out of 8 objects correctly identified.
Mistake happens because 2 objects very close.
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Cluster detection from Sunyaev-Zeldovich
effect iIn cosmic microwave background maps

Background Background
+ 3 point radio sources + 3 point radio sources
+ cluster cluster

~ 2 deg

Feroz et al 2009



Background Background

+ 3 point radio sources + 3 point radio sources
+ cluster
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Bayesian model comparison:
R = P(cluster | data)/P(no cluster | data)

R=0.35+0.05 R ~ 1033

Cluster parameters also recovered (position, temperature, profile, etc)



Imperial College

The cosmological concordance model

London
Competing model ANp Ref Data Outcome
Initial conditions
Isocurvature modes
CDM isocurvature +1 58 WMAP3+, LSS Strong evidence for adiabaticity
+ arbitrary correlations +4 46 WMAP1+, LSS, SN Ia Undecided
Neutrino entropy +1 60 WMAP3+, LSS Moderate to strong evidence for adiabaticity
+ arbitrary correlations +4 46 WMAP1+, LSS, SN Ia Undecided
Neutrino velocity +1 60 WMAP3+, LSS Moderate to strong evidence for adiabaticity
+ arbitrary correlations +4 46 WMAP1+, LSS, SN Ia Undecided
Primordial power spectrum
No tilt (ns =1) -1 +0.4 47 WMAP1+, LSS Undecided
[-1.1,—0.6)P 51 WMAP1+, LSS Undecided
—0.7 58 WMAP1+, LSS Undecided
—0.9 7 WMAP1+ Undecided
[-0.7, —1.7]P‘d 186 WMAP3+ ns = 1 weakly disfavoured
— 185 WMAP3+, LSS ns = 1 weakly disfavoured
—2.6 7 WMAP3+ ns = 1 moderately disfavoured
—2.9 58 WMAP3+, LSS ns = 1 moderately disfavoured
< —3.9¢ 65 WMAP3+, LSS Moderate evidence at best against ns = 1
Running +1 [-0.6,1.0)p:¢ 186] WMAP3+, LSS No evidence for running
< 0.2° 166] WMAP3+, LSS Running not required
Running of running +2 < 0.4° 166] WMAP3+, LSS Not required
Large scales cut—off +2 [1.3, 2.2]P~d [186] WMAP3+, LSS Weak support for a cut—off
Matter—energy content
Non—-flat Universe +1 —3.8 70] WMAP3+4+, HST Flat Universe moderately favoured
—3.4 58] WMAP3+, LSS, HST Flat Universe moderately favoured
Coupled neutrinos +1 —0.7 193] WMAP3+, LSS No evidence for non—SM neutrinos
Dark energy sector
w(z) = wagg = —1 +1 [-1.3,—-2.7]F 187] SN Ia Weak to moderate support for A
—3.0 50] SN Ia Moderate support for A
—1.1 51] WMAP1+, LSS, SN Ia  Weak support for A
[-0.2, -1} 188] SN Ia, BAO, WMAP3 Undecided
[-1.6,—2.3]% 189] SN Ia, GRB Weak support for A
w(z) = wo + w2 +2 [-1.5,—-3.4])" 187] SN Ia Weak to moderate support for A
—6.0 50] SN Ia Strong support for A
—1.8 188] SN Ia, BAO, WMAP3  Weak support for A
w(z) = wo + wa(l — a) +2 —1.1 188] SN Ia, BAO, WMAP3 Weak support for A
[-1.2,—2.6)% [189] SN Ia, GRB Weak to moderate support for A
Reionization history
No reionization (7 = 0) -1 —2.6 70] WMAP3+, HST 7 #% 0 moderately favoured
No reionization and no tilt  —2 —10.3 7 WMAP3+, HST Strongly disfavoured
from Trotta (2008)
n
I C I C InB < 0: favours ACDM
| Roberto Trotta



Imperial College

Model complexity

« "Number of free parameters" is a relative concept. The relevant scale is set by the
prior range

- How many parameters can the data support, regardless of whether their detection is
significant?

- Bayesian complexity or effective number of parameters:

Cp = x2(0) — x(9)
1
- ZZ: 1+ (03/%;)?

Kunz, RT & Parkinson, astro-ph/0602378, Phys. Rev. D 74, 023503 (2006)
Following Spiegelhalter et al (2002)

ICIC!



DO|yﬂOmia\ fl-t-tlng Imperial College

- Data generated from a model with n = 6:

GOOQOD DATA INSUFFICIENT DATA
Max supported complexity ~ 9 Max supported complexity ~ 4
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How many parameters does the CMB

need?

WMAP3+HST (WMAP5 qualitatively the same)
100 __I 1 I 1 I 1 1 | I I I I I I I I I I I__
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Imperial College
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Bayesian Model-averaging imperial College

P@©|d) = i P(B|d,M)P(Mi|d)

An application to dark energy: Model averaged inferences
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Imperial College

Key points

- Bayesian model comparison extends parameter inference to the space of models

- The Bayesian evidence (model likelihood) represents the change in the degree of
belief in the model after we have seen the data

- Models are rewarded for their predictivity (automatic Occam’s razor)

* Prior specification is for model comparison a key ingredient of the model building
step. If the prior cannot be meaningfully set, then the physics in the model is
probably not good enough.

- Bayesian model complexity can help (together with the Bayesian evidence) in
assessing model performance.

I C I C Roberto Trotta



