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Galaxy A1689-zD1:
~700 million years
after the Big Bang

400 million years: Stars
and nascent galaxies form

~1 billion years: Dark ages end

~4.5 billion years: Sun, Earth, and solar system have formed

: 13.7 billion years: Present
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Discovery!
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@ The Nobel Prize in Physics 2013
Francois Englert, Peter Higgs

The Nobel Prize in
Physics 2013

.- s Ir :.t‘:; S -

Photo: Pnicolet via Photo: G-M Greuel via
Wikimedia Commons Wikimedia Commons

Francois Englert Peter W. Higgs

The Nobel Prize in Physics 2013 was awarded jointly to Frangois Englert and
Peter W. Higgs "for the theoretical discovery of a mechanism that
contributes to our understanding of the origin of mass of subatomic
particles, and which recently was confirmed through the discovery of the
predicted fundamental particle, by the ATLAS and CMS experiments at

CERN's Large Hadron Collider"
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The winning solution (AUC
0.99) of the Camelyon
challenge on detecting
metastatic cancer beats the
human pathologist benchmark
(AUC 0.96)

A CNN designed by a team at
the University of Toronto wins
the ImageNet Challenge
bringing dow the error rate to
16% (compared to 25% 2011)

Fei Fei Li and colleagues at
Princeton University start to
collect a large database of
annotated images, the
ImageNet

A group around Yann LeCun
successfully applies a
back-propagation algorithm to
a multi-layer neural network,
recognizing handwritten

ZIP codes

DEEP LEARNING TIMELINE

2016
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____________ 2012
1989
___________________________________ |

Google Trends

searches for "Deep Learning”

2009

2006

A CNN by team from Microsoft
beats the human benchmark
(5% error rate) by bringing
down the error rate to 3% in
the ImageNet Challenge

A group around Andrew Ng
introduce Graphics
Processing Units (GPUs) for
Deep Learning making them
applicable on a large scale

Hinton summarizes ideas of
multilayer neural networks
and training them to generate
sensory data rather than to
classify it

2013

the

today

Jan 1, 2004

Dec 1, 2008

Nov 1,2013



IMAGE CLASSIFICATION

News & Analysis

Microsoft, Google Beat Humans at
Image Recognition

Deep learning algorithms compete at ImageNet
INPUT CONV POOL CONV POOL FC OUTPUT challenge
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CLASSIFICATION = SEGMENTATION

Classification Classification Object Detection Instance

+ Localization Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK

AN /]
Y Y

Single object Multiple objects




COMPUTER VISION

(a) Input image (b) Segmentation output (c) Instance output (d) Depth output

https://alexgkendall.com/computer_vision/bayesian_deep_learning_for_safe_ai/



WORD EMBEDDINGS & TRANSLATION
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Das Wirtschaftswachstum hat sich in den Ietzten Jahren verlangsamt .

Economic growth has slowed down

)

recent

years

La croissance économique s' est ralentie ces derniéres années .
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Economic growth has slowed down recent years



GENERATIVE MODEL FOR IMAGES

volcano



WAVENET: A GENERATIVE MODEL FOR RAW AUDIO
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Why should physicists care?



THE PLAYERS

forward modeling
generation

simulation

0
parameters of interest p(x,2z|0,Vv)
X
yi
. observed data
latent variables - lated dat
simulated data
\% Monte Carlo truth

nuisance parameters

inverse problem
measurement
parameter estimation



PREDICTION: THE FORWARD MODEL

@ATLAS
EXPERIMENT
http://atlas.ch
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WHY WE SHOULD CARE

Many areas of science have simulations based on some well-
motivated mechanistic model.

However, the aggregate effect of many interactions between these
low-level components leads to an intractable inverse problem.

The developments in machine learning and Al go way beyond
improved classitiers and have the potential to effectively bridge the
microscopic - macroscopic divide & aid in the inverse problem.

* they can provide effective statistical models that bridge

macroscopic phenomena that are tied back to the low-level
microscopic (reductionist) model

e generative models and likelihood-free inference are two
particularly exciting areas

21



An example
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A PHYSICALLY MOTIVATED FEATURE
Don’t believe the media:

E # mc?
What Einstein really said:

2 2\ 2 2
E= = (mc®)” + (|plc)
Every physics student knows energy and momentum are conserved
EHiggs — Ebefore — Eafter — E Ez
2
PHiggs — Pbefore — Pafter — E pz
2
Thus, we can estimate the mass of the Higgs with

mpa = \/ngter/c4 o ‘ﬁafter‘Q/Cz

24



PREDICTIONS FROM SIMULATION
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THE FORWARD MODEL

cS;\l =

]' 1 1 s ]' s v
IW“U * WI - ZB,“,BI - E(J“"(If‘

N 7

W
Kinetic energies and sell-interactions of the gauge hosons

1 1 L
+ LAM(i0, — 597 W, — -¢'YB,)L + Ry"(id, — 591)’311)1?

2

Kinetic energies and electroweak interactions of fermions

1, .. 1 L, 2 .
5 ‘(z(),, — §gr W, — ig’}' B,) o| — V(o)

W, Z ~.and Higgs masses and couplings

9" (V"' T.q) G, + (G1LéR + GoLé R+ h.c.)

L

N
W
interactions between quarks and gluons fennion masses and couplings to Higgs

1 )We begin with Quantum Field Theory
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THE FORWARD MODEL

1 1 1
Lo = Wi - W — 2B, B" — 2 GG

K v E g Ta
4 4 )

N

W
Kinetic energies and self-interactions of the gauge bosons

1 1 1
+ LA"(i0, — 597 W, — 59’}"'311)[1 + Ry"(i0, — 59@"3/‘)1?

Kinetic energies and electroweak interactions of fermions

1 1 1 2
o v FA s
+ 5 (@0, — 597 W, — 5g) B)o|” — V(o)
W, Z ~.and Higgs masses and couplings
" . [
n 9" (7" Tg) G- + (G1LoR + GyLo R + h.c.)
interactions between quarks and gluons fennion masses and couplings to Higgs

1 )We begin with Quantum Field Theory

Theory gives detailed W
2 prediction for high-
energy collisions

\

hierarchical: 2 = O(10) = O(100) particles

26



THE FORWARD MODEL

cS;\! =
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W
Kinetic energies and self-interactions of the gauge hosons

1 1 1
+ LA"(i0, — Eg‘r W, — =¢d'YB,)L + Ry"(i0, — §g'}"B,,)R

2

Kinetic energies and electroweak interactions of fermions

L., 1 1, 2 ;
5 |('2‘(—)u - Eg‘r ' W[l - Egl} B]l) @I -V ((D)

N »

W
W, Z ~.and Higgs masses and couplings

9" ("' T.q) G* + (G{LO6R + GyLé R+ h.c.)

L

interactions between quarks and gluons fennion masses and couplings to Higgs

1 )We begin with Quantum Field Theory

2)

Theory gives detailed
prediction for high-
energy collisions

hierarchical: 2 = O(10) = O(100) particles

26



THE FORWARD MODEL

, pv T a
4 off

W
Kinetic energies and self-interactions of the gauge hosons

.

Cors = bW, W = e L 1 )We begin with Quantum Field Theory

1 1 1
+ LA"(i0, — §g7' W, — Eg'}"B“)L + RAy"(i0, — EQI}II'BI‘)R

W

Kinetic energies and electroweak interactions of fermions

N

1 1 1 .
+ 5 [(i0, — s97 - W, — =¢dYB,) 6| — V()

LN M i 2 Theory gives detailed
J prediction for high- "%~
n gu((n,n]j,q)(;’;‘j + !(}1L¢R+(}iLgf),_.R+h.c.2 energy CO”ISIOI’IS d

interactions between quarks and gluons fennion masses and couplings to Higgs

hierarchical: 2 = O(10) = O(100) particles

3 The interaction of outgoing particles
with the detector is simulated.

>100 million sensors

26



THE FORWARD MODEL

. L wer g g L g 1 )We begin with Quantum Field Theory
d C4 i 4 [ 4w ",
+ L0, - %g‘r-Wﬂ - %g’YB,,)L + Ry (i), — %g’YB,‘)IE
1, 1 1, 12 | _
v gl g Wi pdVBIO[ ~ V) Theory gives detailed
W+ Z ~.and Higgs masses and couplings 2 prediction for high—
t @G+ GiLoR+GLoR  he) energy collisions
interactions hclwee‘nrquarks and gluons fenmion masses an:lrmupling,s to Higes
hierarchical: 2 = O(10) = O(100) particles
3 The interaction of outgoing particles
with the detector is simulated.
e+ >100 million sensors

Finally, we run particle identification and
feature extraction algorithms on the simulated
data as if they were from real collisions.

~10-30 features describe interesting part

26



DETECTOR SIMULATION

Conceptually: Prob(detector response | particles )
Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable

| | | | | | | |
Om im 2m im am 5m ém /m
Key:
Muon

Electron

Charged Hadron (e.g. Pion)
~ = — - Neutral Hadron (e.g. Neutron)
----- Photon

Silicon
Tracker

/I

Hadron Superconducting
Calorimeter Solenoid

' Electromagnetic
)] 'l Calorimeter
' 4

Iron return yoke interspersed
Transverse slice with Muon chambers
through CMS




DETECTOR SIMULATION

Conceptually: Prob(detector response | particles )

Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable

This motivates a new class of algorit
likelihood-free inference, which on

nms for what is called

y require ability to

generate samples from the simulation in the “"forward mode”



THE CRUX, AN INTRACTABLE INTEGRAL

Monte Carlo

Samplin
observed 7 what happened

l in simulation
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10° SENSORS — 1 REAL-VALUED QUANTITY

Most measurements and searches for new particles at the LHC are based on the
distribution of a single variable / feature / summary statistic

e choosing a good variable (feature engineering) is a task for a skilled physicist
and tailored to the goal of measurement or new particle search

 likelihood p(x|0) approximated using histograms (univariate density estimation)
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10° SENSORS — 1 REAL-VALUED QUANTITY

Most measurements and searches for new particles at the LHC are based on the
distribution of a single variable / feature / summary statistic

e choosing a good variable (feature engineering) is a task for a skilled physicist
and tailored to the goal of measurement or new particle search

 likelihood p(x|0) approximated using histograms (univariate density estimation)
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This doesn’t scale if x is high dimensional!



HIGH DIMENSIONAL EXAMPLE

For instance, when looking for deviations from the standard model
Higgs, we would like to look at all sorts of kinematic correlations

e thus each observation x is high-dimensional
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HIGGS EFT 1

» Theory language: dimension-6 operators of SM EFT, £ o Y, %Oi
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[\ oMEMta

"MEM" approach uses a transfer function W(xlz) to simplity parton

shower and detector response and integrates other latent variables

e Sébastien Brochet
¢ Brieuc Frangois

e Alessia Saggio

e Miguel Vidal

e Sébastien Wertz

Introduction - The MEM

Probability (weight) of the experimental event x given the
hypothesis « : }

1

P(X‘O‘) — O'— /d¢(z)dx1dx2f(:vl)f(a:2)]Ma(y, Ly, xz)‘QW(X‘Z) (1)
(8%

19 MMHT14 NNLO, @ = 10 GeV? AE(Norm) vs Egen - Jet

r::Q'-’:f

1

0.8 t

0.6

0.4 A
t

0.2 ,u

OD.UUDI 7 0/00_1 0.01 7 [)..l ll

PDF Matrix Element Transfer Function

Efficiency and acceptance neglected in this sketch.

Miguel Vidal (UCL-CP3) AMVA4NewPhysics 04/03/2016 4/13




A COMMON THEME

ABC

Home
resources on approximate
Bayesian computational This website keeps track of developments in approximate Bayesian computation (ABC) (a.k.a.
methods likelihood-free), a class of Computational statistical methods for Bayesian inference under

b e s PRI G RIS giasoa o s oo

intractable Ilkehhoods The site is meant to be a resource both for & blologlsts and statisticians who

want to learn more about ABC and related methods. Recent publications are under Publications
2012. A comprehensive list of publications can be found under Literature. If you are unfamiliar
Home with ABC methods see the Introduction. Navigate using the menu to learn more.

ABC in Montreal ABC in Montreal (2014)

ABC in Montreal

Approximate Bayesian computation (ABC) or likelihood-free (LF) methods have developed mostly beyond the
radar of the machine learning community, but are important tools for a a large ar and diverse segment o_f the

sc1nt11ccommumtx “This is particularly true forsxstem and p oEulgjlggmglologx comEutatlonal

neuroscience, computer vision, healthcare sciences, but also many others.

Interaction between the ABC and machine learning community has recently started and contributed to
important advances. In general, however, there is still significant room for more intense interaction and
collaboration. Our workshop aims at being a place for this to happen.




EPIDEMIOLOGY & POPULATION GENETICS

Generation 1 2 3 4

a Hospital School Sexual Social

Chain of transmission
of the disease

Scale-free

Source
33 infected  §
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Infects multiple people

c Empirical networks d 9
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: i f
Small Change, Big Effects Modest variations in the concurrency rate—the proportion of people in overlapping sexual $ g 10 orgical natwoie 1.0
partnerships—can have a dramatic effect on a population’s vulnerability to HIV. s §
- o 08 o Small-world [~ — — — — — -y
[Tpartaer | 5 2
Percers of people When the concurrency rate is 55%, only 29 of this population is connected to the broader sexual 2 06 o )
e network required for HIV transmission (top). But when concurrency reaches 65%, an astonishing &= s et o
throwgh ther sexual 64% of the population is vulnerable, even though the number of sexual partners remains constant. g 0.4 g Soale-fioe %
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‘ E 02 Eg Random -+
% 00 5 4 s A i
. : .4 0. ; !
Scaled transmissibility ¢ Selective advantage r 09 s%lzectgn e)?pgne(:\tsa L

Source: Morris, et al. The Refationthip Between Concurrent Partnerships and HIV Trorimission, 2008. See www.idstar-one com/.
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COMPUTATIONAL TOPOGRAPHY

band =1
250
200000
3500
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_ 25000 250
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(o
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o 0 20000 40000 60000 80000 100000
y_size md_x
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We create a simulation setup for this model, run it, and then plot the final topography (after 1 million years of simulation).
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ICML 2017 Workshop on Implicit

Models

Workshop Aims

Probabilistic models are an important tool in machine learning. They form the basis for models that generate realistic data, uncover hidden
structure, and make predictions. Traditionally, probabilistic models in machine learning have focused on prescribed models. Prescribed models
specify a joint density over observed and hidden variables that can be easily evaluated. The requirement of a tractable density simplifies their
learning but limits their flexibility --- several real world phenomena are better described by simulators that do not admit a tractable density.
Probabilistic models defined only via the simulations they produce are called implicit models.

Arguably starting with generative adversarial networks, research on implicit models in machine learning has exploded in recent years. This
workshop's aim is to foster a discussion around the recent developments and future directions of implicit models.

Implicit models have many applications. They are used in ecology where models simulate animal populations over time; they are used in phylogeny,
where simulations produce hypothetical ancestry trees; they are used in physics to generate particle simulations for high energy processes.
Recently, implicit models have been used to improve the state-of-the-art in image and content generation. Part of the workshop's focus is to discuss
the commonalities among applications of implicit models.

Of particular interest at this workshop is to unite fields that work on implicit models. For example:

= Generative adversarial networks (a NIPS 2016 workshop) are implicit models with an adversarial training scheme.

= Recent advances in variational inference (a NIPS 2015 and 2016 workshop) have leveraged implicit models for more accurate approximations.
= Approximate Bayesian computation (a NIPS 2015 workshop) focuses on posterior inference for models with implicit likelihoods.

= Learning implicit models is deeply connected to two sample testing, density ratio and density difference estimation.

We hope to bring together these different views on implicit models, identifying their core challenges and combining their innovations.



TWO APPROACHES

Use simulator Learn simulator
(much more efficiently) (with deep learning)

conv (180w + 5b)
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e (1600w + 10b)
e Approximate Bayesian e Generative Adversarial Networks (GANs),
Computation (ABC) Variational Auto-Encoders (VAE)
e Probabilistic Programming e Likelihood ratio from classitiers (CARL)
e Adversarial Variational e Autogregressive models,

Optimization (AVO) Normalizing Flows


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

TWO APPROACHES

Learn simulator
(with deep learning)

conv (180w + 5b)

L hon-linear

maxpool conv (450w + 10b) ¢ (0]

non- Imear' ¢ = 0

%
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¢ - 0O
C = @
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hon- Imear maxpool Q Sl )
fully-connected @ ©

(1600w + 10b)
e Generative Adversarial Networks (GANSs),
Variational Auto-Encoders (VAE)

e |ikelihood ratio from classifiers (CARL)

e Autogregressive models,
Normalizing Flows


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

Likelihood-Free Warm-up

Hypothesis Testing & Classification



HYPOTHESIS TESTING

Classical hypothesis testing typically framed in terms of
true/false : positive/negative

- r

Actual condition null alternate P Ep

Guil Not guil
Y — TP FN TN
False Positive
Verdict of True Positive (i.e. guilt .reported
'quilty’ unfairly)
power Type | error
Decision i L
False Negative P 100% A _
Verdict of (i.e. guilt True Negative //,— ,
'not guilty' not detected) / '
Type Il error g 4
&
I_ .
actually guilty <> new physics

verdict guilty < claim discovery 0% FPR 100%



HYPOTHESIS TESTING

' the data are high-dimensional, it's not obvious

how to draw

the boundary between accept/reject the null hypothesis

accept




HYPOTHESIS TESTING

't the data are high-dimensional, it's not obvious how to draw

the boundary between accept/reject the null hypothesis

{ Albums  chihuahua or muffin Select



THE NEYMAN-PEARSON LEMMA

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H (background only)
- the Alternate Hypothesis H; (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis
a= Plx € W|H))

(Convention: if data falls in W then we accept Ho)

Find the region W such that we minimize the probability of wrongly
accepting the Hy (when Hj is true)

6:P($€W‘H1)
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THE NEYMAN-PEARSON LEMMA

W W

P(z|H;)
P(xz|Hy)

> ko

The region W that minimizes the probability of wrongly accepting Ho
IS just a contour of the Likelihood Ratio

Any other region of the same size will have less power
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PROBLEM WITH NEYMAN-PEARSON

4% W

P(x|Hy)

> kq
P(x|Ho)

But, If | don’t know P(x|H1) and P(x|Ho)
| can’t evaluate this likelihood ratio!
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Machine Learning = Applied Calculus of Variations




MACHINE LEARNING = APPLIED CALCULUS OF VARIATIONS

, Kyle Cranmer added 3 new photos — with Sarah Demers
"=l Konezny and Paul Tipton.
April 20, 2016 - New Haven, CT - M\ =

Seminar at Yale today. Felt good to talk about new ideas... Equally
confusing for theorists and experimentalists &,

Machine Learning = Applied Calculus of Variations

i Yann LeCun Deep learning = calculus of variations
Backprop is like the Langrangian formulation of classical mechanics.

Y. LeCun: A theoretical framework for Back-Propagation, in Touretzky, D. and
Hinton, G. and Sejnowski, T. (Eds), Proceedings of the 1988 Connectionist
Models Summer School, 21-28, Morgan Kaufmann, CMU, Pittsburgh, Pa,
1988.

http://yann.lecun.com/exdb/publis/index.html#lecun-88

[bib2web] Yann LeCun's Publications

2 Deriving BP using the
Hamiltonian/Lagrangian

formalism YANN.LECUN.COM
2.1 Notations Like - Reply - Remove Preview - @ 2 - April 20, 2016 at 2:30am
For the sake of clarity, we will introduce the formal- & Kyle Cranmer | guess this counts as an endorsement for this point of
ism 1n a simple case. A more general formulation view &
will be presented afterwards. It will be assumed that
the network is composed of a number of layers con- Many physicists (particularly theoretical ones) are skeptical of
nected 1n a feed-forward manner. Furthermore, we machine learning because it usually is explained to them in some ad
make the assumption that connections cannot skip hoc way (neurons, etc). But minimizing a loss function(al) is much
layers. These assumptions can be easily relaxed [le more palatable.
Cun, 1987]. Like - Reply - @ 2 - April 20, 2016 at 2:39am - Edited




MACHINE LEARNING

Normalized

RBF SVM

. CLASSIFIERS
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Common to use machine learning

classifiers to separate signal (H1) vs.
background (Ho)

e want a function s: X— Y that
maps signal to y=1 and
background to y=0

e calculus of variations: find
function s(x) that minimizes loss:

Lis] = / p(e|Ho) (0 — s(x))? da
T / p(alHy) (1 — s(x))?da



MACHINE LEARNING: CLASSIFIERS

Normalized

RBF SVM
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e applied calculus of variations:
find function s(x) that minimizes
loss: Lis|= / p(zHy) (0 — s(x))? da

T / p(x|Hy) (1 - s(x))2da

e j.e. approximate the optimal
classitier
H
S(ZE) _ p(il?‘ 1)
p(x|Ho) + p(z|H:)

e which is 1-to-1 with the
likelihood ratio

p(z|Hq)
p(z|Hp)




MACHINE LEARNING: CLASSIFIERS

Normalized
— — —
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RBF SVM
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e applied calculus of variations:
find function s(x) that minimizes
loss:  Lis)= [ plalHo) (0~ s(2))? da

—y/ﬂﬂng—s@»mx

~ ]1[21(% — s(x;))°
e j.e. approximate the optimal
classitier
x| H
S(ZB) L p( ‘ 1)

- p(x|Ho) + p(z|Hy)

e which is 1-to-1 with the
ikelihood ratio
p(

p(x

Hy)
Hy)




NN = A HIGHLY FLEXIBLE FAMILY OF FUNCTIONS

In calculus of variations, the optimization is over all functions: § = argmin L|s|
S

e |n applied calculus of variations, we consider a highly flexible family ot

functions s, and optimize: i.e. ¢ = argmin L[sy] and § & S4
¢

e Think of neural networks as a highly flexible tamily of functions

e Machine learning also includes non-convex optimization algorithms that
are effective even with millions of parameters!

Shallow neural network Deep neural network

hidden layer . hidden layer 1 hidden layer 2 hidden layer 3
input layer

input layer
output layer output layer

image credit: Michael Nielsen



CONVOLUTIONAL NEURAL NETWORKS

Variational tamily should take advantage of

e the world is compositional = hierarc

domain knowledge

nical architecture

e images are translationally invariant = shared weights

2 2] 2 £ ot
e |l 5 c |l 5 c |l 5 c |l 5 22 | —>Flower
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¢ | Flower
o ) " s >
Sliding window £ 3
‘ N X1 : xZ[Cu
39 8>
» INN X2 2= Ez
* [ | | 3 %3 |Car
. ° EEC %
Filters : X3 g a—»
Iightand dark | comple shapes shapes that can be . - g
used to define a flower i 5| Tree
* o
.. .. . E
- I

Every feature map output is the @
result of applying a filter to the image
The new feature map is the next input

Activations of the network at a particular layer
\ /

image credit: MathWorks

FC FC


https://www.mathworks.com/help/nnet/convolutional-neural-networks.html

PHYSICS-AWARE MACHINE LEARNING

We can inject our knowledge of physics into the variational family

Physics-aware Gaussian Processes
arXiv:1709.05681

Correlation Matrix

2000 [N

Final Kernel =

< 4000 0.4%

5000

" Poisson fluctuations

- + Mass Resolution

0.75

0.60

+ Parton Density

>

Functions

0.00

500 1000 1500 2000 2500
X -0.1%

_|_

Correlation Matrix

o - + Jet Energy Scale

0.999:

5000 |-

7000
2000 3000 4000 5000 6000 700 0.999
X

1

QCD-Aware recursive neural networks
arXiv:1702.00748

QCD-Aware graph convolutional neural networks
NIPS2017 workshop

02 AR2
o . 20 2« 22’
¢ = min(py”, pii) R2



Likelihood-Free Inference
&

Inverse Problems



THE PLAYERS

PREDICTION

inverse problem

measurement
parameter estimation



PARAMETRIZED CLASSIFIERS

We showed a binary classifier approximates

s(az) _ p(x|H1)
p(z|Ho) + p(z|H;)

Which is one-to-one with the likelihood ratio

p(z|Hq) . 1
p(x|Ho) s(x)

Can do the same thing for any two points 8¢ & 01 in

parameter space ©. | call this a parametrized classifier

p(z|61)
z|6o) + p(x|61)

s(x;0p,01) =
(60, 01) p(

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169


http://arxiv.org/abs/1506.02169

LIKELIHOOD RATIO TESTS

The intractable likelihood ratio based on high-dimensional features x is:

p(x|6y)
p(z|61)

We can show that an equivalent test can be made from 1-D projection

p(x|6o)  p(s(x;60,01)[60) =

plfr) ~ pls(w:00,00))6r) 20l

if the scalar map s: X = R has the same level sets as the likelihood ratio

s(x; 60;601) = monotonic| p(x|0y)/p(x|01) |

Estimating the density of s(x; 8o, 01) via the simulator calibrates the ratio.

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169


http://arxiv.org/abs/1506.02169

LEARNING THE HIGGS EFFECTIVE FIELD THEORY
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work with Juan Pavez, Gilles Louppe, Cyril Becot, and Lukas Heinrich; Johann Brehmer, Felix Kling, and Tilman Plehn
"Better Higgs Measurements Through Information Geometry” [arXiv:1612.05261] & CARL [arxiv:1506.02169]



http://arxiv.org/abs/1506.02169

STATISTICAL TASKS & LEARNING PARADIGMS

Statistical Tasks:

e (Classification

* Regression
* Density Estimation
o Statistical Inference

e Decision Making ,

Learning Paradigms: /
/

e Supervised Learning
o Weakly Supervised Learning
* Unsupervised Learning

e Reinforcement Learning
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Decision Making

Reinforcement Learning



AlphaGo
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REINFORCEMENT LEARNING & SCIENTIFIC METHOD

Scientist trying to decide what experiment to do next

ﬂwwro nment

Re War
Interpre ter
% \GEJ

Action

Agent



REINFORCEMENT LEARNING & SCIENTIFIC METHOD

Scientist trying to decide what experiment to do next

perform experiment,
gather data

-

Environment
S decide which
statistical analysis Re = | experiment to
War b perform
Interpreter
(0O

updated knowledge ~

i
based on analyzing

data Agent



STATISTICAL DECISION THEORY IN 1T SLIDE

O - States of nature; X - possible observations; A - action to be taken
p(x|0) - statistical model; m(0) - prior

0: X = A - decision rule (take some action based on observation)

L: © x A = R - loss function, real-valued function true parameter and action
R(O,0) = Ep(x|e)[L(9, 0)] - risk

e A decision 0* rule dominates a decision rule 0 if and only if R(6,0*)< R(0,d) for all 8,
and the inequality is strict for some 0.

e A decision rule is admissible if and only it no other rule dominates it; otherwise it is
inadmissible

r(r, O) = E ol R(0,0)] - Bayes risk (expectation over 0 w.r.t. prior and possible observations)

p(r, 0| x) En(e|x)[ L(0,0(x))] - expected loss (expectation over O w.r.t. posterior r(0|x) )

e 0'is a(generalized) Bayes rule if it minimizes the expected loss



AN EXAMPLE

Say we want to measure the Weinberg angle

e experiments are e’'e” = u 'y~ and we can adjust the
beam energy and beam polarization

e data are 4-momenta of p“and y~ without knowing
forward-backward asymmetry is interesting observable

Can we use likelihood-free interence to:
e estimate By from p,+ & p,- generated from simulator?

e decide which beam energy and polarization are optimal
for this measurement?
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ACTIVE SCIENCING

| Expt. config I(—

Perform
experiment
\
rior Observed
P dat
Perform
infere
ABC
Y
ll posterior I
Optim
experimen t
\ 4
Proposal
EIG

https://github.com/cranmer/active_sciencing


https://github.com/cranmer/active_sciencing

ACTIVE SCIENCING

| Expt. config I(—

ABC

Y

Proposal

1

EIG

https://github.com/cranmer/active_sciencing
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ACTIVE SCIENCING
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https://github.com/cranmer/active_sciencing

ACTIVE SCIENCING DEMO

Input:
e workflow for performing “real” experiment that returns data

e workflow for running simulator given parameters of theory and
experimental configuration

Automated system can measure the Weinberg angle and optimize
beam energy (eg. just above or below M5/2) just from using simulator

expected information gain

40.0 425 45.0 47.5 50.0

Figure 2: Measured forward-backward asymmetries of
muon-pair production compared with the model indepen-

b eam ene I’gy dent fit results.



Generative Models:

“What | cannot create, | do not understand.”

—RICHARD FEYNMAN



THE PLAYERS

forward modeling
generation
simulation




LEARNING THE GENERATIVE MODEL
/ X

Noise ~ N(0,1

-.v' '..u
-

(Generative
Model

I I 1 1 | | | |
om m 2m im 4m 5m 6m /m
Key:
Muon
Electron

Charged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)
----- Photon

Silicon
Tracker

» Electromagnetic
)“' Calorimeter

Hadron Superconducting
Calorimeter Solenoid

Iron return yoke interspersed

Transverse slice with Muon chambers

through CMS

http://torch.ch/blog/2015/11/13/gan.html

D.Bamey, CERN, Febriwwy 2004



Goodfellow, et al arXiv:1406.2661

GENERATIVE ADVERSARIAL NETWORKS e e e

generated distribution true data distribution
A

P(X)

\

unit gaussian

generative
O model .
(neural net) +._[loss

/
7/
’
Z S 7
S A

image space image space

e Two-player game:
m a discriminator D,
m a generator G;
e D is a classifier X — {0,1} that tries to distinguish between

m a sample from the data distribution (D(x) = 1, for X ~ pgata),
m and a sample from the model distribution (D(G(z)) = 0, for

Zn~ pnoise);
e G is a generator Z +— X trained to produce samples G(z) (for
Z ~ Pnoise) that are difficult for D to distinguish from data.

(D*, G*) = max min V(D, G).

Leo is G Tom is D



GANS FOR PHYSICS

CaloGAN: Simulating 3D High Energy Particle
Showers in Multi-Layer Electromagnetic Calorimeters

Creating Virtual Universes Using Generative Adversarial Networks

. . . Mustafa Mustafa*!, Deborah Bard!, Wahid Bhimji', Rami Al-Rfou?, and Zarija Luki¢!
with Generative Adversarial Networks

Lawrence Berkeley National Laboratory, Berkeley, CA 94720
2Google Research, Mountain View, CA 94043

Michela Paganini®’, Luke de Oliveira®, and Benjamin Nachman®

¢ Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
® Department of Physics, Yale University, New Haven, CT 06520, USA

E-mail: michela.paganini@yale.edu, lukedeoliveira@lbl.gov, bnachman@cern.ch
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Figure 9: Five randomly selected e showers per calorimeter layer from the training set (top) and the
five nearest neighbors (by euclidean distance) from a set of CALOGAN candidates.
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Figure 10: Five randomly selected  showers per calorimeter layer from the training set (top) and the
five nearest neighbors (by euclidean distance) from a set of CALOGAN candidates.
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Figure 11: Five randomly selected 7+ showers per calorimeter layer from the training set (top) and
the five nearest neighbors (by euclidean distance) from a set of CALOGAN candidates.
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GENERATIVE MODELS FOR CALIBRATION

Use of generative models of
galaxy images to help calibrate

down-stream analysis in next-

generation surveys.

Enabling Dark Energy Science with Deep
Generative Models of Galaxy Images

Siamak Ravanbakhsh', Francois Lanusse?, Rachel Mandelbaum?, Jeff Schneider', and Barnabds Péczos'

'School of Computer Science, Carnegie Mellon University
2 - N . P
“McWilliams Center for Cosmology, Carnegie Mellon University

Abstract—Understanding the nature of dark energy, the mys-
terious force driving the accelerated expansion of the Universe, is
a major challenge of modern cosmology. The next generation of
cosmological surveys, specifically designed to address this issue,
rely on accurate measurements of the apparent shapes of distant
galaxies. However, shape measurement methods suffer from
various unavoidable biases and therefore will rely on a precise
calibration to meet the accuracy requirements of the science
analysis. This calibration process remains an open challenge as
it requires large sets of high quality galaxy images. To this
end, we study the application of deep conditional generative
models in generating realistic galaxy images. In particular we
consider variations on conditional variational autoencoder and
introduce a new adversarial objective for training of conditional
generative networks. Our results suggest a reliable alternative
to the acquisition of expensive high quality observations for
generating the calibration data needed by the next generation
of cosmological surveys.
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UNIFICATION

Some generative models can be inverted = likelihood-free inference!

Otpt @ @ © O O 0 090000 OGOOOO

Hdden 5 2 0 000000000000

Layer

i @00 000000000000

0000000000000 00

mt @ © O 0000000000000

p&s Q- EHED-Blia

1 Second



CONCLUSIONS

The developments in machine learning and Al go way beyond improved
classitiers and have the potential to transform how we do science

* many areas of science have simulations based on some well-motivated
mechanistic mode|

e generative models and likelihood-free interence are two particularly
exciting areas

* they can provide effective theories of macroscopic phenomena that
are tied back to the low-level microscopic (reductionist) model

Scientific challenges also motivate machine learning research

* incorporation of domain knowledge, robustness to systematic
uncertainties, modularization & interpretability, non-differentiable
simulators, ...
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Adversarial Training
(not just for GANS)



Goodfellow, et al arXiv:1406.2661

GENERATIVE ADVERSARIAL NETWORKS e e e

generated distribution true data distribution
A

P(X)

\

unit gaussian

generative
O model .
(neural net) +._[loss

/
7/
’
Z S 7
S A

image space image space

e Two-player game:
m a discriminator D,
m a generator G;
e D is a classifier X — {0,1} that tries to distinguish between

m a sample from the data distribution (D(x) = 1, for X ~ pgata),
m and a sample from the model distribution (D(G(z)) = 0, for

Zn~ pnoise);
e G is a generator Z +— X trained to produce samples G(z) (for
Z ~ Pnoise) that are difficult for D to distinguish from data.

(D*, G*) = max min V(D, G).

Leo is G Tom is D



NEW! AVO

Adversarial Variational Optimization of Non-Differentiable Simulators

Gilles Louppe'! and Kyle Cranmer!
'New York University

Complex computer simulators are increasingly used across fields of science as generative models
tying parameters of an underlying theory to experimental observations. Inference in this setup is
often difficult, as simulators rarely admit a tractable density or likelihood function. We introduce
Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-
differentiable generative model incorporating ideas from empirical Bayes and variational inference.
We adapt the training procedure of generative adversarial networks by replacing the differentiable
generative network with a domain-specific simulator. We solve the resulting non-differentiable mini-
max problem by minimizing variational upper bounds of the two adversarial objectives. Effectively,
the procedure results in learning a proposal distribution over simulator parameters, such that the
corresponding marginal distribution of the generated data matches the observations. We present
results of the method with simulators producing both discrete and continuous data.

Leo is G Tom is D

G. Louppe & K.C. arXiv:1707.07113

Similar to GAN setup, but
instead of using a neural network

as the generator, use the actual
simulation (eg. Pythia, GEANT)

Continue to use a neural network
discriminator / critic.

Difficulty: the simulator isn't
differentiable, but there’s a trick!

Allows us to efficiently fit /
tune simulation with stochastic
gradient technigues!


http://arxiv.org/abs/1707.07113

LEARNING TO PIVOT WITH ADVERSARIAL NETWORKS

Typically classitier f(x) trained to
minimize loss L.

normal training

e want classifier output to be 30 10
. . e . 2.5 0.9
Insensitive to systematics 0s

2.0
(nuisance parameter v) s 07
) 1.0 0.6
* introduce an adversary r that | 05
0.4
tries to predict v based onf. oo N
.. -0.5 0.2
® setup as a minimax game: I o

-1.0-0.5 0.0 0.5 1.0 1.5 2.0
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s r 3.5}
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G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046

adversarial training
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G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046




G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046

AN EXAMPLE

Technigue allows us to tune A, the tradeoft between
classification power and robustness to systematic uncertainty

An example: :
background: 1000 QCD jets
signal: 100 boosted W's

A=0/Z=0
A=0
A=1

Train W vs. QCD classifier

Pileup as source of
uncertainty

Simple cut-and-count

Expected significance of search

analysis with background O |
uncertainty. ) l l l l
0.0 0.2 0.4 0.6 0.8 1.0

threshold on f(X)



DECORRELATED TAGGERS

Adversarial approach of “Learning
to Pivot” can also be used to train
a classitier that is “decorrelated”
to some other variable.

e want jet taggers that are
decorrelated with jet invariant

Mass

e so that analysis can still search
for a bump using jet invariant

Mass

e avoids sculpting background

NN output

NN output

K.C, J. Pavez, and G. Louppe, arXiv:1506.02169

P. Baldi, K.C, T. Faucett, P. Sadowski, D. Whiteson arXiv:1601.07913

—_

0.5

0.5

G. Louppe, M. Kagan, K.C, arXiv:1611.01046
Shimmin, et. al. arXiv:1703.03507

' mass=20 GeV

' mass=35 GeV

' mass=50 GeV

ass=100 GeV

ass=200 GeV

' mass=300 GeV

Adv. Trained NN

l l
100 150 200
Jet Invariant Mass [GeV]

' mass=20 GeV

' mass=35 GeV

' mass=50 GeV

ass=100 GeV

' mass=200 GeV

ass=300 GeV

| | ;;H?
e wg@%ﬁaﬁ% iﬁ

Trad. NN

ﬁi

»~

ettt Q&W‘Wwﬁﬁﬁm

100 150 200
Jet Invariant Mass [GeV]



DECORRELATION IN BELLE Il

DNN (E+DL+V) (0.0437)
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0
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signal shape of Az
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Dennis Weyland Master's thesis ETP-KA/2017-30



Physics-Aware Machine Learning

(choosing the variational family)



JET SUBSTRUCTURE

Many scenarios tfor physics Beyond the Standard Model
include highly boosted W, Z, H bosons or top quarks

Low top pt High top pt

|dentifying these rests on subtle substructure inside jets

e an enormous number of theoretical effort in developing
observables and techniques to tag jets like this

b N /_I:;// 0 % Rii
Ne= Y=\
mass drop ilter ﬂ




image: Komiske, Metodiev, Schwartz arxiv:1612.01551

J E T | M A G E S Oliveira, et. al arXiv:1511.05190

Whiteson, et al arXiv:1603.09349
Barnard, et al arXiv:1609.00607

pre-process

dense layer

. quark jet

FH

R=Aa gluon jet

max-pooling

X3


http://arxiv.org/abs/arXiv:1603.09349
http://arxiv.org/abs/arXiv:1511.05190

Oliveira, et. al arXiv:1511.05190

J E T I M A G E S Whiteson, et al arXiv:1603.09349

Dawe, et al arXiv:1609.00607

Apply deep learning algorithms to classify to “jet images”
e good results (based on fast simulation & idealized unitorm calorimeter)
e preprocessed to mod out symmetries in the data

e discretization into images looses information

Average Boosted W Jet (y=1) Average QCD Jet (y=0)
= 10° o = ’ : 10° =
s S c S
() i > 5 () S
o 1 10° 5, S S
< [ 10 2 < o
g 1 1 % £ %
CR LD
3 10 3
T 10° =
S 10 S
= 10° =
10°
107
10°
- e, |, R -
1 -05 0 0.5 1 10° 4 -05 0 0.5 1 10°

[Translated] Pseudorapidity (n) [Translated] Pseudorapidity (n)


http://arxiv.org/abs/arXiv:1603.09349
http://arxiv.org/abs/arXiv:1511.05190

JETS AS A GRAPH

Using message passing neural networks over a fully connected graph
on the particles

e Two approaches for adjacency matrix for edges

lsaac Henrion

* inject physics knowledge by using d; of jet algorithms

e |earn adjacency matrix and export new jet algorithm

Example Boosted W Jet (y=1) Example QCD Jet (y=0)

1.0 1
1.0

0.5 A
0.5 A

o
e @
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) ...J ) ® S 0.0
Q- . Q%O o
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, © ) . —0.5 A1
,Ol e o b \n
—1.0 ~

—1.0 A % % @

-1.0 -0.5 0.0 0.5 1.0 . . . .
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NON-UNIFORM GEOMETRY

ATLAS

Pl(m)

i %ENI

source:JiveXML_106382_27470 run:106382 ev:27470 lumiBlock:2
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NON-UNIFORM GEOMETRY

Atlantis

source:JiveXML_106382_27470 run:106382 ev:27470 lumiBlock
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HOW CAN WE IMPROVE?

mage based approaches are doing well, but....

e would be nice to be able to work with a variable length input

* avoid pre-processing into a regular-grid (eg. non-uniform
calorimeters)

* avoid representing empty pixels (sparse input)
e would be nice if classifier had nice theoretical properties
* infrared & collinear safety, robustness to pileup, etc.

e would be nice to be more data efficient, most image-based
networks use a LOT of training data.
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FROM IMAGES TO SENTENCES

Recursive Neural Networks showing great performance tor

Natural Language Processing tasks

e neural network’s topology given by parsing of sentence!

NP VP

N

VBG NNS VBZ ADVP

| | I/\/\/\

Parsing sentences is RB RB JJR NN

so much more fun than

VBG PP

N

going TO NP

N\

to DT NN

the dentist




FROM IMAGES TO SENTENCES

Recursive Neural Networks showing great performance tor

Natural Language Processing tasks

e neural network’s topology given by parsing of sentence!

VBG NNS VBZ ADVP

| | I/\/\/\

Parsing sentences is RB RB JJR NN

so much more fun than

VBG

Analogy: | N

going TO NP

word — particle N

to DT NN

arsing — jet algorithm
p g J 9 tr|1e denltist




QCD-INSPIRED RECURSIVE NEURAL NETWORKS
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Work with Gilles Louppe, Kyunghyun Cho, Cyril Becot e

e Use sequential recombination jet algorithms to AL A
provide network topology (on a per-jet basis) Ao A

e path towards ML models with good theoretical FIT R
properties Ao A

e Top node of recursive network provides a fixed—lengthmfi:f
embedding of a jet that can be fed to a classifier

arXiv:1702.00748 & follow up work with Joan Bruna using graph conv nets rak



QCD-INSPIRED RECURSIVE NEURAL NETWORKS
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e down-sampling by
projecting into images AL AL

looses information

tower:

1 / Background efficiency

10!

e RNN needs much less
data to train!
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HIERARCHICAL MODEL FOR THE ENTIRE EVENT

particle embedding — jet embedding = event embedding — classifier

It scales!
Event embedding Classifier
v(t1) v(tz2) v(tm)
n'(e)
hy(ty) hy (t2) hy (tar)

Jet

embeddings

Vi V2 V3 V4 Vs Ve v7 VN-1 VN

arXiv:1702.00748 & follow up work with Joan Bruna using graph conv nets



Physics Aware



FUTURE DIRECTIONS

Vocabulary of kernels + grammar for

composition

e physics goes into the construction of

a "Kernel” that describes covariance

of data

Structure Discovery in Nonparametric Regression
through Compositional Kernel Search

David Duvenaud, James Robert Lloyd, Roger Grosse,
Joshua B. Tenenbaum, Zoubin Ghahramani
International Conference on Machine Learning, 2013

pdf | code | poster | bibtex

(explGG+G) e GG+ G
dependent gaussian scale mixture
(¢ g. Karklin md*mxh_ 205)

(MG +G)CMT +G)+ G
Bayesmn clustered tensar factonization
S ewere ., 2009 . . ,
@utohope otol ' BIGBT +G)+ G

) erd £ - N v
binary matrix factorization (€ xp(G) e G)G + G

(Meeds et al, 2006) spamse coding
\ ’ (c.g. Okhausen and Field, 199%)

MGMT+G)+ G (CC+G)6G+G

co-clustering BG4+ G GG+ G inesr dvaamical sysem
(e.g. Kemp et al, 2006) binary features  low-rnmk .nmun:muu:‘/' i ' .
(Griffiths and (Salakbet dmov and
Ghahramani, 2005) Mai, 2008) /
DN CGC+G
WG+ G
random wak
clustering /
no structure

Exploiting compositionality to explore a large space of
model structures
Roger Grosse, Ruslan Salakhutdinov, William T.

Freeman, Joshua B. Tenenbaum

Conference on Uncertainty in Artificial Intelligence, 2012

pdf | code | bibtex

Mauna Loa atmospheric CO5

(Lin x SE + SE x (Per + RQ))
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with Meghan Frate

FUTURE DlRECTlONS & Daniel Whiteson

Instead of fitting the dijet spectrum with an ad hoc 3-5
parameter function, use GP with kernel motivated from physics

Correlation Matrix

Final Kernel =

10°} — bkgonly ||
@® @ data+signal

3 8 8 & 8 B
=} 1=} o 1=} 1=} o
=] =] =] =] =] o

Poisson stats

104}
B + Mass Resolution

103}
500 | 0 102

+ Parton Density 3
1500 . u>.1 .
Functions 101}
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+ 1
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- ~ + Jet Energy Scale S o .
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TWO APPROACHES

Learn simulator
(with deep learning)

conv (180w + 5b)

L hon-linear

maxpool conv (450w + 10b) ¢ (0]

non- Imear' ¢ = 0

%

¢ = 6
¢ - 0O
C = @
z : §
)8
hon- Imear maxpool Q Sl )
fully-connected @ ©

(1600w + 10b)
e Generative Adversarial Networks (GANSs),
Variational Auto-Encoders (VAE)

e |ikelihood ratio from classifiers (CARL)

e Autogregressive models,
Normalizing Flows


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

DENSITY ESTIMATION VIA CALCULUS OF VARIATIONS

What function r(x) minimizes the “cross-entropy” loss?

L|r] = —/p(w) logr(x) dx

\ _J/
-~

F(x,r)

e Subject to /r(az)daz =1




DENSITY ESTIMATION VIA CALCULUS OF VARIATIONS

What function r(x) minimizes the ”cross—entropy” loss?

L) = - [ pla)logr(o zlogm

F(a: T)

e Subjectto /r(az)da; =1




DENSITY ESTIMATION VIA CALCULUS OF VARIATIONS

What function r(x) minimizes the "cross- entropy” loss?

L) = - [ pla)logr(o Zlog"rxz

F(a: T)

e Subjectto /r(az)daz =1

Fuler-Lagrange Equation w/ Lagrange-multiplier

Lir,A\| = F(x,r) + Ar(x)

d (oL\ oL oL  ~ —p(z)
@(W) 5T_O W_O_ r(x) - A
=0 r(z) = p(x)/A

imposing the constraint gives A = 1 thus r(z) = p(x)



How do we create complicated probability
densities p(x) that are tractable

and

are normalized such that [p(x) dx =17



BlJECTlONS K.C. & G. Louppe: http://beta.briefideas.org/ideas/5c2f/4aedbf3618ca180382e393c7617

f | have a bijection: f : X — Z

and an arbitrary tractable density on Z: p(z)

Then density on X follows from a simple change of variables

0
p(x) = p(fp(x)) det( Yolx) )‘

6xT

Now construct neural networks f; that are bijections & optimize
“cross entropy” loss

It it is a bijection, | can generate samples of x from inverse
transformation f'(z)


http://beta.briefideas.org/ideas/5c2f74aedbf3618ca180382e393c7617

ENGINEERING BIJECTIONS

Approximations using Change-of-variables

Exploit the rule for change of variables for random variables:

= Begin with an initial distribution g, (zy|x).
= Apply a sequence of K invertible functions f.

; (@) -E-E-E

Sampling and Entropy
zx = fro...0 fyo fi(zo)
K
log g (1) = log o(20) — Y logdet | ==
k=1 PR
¥aa
‘ I
4
M /// 4 :
XA !
~ P |
N:- - | ; 7 :
S=czzdTr !
t=T

Distribution flows through a sequence of invertible transforms

[Rezende and Mohamed, 2015]

Choice of Transformation Function

K
o
L =Eq z)llogp(x, 2x) 1-Eqy 5y [108 q0(20) ] — Eg 2, [Z logdet a—z];
k=1

|

= Begin with a fully-factorised Gaussian and improve by change of variables.
= Triangular Jacobians allow for computational efficiency.

Planar Flow Real NVP Inverse AR Flow

@)
I

Y:d = Zh-1,1:d 2i—1 — pie(2<k, T)
2z = —— 12T
2k = 2k +uh(w ' zp_y +b) Yar1:0 = H2zk—1,1:4) + Zdr1:0 © exp(s(2x—1,1:4)) * or(z<k, )

[Rezende and Mohamed, 2016; Dinh et al., 2016; Kingma et al., 2016]

Linear time computation of the determinant and its gradient.




WAVENET: A GENERATIVE MODEL FOR RAW AUDIO
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TWO APPROACHES

Use simulator
(much more efficiently)

e Approximate Bayesian
Computation (ABC)

e Probabilistic Programming

e Adversarial Variational
Optimization (AVO)


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

‘Likelihood-Free’ Inference

Rejection Algorithm

@ Draw 6 from prior 7(-)
@ Accept 6 with probability (D | 6)

Accepted 6 are independent draws from the posterior distribution,
(0 | D).
If the likelihood, 7(D|0), is unknown:

‘Mechanical’ Rejection Algorithm

@ Draw 6 from 7 (-)
@ Simulate X ~ f(#) from the computer model

@ Accept 0 if D = X, i.e., if computer output equals observation

The acceptance rate is [ P(D|0)x(0)d0 = P(D).

*From Richard Wilkinson’s talk at Data science @ LHC



Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any 6. Instead,
there Is an approximate version:

Uniform Rejection Algorithm
@ Draw 6 from m(0)
e Simulate X ~ f(6)
@ Accept 0 if p(D, X) < ¢

e reflects the tension between computability and accuracy.

@ As € — 00, we get observations from the prior, 7(6).

o If e =0, we generate observations from 7 (6 | D).

For reasons that will become clear later, we call this uniform-ABC.

*From Richard Wilkinson’s talk at Data science @ LHC



NEW! AVO

Adversarial Variational Optimization of Non-Differentiable Simulators

Gilles Louppe'! and Kyle Cranmer!
'New York University

Complex computer simulators are increasingly used across fields of science as generative models
tying parameters of an underlying theory to experimental observations. Inference in this setup is
often difficult, as simulators rarely admit a tractable density or likelihood function. We introduce
Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-
differentiable generative model incorporating ideas from empirical Bayes and variational inference.
We adapt the training procedure of generative adversarial networks by replacing the differentiable
generative network with a domain-specific simulator. We solve the resulting non-differentiable mini-
max problem by minimizing variational upper bounds of the two adversarial objectives. Effectively,
the procedure results in learning a proposal distribution over simulator parameters, such that the
corresponding marginal distribution of the generated data matches the observations. We present
results of the method with simulators producing both discrete and continuous data.

Leo is G Tom is D

G. Louppe & K.C. arXiv:1707.07113

Similar to GAN setup, but
instead of using a neural network

as the generator, use the actual
simulation (eg. Pythia, GEANT)

Continue to use a neural network
discriminator / critic.

Difficulty: the simulator isn't
differentiable, but there’s a trick!

Allows us to efficiently fit /
tune simulation with stochastic
gradient technigues!


http://arxiv.org/abs/1707.07113

Probabilistic Programming:
Inverting the simulation

(very ambitious)



Probablilistic Programming




Parameters

Program

Output

CS

[slides, Frank Wood]

INtultion

Inference

( )

Parameters

—

Program

—

Observations

p(z|z)

p(z|2)p(z)

Probabilistic Programming  Statistics



CAPTCHA breaking

Observation Generative Model

(defquery captcha
[ image num-chars tol]
(let [[w h] (size image)
;; sample random characters
num-chars (sample
(poisson num-chars))
chars (repeatedly
num-chars sample-char) ]

POS’[eI’IOI’ Samples ;; compare rendering to true image

(map (fn [y z]
(observe (normal z tol) vy))
(reduce-dim image)
(reduce-dim (render chars w h)))
;7 predict captcha text
{:text
(map :symbol (sort-by :x chars))}))

Mansinghka,, Kulkarni, Perov, and Tenenbaum
“‘Approximate Bayesian image interpretation using generative probabilistic graphics programs.” NIPS (2013).
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(let [[w h] (size image)
;; sample random characters
num-chars (sample
(poisson num-chars))
chars (repeatedly
num-chars sample-char) ]

POS’[eI’IOI’ Samples ;; compare rendering to true image

(map (fn [y z]
(observe (normal z tol) vy))
(reduce-dim image)
(reduce-dim (render chars w h)))
;7 predict captcha text
{:text
(map :symbol (sort-by :x chars))}))
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“‘Approximate Bayesian image interpretation using generative probabilistic graphics programs.” NIPS (2013).



ANALOGY: RANDOM BUMPERS ~ RANDOM CALORIMETER SHOWER

(let [number-of-bumpers (sample (poisson 20))
bumpydist (uniform-continuous 0 10)
bumpxdist (uniform-continuous -5 14)
bumper-positions (repeatedly
number-of-bumpers
# ( (sample bumpxdist)
(sample bumpydist))

3 examples generated from simulator
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UNDERSTANDING THE TAILS OF DISTRIBUTIONS

obs-dist (normal 4 0.1)]

(observe obs-dist num-balls-in-box)

3 examples generated from simulator
conditioned on ~20% of balls land in box
(~ given observed energy deposits)
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3 examples generated from simulator
conditioned on ~20% of balls land in box
(~ given observed energy deposits)




HOW DOES IT WORK?

n short: hijack the random number generators and use
NN’s to perform a very smart type of importance sampling

Input: an inference Compilation Inference
prOb.lem denOted In Training data Test data
a universal PPL {xtm), y(m} 2| - y
. robabilistic program
(Anglican, CPProb) Py) — l
NN architecture ~

. 0.0 SIS
Output: a trained 600 <] Compilation artifact L~
inference network, ( ok % A| v 0) l
or “compilation Traning 1" ¢ P‘Zstj’ri‘;r

- 3 Dkt (p(x | y) || p(x|y

artlfaCt a(x | v: 0))
(TOrCh? PyTOrCh) Expensive / slow Cheap / fast

Le, Baydin and Wood. Inference Compilation and Universal Probabilistic Programming. AISTATS 2017.
arXiv:1610.09900



TWO APPROACHES

Use simulator Learn simulator
(much more efficiently) (with deep learning)

conv (180w + 5b)

= - hon-linear
””;‘“ maxpool conv (450w + 10b) ®
. 0%0
( ' non- Imear' ¢ = 0
X O = €
) =@
= 0
s —= on. Imear maxpool i g
St fully- connecfed‘ = ©
e (1600w + 10b)
e Approximate Bayesian e Generative Adversarial Networks (GANs),
Computation (ABC) Variational Auto-Encoders (VAE)
e Probabilistic Programming e Likelihood ratio from classitiers (CARL)
e Adversarial Variational e Autogregressive models,

Optimization (AVO) Normalizing Flows


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

TWO APPROACHES

Learn simulator
(with deep learning)

conv (180w + 5b)

L hon-linear

maxpool conv (450w + 10b) ¢ (0]

non- Imear' ¢ = 0

%

¢ = 6
¢ - 0O
C = @
z : §
)8
hon- Imear maxpool Q Sl )
fully-connected @ ©

(1600w + 10b)
e Generative Adversarial Networks (GANSs),
Variational Auto-Encoders (VAE)

e |ikelihood ratio from classifiers (CARL)

e Autogregressive models,
Normalizing Flows


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

CARL

The intractable likelihood ratio based on high-dimensional features x is:

p(x|6y)
p(z|61)

We can show that an equivalent test can be made from 1-D projection

p(z|01)  p(s(z;6o,601)|01) Lo

if the scalar map s: X = R has the same level sets as the likelihood ratio

s(x; 60;601) = monotonic| p(x|0y)/p(x|01) |

Estimating the density of s(x; 8o, 01) via the simulator calibrates the ratio.

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169


http://arxiv.org/abs/1506.02169

CARL

Binary classitier on balanced y=0 and y=1 labels learns

p(xly = 1)

s(x) =

~ plely =0) +pzly = 1)

Which is one-to-one with the likelihood ratio

p(x

=0 1
y=0) _,

p(x

y=1) s(x)

Can do the same thing for any two points 8¢ & 01 in
oarameter space. | call this a parametrized classifier

s(x;0p,01) =
(60, 01) p(

p(z|61)
z|6o) + p(x|61)

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169


http://arxiv.org/abs/1506.02169

LEARNING A 16 DIM LIKELIHOOD

Estimated likelihood

ET10g A(8, 61)|6observed] (regression)

True likelihood

/‘/
8
A°
o/:
p
Pd
j‘
%80
°
:”‘z
/
-2 0 2 4 6
EllogA(8, el)leobserved] (truth)

fWW VZ//\2

fW V2//\2

16.2

14.4

12.6

10.8

—2E[Alog ] (regression)



APPLICATION TO THE HIGGS

Preliminary work using fast detector simulation and CARL to approximate
ikelihoods using full kinematic information parametrized in 5-d coefticients
ot a Quantum Field Theory

-

/

q q
T —P—
] et
Z
W, Z h -
. +
‘ W, Z 7 £
—— — ¢
] q /

q

250

04|

02}

00 f

kAzz

. C D 16 observables
(using the CARL)

02}

-04 |

oSt

S ™ 2 observables
_preliminary

5 56 (histogram templates)

sl 1\

-0.6

q q
Wz b e Equivalent to 3x more data.
" (idealized, no systematic uncertainty)
q q’

work with Juan Pavez, Gilles Louppe, Cyril Becot, and Lukas Heinrich; Johann Brehmer, Felix Kling, and Tilman Plehn
"Better Higgs Measurements Through Information Geometry” [arXiv:1612.05261]



MAXIMUM LIKELIHOOD ESTIMATORS

Now we can go beyond classification, and estimate parameters of
theory and confidence intervals

Denote the maximum likelihood estimator

(4.2) 0

arg max p(D|0)
0

The denominator in the likelihood ratio is just a constant

~ p($e|(9) CCG,H 91)|9)
4.4 0 = areg max In = arg max ln
(4.4 gmax ) | In -7 - gmax ) :ce,e 06r)

It is important that we include the denominator p(s(aze; 0,01)|61) because
this cancels Jacobian factors that vary with 6.

Provides a non-trivial diagnostic: pi(s*)  pu(@) [ dQpo()/|i- V|| pi(a)

po(s*) — po(@)| [ dQspo(x)/|n - V|| po()




DIAGNOSTICS

In practice 7(5(x; g, 01)) will not be exact. Diagnostic procedures
are needed to assess the quality of this approximation.

1.
of the va
2. Train ac
from p(x
I’(S(X; 90, (91))
14 [ A
— Exact
121 —  Approx., §; =(a=0,3=1)
— Approx., 6, =(a=1,4=-1)
Hor — Approx., 6, =(a=0,3=-1) ||
s 8l +10, 6, =(a=0,0=-1)
o
41
2L
O l l l l
0.7 0.8 0.9 1.0 1.1 1.2 1.3
pi(s*) _ pi(@) [ dQepo()/| - V|| _ pi(w)
po(s7)  po(@) [ d%po(w)/[a- Vs|| ~ polw)

True Positive Rate

For inference, the value of the MLE 6 should be independent
ue of 1 used in the denominator of the ratio.

assifier to distinguish between unweighted samples
o) and samples from p(x|01) weighted by

1.0}

o
(o8]
T

o
(9}
T

o
SN
T

0.2}

x|6, )r(x|6,,0,) exact
z|6,) no weights

— p(
— p(
—  p(x]0,)r(x]0,,0,) approx.

0.2

0.4 0.6 0.8
False Positive Rate

1.0



DIAGNOSTICS

14

10

—2logA(6)

T N 7T

— Exact
— Approx., 0, =(a=0,=1)

— Approx., 0§, =(a=1,=-1)
— Approx., 6, =(a=0,0=-1) |
+lo, 0, =(a=0,4=-1)

14

12}
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—2logA(0)

T 1T el

— Exact
— Approx., 6, =(a=0,6=1)
— Approx., 6§, =(a=1,=-1)

+10, 0, =(a=0,3=—1)

— Approx., 6, =(a=0,8=-1) ||

calibrated, well trained.

1.3

—2logA(0)

T T T T 17

— Exact
— Approx., 6, =(a=0,6=1)
— Approx., §; =(a=1,=-1)

+10, 6, =(a=0,8=—-1)

— Approx., 6, =(a=0,8=-1) ||

1.3

(e) Well trained, well calibrated.
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(f) Well trained, well calibrated.



AMORTIZED LIKELIHOOD-FREE INFERENCE

Once we've learned the function s(x; 0) to approximate the
ikelihood, we can apply it to any data x.

e unlike MCMC, we pay biggest computational costs up front

e Here we repeat inference thousands of times & check
asymptotic statistical theory

70 2.0

I .| Exact MLEs [ ] | Exact

60 |- I an Approx. MLEs | ~ Approx.
- - 7=0.5 1.5}

50 | -

40 ]
30 | —

20 |

S A

0.02 0.03 0.04 0.05 0.06 0.07 0.08

(a) Exact vs. approximated MLEs. (b) p(—2log A(y = 0.05) | v = 0.05)

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169


http://arxiv.org/abs/1506.02169

WHAT IS THE OBJECTIVE?

ML: What is the problem you are trying to solve?

Physicist: [eventually describes problem and formalizes objective]
ML: Ok, well let's optimize this directly ...

Physicist: but, | also want....

Used to criticize physicists for constantly changing problem statement, but
traditional approach to physics problems has many advantages

e modular, reusable components (facilitates transfer learning, “ML2.0")
* interpretable & individually validated

e aform of structural regularization

12,



STATISTICAL DECISION THEORY IN 1T SLIDE

O - States of nature; X - possible observations; A - action to be taken
p(x|0) - statistical model; m(0) - prior

0: X = A - decision rule (take some action based on observation)

L: © x A = R - loss function, real-valued function true parameter and action
R(O,0) = Ep(x|e)[L(9, 0)] - risk

e A decision 0* rule dominates a decision rule 0 if and only if R(6,0*)< R(0,d) for all 8,
and the inequality is strict for some 0.

e A decision rule is admissible if and only it no other rule dominates it; otherwise it is
inadmissible

r(r, O) = E ol R(0,0)] - Bayes risk (expectation over 0 w.r.t. prior and possible observations)

p(r, 0| x) En(e|x)[ L(0,0(x))] - expected loss (expectation over O w.r.t. posterior r(0|x) )

e 0'is a(generalized) Bayes rule if it minimizes the expected loss



FULL SIMULATION + RECONSTRUCTION

nuisance
parameters

measured
parton
density

detector
design,
alignment

measured
interactions
with matter

calibration
constants

functions, etc.

parameter
estimates,
likelihood,
posterior
f 1
Events ~10 5
v event-level
4 N\
partons ~10 features
momenta,
particle type
jets ~10
& J
momenta,
summary
stats
\/
4 N\
hadrons ~100
I
momenta, reconstructed particles ~100
particle type
| _—>
momenta
\ Y, particle type
clusters ~100 tracks ~100
energy, momenta,
( A summary impact
\ sensors 108 stats parameter
energy
—»> deposit
4 8 N\
/\ )\ sensor readout 10
- raw data
& J

nuisance
parameter

latent
variable

observed
covariate

derived
quantities



HIERARCHICAL GRAPHICAL MODELS IN ASTRONOMY

celestial
body P X

galaxy
@ L profile
—@ A @
@7

I

point spread
function

. C_}fnb
. g'n.b
. 7_-n,b

Lnbm

Celeste: Variational inference for a generative model of
Regler, et al 334 ICMLR, 2016 astronomical images



ML2.07

. Kyunghyun Cho
% July10-©
How do these fit together? ML 2.0 at Google
Combine many of these ideas: p— ——

Large model, but sparsely activated
Single model to solve many tasks (100s to 1Ms)
Dynamically learn and grow pathways through large model
Hardware specialized for ML supercomputing
ML for efficient mapping onto this hardware

Outputs

Single large
model,
sparsely
activated

Tasks

T

Slldes from Jeﬂ: Dean O-F Google Brain @ ‘JeJU JUly 201 7 https://drive.google.com/file/d/0B8z50UpB2DysZWF1RTFuX1NEZUk/view


https://drive.google.com/file/d/0B8z5oUpB2DysZWF1RTFuX1NEZUk/view

