Shedding light on new physics with Effective Field Theories

Ilaria Brivio

Niels Bohr Institute, Copenhagen
based on 1701.06424, 1703.10924, 1709.06492 with Y. Jiang and M. Trott

Discóovery

What is an Effective Field Theory?

A pragmatic definition:
it's a field theory that describes the IR limit of an underlying UV sector in terms of only the light degrees of freedom

What is an Effective Field Theory?

A pragmatic definition:
it's a field theory that describes the IR limit of an underlying UV sector in terms of only the light degrees of freedom
\rightarrow can be constructed without knowing what is in the UV

it describes any UV compatible with the low energy spectrum + symmetries chosen

What is an Effective Field Theory?

A pragmatic definition:
it's a field theory that describes the IR limit of an underlying UV sector in terms of only the light degrees of freedom
\rightarrow can be constructed without knowing what is in the UV

it describes any UV compatible with the low energy spectrum + symmetries chosen
\rightarrow the only systematic classification of all the possible UV signals

Why an EFT?

This is literally the tool made for situations in which the UV is unknown and we want to be sure that no signal is missed!

CMS Exotica Physics Group Summary - LHCP, 2016

The SMEFT

SMEFT $=$ Effective Field Theory with SM fields + symmetries

a systematic expansion in canonical dimensions (v / Λ or E / Λ):

$$
\begin{aligned}
& \mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}_{5}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\frac{1}{\Lambda^{3}} \mathcal{L}_{7}+\frac{1}{\Lambda^{4}} \mathcal{L}_{8}+\ldots \\
& \mathcal{L}_{n}=\sum_{i} C_{i} \mathcal{O}_{i}^{d=n} \quad \begin{array}{l}
C_{i} \text { free parameters (Wilson coefficients) } \\
\mathcal{O}_{i} \text { invariant operators that form } \\
\text { a complete basis }
\end{array}
\end{aligned}
$$

The SMEFT - where we are

$$
\mathcal{L}_{\mathrm{SMEFT}}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}_{5}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\frac{1}{\Lambda^{3}} \mathcal{L}_{7}+\frac{1}{\Lambda^{4}} \mathcal{L}_{8}+\ldots
$$

The SMEFT - where we are

$\begin{array}{lllll}\text { B cons. } N_{f}=1 \rightarrow & 1 & 76 & 22 & 895\end{array}$

$$
\begin{array}{cc}
\mathcal{L}_{\mathrm{SMEFT}}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}_{5}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\frac{1}{\Lambda^{3}} \mathcal{L}_{7}+\frac{1}{\Lambda^{4}} \mathcal{L}_{8}+\ldots \\
N_{f}=3 \rightarrow & 3
\end{array} 2499 \quad 948 \quad 36971 . l .
$$

- \# of parameters known for all orders

Lehman 1410.4193
Lehman, Martin 1510.00372
Henning, Lu, Melia, Murayama 1512.03433

The SMEFT - where we are

$$
\begin{aligned}
& \text { Weinberg PRL43(1979)1566 } \\
& \qquad \mathcal{L}_{\mathrm{SMEFT}}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}_{5}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\frac{1}{\Lambda^{3}} \mathcal{L}_{7}+\frac{1}{\Lambda^{4}} \mathcal{L}_{8}+\ldots
\end{aligned}
$$

Leung,Love,Rao Z.Ph.C31(1986)433
Buchmüller, Wyler Nucl.Phys.B268(1986)621 Grzadkowski et al 1008.4884

- \# of parameters known for all orders
- complete bases available for $\mathcal{L}_{5}, \mathcal{L}_{6}, \mathcal{L}_{7}$

The SMEFT - where we are

$$
\mathcal{L}_{\mathrm{SMEFT}}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}_{5}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\frac{1}{\Lambda^{3}} \mathcal{L}_{7}+\frac{1}{\Lambda^{4}} \mathcal{L}_{8}+\ldots
$$

- \# of parameters known for all orders
- complete bases available for $\mathcal{L}_{5}, \mathcal{L}_{6}, \mathcal{L}_{7}$
\mathcal{L}_{5} : Majorana ν masses $\rightarrow 2$ nd part of the talk

The SMEFT - where we are

$$
\mathcal{L}_{\mathrm{SMEFT}}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}_{5}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\frac{1}{\Lambda^{3}} \mathcal{L}_{7}+\frac{1}{\Lambda^{4}} \mathcal{L}_{8}+\ldots
$$

- \# of parameters known for all orders
- complete bases available for $\mathcal{L}_{5}, \mathcal{L}_{6}, \mathcal{L}_{7}$
\mathcal{L}_{5} : Majorana ν masses $\rightarrow 2$ nd part of the talk
\mathcal{L}_{6} : leading deviations from SM \rightarrow our focus
- complete RGE available

Alonso, Jenkins, Manohar, Trott 1308.2627,1310.4838,1312.2014
Grojean, Jenkins, Manohar, Trott 1301.2588
Alonso, Chang, Jenkins, Manohar,Shotwell 1405.0486
Ghezzi,Gomez-Ambrosio,Passarino, Uccirati 1505.03706

The SMEFT - where we are

$$
\mathcal{L}_{\mathrm{SMEFT}}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}_{5}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\frac{1}{\Lambda^{3}} \mathcal{L}_{7}+\frac{1}{\Lambda^{4}} \mathcal{L}_{8}+\ldots
$$

- \# of parameters known for all orders
- complete bases available for $\mathcal{L}_{5}, \mathcal{L}_{6}, \mathcal{L}_{7}$
\mathcal{L}_{5} : Majorana ν masses $\rightarrow 2$ nd part of the talk
\mathcal{L}_{6} : leading deviations from SM \rightarrow our focus
- complete RGE available
- many tree-level calculations of Higgs / EW / flavor observables

The SMEFT - where we are

$$
\mathcal{L}_{\mathrm{SMEFT}}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}_{5}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\frac{1}{\Lambda^{3}} \mathcal{L}_{7}+\frac{1}{\Lambda^{4}} \mathcal{L}_{8}+\ldots
$$

- \# of parameters known for all orders
- complete bases available for $\mathcal{L}_{5}, \mathcal{L}_{6}, \mathcal{L}_{7}$
\mathcal{L}_{5} : Majorana ν masses $\rightarrow 2$ nd part of the talk
\mathcal{L}_{6} : leading deviations from $\mathrm{SM} \rightarrow$ our focus
- complete RGE available
- many tree-level calculations of Higgs / EW / flavor observables
- 1-loop results available for selected processes

Pruna,Signer 1408.3565
Hartmann,(Shepherd), Trott 1505.02646,1507.03568,1611.09879
Ghezzi, Gomez-Ambrosio, Passarino, Uccirati 1505.03706
Gauld,Pecjak,Scott 1512.02508
Deutschmann, Duhr, Maltoni, Vryonidou 1708.00460

The SMEFT - where we are

$$
\mathcal{L}_{\mathrm{SMEFT}}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}_{5}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\frac{1}{\Lambda^{3}} \mathcal{L}_{7}+\frac{1}{\Lambda^{4}} \mathcal{L}_{8}+\ldots
$$

- \# of parameters known for all orders
- complete bases available for $\mathcal{L}_{5}, \mathcal{L}_{6}, \mathcal{L}_{7}$
\mathcal{L}_{5} : Majorana ν masses $\rightarrow 2$ nd part of the talk
\mathcal{L}_{6} : leading deviations from SM \rightarrow our focus
- complete RGE available
- many tree-level calculations of Higgs / EW / flavor observables
- 1-loop results available for selected processes
- formulation in R_{ξ} gauge

The SMEFT - where we are

$$
\mathcal{L}_{\mathrm{SMEFT}}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}_{5}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\frac{1}{\Lambda^{3}} \mathcal{L}_{7}+\frac{1}{\Lambda^{4}} \mathcal{L}_{8}+\ldots
$$

- \# of parameters known for all orders
- complete bases available for $\mathcal{L}_{5}, \mathcal{L}_{6}, \mathcal{L}_{7}$
\mathcal{L}_{5} : Majorana ν masses $\rightarrow 2$ nd part of the talk
\mathcal{L}_{6} : leading deviations from $\mathrm{SM} \rightarrow$ our focus
- complete RGE available
- many tree-level calculations of Higgs / EW / flavor observables
- 1-loop results available for selected processes
- formulation in R_{ξ} gauge
- various tools available for numerical analysis

X^{3}		φ^{6} and $\varphi^{4} D^{2}$		$\psi^{2} \varphi^{3}$	
Q_{G}	$f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	Q_{φ}	$\left(\varphi^{\dagger} \varphi\right)^{3}$	$Q_{e \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{l}_{p} e_{r} \varphi\right)$
$Q_{\widetilde{G}}$	$f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	$Q_{\varphi \square}$	$\left(\varphi^{\dagger} \varphi\right) \square\left(\varphi^{\dagger} \varphi\right)$	$Q_{u \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} u_{r} \widetilde{\varphi}\right)$
Q_{W}	$\varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}{ }^{K \mu}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi\right)^{\star}\left(\varphi^{\dagger} D_{\mu} \varphi\right)$	$Q_{d \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} d_{r} \varphi\right)$
$Q_{\widetilde{W}}$	$\varepsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}$				
$X^{2} \varphi^{2}$		$\psi^{2} X \varphi$		$\psi^{2} \varphi^{2} D$	
$Q_{\varphi G}$	$\varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu}$	$Q_{e W}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I}$	$Q_{\varphi l}^{(1)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}} \varphi\right)\left(\bar{l}_{p} \gamma^{\mu} l_{r}\right)$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger} \varphi \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu}$	$Q_{e B}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \varphi B_{\mu \nu}$	$Q_{\varphi l}^{(3)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}^{I}} \varphi\right)\left(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}\right)$
$Q_{\varphi W}$	$\varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu}$	$Q_{u G}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r}\right) \widetilde{\varphi} G_{\mu \nu}^{A}$	$Q_{\varphi e}$	
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu}$	$Q_{u W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \tau^{I} \widetilde{\varphi} W_{\mu \nu}^{I}$	$Q_{\varphi q}^{(1)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{q}_{p} \gamma^{\mu} q_{r}\right)$
$Q_{\varphi B}$	$\varphi^{\dagger} \varphi B_{\mu \nu} B^{\mu \nu}$	$Q_{u B}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \widetilde{\varphi} B_{\mu \nu}$	$Q_{\varphi q}^{(3)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}^{I}} \varphi\right)\left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}\right)$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu}$	$Q_{d G}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r}\right) \varphi G_{\mu \nu}^{A}$	$Q_{\varphi u}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} u_{r}\right)$
$Q_{\varphi W B}$	$\varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{d W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I}$	$Q_{\varphi d}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{\stackrel{\leftrightarrow}{\mu}_{\mu}} \varphi\right)\left(\bar{d}_{p} \gamma^{\mu} d_{r}\right)$
$Q_{\varphi \widetilde{W} B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{d B}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \varphi B_{\mu \nu}$	$Q_{\varphi u d}$	$i\left(\widehat{\varphi}^{\dagger} D_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} d_{r}\right)$

$(\bar{L} L)(\bar{L} L)$		$(\bar{R} R)(\bar{R} R)$		$(\bar{L} L)(\bar{R} R)$	
$\begin{gathered} Q_{l l} \\ Q_{q q}^{(1)} \\ Q_{q q}^{(3)} \\ Q_{l q}^{(1)} \\ Q_{l q}^{(3)} \end{gathered}$	$\begin{gathered} \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{l}_{s} \gamma^{\mu} l_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} \tau^{I} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right) \\ \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right) \\ \left(\bar{l}_{p} \gamma_{\mu} \tau^{I} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right) \end{gathered}$	$\begin{gathered} \hline Q_{e e} \\ Q_{u u} \\ Q_{d d} \\ Q_{e u} \\ Q_{e d} \\ Q_{u d}^{(1)} \\ Q_{u d}^{(8)} \end{gathered}$	$\begin{gathered} \left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right) \\ \left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{d}_{p} \gamma_{\mu} d_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{u}_{p} \gamma_{\mu} T^{A} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right) \end{gathered}$	$\begin{aligned} & Q_{l e} \\ & Q_{l u} \\ & Q_{l d} \\ & Q_{q e} \\ & Q_{q u}^{(1)} \\ & Q_{q u}^{(8)} \\ & Q_{q d}^{(1)} \\ & Q_{q d}^{(8)} \\ & \hline \end{aligned}$	$\begin{gathered} \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right) \\ \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} T^{A} u_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\ \left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right) \end{gathered}$
$(\bar{L} R)(\bar{R} L)$ and $(\bar{L} R)(\bar{L} R)$		B-violating			
$Q_{l e d q}$ $Q_{q u q d}^{(1)}$ $Q_{q u q d}^{(8)}$ $Q_{\text {lequ }}^{(1)}$ $Q_{\text {lequ }}^{(3)}$	$\begin{gathered} \left(\bar{l}_{p}^{j} e_{r}\right)\left(\bar{d}_{s} q_{t}^{j}\right) \\ \left(\bar{q}_{p}^{j} u_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} d_{t}\right) \\ \left(\bar{q}_{p}^{j} T^{A} u_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} T^{A} d_{t}\right) \\ \left(\bar{l}{ }_{p}^{j} e_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} u_{t}\right) \\ \left(\bar{l}_{p}^{j} \sigma_{\mu \nu} e_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} \sigma^{\mu \nu} u_{t}\right) \\ \hline \end{gathered}$	$\begin{gathered} Q_{d u q} \\ Q_{q q u} \\ Q_{q q q} \\ Q_{d u u} \end{gathered}$	$\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}\left[\left(d_{p}^{\alpha}\right)\right.$ $\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}\left[\left(q_{p}^{\alpha}\right.\right.$ $\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k} \varepsilon_{m n}\left[\left(q^{(\alpha)}\right)^{\text {a }}\right.$ $\varepsilon^{\alpha \beta \gamma}\left[\left(d_{p}^{\alpha}\right)^{\prime}\right.$	T $C u_{r}^{\beta}$ ${ }^{T} C q_{r}^{\beta}$ $)^{T}$$q_{r}$	$\left[\left(q_{s}^{\gamma j}\right)^{T} C l_{t}^{k}\right]$ $\left[\left(u_{s}^{\gamma}\right)^{T} C e_{t}\right]$ $]\left[\left(q_{s}^{\gamma m}\right)^{T} C l_{t}^{n}\right]$ $\left.\left(u_{s}^{\gamma}\right)^{T} C e_{t}\right]$

The EFT approach

The EFT approach

The EFT approach

Bottom-up: untangling the SMEFT

A big knot!

many operators around at the same time in any given observables

we want to untangle this without breaking any strings $\left[\begin{array}{c}\text { extract reliable constraints (or measurements!) } \\ \text { possibly without introducing any bias }\end{array}\right]$

A global ongoing effort

The Wilson coefficients of the SMEFT are been constrained by several groups Just in the last years:

Corbett et al. 1207.13441211 .45801304 .11511411 .50261505 .05516
Ciuchini,Franco,Mishima,Silvestrini 1306.4644
de Blas et al. 1307.5068, 1410.4204, 1608.01509, 1611.05354, 1710.05402
Pomarol, Riva 1308.2803
Englert,Freitas,Müllheitner,Plehn,Rauch,Spira,Walz 1403.7191
Ellis,Sanz,You 1404.36671410 .7703
Falkowski,Riva 1411.0669
Falkowski,Gonzalez-Alonso,Greljo,Marzocca 1508.00581
Berthier,(Bjørn),Trott 1508.05060, 1606.06693
Englert,Kogler,Schulz,Spannowsky 1511.05170
Butter,Éboli,Gonzalez-Fraile,Gonzalez-Garcia,Plehn,Rauch 1604.03105
Freitas,López-Val,Plehn 1607.08251
Falkowski,Golzalez-Alonso,Greljo,Marzocca,Son 1609.06312
Krauss,Kuttimalai,Plehn 1611.00767

Untangling the SMEFT

Ideally: a giant global fit to very precise measurements where all the C_{i} are free parameters

In practice: we can only do partial fits because of

- limited computational possibilities
- insufficient \# of measurements
- insufficient experimental accuracy

Untangling the SMEFT

Ideally: a giant global fit to very precise measurements where all the C_{i} are free parameters

In practice: we can only do partial fits because of

- limited computational possibilities
- insufficient \# of measurements
- insufficient experimental accuracy
the parameter space needs to be reduced choosing observables and coefficients in a smart way

Another look at the knot

a too large \# of operators to constrain

Another look at the knot

a too large \# of operators to constrain

- symmetries

Another look at the knot

a too large \# of operators to constrain

- symmetries

given observables
are sensitive to
different sets
of operators
still needs a
large global fit

Another look at the knot

a too large \# of operators to constrain

- symmetries

Another look at the knot

a too large \# of operators to constrain

- symmetries
flavor $\left(U(3)^{5}, \mathrm{MFV}\right)$ CP
choose a scenario with less parameters

Another look at the knot

a too large \# of operators to constrain

- symmetries flavor $\left(U(3)^{5}, \mathrm{MFV}\right)$ CP
choose a scenario with less parameters
we'd rather have: a set of observables sensitive to a close, manageable set of operators
extract general constraints on these, $\frac{\text { independently }}{\text { others }}$
use the info to expand the analysis

Another look at the knot

a too large \# of operators to constrain

- symmetries flavor $\left(U(3)^{5}, \mathrm{MFV}\right)$ CP
choose a scenario with less parameters
we'd rather have: a set of observables sensitive to a close, - manageable set of operators
extract general constraints on these, $\frac{\text { independently }}{\text { others }}$ of the others
use the info to expand the analysis
-

A convenient strategy

looking for an optimal set of observables
only a few operators contributing significantly many observables share the same relevant ops. sufficient experimental sensitivity

A convenient strategy

looking for an optimal set of observables only a few operators contributing significantly many observables share the same relevant ops. sufficient experimental sensitivity

Obs:
the dominant effect should be the tree-level interference $\left|\mathcal{A}_{S M} \mathcal{A}_{d=6}^{*}\right| \sim \frac{C_{i}}{\Lambda^{2}}$.
whenever this is suppressed, the coefficient C_{i} can be neglected even if $C_{i} \neq 0$

A convenient strategy

looking for an optimal set of observables
only a few operators contributing significantly many observables share the same relevant ops.
sufficient experimental sensitivity

Obs:
the dominant effect should be the tree-level interference $\left|\mathcal{A}_{S M} \mathcal{A}_{d=6}^{*}\right| \sim \frac{C_{i}}{\Lambda^{2}}$. whenever this is suppressed, the coefficient C_{i} can be neglected even if $C_{i} \neq 0$

- in specific kinematic regions. e.g. for ψ^{4} ops. close to $\mathrm{W}, \mathrm{Z}, h$ poles

A convenient strategy

Example - close to a pole
most ψ^{4} operators give diagrams with less resonances
expected to be suppressed wrt. "pole operators" by

$$
\begin{equation*}
\left(\frac{\Gamma_{B} m_{B}}{v^{2}}\right)^{n} \sim 1 / 300 \tag{Z,W}
\end{equation*}
$$

$B=\{Z, W, h\}$
$n=\#$ missing resonances

A convenient strategy

Example - close to a pole
most ψ^{4} operators give diagrams with less resonances

Not always the case. The impact must be checked case by case
E.g. VBS

the 4 -fermion diagram is not removed by poles selection.

A convenient strategy

looking for an optimal set of observables
only a few operators contributing significantly many observables share the same relevant ops.
sufficient experimental sensitivity

Obs:
the dominant effect should be the tree-level interference $\left|\mathcal{A}_{S M} \mathcal{A}_{d=6}^{*}\right| \sim \frac{C_{i}}{\Lambda^{2}}$. whenever this is suppressed, the coefficient C_{i} can be neglected even if $C_{i} \neq 0$

- in specific kinematic regions. e.g. for ψ^{4} ops. close to $\mathrm{W}, \mathrm{Z}, h$ poles

A convenient strategy

looking for an optimal set of observables
only a few operators contributing significantly many observables share the same relevant ops.
sufficient experimental sensitivity

Obs:
the dominant effect should be the tree-level interference $\left|\mathcal{A}_{S M} \mathcal{A}_{d=6}^{*}\right| \sim \frac{C_{i}}{\Lambda^{2}}$.
whenever this is suppressed, the coefficient C_{i} can be neglected even if $C_{i} \neq 0$

- in specific kinematic regions. e.g. for ψ^{4} ops. close to $\mathrm{W}, \mathrm{Z}, h$ poles
- for operators with interference $\propto m_{f}$

$$
\text { Example: dipole operators can be neglected for } f \neq t, b
$$

A convenient strategy

looking for an optimal set of observables
only a few operators contributing significantly many observables share the same relevant ops.
sufficient experimental sensitivity

Obs:

the dominant effect should be the tree-level interference $\left|\mathcal{A}_{S M} \mathcal{A}_{d=6}^{*}\right| \sim \frac{C_{i}}{\Lambda^{2}}$.
whenever this is suppressed, the coefficient C_{i} can be neglected even if $C_{i} \neq 0$

- in specific kinematic regions. e.g. for ψ^{4} ops. close to $\mathrm{W}, \mathrm{Z}, h$ poles
- for operators with interference $\propto m_{f}$
- for operators inducing FCNC

$$
\mathcal{A}_{S M} \text { is very suppressed: }
$$

A convenient strategy

looking for an optimal set of observables
only a few operators contributing significantly many observables share the same relevant ops.
sufficient experimental sensitivity

Obs:
the dominant effect should be the tree-level interference $\left|\mathcal{A}_{S M} \mathcal{A}_{d=6}^{*}\right| \sim \frac{C_{i}}{\Lambda^{2}}$. whenever this is suppressed, the coefficient C_{i} can be neglected even if $C_{i} \neq 0$

- in specific kinematic regions. e.g. for ψ^{4} ops. close to $\mathrm{W}, \mathrm{Z}, h$ poles
- for operators with interference $\propto m_{f}$
- for operators inducing FCNC

The counts reduce significantly!

	Brivio, Jiang, Trott 1709.06492		
	total $N_{f}=3$	WZH poles	
general	2499	~ 46	
MFV	~ 108	~ 30	
$U(3)^{5}$	~ 70	~ 24	

What is the precision needed?

A back-of-an-envelope estimate:

What is the precision needed?

A back-of-an-envelope estimate:

A strong complementarity

A parameter space reduction
B experimental precision required

	pole observables	tails of dist.
A	remarkable	difficult $\left(\psi^{4}\right)$
B	need 1%	ok with tens of $\%$

poles and tails are complementary!

A good idea: do poles first, incorporate tails later

As a case study: EWPD close to the Z-pole

Keeping in mind. . .

... there's a HUGE amount of data to come in the next 20 years!

statistics will increase $\sim \sqrt{L}$

$$
\text { for } 13-14 \mathrm{TeV} \rightarrow \text { increase by a factor } \sqrt{\frac{3000 \mathrm{fb}^{-1}}{36 \mathrm{fb}^{-1}}} \simeq 9
$$

while the energy won't be significantly raised.

Global fit to EW precision data - observables

This talk: results from
Berthier,Trott. 1502.02570, 1508.05060
Berthier,Bjørn, Trott 1606.06693

103 observables included

- EWPD near the Z pole: $\Gamma_{Z}, R_{\ell, c, b}^{0}, A_{F B}^{\ell, c, b, \mu, \tau}, \sigma_{h}^{0}$
- W mass
- $e^{+} e^{-} \rightarrow f \bar{f}$ at TRISTAN,PEP,PETRA,SpS,Tevatron,LEP,LEPII
- bhabha scattering at LEPII
- Low energy precision measurements $\stackrel{\nu \text {-lepton scattering }}{ }$
- ν-nucleon scattering
- ν trident production
- atomic parity violation
- parity violation in eDIS
- Møller scattering
- universality in β decays (CKM unitarity) Pomarol,Riva 1308.2803, Falkowski,Riva 1411.0669

Global fit to EW precision data - parameters

there are 19 Wilson coefficients participating, assuming $\mathrm{CP}+U(3)^{5}$

$$
\begin{array}{llll}
\tilde{C}_{H e} & \left(H^{\dagger} i \overleftrightarrow{D}{ }_{\mu} H\right)\left(\bar{e} \gamma^{\mu} e\right) & \tilde{C}_{l l} & \left(\bar{I} \gamma_{\mu} I\right)\left(\overline{\gamma^{\prime}}{ }^{\mu} l\right) \\
\tilde{C}_{H u} & \left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{u} \gamma^{\mu} u\right) & \tilde{C}_{e e} & \left(\bar{e} \gamma_{\mu} e\right)\left(\bar{e} \gamma^{\mu} e\right) \\
\tilde{C}_{H d} & \left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{d} \gamma^{\mu} d\right) & \tilde{C}_{e u} & \left(\bar{e} \gamma_{\mu} e\right)\left(\bar{u} \gamma^{\mu} u\right) \\
\tilde{C}_{H I}^{(1)} & \left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\overline{(} \gamma^{\mu} /\right) & \tilde{C}_{e d} & \left(\bar{e} \gamma_{\mu} e\right)\left(\bar{d} \gamma^{\mu} d\right) \\
\tilde{C}_{H I}^{(3)} & \left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{i} H\right)\left(\bar{I} \sigma^{i} \gamma^{\mu} l\right) & \tilde{C}_{l e} & \left(\bar{I} \gamma_{\mu} I\right)\left(\bar{e} \gamma^{\mu} e\right) \\
\tilde{C}_{H q}^{(1)} & \left(H^{\dagger} i \overleftrightarrow{D_{\mu}} H\right)\left(\bar{q} \gamma^{\mu} q\right) & \tilde{C}_{l u} & \left(\bar{I} \gamma_{\mu} I\right)\left(\bar{u} \gamma^{\mu} u\right) \\
\tilde{C}_{H q}^{(3)} & \left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{i} H\right)\left(\bar{q} \sigma^{i} \gamma^{\mu} q\right) & \tilde{C}_{l d} & \left(\bar{I} \gamma_{\mu} I\right)\left(\bar{d} \gamma^{\mu} d\right) \\
\tilde{C}_{H W B} & W_{\mu \nu}^{i} B^{\mu \nu} H^{\dagger} \sigma^{i} H & \tilde{C}_{l q}^{(1)} & \left(\bar{I} \gamma_{\mu} I\right)\left(\bar{q} \gamma^{\mu} q\right) \\
\tilde{C}_{H D} & \left(H^{\dagger} D_{\mu} H\right)\left(D^{\mu} H^{\dagger} H\right) & \tilde{C}_{l q}^{(3)} & \left(\bar{I} \sigma^{i} \gamma_{\mu} I\right)\left(\bar{q} \sigma^{i} \gamma^{\mu} q\right) \\
& & \tilde{C}_{q e} & \left(\bar{q} \gamma_{\mu} q\right)\left(\bar{e} \gamma^{\mu} e\right)
\end{array}
$$

Global fit to EW precision data - parameters

there are 19 Wilson coefficients participating, assuming $C P+U(3)^{5}$

$\tilde{C}_{\text {He }}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{e} \gamma^{\mu} e\right)$	\tilde{C}_{11}	$\left(\bar{I} \gamma_{\mu} I\right)\left(\bar{I} \gamma^{\mu} /\right)$
$\tilde{C}_{H u}$	(. $\quad \mathrm{f} / \mathrm{r}^{\mu} u$)	$\tilde{C}_{e e}$	$\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{e} \gamma^{\mu} e\right)$
$\tilde{C}_{H d}$		$\tilde{C}_{e u}$	$\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{u} \gamma^{\mu} u\right)$
$\tilde{C}_{H I}^{(1)}$	$\left(\begin{array}{ll}H & \text { f, } \\ (H)\end{array}\right.$	$\tilde{C}_{\text {ed }}$	$\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{d} \gamma^{\mu} d\right)$
$\tilde{C}_{H I}^{(3)}$	$\left(H^{\dagger} ; \overleftrightarrow{D}_{\mu}^{i} H\right)\left(\bar{l} \sigma^{i} \gamma^{\mu} /\right)$	$\tilde{C}_{l e}$	$\left(\bar{\gamma} \gamma_{\mu} l\right)\left(\bar{e} \gamma^{\mu} e\right)$
$\tilde{C}_{H q}^{(1)}$	$\left(H^{\dagger} i \overleftrightarrow{D}{ }_{\mu} H\right)\left(\bar{q} \gamma^{\mu} q\right)$	$\tilde{C}_{l u}$	$\left(\bar{l} \gamma_{\mu} I\right)\left(\bar{u} \gamma^{\mu} u\right)$
$\tilde{C}_{H q}^{(3)}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{i} H\right)\left(\bar{q} \sigma^{i} \gamma^{\mu} q\right)$	$\tilde{C}_{l d}$	$\left(\bar{T} \gamma_{\mu} I\right)\left(\bar{d} \gamma^{\mu} d\right)$
$\tilde{C}_{\text {HWB }}$	$W_{\mu \nu}^{i} B^{\mu \nu} H^{\dagger} \sigma^{i} H$	$\tilde{C}_{\text {lq }}^{(1)}$	$\left(\overline{\bar{l}} \gamma_{\mu}\right)\left(\bar{q} \gamma^{\mu} q\right)$
$\tilde{C}_{H D}$	$\left(H^{\dagger} D_{\mu} H\right)\left(D^{\mu} H^{\dagger} H\right)$	$\tilde{C}_{1 q}^{(3)}$	$\left(\bar{I} \sigma^{i} \gamma_{\mu} I\right)\left(\bar{q} \sigma^{i} \gamma^{\mu} q\right)$
		$\tilde{C}_{\text {qe }}$	$\left(\bar{q} \gamma_{\mu} q\right)\left(\bar{e} \gamma^{\mu} e\right)$

Global fit to EW precision data - parameters

there are 19 Wilson coefficients participating, assuming $\mathrm{CP}+U(3)^{5}$

$\tilde{C}_{\text {He }}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{e} \gamma^{\mu} e\right)$	\tilde{C}_{11}	$\left(\bar{I} \gamma_{\mu} I\right)\left(\bar{I} \gamma^{\mu} /\right)$
$\tilde{C}_{H u}$	(1) f/ $r^{\mu} u$)	$\tilde{C}_{e e}$	$\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{e} \gamma^{\mu} e\right)$
$\tilde{C}_{H d}$	$\left(t \stackrel{Z, W}{\sim}{ }^{\left.{ }^{\prime} d\right)}\right.$	$\tilde{C}_{e u}$	$\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{u} \gamma^{\mu} u\right)$
$\tilde{C}_{H \prime}^{(1)}$	$\left(\begin{array}{ll}H & \text { f, } \\ (H)\end{array}\right.$	$\tilde{C}_{\text {ed }}$	$\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{d} \gamma^{\mu} d\right)$
$\tilde{C}_{H I}^{(3)}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{i} H\right)\left(\bar{l} \sigma^{i} \gamma^{\mu} /\right)$	$\tilde{C}_{l e}$	$\left(\bar{l} \gamma_{\mu} l\right)\left(\bar{e} \gamma^{\mu} e\right)$
$\tilde{C}_{H q}^{(1)}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{q} \gamma^{\mu} q\right)$	$\tilde{C}_{l u}$	$\left(\overline{\gamma_{\mu}} l^{\prime}\right)\left(\bar{u} \gamma^{\mu} u\right)$
$\tilde{C}_{H q}^{(3)}$	$\left(H^{\dagger} ; \overleftrightarrow{\Pi}^{i} H\right)\left(\bar{q} \sigma^{i} \gamma^{\mu} q\right)$	$\tilde{C}_{l d}$	$\left(\bar{T} \gamma_{\mu} I\right)\left(\bar{d} \gamma^{\mu} d\right)$
$\tilde{C}_{H W B}$	$W_{\mu \nu}^{i} \rightarrow \delta s_{\theta \theta}^{2}{ }^{\text {i }} \mathrm{H}$	$\tilde{C}_{\text {lq }}^{(1)}$	$\left(\overline{\gamma_{\mu}} I\right)\left(\bar{q} \gamma^{\mu} q\right)$
$\tilde{C}_{H D}$	$\left(H^{\dagger} D_{\mu} H\right)\left(D^{\mu} H^{\dagger} H\right)$	$\tilde{C}_{l q}^{(3)}$	$\left(\bar{l} \sigma^{i} \gamma_{\mu} I\right)\left(\bar{q} \sigma^{i} \gamma^{\mu} q\right)$
		$\tilde{C}_{q e}$	$\left(\bar{q} \gamma_{\mu} q\right)\left(\bar{e} \gamma^{\mu} e\right)$

Global fit to EW precision data - parameters

there are 19 Wilson coefficients participating, assuming $\mathrm{CP}+U(3)^{5}$

$\tilde{C}_{\text {He }}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{e} \gamma^{\mu} e\right)$	\tilde{C}_{11}	$\left(\bar{l} \gamma_{\mu} I\right)\left(\bar{I} \gamma^{\mu} I\right)$
$\tilde{C}_{H u}$	(1) f/ $r^{\mu} u$)	$\tilde{C}_{e e}$	$\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{e} \gamma^{\mu} e\right)$
$\tilde{C}_{H d}$	$\left(t \stackrel{Z, W}{\sim}{ }^{\left.{ }^{\prime} d\right)}\right.$	$\tilde{C}_{e u}$	$\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{u} \gamma^{\mu} u\right)$
$\tilde{C}_{H I}^{(1)}$	$\left(\begin{array}{ll}(H) & \text { f, }\end{array}\right.$	$\tilde{C}_{\text {ed }}$	$\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{d} \gamma^{\mu} d\right)$
$\tilde{C}_{H I}^{(3)}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{i} H\right)\left(\bar{l} \sigma^{i} \gamma^{\mu} /\right)$	$\tilde{C}_{l e}$	$\left(\overline{\gamma_{\mu}} /\right)\left(\bar{e} \gamma^{\mu} e\right)$
$\tilde{C}_{H q}^{(1)}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{q} \gamma^{\mu} q\right)$	$\tilde{C}_{l u}$	$\left(\bar{T} \gamma_{\mu} I\right)\left(\bar{u} \gamma^{\mu} u\right)$
$\tilde{C}_{H q}^{(3)}$	$\left(H^{\dagger} ; \overleftrightarrow{n}^{i} H \backslash\left(\bar{q} \sigma^{i} \gamma^{\mu} q\right)\right.$	$\tilde{C}_{l d}$	$\left(\bar{T} \gamma_{\mu} I\right)\left(\bar{d} \gamma^{\mu} d\right)$
$\tilde{C}_{\text {HWB }}$	$W_{\mu \nu}^{i} \rightarrow \delta s_{\theta \theta}^{2}{ }^{\text {i }} \mathrm{H}$	$\tilde{C}_{\text {lq }}^{(1)}$	$\left(\overline{\bar{l}} \gamma_{\mu} I\right)\left(\bar{q} \gamma^{\mu} q\right)$
$\tilde{C}_{H D}$	$\left(H^{\dagger} \rightarrow \delta m_{Z}^{2} H^{\dagger} H\right)$	$\tilde{C}_{l q}^{(3)}$	$\left(\bar{I} \sigma^{i} \gamma_{\mu} l\right)\left(\bar{q} \sigma^{i} \gamma^{\mu} q\right)$
		$\tilde{C}_{q e}$	$\left(\bar{q} \gamma_{\mu} q\right)\left(\bar{e} \gamma^{\mu} e\right)$

Global fit to EW precision data - parameters

there are 19 Wilson coefficients participating, assuming $C P+U(3)^{5}$

$$
\left.\begin{array}{ll}
\tilde{C}_{H e} & \left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{e} \gamma^{\mu} e\right) \\
\tilde{C}_{H u} & (1
\end{array}\right)
$$

Global fit to EW precision data - method

Basics of the fit method

Likelihood:

$$
L\left(C_{i}\right)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} V}} \exp \left(-\frac{1}{2}(\hat{O}-\bar{O})^{T} V^{-1}(\hat{O}-\bar{O})\right)
$$

$$
\chi^{2}=-2 \log L\left(C_{i}\right) \longrightarrow \begin{gathered}
\text { extract best-fit values on each } C_{i} \\
\text { after profiling the } \chi^{2} \text { over the others }
\end{gathered}
$$

\leadsto backup

Global fit to EW precision data - results

103 observables

19 Wilson coefficients participating, assuming $C P+U(3)^{5}$

Global fit to EW precision data - results

103 observables

19 Wilson coefficients participating, assuming $C P+U(3)^{5}$

there are 2 unconstrained directions

well known: first noticed in Han, Skiba 0412166

- The Fisher matrix $\mathcal{I}_{i j}=\frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial C_{i} \partial C_{j}}$ has 2 null eigenvalues
- constraining all the parameters after profiling over the others is not possible

Adding $\bar{\psi} \psi \rightarrow \bar{\psi} \psi \bar{\psi} \psi$ production from LEP2

177 observables
20 Wilson coefficients, assuming $C P+U(3)^{5}$

\rightarrow the flat directions are lifted \rightarrow we can set constraints on all the C_{i}

Adding $\bar{\psi} \psi \rightarrow \bar{\psi} \psi \bar{\psi} \psi$ production from LEP2

177 observables

20 Wilson coefficients, assuming $C P+U(3)^{5}$

Adding $\bar{\psi} \psi \rightarrow \bar{\psi} \psi \bar{\psi} \psi$ production from LEP2

Adding $\bar{\psi} \psi \rightarrow \bar{\psi} \psi \bar{\psi} \psi$ production from LEP2

177 observables
20 Wilson coefficients, assuming $C P+U(3)^{5}$

Adding $\bar{\psi} \psi \rightarrow \bar{\psi} \psi \bar{\psi} \psi$ production from LEP2

177 observables
20 Wilson coefficients, assuming $C P+U(3)^{5}$

Adding $\bar{\psi} \psi \rightarrow \bar{\psi} \psi \bar{\psi} \psi$ production from LEP2

Understanding the unconstrained directions

the first fit considered only $\bar{\psi} \psi \rightarrow \bar{\psi} \psi$ processes

$V_{\mu \nu} V^{\mu \nu}+g \bar{\psi} \gamma^{\mu} \psi V_{\mu}$

Understanding the unconstrained directions

the first fit considered only $\bar{\psi} \psi \rightarrow \bar{\psi} \psi$ processes
$V_{\mu \nu} V^{\mu \nu}+g \bar{\psi} \gamma^{\mu} \psi V_{\mu}$

$$
\begin{aligned}
V_{\mu} & \rightarrow V_{\mu}(1+\varepsilon) \\
g & \rightarrow g /(1+\varepsilon)
\end{aligned}
$$

non canonical kinetic term.
\rightarrow OK adjusting LSZ

Understanding the unconstrained directions

the first fit considered only $\bar{\psi} \psi \rightarrow \bar{\psi} \psi$ processes

$V_{\mu \nu} V^{\mu \nu}+g \bar{\psi} \gamma^{\mu} \psi V_{\mu}$

$(1+2 \varepsilon) V_{\mu \nu} V^{\mu \nu}+g \bar{\psi} \gamma^{\mu} \psi V_{\mu}+\mathcal{O}\left(\varepsilon^{2}\right)$

$$
\begin{aligned}
V_{\mu} & \rightarrow V_{\mu}(1+\varepsilon) \\
g & \rightarrow g /(1+\varepsilon)
\end{aligned}
$$

non canonical kinetic term. \rightarrow OK adjusting LSZ
at tree level + $m_{f} / m_{V} \ll \varepsilon$

Understanding the unconstrained directions

the first fit considered only $\bar{\psi} \psi \rightarrow \bar{\psi} \psi$ processes

$V_{\mu \nu} V^{\mu \nu}+g \bar{\psi} \gamma^{\mu} \psi V_{\mu}$

$$
(1+2 \varepsilon) V_{\mu \nu} V^{\mu \nu}+g \bar{\psi} \gamma^{\mu} \psi V_{\mu}+\mathcal{O}\left(\varepsilon^{2}\right)
$$

$$
\begin{gathered}
(*) \begin{aligned}
V_{\mu} \rightarrow V_{\mu}(1+\varepsilon) \\
g \rightarrow g /(1+\varepsilon)
\end{aligned}
\end{gathered}
$$

non canonical kinetic term. \rightarrow OK adjusting LSZ
at tree level + $m_{f} / m_{V} \ll \varepsilon$
the S-matrix has a reparameterization invariance
operators modifying the kinetic term normalization have no impact here
 these C_{i} can be removed from the amplitude via (*)

Breaking the invariance

. . . needs a process with a TGC!

$$
\bar{\psi} \psi \rightarrow \bar{\psi} \psi \bar{\psi} \psi
$$

Breaking the invariance

. . . needs a process with a TGC!

$$
\bar{\psi} \psi \rightarrow \bar{\psi} \psi \bar{\psi} \psi
$$

In the SMEFT:

Breaking the invariance

... needs a process with a TGC!

$$
\bar{\psi} \psi \rightarrow \bar{\psi} \psi \bar{\psi} \psi
$$

In the SMEFT:

Breaking the invariance

. . . needs a process with a TGC!

$$
\bar{\psi} \psi \rightarrow \bar{\psi} \psi \bar{\psi} \psi
$$

In the SMEFT:

rescaling of kinetic term $g W_{\mu \nu}^{i} W^{j \mu} W^{k \nu}$
still invariant not physical.
can be removed via

$$
(g, V) \rightarrow((1-C) g,(1+C) V)
$$

Breaking the invariance

. . . needs a process with a TGC!

$$
\bar{\psi} \psi \rightarrow \bar{\psi} \psi \bar{\psi} \psi
$$

In the SMEFT:

still invariant not physical. can be removed via $(g, V) \rightarrow((1-C) g,(1+C) V)$

Breaking the invariance

. . . needs a process with a TGC!

$$
\bar{\psi} \psi \rightarrow \bar{\psi} \psi \bar{\psi} \psi
$$

In the SMEFT:

still invariant not physical. can be removed via $(g, V) \rightarrow((1-C) g,(1+C) V)$

NOT invariant! induce shifts that cannot be removed via (g, V) rescaling

Formulation at the operator level

$\bar{\psi} \psi \rightarrow \bar{\psi} \psi$ at tree level and in the limit $m_{\psi} / m_{Z} \ll 1$ are insensitive to

$$
\begin{aligned}
\mathcal{Q}_{H W} & =W_{\mu \nu}^{i} W^{i \mu \nu} H^{\dagger} H \\
\mathcal{Q}_{H B} & =B_{\mu \nu} B^{\mu \nu} H^{\dagger} H
\end{aligned}
$$

Formulation at the operator level

$\bar{\psi} \psi \rightarrow \bar{\psi} \psi$ at tree level and in the limit $m_{\psi} / m_{Z} \ll 1$ are insensitive to

$$
\begin{gathered}
\mathcal{Q}_{H W}=W_{\mu \nu}^{i} W^{i \mu \nu} H^{\dagger} H \\
\mathcal{Q}_{H B}=B_{\mu \nu} B^{\mu \nu} H^{\dagger} H
\end{gathered}
$$

|not only these though

- but any combination equivalent to them via EOM:

$$
\begin{aligned}
& \frac{\mathcal{Q}_{H W}}{2}=\frac{2 i}{g} W_{\mu \nu}^{i} D^{\mu} H^{\dagger} \sigma^{i} D^{\nu} H+2 H^{\dagger} H\left(D_{\mu} H^{\dagger} D^{\mu} H\right)+\frac{\mathcal{Q}_{H a}}{2}-\frac{t_{\theta}}{2} \mathcal{Q}_{H W B}+\frac{\mathcal{Q}_{H q}^{(3)}+\mathcal{Q}_{H l}^{(3)}}{2} \\
& \frac{\mathcal{Q}_{H B}}{2}=\frac{2 i}{g^{\prime}} B_{\mu \nu} D^{\mu} H^{\dagger} D^{\nu} H+\frac{\mathcal{Q}_{H a}}{2}-\frac{\mathcal{Q}_{H W B}}{2 t_{\theta}}+2 \mathcal{Q}_{H D}+\frac{\mathcal{Q}_{H q}^{(1)}}{6}+\frac{2}{3} \mathcal{Q}_{H u}-\frac{\mathcal{Q}_{H d}}{3}-\frac{\mathcal{Q}_{H l}^{(1)}}{2}-\mathcal{Q}_{H e}
\end{aligned}
$$

Formulation at the operator level

$\bar{\psi} \psi \rightarrow \bar{\psi} \psi$ at tree level and in the limit $m_{\psi} / m_{Z} \ll 1$ are insensitive to

$$
\begin{gathered}
\mathcal{Q}_{H W}=W_{\mu \nu}^{i} W^{i \mu \nu} H^{\dagger} H \\
\mathcal{Q}_{H B}=B_{\mu \nu} B^{\mu \nu} H^{\dagger} H
\end{gathered}
$$

Grojean,Skiba, Terning 0602154

$$
\frac{\mathcal{Q}_{H W}}{2}=\frac{2 i}{g} W_{\mu \nu}^{i} D^{\mu} H^{\dagger} \sigma^{i} D^{\nu} H+2 H^{\dagger} H\left(D_{\mu} H^{\dagger} D^{\mu} H\right)+\frac{\mathcal{Q}_{H \square}}{2}-\frac{t_{\theta}}{2} \mathcal{Q}_{H W B}+\frac{\mathcal{Q}_{H q}^{(3)}+\mathcal{Q}_{H l}^{(3)}}{2}
$$

Formulation at the operator level

$\bar{\psi} \psi \rightarrow \bar{\psi} \psi$ at tree level and in the limit $m_{\psi} / m_{Z} \ll 1$ are insensitive to

$$
\begin{gathered}
\mathcal{Q}_{H W}=W_{\mu \nu}^{i} W^{i \mu \nu} H^{\dagger} H \\
\mathcal{Q}_{H B}=B_{\mu \nu} B^{\mu \nu} H^{\dagger} H
\end{gathered}
$$

Grojean,Skiba, Terning 0602154
$\frac{\mathcal{Q}_{H W}}{2}=\underline{\frac{2 i}{g}} W_{\mu \nu}^{i} D^{\mu} H^{\dagger} \sigma^{i} D^{\nu} H+2 H^{\dagger} H\left(D_{\mu} H^{\dagger} D^{\mu} H\right)+\frac{\mathcal{Q}_{H a}}{2}-\frac{t_{\theta}}{2} \mathcal{Q}_{H W B}+\frac{\mathcal{Q}_{H q}^{(3)}+\mathcal{Q}_{H l}^{(3)}}{2}$

| not
 constrained
 in $2 \rightarrow 2$ |
| :--- |$+$| not |
| :---: |
| affecting |
| $2 \rightarrow 2$ |$\quad \Rightarrow \quad$ flat direction

Formulation at the operator level

$\bar{\psi} \psi \rightarrow \bar{\psi} \psi$ at tree level and in the limit $m_{\psi} / m_{Z} \ll 1$ are insensitive to

$$
\begin{gathered}
\mathcal{Q}_{H W}=W_{\mu \nu}^{i} W^{i \mu \nu} H^{\dagger} H \\
\mathcal{Q}_{H B}=B_{\mu \nu} B^{\mu \nu} H^{\dagger} H
\end{gathered}
$$

$\frac{\frac{\mathcal{Q}_{H W}}{2}}{\underline{2}} \underline{\frac{2 i}{g} W_{\mu \nu}^{i} D^{\mu} H^{\dagger} \sigma^{i} D^{\nu} H+2 H^{\dagger} H\left(D_{\mu} H^{\dagger} D^{\mu} H\right)+\frac{\mathcal{Q}_{H a}}{2}-\frac{t_{\theta}}{2} \mathcal{Q}_{H W B}+\frac{\mathcal{Q}_{H q}^{(3)}+\mathcal{Q}_{H l}^{(3)}}{2}}$

$\begin{gathered} \text { not } \\ \text { constrained } \\ \text { in } 2 \rightarrow 2 \end{gathered}$	+	$\begin{gathered} \text { not } \\ \text { affecting } \\ 2 \rightarrow 2 \end{gathered}$	\Rightarrow	flat direction
$\begin{gathered} \text { not } \\ \text { constrained } \\ \text { in } 2 \rightarrow 4 \end{gathered}$	+	probed in $2 \rightarrow 4$	\Rightarrow	constrained!

independently of which operators are retained in the basis!

Formulation at the operator level

$\bar{\psi} \psi \rightarrow \bar{\psi} \psi$ at tree level and in the limit $m_{\psi} / m_{Z} \ll 1$ are insensitive to

$$
\begin{gathered}
\mathcal{Q}_{H W}=W_{\mu \nu}^{i} W^{i \mu \nu} H^{\dagger} H \\
\mathcal{Q}_{H B}=B_{\mu \nu} B^{\mu \nu} H^{\dagger} H
\end{gathered}
$$

Grojean,Skiba, Terning 0602154

$$
\begin{aligned}
& \frac{\mathcal{Q}_{H W}}{2}=\frac{2 i}{g} W_{\mu \nu}^{i} D^{\mu} H^{\dagger} \sigma^{i} D^{\nu} H+2 H^{\dagger} H\left(D_{\mu} H^{\dagger} D^{\mu} H\right)+\frac{\mathcal{Q}_{H a}}{2}-\frac{t_{\theta}}{2} \mathcal{Q}_{H W B}+\frac{\mathcal{Q}_{H q}^{(3)}+\mathcal{Q}_{H 1}^{(3)}}{2} \\
& \frac{\mathcal{Q}_{H B}}{2}=\frac{2 i}{g^{\prime}} B_{\mu \nu} D^{\mu} H^{\dagger} D^{\nu} H+\frac{\mathcal{Q}_{H a}}{2}-\frac{\mathcal{Q}_{H W B}}{2 t_{\theta}}+2 \mathcal{Q}_{H D}+\frac{\mathcal{Q}_{H q}^{(1)}}{6}+\frac{2}{3} \mathcal{Q}_{H u}-\frac{\mathcal{Q}_{H d}}{3}-\frac{\mathcal{Q}_{H l}^{(1)}}{2}-\mathcal{Q}_{H e}
\end{aligned}
$$

Formulation at the operator level

$\bar{\psi} \psi \rightarrow \bar{\psi} \psi$ at tree level and in the limit $m_{\psi} / m_{Z} \ll 1$ are insensitive to

$$
\begin{gathered}
\mathcal{Q}_{H W}=W_{\mu \nu}^{i} W^{i \mu \nu} H^{\dagger} H \\
\mathcal{Q}_{H B}=B_{\mu \nu} B^{\mu \nu} H^{\dagger} H
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\mathcal{Q}_{H W}}{2}=\frac{2 i}{g} W_{\mu \nu}^{i} D^{\mu} H^{\dagger} \sigma^{i} D^{\nu} H+2 H^{\dagger} H\left(D_{\mu} H^{\dagger} D^{\mu} H\right)+\frac{\mathcal{Q}_{H a}}{2}-\frac{t_{\theta}}{2} \mathcal{Q}_{H W B}+\frac{\mathcal{Q}_{H q}^{(3)}+\mathcal{Q}_{H l}^{(3)}}{2} \\
& \frac{\mathcal{Q}_{H B}}{2}=\frac{2 i}{g^{\prime}} B_{\mu \nu} D^{\mu} H^{\dagger} D^{\nu} H+\frac{\mathcal{Q}_{H a}}{2}-\frac{\mathcal{Q}_{H W B}}{2 t_{\theta}}+2 \mathcal{Q}_{H D}+\frac{\mathcal{Q}_{H q}^{(1)}}{6}+\frac{2}{3} \mathcal{Q}_{H u}-\frac{\mathcal{Q}_{H d}}{3}-\frac{\mathcal{Q}_{H l}^{(1)}}{2}-\mathcal{Q}_{H e}
\end{aligned}
$$

The flat directions are a linear superposition of these 2 vectors!

Formulation at the operator level

$\bar{\psi} \psi \rightarrow \bar{\psi} \psi$ at tree level and in the limit $m_{\psi} / m_{Z} \ll 1$ are insensitive to

$$
\begin{gathered}
\mathcal{Q}_{H W}=W_{\mu \nu}^{i} W^{i \mu \nu} H^{\dagger} H \\
\mathcal{Q}_{H B}=B_{\mu \nu} B^{\mu \nu} H^{\dagger} H
\end{gathered}
$$

Grojean,Skiba, Terning 0602154

$$
\begin{aligned}
& \frac{\mathcal{Q}_{H W}}{2}=\frac{2 i}{g} W_{\mu \nu}^{i} D^{\mu} H^{\dagger} \sigma^{i} D^{\nu} H+2 H^{\dagger} H\left(D_{\mu} H^{\dagger} D^{\mu} H\right)+\frac{\mathcal{Q}_{H a}}{2}-\frac{t_{\theta}}{2} \mathcal{Q}_{H W B}+\frac{\mathcal{Q}_{H q}^{(3)}+\mathcal{Q}_{H l}^{(3)}}{2} \\
& \frac{\mathcal{Q}_{H B}}{2}=\frac{2 i}{g^{\prime}} B_{\mu \nu} D^{\mu} H^{\dagger} D^{\nu} H+\frac{\mathcal{Q}_{H a}}{2}-\frac{\mathcal{Q}_{H W B}}{2 t_{\theta}}+2 \mathcal{Q}_{H D}+\frac{\mathcal{Q}_{H q}^{(1)}}{6}+\frac{2}{3} \mathcal{Q}_{H u}-\frac{\mathcal{Q}_{H d}}{3}-\frac{\mathcal{Q}_{H l}^{(1)}}{2}-\mathcal{Q}_{H e}
\end{aligned}
$$

The flat directions are a linear superposition of these 2 vectors!

This result has been checked using two input parameter schemes:

$$
\left\{\alpha_{\mathrm{ew}}, m_{Z}, G_{F}\right\} \text { and }\left\{m_{W}, m_{Z}, G_{F}\right\}
$$

\leadsto backup

Remarks \& caveats

1. the invariance is a basis-independent property of $2 \rightarrow 2$ observables:
retaining $W_{\mu \nu}^{i} D^{\mu} H^{\dagger} \sigma^{i} D^{\nu} H$ instead of another operator
\rightarrow the unconstrained direction is just $W_{\mu \nu}^{i} D^{\mu} H^{\dagger} \sigma^{i} D^{\nu} H$ (same for B)

Remarks \& caveats

1. the invariance is a basis-independent property of $2 \rightarrow 2$ observables:
retaining $W_{\mu \nu}^{i} D^{\mu} H^{\dagger} \sigma^{i} D^{\nu} H$ instead of another operator
\rightarrow the unconstrained direction is just $W_{\mu \nu}^{i} D^{\mu} H^{\dagger} \sigma^{i} D^{\nu} H$ (same for B)
2. EOMs and field redefinitions connect operators with different impact on couplings and 2-point functions \rightarrow be careful!

Remarks \& caveats

1. the invariance is a basis-independent property of $2 \rightarrow 2$ observables:
retaining $W_{\mu \nu}^{i} D^{\mu} H^{\dagger} \sigma^{i} D^{\nu} H$ instead of another operator
\rightarrow the unconstrained direction is just $W_{\mu \nu}^{i} D^{\mu} H^{\dagger} \sigma^{i} D^{\nu} H$ (same for B)
2. EOMs and field redefinitions connect operators with different impact on couplings and 2-point functions \rightarrow be careful!

3. removing parameters arbitrarily would have given biased constraints

Remarks \& caveats

1. the invariance is a basis-independent property of $2 \rightarrow 2$ observables:
retaining $W_{\mu \nu}^{i} D^{\mu} H^{\dagger} \sigma^{i} D^{\nu} H$ instead of another operator
\rightarrow the unconstrained direction is just $W_{\mu \nu}^{i} D^{\mu} H^{\dagger} \sigma^{i} D^{\nu} H$ (same for B)
2. EOMs and field redefinitions connect operators with different impact on couplings and 2-point functions \rightarrow be careful!

3. removing parameters arbitrarily would have given biased constraints

It's important to have a tool that can handle all the operators simultaneously and allow a numerical estimate of their impact

The SMEFTsim package

```
an UFO & FeynRules model with*:
```

1. the complete B-conserving Warsaw basis for 3 generations, including all complex phases and CP terms
2. automatic field redefinitions to have canonical kinetic terms
3. automatic parameter shifts due to the choice of an input parameters set

Main scope:
estimate tree-level $\left|\mathcal{A}_{\boldsymbol{S M}} \mathcal{A}_{\boldsymbol{d}=\boldsymbol{6}}^{*}\right|$ interference terms \rightarrow theo. accuracy $\sim \%$

* at the moment only LO, unitary gauge implementation

The SMEFTsim package

We implemented 6 different frameworks
(3) flavor $\begin{aligned} & \text { ftructures }\end{aligned}\left\{\begin{array}{l}\text { general } \\ U(3)^{5} \text { symmetric } \\ \text { linear MFV }\end{array} \times(2) \underset{\text { input }}{\text { schemes }}\left\{\left\{\begin{array}{l}\hat{\alpha}_{\mathrm{em}}, \hat{m}_{Z}, \hat{G}_{f} \\ \hat{m}_{W}, \hat{m}_{Z}, \hat{G}_{f}\end{array}\right.\right.\right.$
in 2 independent, equivalent models sets (A, B) : best for debugging and validation
feynrules.irmp.ucl.ac.be/wiki/SMEFT

Pre-exported UFO files (include restriction cards)

Standard Model Effective Field Theory -- The SMEFTsim package

Authors

llana Brivio, Yun Jlang and Michael Trott
ilaria.brivio@nbi.ku. dk , yunjiangenbi.ku.dk, michael.trott@cern.ch
NBIA and Discovery Center, Niots Bofrr institute, University or Copennagen

	Set A		Set B	
	α scheme	m_{w} scheme	a scheme	mw scheme
Flavor general SMEFT	SMEFTsim A general alphaScheme_UFO.tar.gz	LSMEFTsim A _ general MwScheme_UFO.tar.gz	\SMEFT alpha_UFO.zip \downarrow	SMEFT_mW_UFO.zip \downarrow
MFV SMEFT	SMEFTsim A MFV_alphaScheme_UFO.tar.gz \downarrow	SMEFTsim_A MFV_MwScheme_UFO.tar.gz \downarrow	SMEFT_alpha_MFV_UFO.zip	USMEFT_mW_MFV_UFO.Zip \downarrow
$\begin{aligned} & \mathrm{U}(3)^{5} \\ & \text { SMEFT } \end{aligned}$	SMEFTsim A U35_alphaScheme_UFO.tar.gz \downarrow	SMEFTsim A U35 MwScheme UFO.tar.gz \downarrow	SMEFT_alpha_FLU_UFO.zip	SMEFT_mW_FLU_UFO.zip

Road-map and challenges

Towards a general EFT analysis of precision measurements:

1. Complete a "WHZ poles program"

- design optimized experimental analyses

Road-map and challenges

Towards a general EFT analysis of precision measurements:

1. Complete a "WHZ poles program"

- design optimized experimental analyses

2. Include tails of kinematic distributions difficulties: . many parameters involved $\left((\bar{\psi} \psi)^{2}\right.$ operators)

- EFT validity issues

Road-map and challenges

Towards a general EFT analysis of precision measurements:

1. Complete a "WHZ poles program"

- design optimized experimental analyses

2. Include tails of kinematic distributions
difficulties: . many parameters involved $\left((\bar{\psi} \psi)^{2}\right.$ operators)

- EFT validity issues

3. Improve the accuracy of SMEFT predictions

- better treatment of theoretical uncertainties due to neglected higher orders + radiative corrections, initial/final state radiation etc
- new statistical tools to make the most out of the fit information

Brehmer, Cranmer, Kling, Plehn 1612.05261,1712.02350 Murphy 1710.02008

- loop calculations in the SMEFT
- inclusion of $d=8$ operators (construct a basis!)

Road-map and challenges

Towards a general EFT analysis of precision measurements:

1. Complete a "WHZ poles program"

- design optimized experimental analyses

2. Include tails of kinematic distributions difficulties: . many parameters involved $\left((\bar{\psi} \psi)^{2}\right.$ operators)

- EFT validity issues

3. Improve the accuracy of SMEFT predictions

- better treatment of theoretical uncertainties due to neglected higher orders + radiative corrections, initial/final state radiation etc
- new statistical tools to make the most out of the fit information

Brehmer, Cranmer, Kling, Plehn 1612.05261,1712.02350

- loop calculations in the SMEFT
- inclusion of $d=8$ operators (construct a basis!)

Top-down:
 the Neutrino Option

The issue: dynamics of the Higgs potential

The Higgs potential gives a successful parameterization of the electroweak symmetry breaking

$$
V_{c}\left(H^{\dagger} H\right)=-\frac{m^{2}}{2}\left(H^{\dagger} H\right)+\lambda\left(H^{\dagger} H\right)^{2}
$$

but it lacks a dynamical origin !

several theoretical problems:
hierarchy, stability, triviality, phase transition? ...

The hierarchy problem in an EFT perspective

Heavy new physics can give loop corrections to $\left(H^{\dagger} H\right)$

The hierarchy problem in an EFT perspective

Heavy new physics can give loop corrections to $\left(H^{\dagger} H\right)$

\downarrow integrating it out
threshold matching contributions at $E<m_{i}$
[loops in DR $+\overline{M S}$ in the $\lim v / m_{i} \rightarrow 0$]

$$
\Delta V\left(H^{\dagger} H\right) \simeq H^{\dagger} H\left(\frac{3\left|\kappa_{v}\right|^{2} m_{v}^{2} N_{v}}{16 \pi^{2}}+\frac{\left|\kappa_{s}\right|^{2} m_{s}^{2} N_{s}}{16 \pi^{2}}-\frac{\left|\kappa_{F}\right|^{2} m_{F}^{2} N_{F}}{16 \pi^{2}}\right)+\ldots
$$

The hierarchy problem in an EFT perspective

Heavy new physics can give loop corrections to $\left(H^{\dagger} H\right)$

\downarrow integrating it out
threshold matching contributions at $E<m_{i}$ [loops in DR $+\overline{M S}$ in the $\lim v / m_{i} \rightarrow 0$]

$$
\Delta V\left(H^{\dagger} H\right) \simeq H^{\dagger} H\left(\frac{3\left|\kappa_{v}\right|^{2} m_{v}^{2} N_{v}}{16 \pi^{2}}+\frac{\left|\kappa_{s}\right|^{2} m_{s}^{2} N_{s}}{16 \pi^{2}}-\frac{\left|\kappa_{F}\right|^{2} m_{F}^{2} N_{F}}{16 \pi^{2}}\right)+\ldots
$$

these corrections are always proportional to the scale integrated out
\rightarrow one of the main complications when UV completing the potential

Traditional solutions

Common approaches:
(a) SUSY way: extra symmetry to force cancellations among thresholds
(b) Composite way: shift symmetry to protect $H^{\dagger} H$
potential generated radiatively.

$$
V(H) \simeq \frac{g_{S M}^{2} \Lambda^{2}}{8 \pi^{2}}\left(-a H^{\dagger} H+b \frac{\left(H^{\dagger} H\right)^{2}}{f^{2}}\right)
$$

Traditional solutions

Common approaches:
(a) SUSY way: extra symmetry to force cancellations among thresholds
(b) Composite way: shift symmetry to protect $H^{\dagger} H$ potential generated radiatively.

$$
V(H) \simeq \frac{g_{S M}^{2} \Lambda^{2}}{8 \pi^{2}}\left(-a H^{\dagger} H+b \frac{\left(H^{\dagger} H\right)^{2}}{f^{2}}\right)
$$

Troubles:

- both require resonances not far from TeV scale

Traditional solutions

Common approaches:
(a) SUSY way: extra symmetry to force cancellations among thresholds
(b) Composite way: shift symmetry to protect $H^{\dagger} H$ potential generated radiatively.

$$
V(H) \simeq \frac{g_{S M}^{2} \Lambda^{2}}{8 \pi^{2}}\left(-a H^{\dagger} H+b \frac{\left(H^{\dagger} H\right)^{2}}{f^{2}}\right)
$$

Troubles:

- both require resonances not far from TeV scale
- the potential must be generated at once. That's not trivial!

$$
\begin{gathered}
\text { tuning of } a, b \leftrightarrow \text { complex spectrum / symmetry setup } \\
\text { needed to get }
\end{gathered}
$$

the right shape $\quad+\quad \frac{v^{2}}{f^{2}}=\frac{a}{b} \lesssim 1$

Trying to change perspective

Having measured the Higgs mass opens new possibilities! An important one: controlling the running of the potential to very high energies.

Trying to change perspective

Having measured the Higgs mass opens new possibilities! An important one: controlling the running of the potential to very high energies.

We can move the stabilization problem from the TeV to a much higher scale

- evade the problem of missing discoveries
- use a trivial spectrum + the SM RG running to obtain the mexican hat

The key idea

have some very heavy UV set the initial conditions at a high scale interesting region: where $\lambda \lesssim 0: \mu \sim 10-100 \mathrm{PeV}$

The key idea

have some very heavy UV set the initial conditions at a high scale interesting region: where $\lambda \lesssim 0: \mu \sim 10-100 \mathrm{PeV}$

The key idea

have some very heavy UV set the initial conditions at a high scale interesting region: where $\lambda \lesssim 0: \mu \sim 10-100 \mathrm{PeV}$

The key idea

have some very heavy UV set the initial conditions at a high scale interesting region: where $\lambda \lesssim 0: \mu \sim 10-100 \mathrm{PeV}$

The key idea

have some very heavy UV set the initial conditions at a high scale interesting region: where $\lambda \lesssim 0: \mu \sim 10-100 \mathrm{PeV}$

A compelling case: type I seesaw

minimal extension of the SM: adds 3 heavy Majorana neutrinos $N \equiv N^{c}$

$$
\mathcal{L}_{N}=\frac{1}{2} \bar{N}(i \not \emptyset-M) N-\frac{1}{2}\left[\bar{N} \omega^{*} \tilde{H}^{\top} \ell_{L}^{c}+\bar{N} \omega \tilde{H}^{\dagger} \ell_{L}+\text { h.c. }\right]
$$

integrating out the N gives the Weinberg operator: $\frac{1}{2}\left(\overline{\ell_{L}} \omega^{T} \tilde{H}^{*}\right) M^{-1}\left(\tilde{H}^{\dagger} \omega \ell_{L}\right)$
\rightarrow light neutrino masses $m_{\nu}=\frac{v^{2}}{2} \omega^{T} M^{-1} \omega$

Minkowski 1977
Gell-Mann, Ramond,Slansky 1979 Mohapatra,Senjanovic 1980 Yanagida 1980

2 free quantities:
$M=\operatorname{diag}\left(M_{1}, M_{2}, M_{3}\right)$
ω a 3×3 matrix in flavor space

(1) Thresholds from the seesaw

$$
\Delta m^{2}=M_{p}^{2} \frac{\left|\omega_{p}\right|^{2}}{8 \pi^{2}} \quad \Delta \lambda=-5 \frac{\left(\omega_{q} \cdot \omega^{p, \star}\right)\left(\omega_{p} \cdot \omega^{q, \star}\right)}{64 \pi^{2}}
$$

We need to assume these are the dominant contributions to λ, m^{2} at $\mu \simeq M$

- nearly-vanishing classical potential at $\mu \gtrsim M$: approximate scale invariance + explicit breaking only from Majorana mass
- threshold contributions from other NP are subdominant wrt these
- SM contributions to the Coleman-Weinberg potential are also smaller. OK for $M|\omega| \gg v, \Lambda_{Q C D}$.

(2) Running down

Coupled differential system

- 1-loop SM RGE for $\left\{\lambda, m^{2}, Y_{t}, g_{1}, g_{2}, g_{3}\right\}$
- 1-loop boundary conditions (\sim degenerate N_{p})

$$
\begin{aligned}
\lambda(M) & =-9 \frac{5}{64 \pi^{2}}|\omega|^{4} & m^{2}(M) & =\frac{3|\omega|^{2}}{8 \pi^{2}} M^{2} \\
Y_{t}\left(m_{t}\right) & =0.9460 & g_{1}\left(m_{t}\right) & =0.3668 \\
g_{2}\left(m_{t}\right) & =0.6390 & g_{3}\left(m_{t}\right) & =1.1671
\end{aligned}
$$

solve for $\left\lvert\, \begin{gathered}\lambda\left(m_{t}\right)=0.127 \\ m^{2}\left(m_{t}\right)=(132.2 \mathrm{GeV})^{2}\end{gathered} \quad \rightarrow\right.$ "best-fit" values for $M,|\omega|$

Test: this fixes the m_{ν} scale. Can we get realistic values?

Results

$\lambda\left(m_{t}\right)$ is not sensitive to $|\omega|$ but depends significantly on M
best fit $M \simeq 10^{7.4} \mathrm{GeV} \simeq 25 \mathrm{PeV}$
! large uncertainty due to m_{t}

Results

$\lambda\left(m_{t}\right)$ is not sensitive to $|\omega|$ but depends significantly on M
best fit $M \simeq 10^{7.4} \mathrm{GeV} \simeq 25 \mathrm{PeV}$
! large uncertainty due to m_{t}

with fixed $M, m^{2}\left(m_{t}\right)$ determines uniquely $|\omega| \simeq 10^{-4.5}$
\downarrow
$\sum\left|m_{\nu}\right|=\frac{3|\omega|^{2}}{2} \frac{v^{2}}{M} \simeq 3 \cdot 10^{-3} \mathrm{eV}$

Results

$\lambda\left(m_{t}\right)$ is not sensitive to $|\omega|$ but depends significantly on M
\downarrow
best fit $M \simeq 10^{7.4} \mathrm{GeV} \simeq 25 \mathrm{PeV}$
! large uncertainty due to m_{t}

The neutrino option: troubles

- High numerical sensitivity to top mass + RGE order
- No thermal leptogenesis in this scenario (needs $|\omega| \gtrsim 10^{-4}$)
Davoudiasl, Lewis 1404.6260
- No BSM signatures predicted (besides ν masses) up to the PeV
- Does NOT solve the hierarchy problem

New challenge:
construct a UV leading to

Majorana masses + quasi-conformal potential at the PeV scale

The neutrino option: good points

- it's minimal
- λ, m^{2}, m_{ν} can all be generated with the correct values
- neutrino mass splittings and mixing can be accommodated! (adjusted with additional parameters)
- ties the breaking of scale invariance with that of the lepton number \rightarrow SM terms are accidentally protected!
- no BSM signatures predicted (besides ν masses) up to the PeV
- the key idea of generating the potential at high scale is general ! Can be applied to other UVs

Backup slides

Field redefinitions

Gauge bosons

$$
\begin{aligned}
\mathcal{L}_{\text {SMEFT }} \supset & -\frac{1}{4} B_{\mu \nu} B^{\mu \nu}-\frac{1}{4} W_{\mu \nu}^{\prime} W^{\prime \mu \nu}-\frac{1}{4} G_{\mu \nu}^{a} G^{a \mu \nu}+ \\
& +C_{H B}\left(H^{\dagger} H\right) B_{\mu \nu} B^{\mu \nu}+C_{H W}\left(H^{\dagger} H\right) W_{\mu \nu}^{\prime} W^{\prime \mu \nu}+C_{H W B}\left(H^{\dagger} \sigma^{\prime} H\right) W_{\mu \nu}^{\prime} B^{\mu \nu} \\
& +C_{H G}\left(H^{\dagger} H\right) G_{\mu \nu}^{a} G^{a \mu \nu}
\end{aligned}
$$

to have canonically normalized kinetic terms we need to

1. redefine fields and couplings keeping $\left(g V_{\mu}\right)$ unchanged:

$$
\begin{aligned}
\mathcal{B}_{\mu} \rightarrow B_{\mu}\left(1+C_{H B} v^{2}\right) & & g_{1} \rightarrow g_{1}\left(1-C_{H B} v^{2}\right) \\
\mathcal{W}_{\mu}^{\prime} \rightarrow W_{\mu}^{\prime}\left(1+C_{H W} v^{2}\right) & & g_{2} \rightarrow g_{2}\left(1-C_{H W} v^{2}\right) \\
\mathcal{G}_{\mu}^{a} \rightarrow G_{\mu}^{a}\left(1+C_{H G} v^{2}\right) & & g_{s} \rightarrow g_{s}\left(1-C_{H G} v^{2}\right)
\end{aligned}
$$

2. correct the rotation to mass eigenstates:

$$
\binom{\mathcal{W}_{\mu}^{3}}{\mathcal{B}_{\mu}}=\left(\begin{array}{cc}
1 & -v^{2} C_{H W B} / 2 \\
-v^{2} C_{H W B} / 2 & 1
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{Z_{\mu}}{A_{\mu}}
$$

(equivalent to a shift of the Weinberg angle)

Field redefinitions

Higgs

$$
\mathcal{L}_{\text {SMEFT }} \supset \frac{1}{2} D_{\mu} H^{\dagger} D^{\mu} H+C_{H ם}\left(H^{\dagger} H\right)\left(H^{\dagger} \square H\right)+C_{H D}\left(H^{\dagger} D_{\mu} H\right)^{*}\left(H^{\dagger} D^{\mu} H\right)
$$

to have a canonically normalized kinetic term, in unitary gauge, we need to replace

$$
h \rightarrow h\left(1+v^{2} C_{H \square}-\frac{v^{2}}{4} C_{H D}\right)
$$

Shifts from input parameters

SM case.
Parameters in the canonically normalized Lagrangian : $\bar{v}, \bar{g}_{1}, \bar{g}_{2}, s_{\bar{\theta}}$
The values can be inferred from the measurements e.g. of $\left\{\alpha_{\mathrm{em}}, m_{Z}, G_{f}\right\}$:

$$
\begin{aligned}
\alpha_{\mathrm{em}} & =\frac{\bar{g}_{1} \bar{g}_{2}}{\bar{g}_{1}^{2}+\bar{g}_{2}^{2}} \\
m_{Z} & =\frac{\bar{g}_{2} \bar{v}}{2 c_{\bar{\theta}}} \\
G_{f} & =\frac{1}{\sqrt{2} \bar{v}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\hat{v}^{2} & =\frac{1}{\sqrt{2} G_{f}} \\
\sin \hat{\theta}^{2} & =\frac{1}{2}\left(1-\sqrt{1-\frac{4 \pi \alpha_{\mathrm{em}}}{\sqrt{2} G_{f} m_{Z}^{2}}}\right) \\
\hat{\mathrm{g}}_{1} & =\frac{\sqrt{4 \pi \alpha_{\mathrm{em}}}}{\cos \hat{\theta}} \\
\hat{g}_{2} & =\frac{\sqrt{4 \pi \alpha_{\mathrm{em}}}}{\sin \hat{\theta}}
\end{aligned}
$$

in the SM at tree-level $\bar{\kappa}=\hat{\kappa}$

Shifts from input parameters

SMEFT case.

Parameters in the canonically normalized Lagrangian : $\bar{v}, \bar{g}_{1}, \bar{g}_{2}, s_{\bar{\theta}}$
The values can be inferred from the measurements e.g. of $\left\{\alpha_{\mathrm{em}}, m_{Z}, G_{f}\right\}$:

$$
\begin{aligned}
& \alpha_{\mathrm{em}}=\frac{\bar{g}_{1} \bar{g}_{2}}{\bar{g}_{1}^{2}+\bar{g}_{2}^{2}}\left[1+\bar{v}^{2} C_{H W B} \frac{\bar{g}_{2}^{3} / \bar{g}_{1}}{\bar{g}_{1}^{2}+\bar{g}_{2}^{2}}\right] \\
& \begin{aligned}
m_{Z} & =\frac{\bar{g}_{2} \bar{v}}{2 c_{\bar{\theta}}}+\delta m_{Z}\left(C_{i}\right) \\
G_{f} & =\frac{1}{\sqrt{2} \bar{v}^{2}}+\delta G_{f}\left(C_{i}\right)
\end{aligned} \\
& \hat{v}^{2}=\frac{1}{\sqrt{2} G_{f}} \\
& \sin \hat{\theta}^{2}=\frac{1}{2}\left(1-\sqrt{1-\frac{4 \pi \alpha_{\mathrm{em}}}{\sqrt{2} G_{f} m_{Z}^{2}}}\right) \\
& \begin{array}{l}
\hat{\mathrm{g}}_{1}=\frac{\sqrt{4 \pi \alpha_{\mathrm{em}}}}{\cos \hat{\theta}} \\
\hat{\mathrm{~g}}_{2}=\frac{\sqrt{4 \pi \alpha_{\mathrm{em}}}}{\sin \hat{\theta}}
\end{array}
\end{aligned}
$$

in the SM at tree-level $\bar{\kappa}=\hat{\kappa}$
in the SMEFT $\bar{\kappa}=\hat{\kappa}+\delta \kappa\left(C_{i}\right)$

Shifts from input parameters

To have numerical predictions it is necessary to replace $\bar{\kappa} \rightarrow \hat{\kappa}+\delta \kappa\left(C_{i}\right)$ for all the parameters in the Lagrangian.
$\left\{\alpha_{\mathrm{em}}, m_{Z}, G_{f}\right\}$ scheme

$$
\delta m_{Z}^{2}=m_{Z}^{2} \hat{v}^{2}\left(\frac{c_{H D}}{2}+2 c_{\hat{\theta}} \hat{s}_{\hat{\theta}} c_{H W B}\right)
$$

$$
\delta G_{f}=\frac{\hat{v}^{2}}{\sqrt{2}}\left(\left(c_{H 1}^{(3)}\right)_{11}+\left(c_{H 1}^{(3)}\right)_{22}-\left(c_{l \mid}\right)_{1221}\right)
$$

$$
\delta g_{1}=\frac{s_{\hat{\theta}}^{2}}{2\left(1-2 s_{\hat{\theta}}^{2}\right)}\left(\sqrt{2} \delta G_{f}+\delta m_{Z}^{2} / m_{Z}^{2}+2 \frac{c_{\hat{\theta}}^{3}}{s_{\hat{\theta}}} c_{H W B} \hat{v}^{2}\right)
$$

$$
\delta g_{2}=-\frac{c_{\hat{\theta}}^{2}}{2\left(1-2 s_{\hat{\theta}}^{2}\right)}\left(\sqrt{2} \delta G_{f}+\delta m_{Z}^{2} / m_{Z}^{2}+2 \frac{s_{\hat{\theta}}^{3}}{c_{\hat{\theta}}} c_{H W B} \hat{v}^{2}\right)
$$

$$
\delta s_{\theta}^{2}=2 c_{\hat{\theta}}^{2} s_{\hat{\theta}}^{2}\left(\delta g_{1}-\delta g_{2}\right)+c_{\hat{\theta}} s_{\hat{\theta}}\left(1-2 s_{\hat{\theta}}^{2}\right) c_{H} w \hat{v}^{2}
$$

$$
\delta m_{h}^{2}=m_{h}^{2} \hat{v}^{2}\left(2 c_{H_{0}}-\frac{c_{H D}}{2}-\frac{3 c_{H}}{2 l a m}\right)
$$

Shifts from input parameters

To have numerical predictions it is necessary to replace $\bar{\kappa} \rightarrow \hat{\kappa}+\delta \kappa\left(C_{i}\right)$ for all the parameters in the Lagrangian.
$\left\{m_{W}, m_{Z}, G_{f}\right\}$ scheme

$$
\begin{aligned}
\delta m_{Z}^{2} & =m_{Z}^{2} \hat{v}^{2}\left(\frac{c_{H D}}{2}+2 c_{\hat{\theta}} s_{\hat{\theta}} c_{H W B}\right) \\
\delta G_{f} & =\frac{\hat{v}^{2}}{\sqrt{2}}\left(\left(c_{H 1}^{(3)}\right)_{11}+\left(c_{H 1}^{(3)}\right)_{22}-\left(c_{I I}\right)_{1221}\right) \\
\delta g_{1} & =-\frac{1}{2}\left(\sqrt{2} \delta G_{f}+\frac{1}{s_{\hat{\theta}}^{2}} \frac{\delta m_{Z}^{2}}{m_{Z}^{2}}\right) \\
\delta g_{2} & =-\frac{1}{\sqrt{2}} \delta G_{f} \\
\delta s_{\theta}^{2} & =2 c_{\hat{\theta}}^{2} s_{\hat{\theta}}^{2}\left(\delta g_{1}-\delta g_{2}\right)+c_{\hat{\theta}} s_{\hat{\theta}}\left(1-2 s_{\hat{\theta}}^{2}\right) c_{H W B} \hat{v}^{2} \\
\delta m_{h}^{2} & =m_{h}^{2} \hat{v}^{2}\left(2 c_{H \square}-\frac{c_{H D}}{2}-\frac{3 c_{H}}{2 l a m}\right)
\end{aligned}
$$

Global fit to EW precision data - method

Likelihood:

$\Delta_{\text {SMEFT }}$

SMEFT uncertainty: \rightarrow impact of $d \geqslant 8$ operators + radiative corrections
\rightarrow initial/final state radiation
$\rightarrow \ldots$

Berthier, Trott 1508.05060
in the fit: taken to be a fixed flat relative uncertainty $0 \leqslant \Delta_{\text {SMEFT }} \leqslant 1 \%$

Focus on $\bar{\psi} \psi \rightarrow \bar{\psi} \psi \bar{\psi} \psi$

This process is relevant in EW fits!
So it needs to be computed as accurately as possible.

Critical points:

1. better computing the full amplitude than using narrow width approx. (ensures gauge invariance)
2. even so, in the SMEFT:

$$
\sim \sim=\frac{1}{p^{2}-m_{w 0}^{2}-\delta m_{W}^{2}}, \quad m_{W 0}=\frac{\bar{g} \bar{v}}{2}
$$

one needs to expand

$$
\frac{1}{p^{2}-m_{W 0}^{2}}\left(1+\frac{\delta m_{W}^{2}}{p^{2}-m_{W 0}^{2}}\right)
$$

technically, we expand around a pole which is not the physical one... this is not really gauge invariant!

m_{W} as an input parameter

Idea: if m_{W} was an input, the expansion would be around the physical pole
\rightarrow we can replace the usual $\left\{\alpha_{\mathrm{em}}, m_{Z}, G_{F}\right\}$ scheme with a $\left\{m_{W}, m_{Z}, G_{F}\right\}$
Brivio, Trott 1701.06424

other benefits

- easier loop calculations in the SMEFT
- smaller logs from perturbative corrections: m_{W} is measured at a scale closer to $m_{Z}, m_{h}, m_{t} \ldots$
do we lose precision? not too much!
giving up α_{em} for Z pole measurement is not a big deal

$$
\left.\begin{array}{c}
\alpha_{\mathrm{em}}(0)^{-1}=137.035999139(31) \\
\text { in the Thomson limit }
\end{array} \alpha_{\mathrm{em}}^{\text {BUT }\left(m_{Z}\right)=\frac{\alpha_{\mathrm{em}}(0)}{1-\Delta \alpha\left(m_{Z}\right)}} \alpha_{\mathrm{em}}\left(m_{Z}\right)^{-1}=127.950 \pm 0.017\right)(0.013 \%)
$$

$$
\begin{array}{rl|l}
m_{W}= & 80.387 \pm 0.016 \mathrm{GeV} & (0.019 \%)
\end{array} \quad \begin{aligned}
& \text { also: recently measured at } \mathrm{LHC!} \\
& \\
& \text { (Tevatron combined) }
\end{aligned}
$$

m_{W} as an input parameter

also: it has been checked that the Tevatron measurement of m_{W} does not have any experimental bias when applied to the SMEFT Bjørn, Trott 1606.06502

transverse obs: $m_{T}, p_{T \ell}, \mathbb{E}_{T}$ the measurement is done in the SM: assumes $\delta \Gamma_{w}, \delta N \equiv 0$. Is it still OK for $\delta \Gamma_{w}, \delta N \neq 0$? YES!
α_{em} has not been checked, so it may require an extra theoretical error!

m_{W} as an input parameter

also: it has been checked that the Tevatron measurement of m_{W} does not have any experimental bias when applied to the SMEFT

α_{em} has not been checked, so it may require an extra theoretical error!

Check of input scheme independence

input parameters choice

$$
\left\{\alpha_{\mathrm{em}}, m_{Z}, G_{F}\right\} \quad \text { vs } \quad\left\{m_{W}, m_{Z}, G_{F}\right\}
$$

\uparrow a very convenient scheme for computing in the SMEFT! (\rightarrow backup)
compared in a fit with a reduced set of observables:
Brivio, Trott 1701.06424
LEP1 + Bhabha scattering $+\operatorname{LEP} 2(\bar{\psi} \psi \rightarrow W W \rightarrow \bar{\psi} \psi \bar{\psi} \psi)$

Results:

1. if $\bar{\psi} \psi \rightarrow \bar{\psi} \psi \bar{\psi} \psi$ is not included \Rightarrow flat directions compatible with the reparam. invariance structure.

NOT obvious a priori: $\alpha_{\mathrm{em}}, m_{Z}$ come from $\bar{\psi} \psi \rightarrow \bar{\psi} \psi$
2. the constraints are scheme dependent but not worse than with the α_{em} scheme

Comparison of fit results

1σ regions for $C_{i} v^{2} / \Lambda^{2}$ with $\Delta_{\text {SMEFT }}=0$ (after profiling over the others) α scheme vs m_{w} scheme

Comparison of fit results

Correlation matrices:

$$
\alpha \text { scheme }
$$

m_{W} scheme

