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Revolution in AI



D E E P  L E A R N I N G  T I M E L I N E
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2013 today

Google Trends 
searches for “Deep Learning”
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C L A S S I F I C AT I O N  →  S E G M E N TAT I O N
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C O M P U T E R  V I S I O N
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G E N E R AT I V E  M O D E L  F O R  I M A G E S
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W AV E N E T:  A  G E N E R AT I V E  M O D E L  F O R  R A W  A U D I O
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Why should physicists care?



T H E  P L AY E R S

PRED ICT ION

INFERENCE

x 
observed data 
simulated data

θ 
parameters of interest

forward modeling 
generation 
simulation

inverse problem 
measurement 

parameter estimation

p( x, z | θ, ν )

ν 
nuisance parameters

z 
latent variables 

Monte Carlo truth
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Abstract
A grand challenge of the 21st century cosmol-
ogy is to accurately estimate the cosmological
parameters of our Universe. A major approach
in estimating the cosmological parameters is to
use the large scale matter distribution of the Uni-
verse. Galaxy surveys provide the means to map
out cosmic large-scale structure in three dimen-
sions. Information about galaxy locations is typ-
ically summarized in a “single” function of scale,
such as the galaxy correlation function or power-
spectrum. We show that it is possible to estimate
these cosmological parameters directly from the
distribution of matter. This paper presents the
application of deep 3D convolutional networks
to volumetric representation of dark-matter sim-
ulations as well as the results obtained using a
recently proposed distribution regression frame-
work, showing that machine learning techniques
are comparable to, and can sometimes outper-
form, maximum-likelihood point estimates using
“cosmological models”. This opens the way to
estimating the parameters of our Universe with
higher accuracy.

1. Introduction
The 21

st century has brought us tools and methods to ob-
serve and analyze the Universe in far greater detail than
before, allowing us to deeply probe the fundamental prop-
erties of cosmology. We have a suite of cosmological ob-

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

Figure 1. Dark matter distribution in three cubes produced using
different sets of parameters. Each cube is divided into small sub-
cubes for training and prediction. Note that although cubes in
this figure are produced using very different cosmological param-
eters in our constrained sampled set, the effect is not visually dis-
cernible.

servations that allow us to make serious inroads to the un-
derstanding of our own universe, including the cosmic mi-
crowave background (CMB) (Planck Collaboration et al.,
2015; Hinshaw et al., 2013), supernovae (Perlmutter et al.,
1999; Riess et al., 1998) and the large scale structure of
galaxies and galaxy clusters (Cole et al., 2005; Anderson
et al., 2014; Parkinson et al., 2012). In particular, large
scale structure involves measuring the positions and other
properties of bright sources in great volumes of the sky.
The amount of information is overwhelming, and modern
methods in machine learning and statistics can play an in-
creasingly important role in modern cosmology. For ex-
ample, the common method to compare large scale struc-
ture observation and theory is to compare the compressed

25
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Figure 9: Distribution of the four-lepton reconstructed mass in the full mass range for the sum
of the 4e, 2e2µ and 4µ channels. Points with error bars represent the data, shaded histograms
represent the backgrounds, and the unshaded histogram the signal expectation for a mass hy-
pothesis of mH = 126 GeV. Signal and ZZ background are normalized to the SM expectation,
Z + X background to the estimation from data. The expected distributions are presented as
stacked histograms. No events are observed with m4` > 800 GeV.

Table 3: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are given integrated over the full mass measurement range m4` > 100 GeV and for
7 and 8 TeV data combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 77 ± 10 191 ± 25 119 ± 15 387 ± 31
Z + X background 7.4 ± 1.5 11.5 ± 2.9 3.6 ± 1.5 22.6 ± 3.6
All backgrounds 85 ± 11 202 ± 25 123 ± 15 410 ± 31
mH = 500 GeV 5.2 ± 0.6 12.2 ± 1.4 7.1 ± 0.8 24.5 ± 1.7
mH = 800 GeV 0.7 ± 0.1 1.6 ± 0.2 0.9 ± 0.1 3.1 ± 0.2
Observed 89 247 134 470

Table 4: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are integrated over the mass range from 121.5 to 130.5 GeV and for 7 and 8 TeV data
combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 1.1 ± 0.1 3.2 ± 0.2 2.5 ± 0.2 6.8 ± 0.3
Z + X background 0.8 ± 0.2 1.3 ± 0.3 0.4 ± 0.2 2.6 ± 0.4
All backgrounds 1.9 ± 0.2 4.6 ± 0.4 2.9 ± 0.2 9.4 ± 0.5
mH = 125 GeV 3.0 ± 0.4 7.9 ± 1.0 6.4 ± 0.7 17.3 ± 1.3
mH = 126 GeV 3.4 ± 0.5 9.0 ± 1.1 7.2 ± 0.8 19.6 ± 1.5
Observed 4 13 8 25



W H Y  W E  S H O U L D  C A R E

•Many areas of science have simulations based on some well-
motivated  mechanistic model. 

•However, the aggregate effect of many interactions between these 
low-level components leads to an intractable inverse problem. 

•The developments in machine learning and AI go way beyond 
improved classifiers and have the potential to effectively bridge the 
microscopic - macroscopic divide & aid in the inverse problem. 

• they can provide effective statistical models that bridge 
macroscopic phenomena that are tied back to the low-level 
microscopic (reductionist) model 

• generative models and likelihood-free inference are two 
particularly exciting areas 

21
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A PHYSICALLY MOTIVATED FEATURE

Don’t believe the media:

24

EHiggs = Ebefore = Eafter =
X

i

Ei

~pHiggs = ~pbefore = ~pafter =
X

i

~pi

E 6= mc2

E2 = (mc2)2 + (|~p|c)2
What Einstein really said:

Every physics student knows energy and momentum are conserved

Thus, we can estimate the mass of the Higgs with

mH =
q

E2
after/c

4 � |~pafter|2/c2



P R E D I C T I O N S  F R O M  S I M U L AT I O N
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Figure 9: Distribution of the four-lepton reconstructed mass in the full mass range for the sum
of the 4e, 2e2µ and 4µ channels. Points with error bars represent the data, shaded histograms
represent the backgrounds, and the unshaded histogram the signal expectation for a mass hy-
pothesis of mH = 126 GeV. Signal and ZZ background are normalized to the SM expectation,
Z + X background to the estimation from data. The expected distributions are presented as
stacked histograms. No events are observed with m4` > 800 GeV.

Table 3: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are given integrated over the full mass measurement range m4` > 100 GeV and for
7 and 8 TeV data combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 77 ± 10 191 ± 25 119 ± 15 387 ± 31
Z + X background 7.4 ± 1.5 11.5 ± 2.9 3.6 ± 1.5 22.6 ± 3.6
All backgrounds 85 ± 11 202 ± 25 123 ± 15 410 ± 31
mH = 500 GeV 5.2 ± 0.6 12.2 ± 1.4 7.1 ± 0.8 24.5 ± 1.7
mH = 800 GeV 0.7 ± 0.1 1.6 ± 0.2 0.9 ± 0.1 3.1 ± 0.2
Observed 89 247 134 470

Table 4: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are integrated over the mass range from 121.5 to 130.5 GeV and for 7 and 8 TeV data
combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 1.1 ± 0.1 3.2 ± 0.2 2.5 ± 0.2 6.8 ± 0.3
Z + X background 0.8 ± 0.2 1.3 ± 0.3 0.4 ± 0.2 2.6 ± 0.4
All backgrounds 1.9 ± 0.2 4.6 ± 0.4 2.9 ± 0.2 9.4 ± 0.5
mH = 125 GeV 3.0 ± 0.4 7.9 ± 1.0 6.4 ± 0.7 17.3 ± 1.3
mH = 126 GeV 3.4 ± 0.5 9.0 ± 1.1 7.2 ± 0.8 19.6 ± 1.5
Observed 4 13 8 25
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THE FORWARD MODEL
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We begin with Quantum Field Theory1)



THE FORWARD MODEL

26

We begin with Quantum Field Theory1)

Theory gives detailed 
prediction for high-
energy collisions

2)
hierarchical: 2 → O(10) → O(100) particles

Uses of Multivariate Methods

Complex final state of VBF H → WW → llEmiss
T well-suited for multivariate methods

Used 7 variables:
∆ηll, ∆φll, Mll, ∆ηjj, ∆φjj, Mjj, MT

Compared Neural Networks, Genetic Program-
ming, and Support Vector Regression

q

q

W

W

H
W+

W−

ν

l+

l−

ν̄

Ref. Cuts low-mH Cuts NN GP SVR
120 ee 0.87 1.25 1.72 1.66 1.44
120 eµ 2.30 2.97 3.92 3.60 3.33
120 µµ 1.16 1.71 2.28 2.26 2.08
Combined 2.97 3.91 4.98 4.57 4.26
130 eµ 4.94 6.14 7.55 7.22 6.59

Table 1: Expected significance in sigma after 30 fb−1 for two cut analyses and three multivariate analyses for
different Higgs masses and final state topologies.

March 14, 2006

University of Pennsylvania Seminar

Higgs Searches at the LHC:

Challenges, Prospects, and Developments (page 25)

Kyle Cranmer

Brookhaven National Laboratory
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The interaction of outgoing particles 
with the detector is simulated.  

3)
>100 million sensors

hierarchical: 2 → O(10) → O(100) particles



THE FORWARD MODEL
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We begin with Quantum Field Theory1)

Theory gives detailed 
prediction for high-
energy collisions

2)

The interaction of outgoing particles 
with the detector is simulated.  

3)
e+

e-

mu-

mu+

Finally, we run particle identification and 
feature extraction algorithms on the simulated 
data as if they were from real collisions.

4)

>100 million sensors

~10-30 features describe interesting part

hierarchical: 2 → O(10) → O(100) particles



D E T E C T O R  S I M U L AT I O N

•Conceptually: Prob(detector response | particles ) 

•Implementation: Monte Carlo integration over micro-physics 

•Consequence: evaluation of the likelihood is intractable 

27



D E T E C T O R  S I M U L AT I O N

•Conceptually: Prob(detector response | particles ) 

•Implementation: Monte Carlo integration over micro-physics 

•Consequence: evaluation of the likelihood is intractable 

•This motivates a new class of algorithms for what is called 
likelihood-free inference, which only require ability to 
generate samples from the simulation in the “forward mode” 

28



T H E  C R U X ,  A N  I N T R A C TA B L E  I N T E G R A L
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observed what happened  
in simulation 

Monte Carlo  
Sampling

p(x|✓) =
Z

dz p(x, z|✓)

p̂(x|✓)

histogram 
approximation
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Figure 9: Distribution of the four-lepton reconstructed mass in the full mass range for the sum
of the 4e, 2e2µ and 4µ channels. Points with error bars represent the data, shaded histograms
represent the backgrounds, and the unshaded histogram the signal expectation for a mass hy-
pothesis of mH = 126 GeV. Signal and ZZ background are normalized to the SM expectation,
Z + X background to the estimation from data. The expected distributions are presented as
stacked histograms. No events are observed with m4` > 800 GeV.

Table 3: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are given integrated over the full mass measurement range m4` > 100 GeV and for
7 and 8 TeV data combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 77 ± 10 191 ± 25 119 ± 15 387 ± 31
Z + X background 7.4 ± 1.5 11.5 ± 2.9 3.6 ± 1.5 22.6 ± 3.6
All backgrounds 85 ± 11 202 ± 25 123 ± 15 410 ± 31
mH = 500 GeV 5.2 ± 0.6 12.2 ± 1.4 7.1 ± 0.8 24.5 ± 1.7
mH = 800 GeV 0.7 ± 0.1 1.6 ± 0.2 0.9 ± 0.1 3.1 ± 0.2
Observed 89 247 134 470

Table 4: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are integrated over the mass range from 121.5 to 130.5 GeV and for 7 and 8 TeV data
combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 1.1 ± 0.1 3.2 ± 0.2 2.5 ± 0.2 6.8 ± 0.3
Z + X background 0.8 ± 0.2 1.3 ± 0.3 0.4 ± 0.2 2.6 ± 0.4
All backgrounds 1.9 ± 0.2 4.6 ± 0.4 2.9 ± 0.2 9.4 ± 0.5
mH = 125 GeV 3.0 ± 0.4 7.9 ± 1.0 6.4 ± 0.7 17.3 ± 1.3
mH = 126 GeV 3.4 ± 0.5 9.0 ± 1.1 7.2 ± 0.8 19.6 ± 1.5
Observed 4 13 8 25
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Figure 9: Distribution of the four-lepton reconstructed mass in the full mass range for the sum
of the 4e, 2e2µ and 4µ channels. Points with error bars represent the data, shaded histograms
represent the backgrounds, and the unshaded histogram the signal expectation for a mass hy-
pothesis of mH = 126 GeV. Signal and ZZ background are normalized to the SM expectation,
Z + X background to the estimation from data. The expected distributions are presented as
stacked histograms. No events are observed with m4` > 800 GeV.

Table 3: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are given integrated over the full mass measurement range m4` > 100 GeV and for
7 and 8 TeV data combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 77 ± 10 191 ± 25 119 ± 15 387 ± 31
Z + X background 7.4 ± 1.5 11.5 ± 2.9 3.6 ± 1.5 22.6 ± 3.6
All backgrounds 85 ± 11 202 ± 25 123 ± 15 410 ± 31
mH = 500 GeV 5.2 ± 0.6 12.2 ± 1.4 7.1 ± 0.8 24.5 ± 1.7
mH = 800 GeV 0.7 ± 0.1 1.6 ± 0.2 0.9 ± 0.1 3.1 ± 0.2
Observed 89 247 134 470

Table 4: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are integrated over the mass range from 121.5 to 130.5 GeV and for 7 and 8 TeV data
combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 1.1 ± 0.1 3.2 ± 0.2 2.5 ± 0.2 6.8 ± 0.3
Z + X background 0.8 ± 0.2 1.3 ± 0.3 0.4 ± 0.2 2.6 ± 0.4
All backgrounds 1.9 ± 0.2 4.6 ± 0.4 2.9 ± 0.2 9.4 ± 0.5
mH = 125 GeV 3.0 ± 0.4 7.9 ± 1.0 6.4 ± 0.7 17.3 ± 1.3
mH = 126 GeV 3.4 ± 0.5 9.0 ± 1.1 7.2 ± 0.8 19.6 ± 1.5
Observed 4 13 8 25

1 0 ⁸  S E N S O R S   →  1  R E A L - VA L U E D  Q U A N T I T Y

•Most measurements and searches for new particles at the LHC are based on the 
distribution of a single variable / feature / summary statistic 

• choosing a good variable (feature engineering) is a task for a skilled physicist 
and tailored to the goal of measurement or new particle search 

• likelihood p(x|θ) approximated using histograms (univariate density estimation)

30
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Z + X background to the estimation from data. The expected distributions are presented as
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Table 3: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are given integrated over the full mass measurement range m4` > 100 GeV and for
7 and 8 TeV data combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 77 ± 10 191 ± 25 119 ± 15 387 ± 31
Z + X background 7.4 ± 1.5 11.5 ± 2.9 3.6 ± 1.5 22.6 ± 3.6
All backgrounds 85 ± 11 202 ± 25 123 ± 15 410 ± 31
mH = 500 GeV 5.2 ± 0.6 12.2 ± 1.4 7.1 ± 0.8 24.5 ± 1.7
mH = 800 GeV 0.7 ± 0.1 1.6 ± 0.2 0.9 ± 0.1 3.1 ± 0.2
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Table 4: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are integrated over the mass range from 121.5 to 130.5 GeV and for 7 and 8 TeV data
combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 1.1 ± 0.1 3.2 ± 0.2 2.5 ± 0.2 6.8 ± 0.3
Z + X background 0.8 ± 0.2 1.3 ± 0.3 0.4 ± 0.2 2.6 ± 0.4
All backgrounds 1.9 ± 0.2 4.6 ± 0.4 2.9 ± 0.2 9.4 ± 0.5
mH = 125 GeV 3.0 ± 0.4 7.9 ± 1.0 6.4 ± 0.7 17.3 ± 1.3
mH = 126 GeV 3.4 ± 0.5 9.0 ± 1.1 7.2 ± 0.8 19.6 ± 1.5
Observed 4 13 8 25

1 0 ⁸  S E N S O R S   →  1  R E A L - VA L U E D  Q U A N T I T Y

•Most measurements and searches for new particles at the LHC are based on the 
distribution of a single variable / feature / summary statistic 

• choosing a good variable (feature engineering) is a task for a skilled physicist 
and tailored to the goal of measurement or new particle search 

• likelihood p(x|θ) approximated using histograms (univariate density estimation)
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This doesn’t scale if x is high dimensional!



H I G H  D I M E N S I O N A L  E X A M P L E

•For instance, when looking for deviations from the standard model 
Higgs, we would like to look at all sorts of kinematic correlations 

• thus each observation x is high-dimensional

31
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FIG. 2: Distribution of the cos θ∗ (left), Φ1 (second from the left), cos θ1 and cos θ2 (second from the right), and Φ (right)
generated for mX = 250 GeV with the program discussed in the text (unweighted events shown as points with error bars) and
projections of the ideal angular distributions given in the text (smooth lines). The four sets of plots from top to bottom show
the models discussed in Table I for spin-zero 0+ and 0− (top), spin-one 1+ and 1− (second row from top), spin-two 2+m, 2+

L
,

and 2− (third row from top), and the bottom row shows distributions in background generated with Madgraph (points with
error bars) and empirical shape (smooth lines). The J+ distributions are shown with solid red points and J− distributions are
shown with open blue points, while the 2+m and 2+

L
are shown with red circles and green squares, respectively.

production angles in Fig. 3, where we plot the distributions of θ∗ and Φ1 production angles for the spin-zero particle
X . If these distributions are measured with the “ideal” (4π) detector, the results are flat. Hence, the non-trivial
shapes of these distributions shown in Fig. 3 are entirely due to an acceptance effect.
It is evident from Fig. 3 that the acceptance effects are very important in the analysis of data. They have to be

taken into account explicitly, otherwise the results of the analysis will be biased. This can be easily done in our MC
simulation program on an event-by-event basis using the acceptance function in Eq. (39), where we reject events if
at least one lepton exceeds the maximal pseudorapidity. It is also possible, but much harder, to incorporate this
acceptance function into the likelihood function that is discussed in the next section. However, as we explain now,

2

FIG. 1: Illustration of an exotic X particle production and decay in pp collision gg or qq̄ → X → ZZ → 4l±. Six angles fully
characterize orientation of the decay chain: θ∗ and Φ∗ of the first Z boson in the X rest frame, two azimuthal angles Φ and Φ1

between the three planes defined in the X rest frame, and two Z-boson helicity angles θ1 and θ2 defined in the corresponding
Z rest frames. The offset of angle Φ∗ is arbitrarily defined and therefore this angle is not shown.

discussed in Refs. [21–23] KK graviton decays into pairs of gauge bosons are enhanced relative to direct decays into
leptons. Similar situations may occur in “hidden-valley”-type models [24]. An example of a ”heavy photon” is given
in Ref. [25].
Motivated by this, we consider the production of a resonance X at the LHC in gluon-gluon and quark-antiquark

partonic collisions, with the subsequent decay of X into two Z bosons which, in turn, decay leptonically. In Fig. 1,
we show the decay chain X → ZZ → e+e−µ+µ−. However, our analysis is equally applicable to any combination of
decays Z → e+e− or µ+µ−. It may also be applicable to Z decays into τ leptons since τ ’s from Z decays will often be
highly boosted and their decay products collimated. We study how the spin and parity of X , as well as information
on its production and decay mechanisms, can be extracted from angular distributions of four leptons in the final state.
There are a few things that need to be noted. First, we obviously assume that the resonance production and

its decays into four leptons are observed. Note that, because of a relatively small branching fraction for leptonic Z
decays, this assumption implies a fairly large production cross-section for pp → X and a fairly large branching fraction
for the decay X → ZZ. As we already mentioned, there are well-motivated scenarios of BSM physics where those
requirements are satisfied.
Second, having no bias towards any particular model of BSM physics, we consider the most general couplings of the

particle X to relevant SM fields. This approach has to be contrasted with typical studies of e.g. spin-two particles
at hadron colliders where such an exotic particle is often identified with a massive graviton that couples to SM fields
through the energy-momentum tensor. We will refer to this case as the “minimal coupling” of the spin-two particle
to SM fields.
The minimal coupling scenarios are well-motivated within particular models of New Physics, but they are not

sufficiently general. For example, such a minimal coupling may restrict partial waves that contribute to the production
and decay of a spin-two particle. Removing such restriction opens an interesting possibility to understand the couplings
of a particle X to SM fields by means of partial wave analyses, and we would like to set a stage for doing that in this
paper. To pursue this idea in detail, the most general parameterization of the X coupling to SM fields is required.
Such parameterizations are known for spin-zero, spin-one, and spin-two particles interacting with the SM gauge
bosons [7, 8] and we use these parameterizations in this paper. We also note that the model recently discussed in
Refs. [21–23] requires couplings beyond the minimal case in order to produce longitudinal polarization dominance.
Third, we note that while we concentrate on the decay X → ZZ → l+1 l

−
1 l

+
2 l

−
2 , the technique discussed in this

paper is more general and can, in principle, be applied to final states with jets and/or missing energy by studying
such processes as X → ZZ → l+l−jj, X → W+W− → l+νjj, etc. In contrast with pure leptonic final states,
higher statistics, larger backgrounds, and a worse angular resolution must be expected once final states with jets and

Weak boson fusion, h → 4�
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� hZZ decay vertex:
many angular structures
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Weak boson fusion, h → ττ
� Well-known probe of Higgs-gauge structure

� Interesting kinematics of tagging jets
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� Total rate: O� ,2 = 1
2
∂µ(�†�) ∂µ(�†�)

� New kinematic structures:OB = i g2 (Dµ�†)(Dν�)Bµν OW = i g2 (Dµ�)†σ k(Dν�)W k
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OBB = − g′24 (�†�)Bµν Bµν OWW = − g24 (�†�)W k
µν W µν k

� CP violation: OWW̃ = − g24 (�†�)W k
µν W̃ µν k

� Others strongly constrained by EWPD or redundant
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Equivalent to 3x more data!

“Better Higgs Measurements Through Information Geometry”  
[arXiv:1612.05261] 



•“MEM” approach uses a transfer function W(x|z) to simplify parton 
shower and detector response and integrates other latent variables

33

Introduction - The MEM

Probability (weight) of the experimental event x given the
hypothesis ↵ :

P (x|↵) = 1

�↵

Z
d�(y)dx1dx2f(x1)f(x2)|M↵(y, x1, x2)|2W (x|y) (1)

PDF Matrix Element Transfer Function

Efficiency and acceptance neglected in this sketch.
Miguel Vidal (UCL-CP3) AMVA4NewPhysics 04/03/2016 4 / 13
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E P I D E M I O L O G Y  &  P O P U L AT I O N  G E N E T I C S
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C O M P U TAT I O N A L  T O P O G R A P H Y
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T W O  A P P R O A C H E S

• Approximate Bayesian 
Computation (ABC) 

• Probabilistic Programming 

• Adversarial Variational 
Optimization (AVO)

39

Use simulator  
(much more efficiently)

Learn simulator  
(with deep learning)

• Generative Adversarial Networks (GANs), 
Variational Auto-Encoders (VAE) 

• Likelihood ratio from classifiers (CARL) 

• Autogregressive models,  
Normalizing Flows

[image credit: A.P. Goucher]

https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/
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Likelihood-Free Warm-up 

Hypothesis Testing  & Classification



H Y P O T H E S I S  T E S T I N G

•Classical hypothesis testing typically framed in terms of 
true/false : positive/negative 

41

power

actually guilty ↔ new physics 

       verdict guilty ↔ claim discovery

null alternate



6 Glen Cowan Multivariate Statistical Methods in Particle Physics

Finding an optimal decision boundary
Maybe select events with “cuts”:

xi < ci
xj  < cj

Or maybe use some other type of decision boundary:

Goal of multivariate analysis is to do this in an “optimal” way.

H0 H0

H0

H1

H1H1
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xj  < cj

Or maybe use some other type of decision boundary:

Goal of multivariate analysis is to do this in an “optimal” way.

H0 H0

H0

H1

H1H1

H Y P O T H E S I S  T E S T I N G

•If the data are high-dimensional, it’s not obvious how to draw 
the boundary between accept/reject the null hypothesis
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THE NEYMAN-PEARSON LEMMA
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The Neyman & Pearson’s Theory

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H0 (background only)

- the Alternate Hypothesis H1 (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis

α = P (x /∈ W |H0)

Find the region W such that we minimize the probability of wrongly
accepting the H0 (when H1 is true)

β = P (x ∈ W |H1)

April 11, 2005

EFI High Energy Physics Seminar

Modern Data Analysis Techniques

for High Energy Physics (page 6)

Kyle Cranmer

Brookhaven National Laboratory

(Convention: if data falls in W then we accept H0)



The region W that minimizes the probability of wrongly accepting H0     
is just a contour of the Likelihood Ratio

Any other region of the same size will have less power

THE NEYMAN-PEARSON LEMMA

44

P (x|H1)
P (x|H0)

> k�

W WC



PROBLEM WITH NEYMAN-PEARSON

But, If I don’t know P(x|H1) and P(x|H0)  
I can’t evaluate this likelihood ratio! 

45

P (x|H1)
P (x|H0)

> k�

W WC



Machine Learning = Applied Calculus of Variations



M A C H I N E  L E A R N I N G  =  A P P L I E D  C A L C U L U S  O F  VA R I AT I O N S
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M A C H I N E  L E A R N I N G :  C L A S S I F I E R S

•Common to use machine learning 
classifiers to separate signal (H1) vs. 
background (H0) 

• want a function s: X→ Y that 
maps signal to y=1 and 
background to y=0  

• calculus of variations: find 
function s(x) that minimizes loss:

48

L[s] =

Z
p(x|H0) (0� s(x))2 dx

+

Z
p(x|H1) (1� s(x))2dx

⇡
X

i

(yi � s(xi))
2
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.

12 3 Using TMVA

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

un
d 

re
je

ct
io

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

un
d 

re
je

ct
io

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MVA Method:
Fisher
MLP
BDT
PDERS
Likelihood

Background rejection versus Signal efficiency

Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1
Sometimes there is an additional Poisson term when expected number of signal and background events

is known.

2

s        



• applied calculus of variations: 
find function s(x) that minimizes 
loss: 

• i.e. approximate the optimal 
classifier 

• which is 1-to-1 with the 
likelihood ratio

M A C H I N E  L E A R N I N G :  C L A S S I F I E R S
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p(x|H1)

p(x|H0)

s(x) =
p(x|H1)

p(x|H0) + p(x|H1)

L[s] =

Z
p(x|H0) (0� s(x))2 dx

+

Z
p(x|H1) (1� s(x))2dx

⇡
X

i

(yi � s(xi))
2
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1
Sometimes there is an additional Poisson term when expected number of signal and background events

is known.
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• applied calculus of variations: 
find function s(x) that minimizes 
loss: 

• i.e. approximate the optimal 
classifier 

• which is 1-to-1 with the 
likelihood ratio

M A C H I N E  L E A R N I N G :  C L A S S I F I E R S
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p(x|H1)

p(x|H0)

s(x) =
p(x|H1)

p(x|H0) + p(x|H1)

L[s] =

Z
p(x|H0) (0� s(x))2 dx

+

Z
p(x|H1) (1� s(x))2dx

⇡
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1
Sometimes there is an additional Poisson term when expected number of signal and background events

is known.
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ŝ = argmin
s

L[s]

ŝ ⇡ s�̂�̂ = argmin
�

L[s�]

Shallow neural network Deep neural network 

image credit: Michael Nielsen

•In calculus of variations, the optimization is over all functions: 

• In applied calculus of variations, we consider a highly flexible family of 
functions sφ and optimize: i.e.                                 and  

• Think of neural networks as a highly flexible family of functions 

• Machine learning also includes non-convex optimization algorithms that 
are effective even with millions of parameters!



C O N V O L U T I O N A L  N E U R A L  N E T W O R K S

•Variational family should take advantage of domain knowledge 

• the world is compositional ⇒ hierarchical architecture 

• images are translationally invariant ⇒ shared weights

51image credit: MathWorks

https://www.mathworks.com/help/nnet/convolutional-neural-networks.html


P H Y S I C S - A W A R E  M A C H I N E  L E A R N I N G

•We can inject our knowledge of physics into the variational family 
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FIG. 2: Gaussian Process covariance

in to the paper may be tricky

• essentially, does our Gaussian Process have features
we’d expect from JES/PDF e↵ects

To better construct a kernel, we can also include our un-
derstanding of detector e↵ects and physics e↵ects. We
look at the covariance matrix of the 3 parameter fit func-
tion by fitting the ATLAS dataset and using Markov
Chain Monte Carlo [cite emcee?] to sample the posterior
(Fig 1). One can see a visible structure in the covariance,
suggesting the inflexibility of the fit function causes an-
chor points which the fit pivots around. This hints that
the parametric fits have some sort of inherent structure
that is not grounded in any physical properties of the
distribution.

As a comparison, the covariance matrix created from
posterior samples from the Gaussian Process fit to the
ATLAS dataset show less correlation between points at
higher mass (Fig 2). The correlation seems constrained
to diagonal, with the o↵ diagonal dying o↵ quickly.

We can now look at two e↵ects; jet energy scale (JES)
and parton density function (PDF) e↵ects. JES e↵ects
smear out the spectrum due to uncertainty on the mea-
sured energy of the jet. To model this, we use a Gaus-
sian kernel of various widths and means to smear out our

FIG. 3: JES Covariance Structure

FIG. 4: PDF Covariance Structure

distribution, and create a covariance matrix from these
samples (Fig 3). One can see a high degree of correlation
across all points in the distribution.
PDF e↵ects were implemented in the paper [cite] by

taking the 8 TeV dijet analysis data [cite] and comput-
ing a covariance matrix from applying di↵erent PDF sets
(Fig 4).
For comparison, we also create a covariance from a

Sliding Window Fit (SWiFt). The SWiFt solution to
the problems with fitting at high luminosities is to fit the
parametric form within smaller segments of the distribu-
tion, and piece together a final background estimation
across the whole spectrum. This method should create a
covariance structure which is limited to the diagonal and
zero in the o↵ diagonal, as each fit includes only a small
portion of the distribution. Indeed this is what we see in
Figure 5.

Other related plots

• Covariance and correlations as a function of mjj i.e.
plotting each row of the correlation and covariance
matrix separately.
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+ Jet Energy Scale

+ Parton Density  
Functions

Final Kernel = 

Poisson fluctuations 

+ Mass Resolution=

+ 
…

+ 

QCD-Aware recursive neural networks
• arXiv:1702.00748• arXiv:1709.05681

Physics-aware Gaussian Processes

QCD-Aware graph convolutional neural networks
• NIPS2017 workshop
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PRED ICT ION
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x 
observed data 
simulated data

θ 
parameters of interest

forward modeling 
generation 
simulation

inverse problem 
measurement 

parameter estimation

p( x, z | θ, ν )

ν 
nuisance parameters

z 
latent variables 

Monte Carlo truth



PA R A M E T R I Z E D  C L A S S I F I E R S

•We showed a binary classifier approximates 

•Which is one-to-one with the likelihood ratio  

•Can do the same thing for any two points θ₀ & θ₁ in 
parameter space Θ. I call this a parametrized classifier 
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s(x; ✓0, ✓1) =
p(x|✓1)

p(x|✓0) + p(x|✓1)

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169

s(x) =
p(x|H1)

p(x|H0) + p(x|H1)

p(x|y = 0)

p(x|y = 1)
= 1� 1

s(x)

p(x|H1)

p(x|H0)

http://arxiv.org/abs/1506.02169


L I K E L I H O O D  R AT I O  T E S T S

•The intractable likelihood ratio based on high-dimensional features x is: 

•We can show that an equivalent test can be made from 1-D projection 

•if the scalar map s: X → ℝ has the same level sets as the likelihood ratio 

•Estimating the density of                       via the simulator calibrates the ratio. 
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1
Sometimes there is an additional Poisson term when expected number of signal and background events

is known.

2

s     

p
(s

)  
 

s(x; ✓0; ✓1) = monotonic[ p(x|✓0)/p(x|✓1) ]

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169

p(x|✓0)
p(x|✓1)

p(x|✓0)
p(x|✓1)

=
p(s(x; ✓0, ✓1)|✓0)
p(s(x; ✓0, ✓1)|✓1)

s(x; ✓0, ✓1)

✓0✓1

http://arxiv.org/abs/1506.02169
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Figure ��: Inference from truth likelihood ratio and carl’s estimate for the fully di�erential case
with regression. Le�: scatter plot showing the di�erence between the exact expected
likelihood ratio for ��� randomly sampled points and θ1 and carl’s estimate. Right:
true (white) and approximate (cyan) likelihood contours, using a Gaussian Process for
interpolation. �e white and cyan dots show the exact and approximate maximum-
likelihood estimators.�e green and red dots show θobserved and θ1, respectively. Finally,
the small grey dots show the sampled parameter points at which the likelihood ratio
was evaluated.
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Weak boson fusion, h → 4�
� Production vs decay

� hZZ decay vertex:
many angular structures

� Very clean

� Same operators as before:OB = i g2 (Dµ�†)(Dν�)Bµν OW = i g2 (Dµ�)†σ k(Dν�)W k
µν

OBB = − g′24 (�†�)Bµν Bµν OWW = − g24 (�†�)W k
µν W µν k

O� ,2 = 1
2
∂µ(�†�) ∂µ(�†�) OWW̃ = − g24 (�†�)W k

µν W̃ µν k

� Setup as before, except:
� No backgrounds, no smearing
� L ⋅ ε = 100 fb−1
� Cuts: pT , j > 20 GeV, �η j � < 5.0, pT ,� > 10 GeV, �η� � < 2.5
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work with Juan Pavez, Gilles Louppe, Cyril Becot, and Lukas Heinrich; Johann Brehmer, Felix Kling, and Tilman Plehn 
“Better Higgs Measurements Through Information Geometry” [arXiv:1612.05261] & CARL  [arxiv:1506.02169] 

http://arxiv.org/abs/1506.02169


S TAT I S T I C A L  TA S K S  &  L E A R N I N G  PA R A D I G M S

•Statistical Tasks: 

• Classification 

• Regression 

• Density Estimation 

• Statistical Inference 

• Decision Making 

•Learning Paradigms: 

• Supervised Learning 

• Weakly Supervised Learning 

• Unsupervised Learning 

• Reinforcement Learning
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Decision Making 

Reinforcement Learning
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R E I N F O R C E M E N T  L E A R N I N G  &  S C I E N T I F I C  M E T H O D

•Scientist trying to decide what experiment to do next
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R E I N F O R C E M E N T  L E A R N I N G  &  S C I E N T I F I C  M E T H O D

•Scientist trying to decide what experiment to do next
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decide which 
experiment to 
perform

perform experiment, 
gather data

updated knowledge 
based on analyzing 
data

statistical analysis



S TAT I S T I C A L  D E C I S I O N  T H E O R Y  I N  1  S L I D E

•Θ - States of nature;     X - possible observations;      A - action to be taken 

•p(x|θ) - statistical model;          π(θ) - prior 

•δ: X → A - decision rule (take some action based on observation) 

•L: Θ x A → ℝ - loss function, real-valued function true parameter and action 

•R(θ,δ) = Ep(x|θ)[L(θ, δ)] - risk 

• A decision δ* rule  dominates a decision rule δ if and only if R(θ,δ*)≤ R(θ,δ) for all θ, 
and the inequality is strict for some θ. 

• A decision rule is admissible if and only if no other rule dominates it; otherwise it is 
inadmissible 

•r(π, δ) = Eπ(θ)[ R(θ,δ)] - Bayes risk  (expectation over θ w.r.t. prior and possible observations) 

•ρ(π, δ | x ) = Eπ(θ|x)[ L(θ,δ(x))] - expected loss (expectation over θ w.r.t. posterior π(θ|x) ) 

• δ’ is a (generalized) Bayes rule if it minimizes the expected loss
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A N  E X A M P L E

•Say we want to measure the Weinberg angle 

• experiments are e⁺e⁻ → μ⁺μ⁻ and we can adjust the 
beam energy and beam polarization 

• data are 4-momenta of μ⁺and μ⁻ without knowing 
forward-backward asymmetry is interesting observable 

•Can we use likelihood-free inference to: 

• estimate θW from pμ⁺ & pμ⁻ generated from simulator? 

• decide which  beam energy and polarization are optimal 
for this measurement?
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•Input:  
• workflow for performing “real” experiment that returns data 
• workflow for running simulator given parameters of theory and 

experimental configuration 

•Automated system can measure the Weinberg angle and optimize 
beam energy (eg. just above or below MZ/2) just from using simulator



— R I C H A R D  F E Y N M A N

Generative Models: 

“What I cannot create, I do not understand.”



T H E  P L AY E R S

PRED ICT ION

INFERENCE

x 
observed data 
simulated data

θ 
parameters of interest

forward modeling 
generation 
simulation

inverse problem 
measurement 

parameter estimation

p( x, z | θ, ν )

ν 
nuisance parameters

z 
latent variables 

Monte Carlo truth



L E A R N I N G  T H E  G E N E R AT I V E  M O D E L
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Catch me if you can

Leo is G Tom is D

5 / 13

Objective

•
Consider the value function

V (D,G ) = E
x⇠p

data

[log(D(x))] + E
z⇠p

noise

[log(1� D(G (z)))];

•
We want to

For fixed G , find D which maximizes V (D,G ),

For fixed D, find G which minimizes V (D,G );

•
In other words, we are looking for the saddle point

(D

⇤,G ⇤
) = max

D
min

G
V (D,G ).

6 / 13

Generative adversarial nets (Goodfellow et al., 2014)

Do not assume any form, but use a neural network to produce

similar samples.

•
Two-player game:

a discriminator D,

a generator G ;

•
D is a classifier X 7! {0, 1} that tries to distinguish between

a sample from the data distribution (D(x) = 1, for x ⇠ p

data

),

and a sample from the model distribution (D(G (z)) = 0, for

z ⇠ p

noise

);

•
G is a generator Z 7! X trained to produce samples G (z) (for

z ⇠ p

noise

) that are di�cult for D to distinguish from data.

4 / 13

Goodfellow, et al arXiv:1406.2661 
slide Gilles Louppe
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CaloGAN: Simulating 3D High Energy Particle
Showers in Multi-Layer Electromagnetic Calorimeters
with Generative Adversarial Networks

Michela Paganinia,b, Luke de Oliveiraa, and Benjamin Nachmana

aLawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
bDepartment of Physics, Yale University, New Haven, CT 06520, USA

E-mail: michela.paganini@yale.edu, lukedeoliveira@lbl.gov, bnachman@cern.ch

Abstract: Simulation is a key component of physics analysis in particle physics and nuclear physics.
The most computationally expensive simulation step is the detailed modeling of particle showers inside
calorimeters. Full detector simulations are too slow to meet the growing demands resulting from large
quantities of data; current fast simulations are not precise enough to serve the entire physics program.
Therefore, we introduce CaloGAN, a new fast simulation based on generative adversarial neural
networks (GANs). We apply the CaloGAN to model electromagnetic showers in a longitudinally
segmented calorimeter. This represents a significant stepping stone toward a full neural network-based
detector simulation that could save significant computing time and enable many analyses now and
in the future. In particular, the CaloGAN achieves speedup factors comparable to or better than
existing fast simulation techniques on CPU (100⇥-1000⇥) and even faster on GPU (up to ⇠ 10

5⇥))
and has the capability of faithfully reproducing many aspects of key shower shape variables for a variety
of particle types.

ar
X

iv
:1

70
5.

02
35

5v
1 

 [h
ep

-e
x]

  5
 M

ay
 2

01
7

Creating Virtual Universes Using Generative Adversarial Networks

Mustafa Mustafa
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Abstract

Inferring model parameters from experimental data is a grand challenge in many sciences, including cosmol-
ogy. This often relies critically on high fidelity numerical simulations, which are prohibitively computationally
expensive. The application of deep learning techniques to generative modeling is renewing interest in using high
dimensional density estimators as computationally inexpensive emulators of fully-fledged simulations. These
generative models have the potential to make a dramatic shift in the field of scientific simulations, but for that
shift to happen we need to study the performance of such generators in the precision regime needed for science
applications. To this end, in this letter we apply Generative Adversarial Networks to the problem of generating
cosmological weak lensing convergence maps. We show that our generator network produces maps that are
described by, with high statistical confidence, the same summary statistics as the fully simulated maps.

The scientific success of the next generation of sky
surveys (e.g. [1–5]) to test the current “standard model”
of cosmology (⇤CDM), hinges critically on the success
of underlying simulations. Answering questions in cos-
mology about the nature of cold dark matter, dark
energy and the inflation of the early universe, requires
relating observations of a large number of astrophysical
objects which trace the underlying matter density field,
to simulations of “virtual universes” with different cos-
mological parameters. Currently the creation of each
virtual universe requires an extremely computationally
expensive simulation on High Performance Computing
resources. In order to make this inverse problem prac-
tically solvable, constructing a computationally cheap
surrogate model or an emulator [6, 7] is imperative.

However, traditional approaches to emulators re-
quire the use of a summary-statistic which is to be em-
ulated. An approach that does not require such math-
ematical templates of the simulation outcome would
be of considerable value in the field. The ability to
emulate these simulations with high fidelity, in a frac-
tion of the computational time, would boost our ability
to understand the fundamental nature of the universe.
While in this letter we focus our attention on cosmol-
ogy, and in particular weak lensing convergence maps,
we believe that this approach is relevant to many areas
of science and engineering.

Recent developments in deep generative modeling
techniques open the potential to meet this need. The
density estimators in these models are built out of neu-
ral networks which can serve as universal approxima-
tors [8], thus having the ability to learn the underlying
distributions of data and emulate the observable with-
out being biased by the choice of summary-statistics,

⇤Corresponding author: mmustafa@lbl.gov

as in the traditional approach to emulators.
In this letter, we study the ability of a recent vari-

ant of generative models - Generative Adversarial Net-
works (GANs) [9] to generate weak lensing convergence
maps. The training and validation maps are produced
using N-body simulations of ⇤CDM cosmology. We
show that maps generated by the neural network ex-
hibit, with high statistical confidence, the same power
(Fourier) spectrum of the fully-fledged simulator maps,
as well as higher order non-Gaussian features, thus
demonstrating that such scientific data is amenable to
a GAN treatment for generation. The very high level
of agreement we achieve offers promise for building em-
ulators out of deep neural networks. We first present
our results and analysis then outline the future inves-
tigations which we think are critical to build such em-
ulators in the Discussion section.

Results

Gravitational lensing has potential to be one of the
most sensitive probes of the nature of dark energy [10],
and affects the shape and apparent brightness of every
galaxy we observe. Convergence (⌫) is the quantity
that defines the brightness of an observed object as it
is affected by the matter along the line of sight between
that galaxy and the observer. It can be interpreted as
a measure of the density of the universe observed from
a particular direction. A full N-body simulation cre-
ates convergence maps corresponding to many random
realizations of the same cosmological model. We set
out to train a GAN model on 256 ⇥ 256 pixels conver-
gence maps taken from these simulations. A descrip-
tion of the simulations and data preparation methods
is in the Methods section. Before we describe our re-

1
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Figure 1: Weak lensing convergence maps for a ⇤CDM cosmological model with �

8

= 0.798, w = �1.0,
⌦

m

= 0.26 and ⌦

⇤

= 0.74. Randomly selected maps from validation dataset (top) and GAN generated
examples (bottom).

sults we first outline the objective of generative models
and the GANs framework.

The central problem of generative models is the ques-

tion: given a distribution of data P
data

can one devise

a generator G such that the distribution of model gen-

erated data P
model

= P
data

? Our information about
P
data

comes from the training dataset, typically an in-
dependent and identically distributed random sample
x

1

, x

2

, . . . , x

n

which is assumed to have the same dis-
tribution as P

data

. Achieving a high fidelity genera-
tion scheme amounts to the construction of a density
estimator of the training data. In the GANs frame-
work a generator function G is optimized to generate
samples that are indistinguishable from training data
as judged by a discriminator function D. D is opti-
mized to discriminate between training data and gen-
erated data. In the neural network formulation of this
framework the generator network G

✓

parametrized by
network parameters ✓ and discriminator network D

w

parametrized by w are simultaneously optimized using
gradient-descent.

Of interest to us here is the generator G
✓

. Its param-
eters are optimized to map a vector z sampled from a
prior to the support of P

model

. The only requirement
on the generator is that it is differentiable with respect
to its parameters and input (except at possibly finitely
many points). For the 256 ⇥ 256 convergence maps we
study, we choose a normal prior, so:

z ⇠ [N
0

(0, 1), . . . ,N
63

(0, 1)]

G

✓

: z ! x ✏ R256⇥256

.

The dimension of the vector z needs to be com-
mensurate with the support of the training conver-
gence maps P

data

in R256⇥256. Because the underly-
ing physics of the convergence maps is translation and
rotation invariant [11], we chose to construct the gener-
ator and discriminator networks mainly from convolu-
tional layers. To allow the network to learn the proper
correlations on the components of the input z early on,
the first layer of the generator network needs to be a
fully-connected layer. A well studied architecture that
meets these criteria is the Deep Convolutional Gener-
ative Adversarial Networks (DCGAN) [12]. DCGAN
is a set of empirically chosen architectural guidelines
and hyper-parameters which have been shown to be
robust to excel at a variety of tasks. We experimented
with DCGAN architectural parameters and we found
that most of the hyper-parameters optimized for natu-
ral images by the original authors perform well on the
convergence maps, for example, changing the learning
rates or the kernel sizes worsens the performance. We
used DCGAN with slight modifications to meet our
problem dimensions as described in the Methods sec-
tion.

2

Figure 8: Average ⇡+

Geant shower (top), and average ⇡+

CaloGAN shower (bottom), with
progressive calorimeter depth (left to right).

Figure 9: Five randomly selected e+ showers per calorimeter layer from the training set (top) and the
five nearest neighbors (by euclidean distance) from a set of CaloGAN candidates.

Figure 10: Five randomly selected � showers per calorimeter layer from the training set (top) and the
five nearest neighbors (by euclidean distance) from a set of CaloGAN candidates.

Figure 11: Five randomly selected ⇡+ showers per calorimeter layer from the training set (top) and
the five nearest neighbors (by euclidean distance) from a set of CaloGAN candidates.

– 10 –



•Use of generative models of 
galaxy images to help calibrate 
down-stream analysis in next-
generation surveys. 
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Enabling Dark Energy Science with Deep
Generative Models of Galaxy Images

Siamak Ravanbakhsh1, François Lanusse2, Rachel Mandelbaum2, Jeff Schneider1, and Barnabás Póczos1

1School of Computer Science, Carnegie Mellon University
2McWilliams Center for Cosmology, Carnegie Mellon University

Abstract—Understanding the nature of dark energy, the mys-
terious force driving the accelerated expansion of the Universe, is
a major challenge of modern cosmology. The next generation of
cosmological surveys, specifically designed to address this issue,
rely on accurate measurements of the apparent shapes of distant
galaxies. However, shape measurement methods suffer from
various unavoidable biases and therefore will rely on a precise
calibration to meet the accuracy requirements of the science
analysis. This calibration process remains an open challenge as
it requires large sets of high quality galaxy images. To this
end, we study the application of deep conditional generative
models in generating realistic galaxy images. In particular we
consider variations on conditional variational autoencoder and
introduce a new adversarial objective for training of conditional
generative networks. Our results suggest a reliable alternative
to the acquisition of expensive high quality observations for
generating the calibration data needed by the next generation
of cosmological surveys.

2

Fig. 2: Samples from the GALAXY-ZOO dataset and generated samples using conditional generative adversarial network of Section III. Each
synthetic image is a 128⇥ 128 colored image (here inverted) produced by conditioning on the same set of features y 2 [0, 1]37 as its real
pair. These instances are selected from the test-set and were unavailable to the model during the training.

conditioned on statistics of interest such as the brightness or
size of the galaxy. This will allow us to synthesize calibration
datasets for specific galaxy populations, with objects exhibit-
ing realistic morphologies.

In the following, Section I gives a brief background on the
image generation for calibration and its significance for mod-
ern cosmology. We then review the current approaches to deep
conditional generative models and introduce new techniques
for our problem setting in Sections II and III. In Section IV we
assess the quality of the generated images by comparing the
conditional distributions of shape and morphology parameters
between simulated and real galaxies, and find good agreement.

I. WEAK GRAVITATIONAL LENSING

In the weak regime of gravitational lensing, the distortion of
background galaxy images can be modeled by an anisotropic
shear, noted �, whose amplitude and orientation depend on
the matter distribution between the observer and these distant
galaxies. This shear affects in particular the apparent ellipticity
of galaxies, denoted e. Measuring this weak lensing effect is
made possible under the assumption that background galaxies
are randomly oriented, so that the ensemble average of the
shapes would average to zero in the absence of lensing. Their
apparent ellipticity e can then be used as a noisy but unbiased
estimator of the shear field �: E[e] = �. The cosmological
analysis then involves computing auto- and cross-correlations
of the measured ellipticities for galaxies at different distances.
These correlation functions are compared to theoretical pre-
dictions in order to constrain cosmological models and shed
light on the nature of dark energy.

However, measuring galaxy ellipticities such that their
ensemble average (used for the cosmological analysis) is
unbiased is an extremely challenging task. Fig. 1 illustrates
the main steps involved in the acquisition of the science
images. The weakly sheared galaxy images undergo additional
distortions (essentially blurring) as they go through the at-
mosphere and telescope optics, before being acquired by the
imaging sensor which pixelates the noisy image. As this figure
illustrates, the cosmological shear is clearly a subdominant
effect in the final image and needs to be disentangled from
subsequent blurring by the atmosphere and telescope options.
This blurring, or Point Spread Function (PSF), can be directly

measured by using stars as point sources, as shown at the top
of Fig. 1.

Once the image is acquired, shape measurement algorithms
are used to estimate the ellipticity of the galaxy while correct-
ing for the PSF. However, despite the best efforts of the weak
lensing community for nearly two decades, all current state-
of-the-art shape measurement algorithms are still susceptible
to biases in the inferred shears. These measurement biases are
commonly modeled in terms of additive and multiplicative bias
parameters c and m defined as:

E[e] = (1 +m) � + c (1)

where � is the true shear. Depending on the shape measure-
ment method being used, m and c can depend on factors such
as the PSF size/shape, the level of noise in the images or,
more generally, intrinsic properties of the galaxy population
(like their size and ellipticity distributions, etc. ). Calibration of
these biases can be achieved using image simulations, closely
mimicking real observations for a given survey but using
galaxy images distorted with a known shear, thus allowing
the measurement of the bias parameters in Eq. (1).

Image simulation pipelines, such as the GalSim package
(Rowe et al., 2015), use a forward modeling of the observa-
tions, reproducing all the steps of the image acquisition pro-
cess in Fig. 1, and therefore require as a starting point galaxy
images with high resolution and S/N. The main difficulty in
these image simulations is therefore the need for a calibration
sample of high quality galaxy images representative of the
galaxy population of the survey being simulated. Our aim in
this work is to train a deep generative model which can be
used to cheaply synthesize such data sets for specific galaxy
populations, by conditioning the samples on measurable quan-
tities.

A. Data set

As our main dataset, we use the COSMOS survey to build
a training and validation set of galaxy images and extract
from the corresponding catalog a condition vector y with
three features: half-light radius (measure of size), magnitude
(measure of brightness) and redshift (cosmological measure of
distance). To facilitate the training, we align all galaxies along
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U N I F I C AT I O N

•Some generative models can be inverted ⇒ likelihood-free inference!
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C O N C L U S I O N S

•The developments in machine learning and AI go way beyond improved 
classifiers and have the potential to transform how we do science 

• many areas of science have simulations based on some well-motivated  
mechanistic model 

• generative models and likelihood-free inference are two particularly 
exciting areas  

• they can provide effective theories of macroscopic phenomena that 
are tied back to the low-level microscopic (reductionist) model 

•Scientific challenges also motivate machine learning research 

• incorporation of domain knowledge, robustness to systematic 
uncertainties, modularization & interpretability, non-differentiable 
simulators, …
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Adversarial Training 
(not just for GANs)
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Catch me if you can

Leo is G Tom is D

5 / 13

Objective

•
Consider the value function

V (D,G ) = E
x⇠p

data

[log(D(x))] + E
z⇠p

noise

[log(1� D(G (z)))];

•
We want to

For fixed G , find D which maximizes V (D,G ),

For fixed D, find G which minimizes V (D,G );

•
In other words, we are looking for the saddle point

(D

⇤,G ⇤
) = max

D
min

G
V (D,G ).

6 / 13

Generative adversarial nets (Goodfellow et al., 2014)

Do not assume any form, but use a neural network to produce

similar samples.

•
Two-player game:

a discriminator D,

a generator G ;

•
D is a classifier X 7! {0, 1} that tries to distinguish between

a sample from the data distribution (D(x) = 1, for x ⇠ p

data

),

and a sample from the model distribution (D(G (z)) = 0, for

z ⇠ p

noise

);

•
G is a generator Z 7! X trained to produce samples G (z) (for

z ⇠ p

noise

) that are di�cult for D to distinguish from data.

4 / 13

Goodfellow, et al arXiv:1406.2661 
slide Gilles Louppe



N E W !  AV O

•Similar to GAN setup, but 
instead of using a neural network 
as the generator, use the actual 
simulation (eg. Pythia, GEANT)
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Adversarial Variational Optimization of Non-Di↵erentiable Simulators

Gilles Louppe1 and Kyle Cranmer1

1New York University

Complex computer simulators are increasingly used across fields of science as generative models
tying parameters of an underlying theory to experimental observations. Inference in this setup is
often di�cult, as simulators rarely admit a tractable density or likelihood function. We introduce
Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-
di↵erentiable generative model incorporating ideas from empirical Bayes and variational inference.
We adapt the training procedure of generative adversarial networks by replacing the di↵erentiable
generative network with a domain-specific simulator. We solve the resulting non-di↵erentiable mini-
max problem by minimizing variational upper bounds of the two adversarial objectives. E↵ectively,
the procedure results in learning a proposal distribution over simulator parameters, such that the
corresponding marginal distribution of the generated data matches the observations. We present
results of the method with simulators producing both discrete and continuous data.

I. INTRODUCTION

In many fields of science such as particle physics, epi-
demiology, and population genetics, computer simulators
are used to describe complex data generation processes.
These simulators relate observations x to the parame-
ters ✓ of an underlying theory or mechanistic model.
In most cases, these simulators are specified as proce-
dural implementations of forward, stochastic processes
involving latent variables z. Rarely do these simulators
admit a tractable density (or likelihood) p(x|✓). The
prevalence and significance of this problem has motivated
an active research e↵ort in so-called likelihood-free infer-

ence algorithms such as Approximate Bayesian Compu-
tation (ABC) and density estimation-by-comparison al-
gorithms [1–6].

In parallel, with the introduction of variational auto-
encoders [7] and generative adversarial networks [8],
there has been a vibrant research program around im-
plicit generative models based on neural networks [9].
While some of these models also do not admit a tractable
density, they are all di↵erentiable by construction. In ad-
dition, generative models based on neural networks are
highly parametrized and the model parameters have no
obvious interpretation. In contrast, scientific simulators
can be thought of as highly regularized generative mod-
els as they typically have relatively few parameters and
they are endowed with some level of interpretation. In
this setting, inference on the model parameters ✓ is often
of more interest than the latent variables z.

In this note, we develop two likelihood-free inference al-
gorithms for non-di↵erentiable, implicit generative mod-
els. The first allows us to perform empirical Bayes
through variational inference, and the second provides
a point estimator of the parameters ✓. We adapt the
adversarial training procedure of generative adversarial
networks [8] by replacing the implicit generative network
with a domain-based scientific simulator, and solve the
resulting non-di↵erentiable minimax problem by mini-
mizing variational upper bounds [10, 11] of the adver-
sarial objectives. The objective of both algorithms is to

match marginal distribution of the generated data to the
empirical distribution of the observations.

II. PROBLEM STATEMENT

We consider a family of parametrized densities p(x|✓)
defined implicitly through the simulation of a stochas-
tic generative process, where x 2 Rd is the data and ✓
are the parameters of interest. The simulation may in-
volve some complicated latent process where z 2 Z is a
latent variable providing an external source of random-
ness. Unlike implicit generative models defined by neural
networks, we do not assume z to be a fixed-size vector
with a simple density. Instead, the dimension of z and
the nature of its components (uniform, normal, discrete,
continuous, etc.) are inherited from the control flow of
the simulation code and may depend on ✓ in some in-
tricate way. Moreover, the dimension of z may be much
larger than the dimension of x.
We assume that the stochastic generative process that

defines p(x|✓) is specified through a non-di↵erentiable
deterministic function g(·;✓) : Z ! Rd. Operationally,

x ⇠ p(x|✓) ⌘ z ⇠ p(z|✓),x = g(z;✓) (1)

such that the density p(x|✓) can be written as

p(x|✓) =
Z

{z:g(z;✓)=x}
p(z|✓)µ(dz), (2)

where µ is a probability measure.
Given some observed data {xi|i = 1, . . . , N} drawn

from the (unknown) true distribution pr(x), our goal is to
estimate the parameters ✓⇤ that minimize the divergence
between pr(x) and the implicit model p(x|✓). That is,

✓⇤ = argmin
✓

⇢(pr(x), p(x|✓)), (3)

where ⇢ is some distance or divergence.

G. Louppe & K.C. arXiv:1707.07113

Catch me if you can

Leo is G Tom is D

5 / 13

•Continue to use a neural network 
discriminator / critic. 

•Difficulty: the simulator isn’t 
differentiable, but there’s a trick! 

•Allows us to efficiently fit /  
tune simulation with stochastic 
gradient techniques!

http://arxiv.org/abs/1707.07113


L E A R N I N G  T O  P I V O T  W I T H  A D V E R S A R I A L  N E T W O R K S

• Typically classifier f(x) trained to 
minimize loss Lf.  

• want classifier output to be 
insensitive to systematics 
(nuisance parameter ν) 

• introduce an adversary r that 
tries to predict ν based on f.  

• setup as a minimax game:
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2

Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r

models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f

forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓
f

) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓

f

) on the nuisance Z
is preferred, which can then be stated as requiring

p(f(X; ✓
f

) = s|z, y) = p(f(X; ✓
f

) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p

✓r (z|f(X; ✓
f

) = s) of pa-
rameters ✓

r

and associated loss L
r

(✓
f

, ✓
r

). This model
takes as input realizations f(X; ✓

f

) and produces as out-
put a function modeling the posterior probability den-

sity p
✓r (z|f(X; ✓

f

) = s). Intuitively, if p(f(X; ✓
f

) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓

f

) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p

✓r can be represented
e.g. as a probabilistic classifier R 7! R|Z| whose jth out-
put (for j = 1, . . . , |Z|) is the estimated probability mass
p
✓r (zj |f(X; ✓

f

) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓

f

) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �

j

depend on f(X, ✓
f

) and ✓
r

. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p

✓r (z|f(X; ✓
f

) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p

✓r (z|f(X; ✓
f

) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The jth output corresponds to the estimated value of
the corresponding parameter �

j

of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p
✓r (z|f(X; ✓

f

) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓
f

, ✓
r

) = L
f

(✓
f

)� L
r

(✓
f

, ✓
r

) (3)

that we optimize by finding the minimax solution

✓̂
f

, ✓̂
r

= argmin
✓f

max
✓r

E(✓
f

, ✓
r

). (4)

4

• ✓̂
f

maximizes the conditional entropy
H(Z|f(X; ✓

f

)), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓

f

)) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓

f

) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂

f

) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve L

f

(✓
f

) � H(Z|f(X; ✓
f

)) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term L

r

can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < L
f

(✓
f

)�H(Z|f(X; ✓
f

)) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E
�

(✓
f

, ✓
r

) = L
f

(✓
f

)� �L
r

(✓
f

, ✓
r

), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓

f

, ✓
r

minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓

f

) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓

f

) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓

f

) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {x
i

, y
i

, z
i

}N
i=1, from which we

train a neural network classifier f minimizing L
f

(✓
f

)
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓

f

) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓

f

) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓

f

) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses L

f

, L
r

and L
f

��L
r

are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective L

f

� �L
r

is minimized
by making the classifier less accurate, hence the corre-
sponding increase of L

f

, but which results in a classifier

Objective

•
Consider the value function

V (D,G ) = E
x⇠p

data

[log(D(x))] + E
z⇠p

noise

[log(1� D(G (z)))];

•
We want to

For fixed G , find D which maximizes V (D,G ),

For fixed D, find G which minimizes V (D,G );

•
In other words, we are looking for the saddle point

(D

⇤,G ⇤
) = max

D
min

G
V (D,G ).
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4

• ✓̂
f

maximizes the conditional entropy
H(Z|f(X; ✓

f

)), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓

f

)) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓

f

) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂

f

) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve L

f

(✓
f

) � H(Z|f(X; ✓
f

)) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term L

r

can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < L
f

(✓
f

)�H(Z|f(X; ✓
f

)) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E
�

(✓
f

, ✓
r

) = L
f

(✓
f

)� �L
r

(✓
f

, ✓
r

), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓

f

, ✓
r

minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓

f

) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓

f

) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓

f

) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {x
i

, y
i

, z
i

}N
i=1, from which we

train a neural network classifier f minimizing L
f

(✓
f

)
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓

f

) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓

f

) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓

f

) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses L

f

, L
r

and L
f

��L
r

are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective L

f

� �L
r

is minimized
by making the classifier less accurate, hence the corre-
sponding increase of L

f

, but which results in a classifier

4

• ✓̂
f

maximizes the conditional entropy
H(Z|f(X; ✓

f

)), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓

f

)) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓

f

) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂

f

) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve L

f

(✓
f

) � H(Z|f(X; ✓
f

)) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term L

r

can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < L
f

(✓
f

)�H(Z|f(X; ✓
f

)) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E
�

(✓
f

, ✓
r

) = L
f

(✓
f

)� �L
r

(✓
f

, ✓
r

), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓

f

, ✓
r

minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓

f

) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓

f

) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓

f

) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {x
i

, y
i

, z
i

}N
i=1, from which we

train a neural network classifier f minimizing L
f

(✓
f

)
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓

f

) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓

f

) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓

f

) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses L

f

, L
r

and L
f

��L
r

are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective L

f

� �L
r

is minimized
by making the classifier less accurate, hence the corre-
sponding increase of L

f

, but which results in a classifier
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L E A R N I N G  T O  P I V O T  W I T H  A D V E R S A R I A L  N E T W O R K S

• Typically classifier f(x) trained to 
minimize loss Lf.  

• want classifier output to be 
insensitive to systematics 
(nuisance parameter ν) 

• introduce an adversary r that 
tries to predict ν based on f.  

• setup as a minimax game:

80

2

Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )
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. . .
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P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r

models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f

forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓
f

) and Z are inde-
pendent random variables.
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imposed with respect to p(X|Z) where Y is marginalized
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conditional independence of f(X; ✓

f

) on the nuisance Z
is preferred, which can then be stated as requiring

p(f(X; ✓
f

) = s|z, y) = p(f(X; ✓
f

) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD
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posed by [21] as a way to build a generative model capable
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erated data g(Z). Both models g and d are trained simul-
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distribution whose samples can be identified by d only
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g, the distribution of g(Z) eventually converges towards
the real distribution of X.
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satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p

✓r (z|f(X; ✓
f

) = s) of pa-
rameters ✓

r

and associated loss L
r

(✓
f

, ✓
r

). This model
takes as input realizations f(X; ✓

f

) and produces as out-
put a function modeling the posterior probability den-

sity p
✓r (z|f(X; ✓

f

) = s). Intuitively, if p(f(X; ✓
f

) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓

f

) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
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✓r can be represented
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f
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r
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✓r (z|f(X; ✓
f
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✓r (z|f(X; ✓
f

) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The jth output corresponds to the estimated value of
the corresponding parameter �

j

of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p
✓r (z|f(X; ✓

f

) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓
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, ✓
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) = L
f

(✓
f

)� L
r

(✓
f

, ✓
r

) (3)

that we optimize by finding the minimax solution

✓̂
f

, ✓̂
r

= argmin
✓f

max
✓r

E(✓
f

, ✓
r

). (4)

4

• ✓̂
f

maximizes the conditional entropy
H(Z|f(X; ✓

f

)), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓

f

)) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓

f

) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂

f

) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve L

f

(✓
f

) � H(Z|f(X; ✓
f

)) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term L

r

can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < L
f

(✓
f

)�H(Z|f(X; ✓
f

)) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E
�

(✓
f

, ✓
r

) = L
f

(✓
f

)� �L
r

(✓
f

, ✓
r

), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓

f

, ✓
r

minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓

f

) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓

f

) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓

f

) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {x
i

, y
i

, z
i

}N
i=1, from which we

train a neural network classifier f minimizing L
f

(✓
f

)
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓

f

) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓

f

) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓

f

) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses L

f

, L
r

and L
f

��L
r

are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective L

f

� �L
r

is minimized
by making the classifier less accurate, hence the corre-
sponding increase of L

f

, but which results in a classifier

Objective

•
Consider the value function

V (D,G ) = E
x⇠p

data

[log(D(x))] + E
z⇠p

noise

[log(1� D(G (z)))];

•
We want to

For fixed G , find D which maximizes V (D,G ),

For fixed D, find G which minimizes V (D,G );

•
In other words, we are looking for the saddle point

(D

⇤,G ⇤
) = max

D
min

G
V (D,G ).
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A N  E X A M P L E

•Technique allows us to tune λ, the tradeoff between 
classification power and robustness to systematic uncertainty

81
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An example: 
background: 1000 QCD jets 
signal: 100 boosted W’s 

Train W vs. QCD classifier 

Pileup as source of 
uncertainty 

Simple cut-and-count 
analysis with background 
uncertainty. 

standard 
training

optimal tradeoff of classification vs. & robustness

G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046
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FIG. 11. Profile of the paramterized NN responses
to background versus jet mass, where the parameterized
network was evaluated at di↵erent Z0 mass hypotheses.
Top shows the response of the adversarially-trained clas-
sifier, which minimizes correlation with jet mass; bottom
shows the response of a network trained in the traditional
manner, to optimize classification accuracy.

able of interest, the jet mass. This allows the classi-
fier to enhance signal to noise ratio while minimiz-
ing the tendency of the background distribution to
morph into a shape which is degenerate with the ob-
servable signal. When the background cannot be re-
liably predicted a priori, as is often the case, it is im-
portant to be able to constrain its rate in sidebands
surrounding the signal region. Therefore, avoiding
such degeneracy is critical to performing successful
measurements.

We note that, from Fig. 8, it is clear that ap-
plying su�ciently tight cuts to the adversarial clas-
sifier causes significant background morphing, par-
ticularly when compared to the ⌧

21

-based discrimi-
nants. However, the solid lines of Fig. 9 illustrate
the case where the background rate is uncertain
and hence benefits from sideband constraints. We
see that the optimal significance is realized for the
adversarial classifier at a relatively high signal e�-
ciency of roughly 90%, where the background mor-
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FIG. 12. The AUC metric (Area Under the Curve) for
NNs parameterized in mZ0 and tested at several values
(both traditional and adversarial training techniques),
compared to the discrimination of the individual features
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FIG. 13. Discovery significance for a hypothetical sig-
nal after optimizing thresholds on the output of networks
parameterized in mZ0 trained with an adversarial or tra-
ditional approaches, compared to thresholds on ⌧21, ⌧

0
21

and ⌧ 00
21 or to placing no threshold. Significance is eval-

uated for the case of 50% background uncertainty.

phing is quite limited (Fig. 7). Hence, the adversar-
ial classifier achieves its goal of optimizing the trade-
o↵ between correlation and discrimination power.

We also note that the decorrelation could poten-

9

D E C O R R E L AT E D  TA G G E R S

•Adversarial approach of “Learning 
to Pivot” can also be used to train 
a classifier that is “decorrelated” 
to some other variable.  

• want jet taggers that are 
decorrelated with jet invariant 
mass 

• so that analysis can still search 
for a bump using jet invariant 
mass 

• avoids sculpting background

82

K.C, J. Pavez, and G. Louppe, arXiv:1506.02169 
P. Baldi, K.C, T. Faucett, P. Sadowski, D. Whiteson  arXiv:1601.07913 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D E C O R R E L AT I O N  I N  B E L L E  I I

83

48 5. Deep Learning for Continuum Suppression

Figure 5.13.: COD signal distribution of 4z with an Adversarial Network’s classifier out-
put. For details of this representation method see Figure 5.10. The classifier
output has significantly fewer correlations to the signal distribution of 4z
than DNN (E+DL+V) in Figure 5.12.

Figure 5.14.: ROC curves of DNN (E+DL) and DNN (E+DL+V) from Section 5.4 and
an Adversarial Network AN trained with the same topology in the classifier
part.

48 5. Deep Learning for Continuum Suppression

Figure 5.13.: COD signal distribution of 4z with an Adversarial Network’s classifier out-
put. For details of this representation method see Figure 5.10. The classifier
output has significantly fewer correlations to the signal distribution of 4z
than DNN (E+DL+V) in Figure 5.12.

Figure 5.14.: ROC curves of DNN (E+DL) and DNN (E+DL+V) from Section 5.4 and
an Adversarial Network AN trained with the same topology in the classifier
part.

46 5. Deep Learning for Continuum Suppression

Figure 5.11.: COD signal distribution of 4z with the classifier DNN (E+DL) from Sec-
tion 5.4. For details of this representation method see Figure 5.10. The
classifier output has close to none correlations to 4z considering the offset
shown in Figure 5.10.

Figure 5.12.: COD signal distribution of 4z with the classifier DNN (E+DL+V) from
Section 5.4. For details of this representation method see Figure 5.10. The
classifier output has significant correlations with the signal distribution of 4z
in contrast to that in Figure 5.11.

5.6. Adversarial Network 45

Figure 5.9.: Schematics of 4z, which is the vertex difference of the two B-mesons in the
boost direction.

Figure 5.10.: Classifier Output Dependent (COD) normalized signal distribution of 4z
with a random classifier. The distribution without applying a classifier cut is
drawn as a black line, while the different quantile cuts are drawn as deviations
from the black line in their respective colors. Significant deviations are drawn
in red, while not important deviations from high quantile cuts fade to white.
The value at the top represents the flatness of the distribution. It is clear,
that the random classifier has no correlation at all to 4z.

Dennis Weyland Master’s thesis ETP-KA/2017-30 



Physics-Aware Machine Learning 

(choosing the variational family)



J E T  S U B S T R U C T U R E

•Many scenarios for physics Beyond the Standard Model 
include highly boosted W, Z, H bosons or top quarks  

•Identifying these rests on subtle substructure inside jets 

• an enormous number of theoretical effort in developing 
observables and techniques to tag jets like this 

87

2

b Rbb Rfilt

Rbbg

b
R

mass drop filter

FIG. 1: The three stages of our jet analysis: starting from a hard massive jet on angular scale R, one identifies the Higgs
neighbourhood within it by undoing the clustering (effectively shrinking the jet radius) until the jet splits into two subjets
each with a significantly lower mass; within this region one then further reduces the radius to Rfilt and takes the three hardest
subjets, so as to filter away UE contamination while retaining hard perturbative radiation from the Higgs decay products.

objects (particles) i and j, recombines the closest pair,
updates the set of distances and repeats the procedure
until all objects are separated by a ∆Rij > R, where R
is a parameter of the algorithm. It provides a hierarchical
structure for the clustering, like the K⊥algorithm [9, 10],
but in angles rather than in relative transverse momenta
(both are implemented in FastJet 2.3[11]).

Given a hard jet j, obtained with some radius R, we
then use the following new iterative decomposition proce-
dure to search for a generic boosted heavy-particle decay.
It involves two dimensionless parameters, µ and ycut:

1. Break the jet j into two subjets by undoing its last
stage of clustering. Label the two subjets j1, j2 such
that mj1 > mj2 .

2. If there was a significant mass drop (MD), mj1 <
µmj, and the splitting is not too asymmetric, y =
min(p2

tj1
,p2

tj2
)

m2

j

∆R2
j1,j2

> ycut, then deem j to be the

heavy-particle neighbourhood and exit the loop.
Note that y ≃ min(ptj1 , ptj2)/ max(ptj1 , ptj2).

1

3. Otherwise redefine j to be equal to j1 and go back
to step 1.

The final jet j is to be considered as the candidate Higgs
boson if both j1 and j2 have b tags. One can then identify
Rbb̄ with ∆Rj1j2 . The effective size of jet j will thus be
just sufficient to contain the QCD radiation from the
Higgs decay, which, because of angular ordering [12, 13,
14], will almost entirely be emitted in the two angular
cones of size Rbb̄ around the b quarks.

The two parameters µ and ycut may be chosen inde-
pendently of the Higgs mass and pT . Taking µ ! 1/

√
3

ensures that if, in its rest frame, the Higgs decays to a
Mercedes bb̄g configuration, then it will still trigger the
mass drop condition (we actually take µ = 0.67). The cut
on y ≃ min(zj1 , zj2)/ max(zj1 , zj2) eliminates the asym-
metric configurations that most commonly generate sig-
nificant jet masses in non-b or single-b jets, due to the

1 Note also that this ycut is related to, but not the same as, that
used to calculate the splitting scale in [5, 6], which takes the jet
pT as the reference scale rather than the jet mass.

Jet definition σS/fb σB/fb S/
√

B · fb

C/A, R = 1.2, MD-F 0.57 0.51 0.80

K⊥, R = 1.0, ycut 0.19 0.74 0.22

SISCone, R = 0.8 0.49 1.33 0.42

TABLE I: Cross section for signal and the Z+jets background
in the leptonic Z channel for 200 < pTZ/GeV < 600 and
110 < mJ/GeV < 125, with perfect b-tagging; shown for
our jet definition, and other standard ones at near optimal R
values.

soft gluon divergence. It can be shown that the maxi-
mum S/

√
B for a Higgs boson compared to mistagged

light jets is to be obtained with ycut ≃ 0.15. Since we
have mixed tagged and mistagged backgrounds, we use a
slightly smaller value, ycut = 0.09.

In practice the above procedure is not yet optimal
for LHC at the transverse momenta of interest, pT ∼
200 − 300 GeV because, from eq. (1), Rbb̄ ! 2mh/pT is
still quite large and the resulting Higgs mass peak is sub-
ject to significant degradation from the underlying event
(UE), which scales as R4

bb̄
[15]. A second novel element

of our analysis is to filter the Higgs neighbourhood. This
involves resolving it on a finer angular scale, Rfilt < Rbb̄,
and taking the three hardest objects (subjets) that ap-
pear — thus one captures the dominant O (αs) radiation
from the Higgs decay, while eliminating much of the UE
contamination. We find Rfilt = min(0.3, Rbb̄/2) to be
rather effective. We also require the two hardest of the
subjets to have the b tags.

The overall procedure is sketched in Fig. 1. We il-
lustrate its effectiveness by showing in table I (a) the
cross section for identified Higgs decays in HZ produc-
tion, with mh = 115 GeV and a reconstructed mass re-
quired to be in an moderately narrow (but experimen-
tally realistic) mass window, and (b) the cross section
for background Zbb̄ events in the same mass window.
Our results (C/A MD-F) are compared to those for the
K⊥algorithm with the same ycut and the SISCone [16]
algorithm based just on the jet mass. The K⊥algorithm
does well on background rejection, but suffers in mass
resolution, leading to a low signal; SISCone takes in less
UE so gives good resolution on the signal, however, be-
cause it ignores the underlying substructure, fares poorly
on background rejection. C/A MD-F performs well both
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Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

would be much slower. There are many options for a smaller set of channels. For example,

one could consider one channel for hadrons and one for leptons, or channels for positively

charged, neutral and negatively charged particles. To be concrete, in this study we take three

input channels:

red = transverse momenta of charged particles

green = the transverse momenta of neutral particles

blue = charged particle multiplicity

– 9 –

image: Komiske, Metodiev, Schwartz arxiv:1612.01551
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Oliveira, et. al arXiv:1511.05190

Barnard, et al arXiv:1609.00607
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•Apply deep learning algorithms to classify to “jet images” 

• good results (based on fast simulation & idealized uniform calorimeter) 

• preprocessed to mod out symmetries in the data 

• discretization into images looses information 
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L2 norm such that

P
I2i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L2 norm such that

P
I2i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many

– 4 –

Average Boosted W Jet (y=1) Average QCD Jet (y=0)

Whiteson, et al arXiv:1603.09349 
Oliveira, et. al arXiv:1511.05190

Dawe, et al arXiv:1609.00607
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J E T S  A S  A  G R A P H

•Using message passing neural networks over a fully connected graph 
on the particles 

• Two approaches for adjacency matrix for edges 

• inject physics knowledge by using dij of jet algorithms 

• learn adjacency matrix and export new jet algorithm
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Example Boosted W Jet (y=1) Example QCD Jet (y=0)

Isaac Henrion
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H O W  C A N  W E  I M P R O V E ?
•Image based approaches are doing well, but…. 

• would be nice to be able to work with a variable length input 

• avoid pre-processing into a regular-grid (eg. non-uniform 
calorimeters) 

• avoid representing empty pixels (sparse input) 

• would be nice if classifier had nice theoretical properties 

• infrared & collinear safety, robustness to pileup, etc. 

• would be nice to be more data efficient, most image-based 
networks use a LOT of training data. 
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F R O M  I M A G E S  T O  S E N T E N C E S

•Recursive Neural Networks showing great performance for 
Natural Language Processing tasks 

• neural network’s topology given by parsing of sentence!
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F R O M  I M A G E S  T O  S E N T E N C E S

•Recursive Neural Networks showing great performance for 
Natural Language Processing tasks 

• neural network’s topology given by parsing of sentence!
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Analogy: 
word → particle 
parsing → jet algorithm
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•Work with Gilles Louppe, Kyunghyun Cho, Cyril Becot 

• Use sequential recombination jet algorithms to 
provide network topology (on a per-jet basis) 

• path towards ML models with good theoretical 
properties 

• Top node of recursive network provides a fixed-length 
embedding of a jet that can be fed to a classifier

kt anti-kt

• arXiv:1702.00748  & follow up work with Joan Bruna using graph conv nets
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FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using kt topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.

FIG. 4. Jet classification performance of the RNN classifier
based on various network topologies for the embedding (par-
ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with

Q C D - I N S P I R E D  R E C U R S I V E  N E U R A L  N E T W O R K S
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towers 

particles

images

• W-jet tagging example 
using data from Dawe, et 
al arXiv:1609.00607 

• down-sampling by 
projecting into images 
looses information 

• RNN needs much less 
data to train!

kt anti-kt



H I E R A R C H I C A L  M O D E L  F O R  T H E  E N T I R E  E V E N T

•particle embedding → jet embedding → event embedding → classifier
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FIG. 4. [Gilles: write me, move me?]

Appendix A: Gated recursive embedding of jets

The recursive activation proposed in the previous sec-
tion su↵ers from two critical issues. First, it assumes
that left-child, right-child and local node information
hkL , hkR , uk are all equally relevant for computing the
new activation, while only some of this information may
be needed and selected. Second, it forces information to
pass through several levels of non-linearities and does not
allow to propagate unchanged from leaves to root. Ad-
dressing these issues and generalizing from [5–7], we pro-
pose to recursively define a recursive activation equipped

with reset and update gates as follows:

hk =

8
><

>:

uk if k is a leaf

zH � h̃k + zL � hkL+ otherwise

,! zR � hkR + zN � uk

(A1)

uk = � (Wuok + bu) (A2)

ok =

(
vi(k) if k is a leaf

okL + okR otherwise
(A3)

h̃k = �

0

@Wh̃

2

4
rL � hkL

rR � hkR

rN � uk

3

5+ bh̃

1

A (A4)

2

64

zH

zL

zR

zN

3

75 = softmax

0

BB@Wz

2

664

h̃k

hkL

hkR

uk

3

775+ bz

1

CCA (A5)

2

4
rL

rR

rN

3

5 = sigmoid

0

@Wr

2

4
hkL

hkR

uk

3

5+ br

1

A (A6)

where Wh̃ 2 Rq⇥3q, bh̃ 2 Rq, Wz 2 Rq⇥4q, bz 2 Rq,
Wr 2 Rq⇥3q, br 2 Rq, Wu 2 Rq⇥4 and bu 2 Rq form
together the shared parameters to be learned, � is the
ReLU activation function and � denotes the element-
wise multiplication.

Intuitively, the reset gates rL, rR and rN control how
to actively select and then merge the left-child embed-
ding hkL , the right-child embedding hkR and the local
node information uk to form a new candidate activation
h̃k. The final embedding hk can then be regarded as a

It scales!

• arXiv:1702.00748  & follow up work with Joan Bruna using graph conv nets
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F U T U R E  D I R E C T I O N S

•Vocabulary of kernels + grammar for 
composition 

• physics goes into the construction of 
a “Kernel” that describes covariance 
of data
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Structure Discovery in Nonparametric Regression through Compositional Kernel Search

cylinders. Some of their discrete graph structures have
continous analogues in our own space; e.g. SE1 ⇥ SE2

and SE1 ⇥ Per2 can be seen as mapping the data to
a plane and a cylinder, respectively.

Grosse et al. (2012) performed a greedy search over a
compositional model class for unsupervised learning,
using a grammar and a search procedure which parallel
our own. This model class contained a large number
of existing unsupervised models as special cases and
was able to discover such structure automatically from
data. Our work is tackling a similar problem, but in a
supervised setting.

5. Structure discovery in time series

To investigate our method’s ability to discover struc-
ture, we ran the kernel search on several time-series.

As discussed in section 2, a gp whose kernel is a sum
of kernels can be viewed as a sum of functions drawn
from component gps. This provides another method
of visualizing the learned structures. In particular, all
kernels in our search space can be equivalently writ-
ten as sums of products of base kernels by applying
distributivity. For example,

SE⇥ (RQ+ Lin) = SE⇥RQ+ SE⇥ Lin.

We visualize the decompositions into sums of compo-
nents using the formulae given in the appendix. The
search was run to depth 10, using the base kernels from
Section 2.

Mauna Loa atmospheric CO2 Using our method,
we analyzed records of carbon dioxide levels recorded
at the Mauna Loa observatory. Since this dataset was
analyzed in detail by Rasmussen & Williams (2006),
we can compare the kernel chosen by our method to a
kernel constructed by human experts.
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Figure 3. Posterior mean and variance for di↵erent depths
of kernel search. The dashed line marks the extent of the
dataset. In the first column, the function is only modeled
as a locally smooth function, and the extrapolation is poor.
Next, a periodic component is added, and the extrapolation
improves. At depth 3, the kernel can capture most of the
relevant structure, and is able to extrapolate reasonably.
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Figure 4. First row: The posterior on the Mauna Loa
dataset, after a search of depth 10. Subsequent rows show
the automatic decomposition of the time series. The de-
compositions shows long-term, yearly periodic, medium-
term anomaly components, and residuals, respectively. In
the third row, the scale has been changed in order to clearly
show the yearly periodic structure.
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F U T U R E  D I R E C T I O N S

•Instead of fitting the dijet spectrum with an ad hoc 3-5 
parameter function, use GP with kernel motivated from physics

100

5

FIG. 6: The ATLAS 13 TeV dijet dataset with (top)
Gaussian Process fit and (bottom) 3 parameter fit

function fit

PERFORMANCE

Background only fit: no signal

• Show fits to BG only (ATLAS + toy), compare GP
to 3-param function

• Show tests as function of luminosity

A requirement of the background estimation procedure
is to produce a smooth background given any dataset.
Our first test of this is to fit each of the 10000 toys cre-
ated with the smoothed data with our Gaussian Process
and 3 parameter fit function, with the results shown in
figure 7. The Gaussian Process and 3 parameter fit func-
tion appear to perform similarly.
For each fit to a toy, we calculate the �2 goodness of

fit. The distribution of �2 for both Gaussian Process and
parametric fits is shown in Figure 8.
A second test that our Gaussian Process must pass is

its ability to fit at higher luminosity. For this, we scale
the smoothed data to luminosities of 5, 10, 15, 20, 25,
30, 35, 40, 45, and 50 fb�1, and then generate 1000 toys
at each luminosity. For each fit, we calculate the �2. We
then show the median and standard deviation of the �2

across all toys as a function of luminosity in Figure 9.

Other plots

• compare refitting all hyperparameters to not refit-
ting any (only scaling the mean function up with
luminosity) for the luminosity test. Current don’t
refit any

• distribution of �2 for each luminosity

• using GP covariance matrix in calculation of �2

rather then just sqrt(obs).

Background only fit: with signal

• show that we can extract background when there
is a signal

• show GP signal can accurately pick out signal even
on odd signal shapes

Our background estimation procedure must not only be
able to produce a smooth background on datasets with-
out signal, but must be able to handle extracting back-
ground even when a signal is present. Previously, the
fit functions used were not flexible enough to include a
large signal. If a signal was present in data and there-
fore produced a poor background estimation, an itera-
tive procedure to remove the signal and extrapolate the
fit in the area of the removed signal was performed. To

3

FIG. 1: Three parameter covariance

FIG. 2: Gaussian Process covariance

in to the paper may be tricky

• essentially, does our Gaussian Process have features
we’d expect from JES/PDF e↵ects

To better construct a kernel, we can also include our un-
derstanding of detector e↵ects and physics e↵ects. We
look at the covariance matrix of the 3 parameter fit func-
tion by fitting the ATLAS dataset and using Markov
Chain Monte Carlo [cite emcee?] to sample the posterior
(Fig 1). One can see a visible structure in the covariance,
suggesting the inflexibility of the fit function causes an-
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taking the 8 TeV dijet analysis data [cite] and comput-
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(Fig 4).
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• comparing covariance at low mass, mid mass, and
high mass as a function of mjj i.e. 1st row, middle
row, and last row of covariance matrix

• fit function parameter corner plots. 1D distribu-
tions of fit function parameters from posterior sam-
ples. 2D distributions (i.e. p0 vs p1, p0 vs p2, p1 vs
p2) of fit function parameters from posterior sam-
ples.

• fit function bin counts corner plots. 1D distribu-
tions of bin values from posterior samples. 2D dis-
tributions (i.e. bin1 vs bin 2, bin 1 vs bin 20...) of
bin values from posterior samples

• covariance plots for GP and fit function when fit to
smooth 5 param fit function with Poisson errors

• covariance plots and fit for GP using two di↵erent
kernels: fit function kernel (kernel is fit function at
x times fit function at x’) and exponential curve fit
from paper [cite] where they have no mean and try
to use kernel to cover large data range.

Mean function

• what are we using as our mean function and why

We use a 3-parameter dijet fit functions as our mean
function, which is given in Eq. 3, where s is the center
of mass energy. . This is chosen as it is the lowest order
fit function used in the 13 TeV dijet analyses. Because
Gaussian Processes are so flexible, the choice of mean
function does not need to be precise, as in we do not
need to go through similar procedures to the dijet anal-
yses in order to choose the best fit function. Rather, the
mean should be roughly corresponding to the underlying
structure of the distribution, while the covariance func-
tion will take care of modeling the fluctuations.

µ(x) = p0 ⇥ (1� xp
s
)p1 ⇥ (

xp
s
)p2 (3)

PROCEDURE

• more mathematical description of GP

• what packages are we using

• what is defined as the background estimate for a
Gaussian Process

In this paper, we use the Python library called george
for our Gaussian Process regression [cite george]. George
must be given a kernel and some initial hyperparameters,
as well as the independent coordinates. In our setup,
there are several hyperparameters to be fitted, which in-
clude the five kernel parameters (a, b, c, d, and some
overall amplitude we call A,) and our three mean pa-
rameters (p0, p1, p2), as seen in Eq. 2 and Eq. 3. To
get these hyperparameters, we pass the negative log like-
lihood of the fit into Minuit minimizer[cite]. The log
likelihood is Gaussian in nature and given by �ln(L) =
1
2 (ln(|⌃(x, x)|) + (y� µ(x))T⌃(x, x)�1(y� µ(x)) + const
where ⌃, µ are the kernel and mean function evaluated
at the independent coordinates, and y is the data. Our
final background estimation is the mean of the condi-
tional distribution of the Gaussian Process, given by
m = µ(x0) + ⌃(x, x0)[⌃(x, x) + �2I]�1(y � µ(x)) where
⌃, µ are once again the kernel and mean function, x is the
independent coordinates, y is data, and x’ is the indepen-
dent coordinates the conditional distribution should be
evaluated at.

DATASETS

• 13 TeV ATLAS dataset, see Fig ??.

• toy mc. Take 5-param function, fit to 13 TeV AT-
LAS dataset (cite) see Fig ??, then generate 1000
data samples.

The base dataset used to fit is a 13 TeV ATLAS dataset
of 3.6fb�1 [cite]. To test the e↵ectiveness of our Gaussian
Process, we perform a set of tests that we compare our
Gaussian Process to the standard fit function approach
using a 3 parameter fit function (Eq. 3). As a first check,
we compare the fits to the ATLAS dataset, with the re-
sults shown in figure 6.
We also compare Gaussian Process and parametric fits

on toy datasets. These toys are generated from smoothed
data.

+ Jet Energy Scale

+ Parton Density  
Functions

Final Kernel = 

Poisson stats 
+ Mass Resolution

with Meghan Frate 
& Daniel Whiteson

=

+ 
…

+ 
…



T W O  A P P R O A C H E S

• Approximate Bayesian 
Computation (ABC) 

• Probabilistic Programming 

• Adversarial Variational 
Optimization (AVO)

101

Use simulator  
(much more efficiently)

Learn simulator  
(with deep learning)

• Generative Adversarial Networks (GANs), 
Variational Auto-Encoders (VAE) 

• Likelihood ratio from classifiers (CARL) 

• Autogregressive models,  
Normalizing Flows

[image credit: A.P. Goucher]

https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/


D E N S I T Y  E S T I M AT I O N  V I A  C A L C U L U S  O F  VA R I AT I O N S

•What function r(x) minimizes the “cross-entropy” loss? 

• Subject to  

•Euler-Lagrange Equation w/ Lagrange-multiplier 

•imposing the constraint gives            thus 
102

L[r] = �
Z

p(x) log r(x)| {z }
F (x,r)

dx

L[r,�] = F (x, r) + �r(x)
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How do we create complicated probability 
densities p(x) that are tractable  

and  

are normalized such that ∫p(x) dx = 1 ?



B I J E C T I O N S

•If I have a bijection: 

•and an arbitrary tractable density on Z: 

•Then density on X follows from a simple change of variables 

•Now construct neural networks fϕ that are bijections & optimize 
“cross entropy” loss 

•If it is a bijection, I can generate samples of x from inverse 
transformation f-1(z)

104

f : X ! Z

p(z)

K.C. & G. Louppe: http://beta.briefideas.org/ideas/5c2f74aedbf3618ca180382e393c7617 

http://beta.briefideas.org/ideas/5c2f74aedbf3618ca180382e393c7617


E N G I N E E R I N G  B I J E C T I O N S
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Approximations using Change-of-variables

Exploit the rule for change of variables for random variables:

Ñ Begin with an initial distribution q0(z0|x).
Ñ Apply a sequence of K invertible functions fk.

z0

x

z1

…

zK

t = 0 t = 1 … t = T

q(z�) = q(z)

����det
�f

�z

����
�1

log qK(zK) = log q0(z0) �
K�

k=1

log det

����
�fk

�zk

����

zK = fK � . . . � f2 � f1(z0)
Sampling and Entropy

Distribution flows through a sequence of invertible transforms

[Rezende and Mohamed, 2015]

Choice of Transformation Function

L =Eq0(z0)[log p(x,zK)]�Eq0(z0)[log q0(z0)]�Eq0(z0)

ñ KX

k=1

log det

����
@ fk
@ zk

����

ô

Ñ Begin with a fully-factorised Gaussian and improve by change of variables.
Ñ Triangular Jacobians allow for computational efficiency.

zk

h

+

zk+1

zk = zk�1 + uh(w�zk�1 + b)

Planar Flow

zk

t

concat

z1:d zd+1:D

+

y1:d

s ⦿

yd+1:D

zk+1

y1:d = zk�1,1:d

yd+1:D = t(zk�1,1:d) + zd+1:D � exp(s(zk�1,1:d))

Real NVP

zk z<k

har

μ σ

- ÷

zk+1

zk =
zk�1 � µk(z<k, x)

�k(z<k, x)

Inverse AR Flow

[Rezende and Mohamed, 2016; Dinh et al., 2016; Kingma et al., 2016]

Linear time computation of the determinant and its gradient.
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T W O  A P P R O A C H E S

• Approximate Bayesian 
Computation (ABC) 

• Probabilistic Programming 

• Adversarial Variational 
Optimization (AVO)
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Use simulator  
(much more efficiently)

Learn simulator  
(with deep learning)

• Generative Adversarial Networks (GANs), 
Variational Auto-Encoders (VAE) 

• Likelihood ratio from classifiers (CARL) 

• Autogregressive models,  
Normalizing Flows

[image credit: A.P. Goucher]

https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/
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‘Likelihood-Free’ Inference

Rejection Algorithm

Draw ✓ from prior ⇡(·)
Accept ✓ with probability ⇡(D | ✓)

Accepted ✓ are independent draws from the posterior distribution,
⇡(✓ | D).
If the likelihood, ⇡(D|✓), is unknown:

‘Mechanical’ Rejection Algorithm

Draw ✓ from ⇡(·)
Simulate X ⇠ f (✓) from the computer model

Accept ✓ if D = X , i.e., if computer output equals observation

The acceptance rate is
R

P(D|✓)⇡(✓)d✓ = P(D).

*From Richard Wilkinson’s talk at Data science @LHC 

← exact Bayesian Computation
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Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any ✓. Instead,
there is an approximate version:

Uniform Rejection Algorithm

Draw ✓ from ⇡(✓)

Simulate X ⇠ f (✓)

Accept ✓ if ⇢(D,X )  ✏

✏ reflects the tension between computability and accuracy.

As ✏ ! 1, we get observations from the prior, ⇡(✓).

If ✏ = 0, we generate observations from ⇡(✓ | D).

For reasons that will become clear later, we call this uniform-ABC.

*From Richard Wilkinson’s talk at Data science @LHC 



N E W !  AV O

•Similar to GAN setup, but 
instead of using a neural network 
as the generator, use the actual 
simulation (eg. Pythia, GEANT)
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Adversarial Variational Optimization of Non-Di↵erentiable Simulators

Gilles Louppe1 and Kyle Cranmer1

1New York University

Complex computer simulators are increasingly used across fields of science as generative models
tying parameters of an underlying theory to experimental observations. Inference in this setup is
often di�cult, as simulators rarely admit a tractable density or likelihood function. We introduce
Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-
di↵erentiable generative model incorporating ideas from empirical Bayes and variational inference.
We adapt the training procedure of generative adversarial networks by replacing the di↵erentiable
generative network with a domain-specific simulator. We solve the resulting non-di↵erentiable mini-
max problem by minimizing variational upper bounds of the two adversarial objectives. E↵ectively,
the procedure results in learning a proposal distribution over simulator parameters, such that the
corresponding marginal distribution of the generated data matches the observations. We present
results of the method with simulators producing both discrete and continuous data.

I. INTRODUCTION

In many fields of science such as particle physics, epi-
demiology, and population genetics, computer simulators
are used to describe complex data generation processes.
These simulators relate observations x to the parame-
ters ✓ of an underlying theory or mechanistic model.
In most cases, these simulators are specified as proce-
dural implementations of forward, stochastic processes
involving latent variables z. Rarely do these simulators
admit a tractable density (or likelihood) p(x|✓). The
prevalence and significance of this problem has motivated
an active research e↵ort in so-called likelihood-free infer-

ence algorithms such as Approximate Bayesian Compu-
tation (ABC) and density estimation-by-comparison al-
gorithms [1–6].

In parallel, with the introduction of variational auto-
encoders [7] and generative adversarial networks [8],
there has been a vibrant research program around im-
plicit generative models based on neural networks [9].
While some of these models also do not admit a tractable
density, they are all di↵erentiable by construction. In ad-
dition, generative models based on neural networks are
highly parametrized and the model parameters have no
obvious interpretation. In contrast, scientific simulators
can be thought of as highly regularized generative mod-
els as they typically have relatively few parameters and
they are endowed with some level of interpretation. In
this setting, inference on the model parameters ✓ is often
of more interest than the latent variables z.

In this note, we develop two likelihood-free inference al-
gorithms for non-di↵erentiable, implicit generative mod-
els. The first allows us to perform empirical Bayes
through variational inference, and the second provides
a point estimator of the parameters ✓. We adapt the
adversarial training procedure of generative adversarial
networks [8] by replacing the implicit generative network
with a domain-based scientific simulator, and solve the
resulting non-di↵erentiable minimax problem by mini-
mizing variational upper bounds [10, 11] of the adver-
sarial objectives. The objective of both algorithms is to

match marginal distribution of the generated data to the
empirical distribution of the observations.

II. PROBLEM STATEMENT

We consider a family of parametrized densities p(x|✓)
defined implicitly through the simulation of a stochas-
tic generative process, where x 2 Rd is the data and ✓
are the parameters of interest. The simulation may in-
volve some complicated latent process where z 2 Z is a
latent variable providing an external source of random-
ness. Unlike implicit generative models defined by neural
networks, we do not assume z to be a fixed-size vector
with a simple density. Instead, the dimension of z and
the nature of its components (uniform, normal, discrete,
continuous, etc.) are inherited from the control flow of
the simulation code and may depend on ✓ in some in-
tricate way. Moreover, the dimension of z may be much
larger than the dimension of x.
We assume that the stochastic generative process that

defines p(x|✓) is specified through a non-di↵erentiable
deterministic function g(·;✓) : Z ! Rd. Operationally,

x ⇠ p(x|✓) ⌘ z ⇠ p(z|✓),x = g(z;✓) (1)

such that the density p(x|✓) can be written as

p(x|✓) =
Z

{z:g(z;✓)=x}
p(z|✓)µ(dz), (2)

where µ is a probability measure.
Given some observed data {xi|i = 1, . . . , N} drawn

from the (unknown) true distribution pr(x), our goal is to
estimate the parameters ✓⇤ that minimize the divergence
between pr(x) and the implicit model p(x|✓). That is,

✓⇤ = argmin
✓

⇢(pr(x), p(x|✓)), (3)

where ⇢ is some distance or divergence.

G. Louppe & K.C. arXiv:1707.07113

Catch me if you can

Leo is G Tom is D

5 / 13

•Continue to use a neural network 
discriminator / critic. 

•Difficulty: the simulator isn’t 
differentiable, but there’s a trick! 

•Allows us to efficiently fit /  
tune simulation with stochastic 
gradient techniques!

http://arxiv.org/abs/1707.07113


Probabilistic Programming: 
Inverting the simulation 

(very ambitious)



Probabilistic Programming

ML: 
Algorithms &
Applications

STATS: 
Inference &

Theory

PL: 
Compilers,
Semantics,

Transformations

Probabilistic
Programming



Statistics
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Intuition

Parameters

Program

Output

CS

Parameters

Program
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Probabilistic Programming

Inference

p(z|x)

[slides, Frank Wood]



(defquery captcha 
 [image num-chars tol]
 (let [[w h] (size image)
       ;; sample random characters
       num-chars (sample 
                  (poisson num-chars))
       chars (repeatedly 
               num-chars sample-char)]
  ;; compare rendering to true image
  (map (fn [y z] 
         (observe (normal z tol) y)) 
       (reduce-dim image)
       (reduce-dim (render chars w h)))
  ;; predict captcha text
  {:text
   (map :symbol (sort-by :x chars))}))

Posterior Samples

CAPTCHA breaking
Generative ModelObservation

y
x

text image
Mansinghka,, Kulkarni, Perov, and Tenenbaum  

“Approximate Bayesian image interpretation using generative probabilistic graphics programs." NIPS (2013).
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(defquery arrange-bumpers []
    (let [number-of-bumpers (sample (poisson 20))
          bumpydist (uniform-continuous 0 10)
          bumpxdist (uniform-continuous -5 14)
          bumper-positions (repeatedly
                            number-of-bumpers
                            #(vector (sample bumpxdist) 
                                     (sample bumpydist)))

          ;; code to simulate the world
          world (create-world bumper-positions)
          end-world (simulate-world world)
          balls (:balls end-world)

          ;; how many balls entered the box?
          num-balls-in-box (balls-in-box end-world)]

      {:balls balls
       :num-balls-in-box num-balls-in-box
       :bumper-positions bumper-positions}))

A N A L O G Y:  R A N D O M  B U M P E R S  ~  R A N D O M  C A L O R I M E T E R  S H O W E R

115[slides, Frank Wood]

3 examples generated from simulator 
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(defquery arrange-bumpers []
    (let [number-of-bumpers (sample (poisson 20))
          bumpydist (uniform-continuous 0 10)
          bumpxdist (uniform-continuous -5 14)
          bumper-positions (repeatedly
                            number-of-bumpers
                            #(vector (sample bumpxdist) 
                                     (sample bumpydist)))

          ;; code to simulate the world
          world (create-world bumper-positions)
          end-world (simulate-world world)
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          ;; how many balls entered the box?
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          obs-dist (normal 4 0.1)]

      (observe obs-dist num-balls-in-box)
      
      {:balls balls
       :num-balls-in-box num-balls-in-box
       :bumper-positions bumper-positions}))
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3 examples generated from simulator 
conditioned on ~20% of balls land in box 
(~ given observed energy deposits) 
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conditioned on ~20% of balls land in box 
(~ given observed energy deposits) 



H O W  D O E S  I T  W O R K ?

•In short: hijack the random number generators and use 
NN’s to perform a very smart type of importance sampling

117

Input: an inference 
problem denoted in 
a universal PPL
(Anglican, CPProb)

Output: a trained 
inference network, 
or “compilation 
artifact”
(Torch, PyTorch)

Le, Baydin and Wood. Inference Compilation and Universal Probabilistic Programming. AISTATS 2017. 
arXiv:1610.09900

Inference compilation



T W O  A P P R O A C H E S

• Approximate Bayesian 
Computation (ABC) 

• Probabilistic Programming 

• Adversarial Variational 
Optimization (AVO)

118

Use simulator  
(much more efficiently)

Learn simulator  
(with deep learning)

• Generative Adversarial Networks (GANs), 
Variational Auto-Encoders (VAE) 

• Likelihood ratio from classifiers (CARL) 

• Autogregressive models,  
Normalizing Flows

[image credit: A.P. Goucher]

https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/
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C A R L

•The intractable likelihood ratio based on high-dimensional features x is: 

•We can show that an equivalent test can be made from 1-D projection 

•if the scalar map s: X → ℝ has the same level sets as the likelihood ratio 

•Estimating the density of                       via the simulator calibrates the ratio. 
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1
Sometimes there is an additional Poisson term when expected number of signal and background events

is known.

2

s     

p
(s

)  
 

s(x; ✓0; ✓1) = monotonic[ p(x|✓0)/p(x|✓1) ]

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169

p(x|✓0)
p(x|✓1)

p(x|✓0)
p(x|✓1)

=
p(s(x; ✓0, ✓1)|✓0)
p(s(x; ✓0, ✓1)|✓1)

s(x; ✓0, ✓1)

✓0✓1

http://arxiv.org/abs/1506.02169


C A R L

•Binary classifier on balanced y=0 and y=1 labels learns 

•Which is one-to-one with the likelihood ratio  

•Can do the same thing for any two points θ₀ & θ₁ in 
parameter space. I call this a parametrized classifier 

120

s(x; ✓0, ✓1) =
p(x|✓1)

p(x|✓0) + p(x|✓1)

s(x) =
p(x|y = 1)

p(x|y = 0) + p(x|y = 1)

p(x|y = 0)

p(x|y = 1)
= 1� 1

s(x)

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169

http://arxiv.org/abs/1506.02169
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Figure ��: Inference from truth likelihood ratio and carl’s estimate for the fully di�erential case
with regression. Le�: scatter plot showing the di�erence between the exact expected
likelihood ratio for ��� randomly sampled points and θ1 and carl’s estimate. Right:
true (white) and approximate (cyan) likelihood contours, using a Gaussian Process for
interpolation. �e white and cyan dots show the exact and approximate maximum-
likelihood estimators.�e green and red dots show θobserved and θ1, respectively. Finally,
the small grey dots show the sampled parameter points at which the likelihood ratio
was evaluated.
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Weak boson fusion, h → 4�
� Production vs decay

� hZZ decay vertex:
many angular structures

� Very clean

� Same operators as before:OB = i g2 (Dµ�†)(Dν�)Bµν OW = i g2 (Dµ�)†σ k(Dν�)W k
µν

OBB = − g′24 (�†�)Bµν Bµν OWW = − g24 (�†�)W k
µν W µν k

O� ,2 = 1
2
∂µ(�†�) ∂µ(�†�) OWW̃ = − g24 (�†�)W k

µν W̃ µν k

� Setup as before, except:
� No backgrounds, no smearing
� L ⋅ ε = 100 fb−1
� Cuts: pT , j > 20 GeV, �η j � < 5.0, pT ,� > 10 GeV, �η� � < 2.5
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A P P L I C AT I O N  T O  T H E  H I G G S

•Preliminary work using fast detector simulation and CARL to approximate 
likelihoods using full kinematic information parametrized in 5-d coefficients 
of a Quantum Field Theory

122
work with Juan Pavez, Gilles Louppe, Cyril Becot, and Lukas Heinrich; Johann Brehmer, Felix Kling, and Tilman Plehn 
“Better Higgs Measurements Through Information Geometry” [arXiv:1612.05261] 

16 observables 
(using the CARL)

2 observables 
(histogram templates)

preliminary

Weak boson fusion, h → 4�
� Production vs decay

� hZZ decay vertex:
many angular structures

� Very clean

� Same operators as before:OB = i g2 (Dµ�†)(Dν�)Bµν OW = i g2 (Dµ�)†σ k(Dν�)W k
µν

OBB = − g′24 (�†�)Bµν Bµν OWW = − g24 (�†�)W k
µν W µν k

O� ,2 = 1
2
∂µ(�†�) ∂µ(�†�) OWW̃ = − g24 (�†�)W k

µν W̃ µν k

� Setup as before, except:
� No backgrounds, no smearing
� L ⋅ ε = 100 fb−1
� Cuts: pT , j > 20 GeV, �η j � < 5.0, pT ,� > 10 GeV, �η� � < 2.5
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Equivalent to 3x more data. 
(idealized, no systematic uncertainty)

Weak boson fusion, h → ττ
� Well-known probe of Higgs-gauge structure

� Interesting kinematics of tagging jets
[D. Rainwater, D. Zeppenfeld, K. Hagiwara hep-ph/�������;
T. Plehn, D. Rainwater, D. Zeppenfeld hep-ph/�������;
C. Englert, D. Gonçalves-Netto, K.Mawatari, T. Plehn ����.����; . . . ]

� Theory language: dimension-� operators of SM EFT, L ⊃ ∑i
f i
Λ2Oi

[W. Buchmuller, D. Wyler ��; K. Hagiwara, S. Ishihara, S. R. Szalapski, D. Zeppenfeld ��;
B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek ����.����; . . . ]

� Total rate: O� ,2 = 1
2
∂µ(�†�) ∂µ(�†�)

� New kinematic structures:OB = i g2 (Dµ�†)(Dν�)Bµν OW = i g2 (Dµ�)†σ k(Dν�)W k
µν

OBB = − g′24 (�†�)Bµν Bµν OWW = − g24 (�†�)W k
µν W µν k

� CP violation: OWW̃ = − g24 (�†�)W k
µν W̃ µν k

� Others strongly constrained by EWPD or redundant
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APPROXIMATING LIKELIHOOD RATIOS WITH CLASSIFIERS 7

identify the value of the parameters that are being compared in the likeli-
hood ratio with the values used as input to s(x; ✓0, ✓1).

(3.1) T (D; ✓0, ✓1) =
Y

e

p(x
e

|✓0)
p(x

e

|✓1)
=

Y

e

p(s(x
e

; ✓0, ✓1)|✓0)
p(s(x

e

; ✓0, ✓1)|✓1)
.

This is equivalent to approximating the likelihood function for ✓0 when ✓1

is held fixed.

4. Composite hypotheses and the generalized likelihood ratio.
In the case of composite hypotheses ✓ 2 ⇥0 against an alternative ✓ 2 ⇥C

0 ,
the generalized likelihood ratio1 test is commonly used

(4.1) �(⇥0) =
sup

✓2⇥0
p(D|✓)

sup
✓2⇥ p(D|✓) .

This generalized likelihood ratio can be used both for hypothesis tests in
the presence of nuisance parameters or to create confidence intervals with or
without nuisance parameters. Often, the parameter vector is broken into two
components ✓ = (µ, ⌫), where the µ components are considered parameters
of interest while the ⌫ components are considered nuisance parameters. In
that case ⇥0 corresponds to all values of ⌫ with µ fixed.

Denote the maximum likelihood estimator

(4.2) ✓̂ = arg max
✓

p(D|✓)

and the conditional maximum likelihood estimator

(4.3) ˆ̂
✓ = arg max

✓2⇥0

p(D|✓) .

It is not obvious that if we are working with the distributions p(s|✓) (for
some particular s(x; ✓0, ✓1) comparison) that we can find the same estima-
tors. Fortunately, there is a construction based on p(s|✓) that works. The
maximum likelihood estimate of Eq. 4.2 is the same as the value that max-
imizes the likelihood ratio with respect to p(D|✓1) for some fixed value of
✓1. This allows us to use Theorem 1 to reformulate the maximum likelihood
estimate

(4.4) ✓̂ = arg max
✓

X
ln

p(x
e

|✓)
p(x

e

|✓1)
= arg max

✓

X
ln

p(s(x
e

; ✓, ✓1)|✓)
p(s(x

e

; ✓, ✓1)|✓1)
.

It is important that we include the denominator p(s(x
e

; ✓, ✓1)|✓1) because
this cancels Jacobian factors that vary with ✓.

1Also known as the profile likelihood ratio.
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•The denominator in the likelihood ratio is just a constant

6 K. CRANMER

It is su�cient to show that q
x

(x) = q

s

(s(x)). The function q

s

(s) is based on
the induced densities p0(s) and p1(s). The induced density p1(s) is given by

(2.5) p1(s
⇤) =

Z
dx�(s⇤ � s(x))p1(x) =

Z
d⌦

s

⇤
p1(x)/|n̂ · rs|

and a similar equation for p0(s).

Theorem 1: We have the following equality

(2.6)
p1(s(x))

p0(s(x))
=

p1(x)

p0(x)
.

Proof For x 2 ⌦
s

⇤ , we can factor out of the integral the constant p1(x)/p0(x).
Thus

(2.7) p1(s
⇤) =

Z
d⌦

s

⇤
p1(x)/|n̂ · rs| =

p1(x)

p0(x)

Z
d⌦

s

⇤
p0(x)/|n̂ · rs| ,

and the integrals cancel in the likelihood ratio

(2.8)
p1(s⇤)

p0(s⇤)
=

p1(x)

p0(x)

R
d⌦

s

⇤
p0(x)/|n̂ · rs|R

d⌦
s

⇤
p0(x)/|n̂ · rs|

=
p1(x)

p0(x)
8x 2 ⌦

s

⇤
.

One can think of the ratio p1(s)/p0(s) as a way of calibrating the the
discriminative classifier and correcting for the monotonic transformation m

of the desired likelihood ratio as in Eq. 1.3.

3. Embedding the classifier into the likelihood. Thus far we have
shown that the target likelihood ratio p(x|✓0)/p(x|✓1) with high dimensional
features x can be reproduced via the univariate densities p(s|✓0)/p(s|✓1) if
the classifier s(x|✓0, ✓1) is a strictly increasing function of p(x|✓0)/p(x|✓1). We
now generalize from the ratio of two simple hypotheses specified by ✓0 and
✓1 to the case where ✓ are continuous model parameters. We postpone the
practicalities of training the classifier and estimating the density to Section 5
and continue in the likelihood-free setting with idealized classifiers and their
densities.

In the case of a fixed classifier s(x) it is possible to compute s

e

= s(x
e

)
for the observed data and never refer back to the original features x

e

. In the
parametrized setting it is not possible to pre-compute s(x

e

; ✓0, ✓1) since ✓0

and ✓1 are unknown.
The critical observation is that if we postpone the evaluation of the clas-

sifier to the stage of evaluating the enveloping likelihood ratio, then we can

•Provides a non-trivial diagnostic:

•Now we can go beyond classification, and estimate parameters of 
theory and confidence intervals
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Diagnostics

In practice r̂(ŝ(x; ✓
0

, ✓
1

)) will not be exact. Diagnostic procedures
are needed to assess the quality of this approximation.

1. For inference, the value of the MLE ✓̂ should be independent
of the value of ✓

1

used in the denominator of the ratio.

2. Train a classifier to distinguish between unweighted samples
from p(x|✓

0

) and samples from p(x|✓
1

) weighted by
r̂(ŝ(x; ✓

0

, ✓
1

)).
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⇤ , we can factor out of the integral the constant p1(x)/p0(x).
Thus

(2.7) p1(s
⇤) =

Z
d⌦

s

⇤
p1(x)/|n̂ · rs| =

p1(x)

p0(x)

Z
d⌦

s

⇤
p0(x)/|n̂ · rs| ,

and the integrals cancel in the likelihood ratio

(2.8)
p1(s⇤)

p0(s⇤)
=

p1(x)

p0(x)

R
d⌦

s

⇤
p0(x)/|n̂ · rs|R

d⌦
s

⇤
p0(x)/|n̂ · rs|

=
p1(x)

p0(x)
8x 2 ⌦

s

⇤
.

One can think of the ratio p1(s)/p0(s) as a way of calibrating the the
discriminative classifier and correcting for the monotonic transformation m

of the desired likelihood ratio as in Eq. 1.3.

3. Embedding the classifier into the likelihood. Thus far we have
shown that the target likelihood ratio p(x|✓0)/p(x|✓1) with high dimensional
features x can be reproduced via the univariate densities p(s|✓0)/p(s|✓1) if
the classifier s(x|✓0, ✓1) is a strictly increasing function of p(x|✓0)/p(x|✓1). We
now generalize from the ratio of two simple hypotheses specified by ✓0 and
✓1 to the case where ✓ are continuous model parameters. We postpone the
practicalities of training the classifier and estimating the density to Section 5
and continue in the likelihood-free setting with idealized classifiers and their
densities.

In the case of a fixed classifier s(x) it is possible to compute s

e

= s(x
e

)
for the observed data and never refer back to the original features x

e

. In the
parametrized setting it is not possible to pre-compute s(x

e

; ✓0, ✓1) since ✓0

and ✓1 are unknown.
The critical observation is that if we postpone the evaluation of the clas-

sifier to the stage of evaluating the enveloping likelihood ratio, then we can

= r(x)
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(a) Poorly trained, well calibrated. (b) Poorly trained, well calibrated.

(c) Poorly calibrated, well trained. (d) Poorly calibrated, well trained.

(e) Well trained, well calibrated. (f) Well trained, well calibrated.

Figure 5: Results from the diagnostics described in Sec. 3.5. The rows correspond to the

quality of the training and calibration of the classifier. The left plots probe the sensitivity

to ✓

1

, while the right plots show the ROC curve for a calibrator trained to discriminate

samples from p(x|✓
0

) and samples from p(x|✓
1

) weighted as indicated in the legend.
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A M O R T I Z E D  L I K E L I H O O D - F R E E  I N F E R E N C E

•Once we’ve learned the function s(x; θ) to approximate the 
likelihood, we can apply it to any data x.  

• unlike MCMC, we pay biggest computational costs up front 

• Here we repeat inference thousands of times & check 
asymptotic statistical theory

126

(a) Exact vs. approximated MLEs. (b) p(�2 log⇤(� = 0.05) | � = 0.05)

Figure 2: Using approximated likelihood ratios for parameter inference yields an unbi-

ased maximum likelihood estimator �̂, as empirically estimated from an ensemble of 1000

artificial datasets.

An advantage of this approach compared to Approximate Bayesian Computation (Beau-

mont et al., 2002) is that the classifier and calibration – computationally intensive parts of

the approximation – are independent of the dataset D. Thus once trained and calibrated,

the approximation can be applied to any dataset D. This makes it computationally e�cient

to perform ensemble tests of the method.

Figure 2a shows the empirical distribution of the maximum likelihood estimators (MLEs)

from the approximate likelihood compared to the distribution of the MLEs from the exact

likelihood. It clearly demonstrates that in this case the approximate likelihood yields an

unbiased estimator with essentially the same variance as the exact MLE. In addition to

the MLE, we can study the coverage of a confidence interval based on the likelihood ra-

tio test statistic. This is done by evaluating �2 log⇤(� = 0.05) for samples drawn from

p(x|� = 0.05). Wilks’s theorem states that the distribution of �2 log⇤(� = 0.05) should

follow a �

2

1

distribution. Figure 2b also confirms this behavior, supporting the applicability

18

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169

http://arxiv.org/abs/1506.02169


W H AT  I S  T H E  O B J E C T I V E ?

•ML: What is the problem you are trying to solve? 

•Physicist: [eventually describes problem and formalizes objective] 

•ML: Ok, well let’s optimize this directly … 

•Physicist: but, I also want…. 

•Used to criticize physicists for constantly changing problem statement, but 
traditional approach to physics problems has many advantages 

• modular, reusable components (facilitates transfer learning, “ML2.0”) 

• interpretable & individually validated 

• a form of structural regularization 
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S TAT I S T I C A L  D E C I S I O N  T H E O R Y  I N  1  S L I D E

•Θ - States of nature;     X - possible observations;      A - action to be taken 

•p(x|θ) - statistical model;          π(θ) - prior 

•δ: X → A - decision rule (take some action based on observation) 

•L: Θ x A → ℝ - loss function, real-valued function true parameter and action 

•R(θ,δ) = Ep(x|θ)[L(θ, δ)] - risk 

• A decision δ* rule  dominates a decision rule δ if and only if R(θ,δ*)≤ R(θ,δ) for all θ, 
and the inequality is strict for some θ. 

• A decision rule is admissible if and only if no other rule dominates it; otherwise it is 
inadmissible 

•r(π, δ) = Eπ(θ)[ R(θ,δ)] - Bayes risk  (expectation over θ w.r.t. prior and possible observations) 

•ρ(π, δ | x ) = Eπ(θ|x)[ L(θ,δ(x))] - expected loss (expectation over θ w.r.t. posterior π(θ|x) ) 

• δ’ is a (generalized) Bayes rule if it minimizes the expected loss
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F U L L  S I M U L AT I O N  +  R E C O N S T R U C T I O N
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Events ~1015

partons ~10

hadrons ~100

sensors 108
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reconstructed particles ~100
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Celeste

is effectively static during human time scales. In an imag-
ing exposure, the expected count of photons entering the
telescope’s lens from a particular object is proportional to
its brightness. When multiple objects contribute photons to
the same pixel, their rates combine additively.

Second, many sources of prior information about celestial
bodies are available, but none is definitive. Stars tend to
be brighter than galaxies, but many stars are dim and many
galaxies are bright. Stars tend to be smaller than galax-
ies, but many galaxies appear point-like as well. Stars and
galaxies differ greatly in how their radiation is distributed
over the visible spectrum: stars are well approximated by
an “ideal blackbody law” depending only on their tempera-
ture, while galaxies are not. On the other hand, stars are not
actually ideal blackbodies, and galaxies do emit energy in
the same wavelengths as stars. Posterior inference in a gen-
erative model provides a principled way to integrate these
various sources of prior information.

Third, even the most powerful telescopes receive just a
handful of photons per exposure from many celestial ob-
jects. Hence, many objects cannot be precisely located,
classified, or otherwise characterized from the data avail-
able. Quantifying the uncertainty of point estimates is
essential—it is often as important as the accuracy of the
point estimates themselves. Uncertainty quantification is a
natural strength of the generative modeling framework.

Some astronomical software uses probabilities in a heuris-
tic fashion (Bertin & Arnouts, 1996), and a generative
model has been developed for measuring galaxy shapes
(Miller et al., 2013)—a subproblem of ours. But, to our
knowledge, fully generative models for inferring celestial
bodies’ locations and characteristics have not yet been ex-
amined.1 Difficulty scaling the inference for expressive
generative models may have hampered their development,
as astronomical sky surveys produce very large amounts
of data. For example, the Dark Energy Survey’s 570-
megapixel digital camera, mounted on a four-meter tele-
scope in the Andes, captures 300 gigabytes of sky im-
ages every night (Dark Energy Survey, 2015). Once com-
pleted, the Large Synoptic Survey Telescope will house a
3200-megapixel camera producing eight terabytes of im-
ages nightly (Large Synoptic Survey Telescope Consor-
tium, 2014).

The rest of the paper describes the Celeste model (Sec-
tion 2) and its accompanying variational inference proce-
dure (Section 3). Section 4 details our empirical studies on
synthetic data as well as a sizable collection of astronomi-
cal images.

1However, see Hogg (2012) for a workshop presentation
proposing such a model.

Figure 2. The Celeste graphical model. Shaded vertices represent
observed random variables. Empty vertices represent latent ran-
dom variables. Black dots represent constants. Constants with
“bar” decorators, e.g. N✏nb , are set a priori. Constants denoted by
uppercase Greek characters are also fixed; they denote parame-
ters of prior distributions. The remaining constants and all latent
random variables are inferred. Edges signify conditional depen-
dency. Rectangles (“plates”) represent independent replication.

2. The model
The Celeste model is represented graphically in Figure 2.
In this section we describe how Celeste relates celestial
bodies’ latent characteristics to the observed pixel inten-
sities in each image.

2.1. Celestial bodies

Celeste is a hierarchical model, with celestial objects atop
pixels. For each object s D 1; : : : ; S , the unknown 2-vector
�s encodes its position in the sky as seen from earth. In Ce-
leste, every celestial body is either a star or a galaxy. (In the
present work, we ignore other types of objects, which are
comparatively rare.) The latent Bernoulli random variable
as encodes object type: as D 1 for a galaxy, as D 0 for a
star. We set the prior distribution

as ⇠ Bernoulli.˚/: (1)
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Abstract
We present a new, fully generative model of op-
tical telescope image sets, along with a varia-
tional procedure for inference. Each pixel inten-
sity is treated as a Poisson random variable, with
a rate parameter dependent on latent properties
of stars and galaxies. Key latent properties are
themselves random, with scientific prior distribu-
tions constructed from large ancillary data sets.
We check our approach on synthetic images. We
also run it on images from a major sky survey,
where it exceeds the performance of the current
state-of-the-art method for locating celestial bod-
ies and measuring their colors.

1. Introduction
This paper presents Celeste, a new, fully generative model
of astronomical image sets—the first such model to be em-
pirically investigated, to our knowledge. The work we
report is an encouraging example of principled statistical
inference applied successfully to a science domain under-
served by the machine learning community. It is unfortu-
nate that astronomy and cosmology receive comparatively
little of our attention: the scientific questions are funda-
mental, there are petabytes of data available, and we as a
data-analysis community have a lot to offer the domain sci-
entists. One goal in reporting this work is to raise the profile
of these problems for the machine-learning audience and
show that much interesting research remains to be done.

Turn now to the science. Stars and galaxies radiate photons.
An astronomical image records photons—each originating
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Figure 1. An image from the Sloan Digital Sky Survey (SDSS,
2015) of a galaxy from the constellation Serpens, 100 million
light years from Earth, along with several other galaxies and many
stars from our own galaxy.

from a particular celestial body or from background at-
mospheric noise—that pass through a telescope’s lens dur-
ing an exposure. Multiple celestial bodies may contribute
photons to a single image (e.g. Figure 1), and even to a
single pixel of an image. Locating and characterizing the
imaged celestial bodies is an inference problem central to
astronomy. To date, the algorithms proposed for this in-
ference problem have been primarily heuristic, based on
finding bright regions in the images (Lupton et al., 2001;
Stoughton et al., 2002).

Generative models are well-suited to this problem—for
three reasons. First, to a good approximation, photon
counts from celestial objects are independent Poisson pro-
cesses: each star or galaxy has an intrinsic brightness that
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