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Menu of Topics



•Statistical Topics 

• probability, Bayes/Frequentist, Likelihood, transformation properties, correlation vs. mutual 
information, information geometry 

• parameter estimation, bias/variance tradeoff, Cramér-Rao bound, James-Stein paradox 

• Statistical Decision Theory  

• Conceptual issues around Goodness of fit 

• Hypothesis Testing, Neyman-Pearson, likelihood ratios 

• Confidence intervals, coverage, Neyman Construction, Bayesian credible intervals, MCMC, 
CLs 

• Systematics, profile-likelihood, asymptotic distributions 

• Bayesian Posteriors, MCMC, and Variational Inference 

• look-elsewhere effect, 1-d, 2-d, combination of experiments, … 

• unfolding, inverse problems, regularization, connection to Gaussian Processes & RBKH
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•Probabilistic Modeling of Data: Classical and Machine Learning versions 

• clarification of “correlated systematic” confusion 

• Scientific Narratives: Monte-Carlo template based, parametrized 
function, data-driven, … 

• Template approach & HistFactory, “experimental design” 

• Kernel Density estimation 

• Gaussian Processes & connection to unfolding 

• neural density estimation, autoregressive models, normalizing flows 

• the data manifold and auto-encoders, anomaly detection 

• GANs and Variational Auto-encoders
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•ML ↔ Stats correspondence 

• goodness of fit ↔ anomaly detection 

• Hypothesis Testing ↔ classifiers 

• parameter estimation ↔ regression (and neural networks as function 

approximations) 

• statistical decision theory ↔ reinforcement learning  

• Systematics: Learning to Profile and Learning to Pivot 

• credible intervals with Bayesian neural networks & Gaussian Processes 

• Auto-encoding variational Bayes
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•ML-based Likelihood-free approaches 

• Kernel Density estimation 

• Cox Process & Gaussian Processes https://arxiv.org/abs/1709.05681  

• likelihood ratios from classifiers & parametrized learning 

• conditional density estimation: autoregressive models, normalizing flows 

• the data manifold and auto-encoders, anomaly detection 

• Approximate Bayesian Computation 

• Probabilistic Programming 

• GANs and Variational Auto-encoders 

• Adversarial Variational Optimization 

•Black box optimization 

• Bayesian Optimization & Variational Optimization
6

https://arxiv.org/abs/1709.05681


•Recent ML Topics: 

• Parametrized learning for classification 

• Parametrized learning for likelihood-free inference 

• High-dimensional reweighting 

• Incorporating systematics into neural network training “Learning to pivot” 

• Decorrelating neural networks from some variable (eg. mass of particle) 

• Gaussian Processes for modeling backgrounds & generic localized signals 

• Information geometry as a tool for phenomenology 

• Adversarial Variational Optimization for tuning simulation 

• QCD-aware neural networks 

• Simplified likelihoods
7



T W O  A P P R O A C H E S

• Approximate Bayesian 
Computation (ABC) 

• Probabilistic Programming 

• Adversarial Variational 
Optimization (AVO)
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Use simulator  
(much more efficiently)

Learn simulator  
(with deep learning)

• Generative Adversarial Networks (GANs), 
Variational Auto-Encoders (VAE) 

• Likelihood ratio from classifiers (CARL) 

• Autogregressive models,  
Normalizing Flows

[image credit: A.P. Goucher]

https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/


LECTURE NOTES
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Probability & Statistics 
Terminology & Definitions



TERMS

The next lectures will rely on a clear understanding of these terms: 

‣ Random variables / “observables” x

‣ Probability mass and probability density function (pdf) p(x) or f(x) 

‣ Parametrized Family of pdfs / “model” p(x|α) 

‣ Parameter α 

‣ Likelihood L(α) 

‣ Estimate (of a parameter)  α̂(x)
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PROBABILITY MASS FUNCTIONS

When dealing with discrete random variables, define a 
Probability Mass Function as probability for ith possibility 

Defined as limit of long term frequency 
‣ probability of rolling a 3 := limit #trials→∞ (# rolls with 3 / # trials) 

● you don’t need an infinite sample for definition to be useful 

And it is normalized 

12

P (xi) = pi

X

i

P (xi) = 1



PROBABILITY DENSITY FUNCTIONS

When dealing with continuous random variables, need to 
introduce the notion of a Probability Density Function  

Note,          is NOT a probability 

PDFs are always normalized to unity:
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CUMULATIVE DENSITY FUNCTIONS

Often useful to use a cumulative distribution: 
‣ in 1-dimension:
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CUMULATIVE DENSITY FUNCTIONS

Often useful to use a cumulative distribution: 
‣ in 1-dimension:
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partial of cumulative:
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differential cross section:
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HISTOGRAM  {XI}→ F(X)
Given a set of observations {xi} we can approximate the pdf with a 
histogram.   

Think of a pdf as a histogram with:

15

     infinite data sample, 
     zero bin width, 
     normalized to unit area.

[G. Cowan]



PARAMETRIZED FAMILIES / MODELS

Often we are interested in a parametried family of pdfs 
‣ We will write these as:                said “f of x given α” 

● where α are the parameters of the “model” (written in greek characters) 
A discrete example: 
‣ The Poisson distribution is a probability mass function for n, the 

number of events one observes, when one expects μ events 

A continuous example 
‣ The Gaussian distribution is a probability density function for a 

continuous variable x characterized by a mean μ and standard 
deviation σ
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f(x|↵)

Pois(n|µ) = µn e�µ

n!

G(x|µ,�) = 1p
2⇡�

e

� (x�µ)2

2�2



THE LIKELIHOOD FUNCTION

Consider the Poisson distribution describes a discrete event count n 
for a real-valued mean µ. 

The likelihood of µ given n is the same 
equation evaluated as a function of µ 
‣ Now it’s a continuous function 
‣ But it is not a pdf! 

Common to plot the -ln L  (or  -2 ln L) 
‣ helps avoid thinking of it as a PDF 
‣ connection to χ2 distribution

17

Likelihood-Ratio Interval example

68% C.L. likelihood-ratio interval 

for Poisson process with n=3 

observed:

L (µ) = µ3 exp(-µ)/3!

Maximum at µ = 3.

Bob Cousins, CMS, 2008 35

∆2lnL = 12 for approximate ±1 

Gaussian standard deviation  

yields interval [1.58, 5.08]

Figure from R. Cousins,             

Am. J. Phys. 63 398 (1995)

L(µ) = Pois(n|µ)

Pois(n|µ) = µn e�µ

n!



REPEATED OBSERVATIONS

In particle physics we are usually able to perform repeated 
observations of x that are independent & identically distributed 
‣ These repeated observations are written {xi} 
‣ and the likelihood in that case is 

‣ and the log-likelihood is 

18

L(↵) =
Y

i

f(xi|↵)

logL(↵) =

X

i

log f(xi|↵)



Kyle Cranmer (NYU) Stanford Statistics, Oct 14, 2014 

TRANSFORMATION PROPERTIES: 

PDF VS. LIKELIHOOD

19



CHANGE OF VARIABLES

What happens with x→ cos(x)
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CHANGE OF VARIABLES

What happens with x→ cos(x)
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CHANGE OF VARIABLES

If f(x) is the pdf for x and y(x) is a change of variables, then the pdf 
g(y) must satisfy  

We can rewrite the integral on the right 

therefore, the two pdfs are related by a Jacobian factor 
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AN EXAMPLE
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f(x) = g(y)

����
dy

dx

����

y(x) = cos(x)

f(x) =
1

2⇡
g(y) =

1

2⇡

2

| sin(x)| =
1
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1p
1� y
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AN EXAMPLE

I am glossing over the fact that the map 
is not 1-to-1. Different values of x, map 
into same value of y. We will need to 
sum/integrate over them. Here it is easy, 
but in general this may become 
intractable… need inverse map
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f(x) = g(y)
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SUMMARY
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Change of variable x, change of parameter θ

• For pdf p(x|θ) and change of variable from x to y(x): 

p(y(x)|θ) = p(x|θ) / |dy/dx|. 

Jacobian modifies probability density, guaranties that            

P( y(x1)< y < y(x2) )  =  P(x1 < x < x2 ), i.e., that

Probabilities are invariant under change of variable x.

– Mode of probability density is not invariant (so, e.g., – Mode of probability density is not invariant (so, e.g., 

criterion of maximum probability density is ill-defined).

– Likelihood ratio is invariant under change of variable x. 

(Jacobian in denominator cancels that in numerator).

• For likelihood L(θ) and reparametrization from θ to u(θ):

L(θ)  =  L(u(θ))   (!).

– Likelihood L (θ) is invariant under reparametrization of 

parameter θ (reinforcing fact that L is not a pdf in θ).
Bob Cousins, CMS, 2008 15



THE LIKELIHOOD FUNCTION

Consider the Poisson distribution describes a discrete event count n 
for a real-valued mean µ. 

The likelihood of µ given n is the same 
equation evaluated as a function of µ 
‣ Now it’s a continuous function 
‣ But it is not a pdf! 

Common to plot the -ln L  (or  -2 ln L) 
‣ helps avoid thinking of it as a PDF 
‣ connection to χ2 distribution

25

Likelihood-Ratio Interval example

68% C.L. likelihood-ratio interval 

for Poisson process with n=3 

observed:

L (µ) = µ3 exp(-µ)/3!

Maximum at µ = 3.

Bob Cousins, CMS, 2008 35

∆2lnL = 12 for approximate ±1 

Gaussian standard deviation  

yields interval [1.58, 5.08]

Figure from R. Cousins,             

Am. J. Phys. 63 398 (1995)

L(µ) = Pois(n|µ)

Pois(n|µ) = µn e�µ

n!



PROBABILITY INTEGRAL TRANSFORM

Consider a specific change of variables related to the cumulative for 
some arbitrary f(x) 

Using our general change of variables formula: 

We find for this case the Jacobian factor is  

Thus  
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y(x) =

Z
x

�1
f(x0)dx0

f(x) = g(y)

����
dy
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����

����
dy
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SUMMARY
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Probability Integral Transform

“…seems likely to be one of the most fruitful conceptions 

introduced into statistical theory in the last few years”   

− Egon Pearson (1938) 

Given continuous x ∈ (a,b), and its pdf p(x), let

y(x) = !a
x 

p(x′) dx′ .

Then y ∈ (0,1) and p(y) = 1 (uniform) for all y. (!)

So there always exists a metric in which the pdf is uniform.  So there always exists a metric in which the pdf is uniform.  

Many issues become more clear (or trivial) after this 

transformation*. (If x is discrete, some complications.)

The specification of a Bayesian prior pdf p(µ) for parameter 

µ is equivalent to the choice of the metric f(µ) in which 

the pdf is uniform.  This is a deep issue, not always 

recognized as such by users of flat prior pdf’s in HEP!

*And the inverse transformation provides for efficient M.C. generation of p(x) starting from RAN().
Bob Cousins, CMS, 2008 16
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BAYES THEOREM
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BAYES’ THEOREM

Bayes’ theorem relates the conditional and 
marginal probabilities of events A & B 

▪ P(A) is the prior probability. It is "prior" in the sense that 
it does not take into account any information about B.

▪ P(A |B) is the conditional probability of A, given B. It is 
also called the posterior probability because it is 
derived from or depends upon the specified value of B.

▪ P(B |A) is the conditional probability of B given A.
▪ P(B) is the prior or marginal probability of B, and acts 

as a normalizing constant.

29

P (A|B) =
P (B|A)P (A)

P (B)

⇡(✓|x) = f(x|✓)⇡(✓)
N / L(✓)⇡(✓)

http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Conditional_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Normalizing_constant


... IN PICTURES (FROM BOB COUSINS)

30

P, Conditional P, and Derivation of Bayes’ Theorem       

in Pictures

A B

Whole space

P(A) = P(B)  = 

P(A B) = 

P(B|A) = P(A|B) = 

P(B) × P(A|B) = × =

P(A ∩ B) = 

P(A) × P(B|A) = × = =   P(A ∩ B) 

=   P(A ∩ B) 

! P(B|A)  = P(A|B) × P(B) / P(A) Bob Cousins, CMS, 2008 7



... IN PICTURES (FROM BOB COUSINS)
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P, Conditional P, and Derivation of Bayes’ Theorem       

in Pictures

A B

Whole space

P(A) = P(B)  = 

P(A B) = 

P(B|A) = P(A|B) = 

P(B) × P(A|B) = × =

P(A ∩ B) = 

P(A) × P(B|A) = × = =   P(A ∩ B) 

=   P(A ∩ B) 

! P(B|A)  = P(A|B) × P(B) / P(A) Bob Cousins, CMS, 2008 7

Don’t forget about “Whole space”    .  I will drop it from the 
notation typically, but occasionally it is important. 

�



LOUIS’S EXAMPLE

31

16

P (Data;Theory)         P (Theory;Data)!

Theory  = male or female

Data =   pregnant or not pregnant

P (pregnant ; female) ~ 3%

but

P (female ; pregnant) >>>3%



AXIOMS OF PROBABILITY

These Axioms are a mathematical starting point 
for probability and statistics  

1. probability for every element, E, is non-
negative 

2. probability for the entire space of 
possibilities is 1 

3. if elements Ei are disjoint, probability is 
additive 

Consequences:

32

Kolmogorov 

axioms (1933)



DIFFERENT DEFINITIONS OF PROBABILITY
Frequentist 
‣ defined as limit of long term frequency 
‣ probability of rolling a 3 := limit of (# rolls with 3 / # trials) 

● you don’t need an infinite sample for definition to be useful 
●  sometimes ensemble doesn’t exist 

• eg. P(Higgs mass = 125 GeV), P(it will snow tomorrow) 
‣ Intuitive if you are familiar with Monte Carlo methods 
‣ compatible with orthodox interpretation of probability in Quantum Mechanics.  

Probability to measure spin projected on x-axis if spin of beam is polarized 
along +z 

Subjective Bayesian 
‣ Probability is a degree of belief (personal, subjective) 

● can be made quantitative based on betting odds 
● most people’s subjective probabilities are not coherent and do not obey 

laws of probability

33

http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1

|⇤� | ⇥⌅|2 =
1
2

http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1
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ESTIMATORS

Given some model             and a set of observations {xi} often one 
wants to estimate the true value of α (assuming the model is true). 

An estimator is function of the data written  
‣ Since the data are random, so is the resulting estimate 
‣ often it is just written    , where the x-dependence is implicit 
‣ one can compute expectation of the estimator 

Properties of estimators: 
‣ bias                              (unbiased means bias=0) 
‣ variance 
‣ asymptotic bias limit of bias with infinite observations

35

f(x|↵)

↵̂(x1, . . . xn)

↵̂

E[↵̂(x)|↵]� ↵

E[(↵̂(x)� ↵)2|↵] =
Z

(↵̂(x)� ↵)2f(x|↵)dx

E[↵̂(x)|↵] =
Z

↵̂(x)f(x|↵)dx

̅ ̅



MAXIMUM LIKELIHOOD ESTIMATORS

There are many different possible estimators, but the most well-
known and well-studied is the maximum likelihood estimator (MLE) 

36

Likelihood-Ratio Interval example

68% C.L. likelihood-ratio interval 

for Poisson process with n=3 

observed:

L (µ) = µ3 exp(-µ)/3!

Maximum at µ = 3.

Bob Cousins, CMS, 2008 35

∆2lnL = 12 for approximate ±1 

Gaussian standard deviation  

yields interval [1.58, 5.08]

Figure from R. Cousins,             

Am. J. Phys. 63 398 (1995)

↵̂(x) = argmax↵L(↵) = argmax↵f(x|↵)

This is just the value of α that maximizes the likelihood

Example: the Poisson distribution  

Maximizing L(μ) is the same as minimizing -ln L(μ)

Pois(n|µ) = µn e�µ

n!

) µ̂ = n

� d

dµ
lnL(µ)

��
µ̂
= 0 =

d

dµ

0

@µ� n lnµ+ lnn!|{z}
const

1

A = 1� n

µ

In this case, the MLE is unbiased b/c E[n]=μ



A SECOND EXAMPLE

Consider a set of observations {xi} and we want to estimate the mean 
of a Gaussian with known σ

which gives 

                          

However, the MLE                            is biased 

It can be shown that                                    is unbiased 

Thus, the MLE is asymptotially unbiased .
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G(x|µ,�) = 1p
2⇡�

e

� (x�µ)2

2�2

� d

dµ

lnL(µ)
��
µ̂
= 0 =

d

dµ

0

@
X

i

(xi � µ)2

2�2

+ ln
p
2⇡�| {z }

const

1

A =
X

i

(xi � µ)

�

2

) µ̂ =
1

N

X

i

xi

�̂

2 =
1

N

X

i

(xi � µ)2

�̂

2 =
1

N � 1

X

i

(xi � µ)2

(an unbiased estimator) .

Note: if σ̂² is an unbiased estimate of σ², then √{σ̂²} is a biased estimate of σ.



COVARIANCE AND CORRELATION

38

Define covariance cov[x,y] (also use matrix notation Vxy) as  

Correlation coefficient (dimensionless) defined as

If x, y, independent, i.e., ,   then

→ x and  y, ‘uncorrelated’

N.B. converse not always true.
[G. Cowan]



CORRELATION (CONT.) 
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[G. Cowan]



CORRELATION (CONT.) 
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http://en.wikipedia.org/wiki/Correlation_and_dependence

http://en.wikipedia.org/wiki/Correlation_and_dependence


MUTUAL INFORMATION

Mutual Information is a more general notion of ‘correlation’  

‣ it is symmetric:  I(X;Y) = I(Y;X) 
‣ if and only if X,Y totally independent:   I(X;Y)=0 
‣ possible for X,Y to be uncorrelated, but not independent

41
X

Y Mutual Information doesn’t seem 
to be used much within HEP, but 
it seems quite useful



B I A S / VA R I A N C E  T R A D E O F F

•We introduced Bias and Variance of estimators 

•Most physicist are allergic to the idea of a biased estimator 

• try to find unbiased estimator with smallest variance 

• hence importance of Cramér-Rao bound 

•But what if we just want to minimize the mean-squared error? 

•it decomposes like this 

•So it encodes some relative weight to bias and variance. Think harder!

42

MSE[µ̂|µ] = Var[µ̂|µ] + (Bias[µ̂|µ])2

MSE[µ̂|µ] = E[(µ̂� µ)2] |µ]

Var[µ̂|µ] = E[(µ̂� E[µ|µ])2] |µ]



CRAMÉR-RAO BOUND

The minimum variance bound on an estimator is given by the 
Cramér-Rao inequality: 
‣ simple univariate case: 

‣ For an unbiased estimator the Cramér-Rao bound states 

‣ where I(θ) is the Fisher information 

‣ General form for multiple parameters: 

Maximum Likelihood Estimators asymptotically reach this bound
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cov[

ˆ✓|✓]ij � I�1
ij (✓)

Var[✓̂|✓] = E[(✓̂ � E[✓|✓])2] |✓]

Var[✓̂|✓] � 1

I(✓)



J A M E S - S T E I N  E S T I M AT O R  

•Consider a standard multivariate Gaussian distribution for x⃗ 
in n dimensions centered around μ⃗ 

•Goal: minimize mean-squared error 
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f(~x|~µ) =
nY

i=1

1p
2⇡

exp

✓
� (xi � µi)

2

2

◆
.

•MLE (unbiased) •James-Stein (weird)

MSE[~̂µ] = E[||~̂µ� ~µ||2])

µ̂JS =

✓
1� n� 2

||x̄||2

◆
x̄

~̂µMLE = x =
1

m

mX

j=1

~xj



J A M E S - S T E I N  E S T I M AT O R

•The James-Stein estimator seems like a horrible suggestion 

• clearly biased (MLE is not) 

• shifts towards origin is not  
translationally invariant  
x → x’ = x+Δ

45

µ̂JS =

✓
1� n� 2

||x̄||2

◆
x̄



J A M E S - S T E I N  E S T I M AT O R

•The James-Stein estimator seems like a horrible suggestion 

• clearly biased (MLE is not) 

• shifts towards origin is not  
translationally invariant  
x → x’ = x+Δ

45

•Yet, it has smaller mean squared  
error than MLE for n>2 ! 

• it “dominates” the MLE

µ̂JS =

✓
1� n� 2

||x̄||2

◆
x̄



B I A S / VA R I A N C E  T R A D E O F F

•We introduced Bias and Variance of estimators 

•Most physicist are allergic to the idea of a biased estimator 

• try to find unbiased estimator with smallest variance 

• hence importance of Cramér-Rao bound 

•But what if we just want to minimize the mean-squared error? 

•it decomposes like this 

•So it encodes some relative weight to bias and variance. Think harder!
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MSE[µ̂|µ] = Var[µ̂|µ] + (Bias[µ̂|µ])2

MSE[µ̂|µ] = E[(µ̂� µ)2] |µ]

Var[µ̂|µ] = E[(µ̂� E[µ|µ])2] |µ]



S TAT I S T I C A L  D E C I S I O N  T H E O R Y  I N  1  S L I D E

•Θ - States of nature;     X - possible observations;      A - action to be taken 

•f(x|θ) - statistical model;          π(θ) - prior 

•δ: X → A - decision rule (take some action based on observation) 

•L: Θ x A → ℝ - loss function, real-valued function true parameter and action 

•R(θ,δ) = E
f(x|θ)

[L(θ, δ)] - risk 

• A decision δ* rule  dominates a decision rule δ if and only if R(θ,δ*)≤ R(θ,δ) for all θ, and the inequality is strict for 
some θ. 

• A decision rule is admissible if and only if no other rule dominates it; otherwise it is inadmissible 

•r(π, δ) = E
π(θ)

[ R(θ,δ)] - Bayes risk  (expectation over θ w.r.t. prior and possible observations) 

•ρ(π, δ | x ) = E
π(θ|x)

[ L(θ,δ(x))] - expected loss (expectation over θ w.r.t. posterior π(θ|x) ) 

• δ’ is a (generalized) Bayes rule if it minimizes the expected loss 

• under mild conditions every admissible rule is a (generalized) Bayes rule (with respect to some prior —possibly an 
improper one—that favors distributions  where that rule achieves low risk). Thus, in frequentist decision theory it is 
sufficient to consider only (generalized) Bayes rules. 

• Conversely, while Bayes rules with respect to proper priors are virtually always admissible, generalized Bayes rules 
corresponding to improper priors need not yield admissible procedures. Stein's example is one such famous 
situation.
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Kyle Cranmer (NYU) Stanford Statistics, Oct 14, 2014 

HYPOTHESIS TESTING

48



HYPOTHESIS TESTING

One of the most common uses of statistics in particle physics is 
Hypothesis Testing (e.g. for discovery of a new particle) 
‣ assume one has pdf for data under two hypotheses: 

● Null-Hypothesis, H0:  eg. background-only 
● Alternate-Hypothesis H1: eg. signal-plus-background 

‣ one makes a measurement and then needs to decide whether to 
reject or accept H0 
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HYPOTHESIS TESTING

Before we can make much progress with statistics, we 
need to decide what it is that we want to do. 
‣ first let us define a few terms: 

● Rate of Type I error  
● Rate of Type II  
● Power =  

50
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Before we can make much progress with statistics, we 
need to decide what it is that we want to do. 
‣ first let us define a few terms: 

● Rate of Type I error  
● Rate of Type II  
● Power =  

Treat the two hypotheses asymmetrically 
‣ the Null is special.   

● Fix rate of Type I error, call it “the size of the test”
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HYPOTHESIS TESTING

Before we can make much progress with statistics, we 
need to decide what it is that we want to do. 
‣ first let us define a few terms: 

● Rate of Type I error  
● Rate of Type II  
● Power =  

Treat the two hypotheses asymmetrically 
‣ the Null is special.   

● Fix rate of Type I error, call it “the size of the test”
Now one can state “a well-defined goal” 
‣ Maximize power for a fixed rate of Type I error

50
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HYPOTHESIS TESTING

The idea of a “5σ” discovery criteria for particle physics is really a 
conventional way to specify the size of the test 
‣ usually 5σ  corresponds to  

● eg. a very small chance we reject the standard model 
In the simple case of number counting it is obvious what region is 
sensitive to the presence of a new signal 
‣ but in higher dimensions it is not so easy

51
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6 Glen Cowan Multivariate Statistical Methods in Particle Physics

Finding an optimal decision boundary
Maybe select events with “cuts”:

xi < ci
xj  < cj

Or maybe use some other type of decision boundary:

Goal of multivariate analysis is to do this in an “optimal” way.

H0 H0

H0

H1

H1H1

6 Glen Cowan Multivariate Statistical Methods in Particle Physics

Finding an optimal decision boundary
Maybe select events with “cuts”:

xi < ci
xj  < cj

Or maybe use some other type of decision boundary:

Goal of multivariate analysis is to do this in an “optimal” way.

H0 H0

H0

H1

H1H1

[G. Cowan]



THE NEYMAN-PEARSON LEMMA

52

The Neyman & Pearson’s Theory

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H0 (background only)

- the Alternate Hypothesis H1 (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis

α = P (x /∈ W |H0)

Find the region W such that we minimize the probability of wrongly
accepting the H0 (when H1 is true)

β = P (x ∈ W |H1)

April 11, 2005

EFI High Energy Physics Seminar

Modern Data Analysis Techniques

for High Energy Physics (page 6)

Kyle Cranmer

Brookhaven National Laboratory

(Convention: if data falls in W then we accept H0)



The region W that minimizes the probability of wrongly accepting H0     
is just a contour of the Likelihood Ratio

Any other region of the same size will have less power 

The likelihood ratio is an example of a Test Statistic, eg. a real-
valued function that summarizes the data in a way relevant to the 
hypotheses that are being tested

THE NEYMAN-PEARSON LEMMA

53

P (x|H1)
P (x|H0)

> k�



A SHORT PROOF OF NEYMAN-PEARSON

Consider the contour of the likelihood ratio that has size a given size 
(eg. probability under H0 is 1-α)

54

P (x|H1)
P (x|H0)

> k�

W WC



A SHORT PROOF OF NEYMAN-PEARSON

Now consider a variation on the contour that has the same size
55



A SHORT PROOF OF NEYMAN-PEARSON

Now consider a variation on the contour that has the same size (eg. 
same probability under H0)

56

P ( |H0) = P ( |H0)



A SHORT PROOF OF NEYMAN-PEARSON

Because the new area is outside the contour of the likelihood ratio, 
we have an inequality

57

P (x|H1)
P (x|H0)

< k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H0)k�



A SHORT PROOF OF NEYMAN-PEARSON

And for the region we lost, we also have an inequality 
Together they give...

58

P (x|H1)
P (x|H0)

< k�
P (x|H1)
P (x|H0)

> k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)k� k�



A SHORT PROOF OF NEYMAN-PEARSON
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The new region region has less power.

P (x|H1)
P (x|H0)

< k�
P (x|H1)
P (x|H0)

> k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H1)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)k� k�



S TAT I S T I C A L  D E C I S I O N  T H E O R Y  I N  1  S L I D E

•Θ - States of nature;     X - possible observations;      A - action to be taken 

•f(x|θ) - statistical model;          π(θ) - prior 

•δ: X → A - decision rule (take some action based on observation) 

•L: Θ x A → ℝ - loss function, real-valued function true parameter and action 

•R(θ,δ) = E
f(x|θ)

[L(θ, δ)] - risk 

• A decision δ* rule  dominates a decision rule δ if and only if R(θ,δ*)≤ R(θ,δ) for all θ, and the inequality is strict for 
some θ. 

• A decision rule is admissible if and only if no other rule dominates it; otherwise it is inadmissible 

•r(π, δ) = E
π(θ)

[ R(θ,δ)] - Bayes risk  (expectation over θ w.r.t. prior and possible observations) 

•ρ(π, δ | x ) = E
π(θ|x)

[ L(θ,δ(x))] - expected loss (expectation over θ w.r.t. posterior π(θ|x) ) 

• δ’ is a (generalized) Bayes rule if it minimizes the expected loss 

• under mild conditions every admissible rule is a (generalized) Bayes rule (with respect to some prior —possibly an 
improper one—that favors distributions  where that rule achieves low risk). Thus, in frequentist decision theory it is 
sufficient to consider only (generalized) Bayes rules. 

• Conversely, while Bayes rules with respect to proper priors are virtually always admissible, generalized Bayes rules 
corresponding to improper priors need not yield admissible procedures. Stein's example is one such famous 
situation.
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Statistical
Issues in
Searches

Richard
Lockhart

General

Optimality

Exclusion

Meta-analysis

Estimating
Equations

Multimodal L

Bayes Power

Separate
hypotheses

Stu↵ I won’t
get to

The longest highest bridge in the world -21

Optimality theory: Data X . Model f (x |✓), ✓ 2 ⇥.

Decision problem: observe X , make decision d(X ).

Lose L(d(X ), ✓) – real valued.

Judge quality of d(X ) by long run average risk:

R(d , ✓) = hL(d(X ), ✓i✓ = E [L(d(X ), ✓|✓] .

Key idea: admissibility.

Procedure d1 is better than d2 if, for all ✓,

R(d1, ✓) < R(d2, ✓).

We call d2 inadmissible.

Richard Lockhart Statistical Issues in Searches
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Statistical
Issues in
Searches

Richard
Lockhart

General

Optimality

Exclusion

Meta-analysis

Estimating
Equations

Multimodal L

Bayes Power

Separate
hypotheses

Stu↵ I won’t
get to

Admissibility and Bayes -20

Theorem

Every admissible procedure is Bayes.

Theorem

Every Bayes procedure is admissible

Written separately because neither is quite right.
But meaning is – sensible procedures need to be Bayes.
Not always an easy restriction to impose – but wise, in my
view, to remember.

Richard Lockhart Statistical Issues in Searches
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Statistical
Issues in
Searches

Richard
Lockhart

General

Optimality

Exclusion

Meta-analysis

Estimating
Equations

Multimodal L

Bayes Power

Separate
hypotheses

Stu↵ I won’t
get to

Famous example – Neyman-Pearson lemma -19

Data X with density f0 or f1.

Decision: observe X guess which density. Hypothesis
testing.

Loss: 1 if wrong, 0 if right.

Risk is
(P0(Reject),P1(Accept))

Neyman Pearson say minimize second component subject
to constraint on first.

Richard Lockhart Statistical Issues in Searches
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Statistical
Issues in
Searches

Richard
Lockhart

General

Optimality

Exclusion

Meta-analysis

Estimating
Equations

Multimodal L

Bayes Power

Separate
hypotheses

Stu↵ I won’t
get to

Implied Priors -18

Langrange multipliers. Minimize

P1(Accept) + �P0(Reject) = � + �↵.

Same as Bayes for prior P(f1 true) = 1/(1 + �).

Then adjust prior (�) to find Bayes procedure which
satisfies constraint.

Notice that �/(1 + �) = P(Ho).

Procedure implies (at least one) prior.

Richard Lockhart Statistical Issues in Searches



Kyle Cranmer (NYU) Stanford Statistics, Oct 14, 2014 

BAYES THEOREM
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BAYES’ THEOREM

Bayes’ theorem relates the conditional and 
marginal probabilities of events A & B 

▪ P(A) is the prior probability. It is "prior" in the sense that 
it does not take into account any information about B.

▪ P(A |B) is the conditional probability of A, given B. It is 
also called the posterior probability because it is 
derived from or depends upon the specified value of B.

▪ P(B |A) is the conditional probability of B given A.
▪ P(B) is the prior or marginal probability of B, and acts 

as a normalizing constant.

66

P (A|B) =
P (B|A)P (A)

P (B)

⇡(✓|x) = f(x|✓)⇡(✓)
N / L(✓)⇡(✓)

http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Conditional_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Normalizing_constant


... IN PICTURES (FROM BOB COUSINS)

67

P, Conditional P, and Derivation of Bayes’ Theorem       

in Pictures

A B

Whole space

P(A) = P(B)  = 

P(A B) = 

P(B|A) = P(A|B) = 

P(B) × P(A|B) = × =

P(A ∩ B) = 

P(A) × P(B|A) = × = =   P(A ∩ B) 

=   P(A ∩ B) 

! P(B|A)  = P(A|B) × P(B) / P(A) Bob Cousins, CMS, 2008 7



... IN PICTURES (FROM BOB COUSINS)

67

P, Conditional P, and Derivation of Bayes’ Theorem       

in Pictures

A B

Whole space

P(A) = P(B)  = 

P(A B) = 

P(B|A) = P(A|B) = 

P(B) × P(A|B) = × =

P(A ∩ B) = 

P(A) × P(B|A) = × = =   P(A ∩ B) 

=   P(A ∩ B) 

! P(B|A)  = P(A|B) × P(B) / P(A) Bob Cousins, CMS, 2008 7

Don’t forget about “Whole space”    .  I will drop it from the 
notation typically, but occasionally it is important. 

�



LOUIS’S EXAMPLE

68

16

P (Data;Theory)         P (Theory;Data)!

Theory  = male or female

Data =   pregnant or not pregnant

P (pregnant ; female) ~ 3%

but

P (female ; pregnant) >>>3%



AXIOMS OF PROBABILITY

These Axioms are a mathematical starting point 
for probability and statistics  

1. probability for every element, E, is non-
negative 

2. probability for the entire space of 
possibilities is 1 

3. if elements Ei are disjoint, probability is 
additive 

Consequences:

69

Kolmogorov 

axioms (1933)



DIFFERENT DEFINITIONS OF PROBABILITY
Frequentist 
‣ defined as limit of long term frequency 
‣ probability of rolling a 3 := limit of (# rolls with 3 / # trials) 

● you don’t need an infinite sample for definition to be useful 
●  sometimes ensemble doesn’t exist 

• eg. P(Higgs mass = 125 GeV), P(it will snow tomorrow) 
‣ Intuitive if you are familiar with Monte Carlo methods 
‣ compatible with orthodox interpretation of probability in Quantum Mechanics.  

Probability to measure spin projected on x-axis if spin of beam is polarized 
along +z 

Subjective Bayesian 
‣ Probability is a degree of belief (personal, subjective) 

● can be made quantitative based on betting odds 
● most people’s subjective probabilities are not coherent and do not obey 

laws of probability
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http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1

|⇤� | ⇥⌅|2 =
1
2

http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1


Measurement / Estimators



ESTIMATORS

Given some model             and a set of observations {xi} often one 
wants to estimate the true value of α (assuming the model is true). 

An estimator is function of the data written  
‣ Since the data are random, so is the resulting estimate 
‣ often it is just written    , where the x-dependence is implicit 
‣ one can compute expectation of the estimator 

Properties of estimators: 
‣ bias                              (unbiased means bias=0) 
‣ variance 
‣ asymptotic bias limit of bias with infinite observations
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f(x|↵)

↵̂(x1, . . . xn)

↵̂

E[↵̂(x)|↵]� ↵

E[(↵̂(x)� ↵)2|↵] =
Z

(↵̂(x)� ↵)2f(x|↵)dx

E[↵̂(x)|↵] =
Z

↵̂(x)f(x|↵)dx

̅ ̅



MAXIMUM LIKELIHOOD ESTIMATORS

There are many different possible estimators, but the most well-
known and well-studied is the maximum likelihood estimator (MLE) 

73

Likelihood-Ratio Interval example

68% C.L. likelihood-ratio interval 

for Poisson process with n=3 

observed:

L (µ) = µ3 exp(-µ)/3!

Maximum at µ = 3.

Bob Cousins, CMS, 2008 35

∆2lnL = 12 for approximate ±1 

Gaussian standard deviation  

yields interval [1.58, 5.08]

Figure from R. Cousins,             

Am. J. Phys. 63 398 (1995)

↵̂(x) = argmax↵L(↵) = argmax↵f(x|↵)

This is just the value of α that maximizes the likelihood

Example: the Poisson distribution  

Maximizing L(μ) is the same as minimizing -ln L(μ)

Pois(n|µ) = µn e�µ

n!

) µ̂ = n

� d

dµ
lnL(µ)

��
µ̂
= 0 =

d

dµ

0

@µ� n lnµ+ lnn!|{z}
const

1

A = 1� n

µ

In this case, the MLE is unbiased b/c E[n]=μ



A SECOND EXAMPLE

Consider a set of observations {xi} and we want to estimate the mean 
of a Gaussian with known σ

which gives 

                          

However, the MLE                            is biased 

It can be shown that                                    is unbiased 

Thus, the MLE is asymptotially unbiased .
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G(x|µ,�) = 1p
2⇡�

e

� (x�µ)2

2�2

� d

dµ

lnL(µ)
��
µ̂
= 0 =

d

dµ

0

@
X

i

(xi � µ)2

2�2

+ ln
p
2⇡�| {z }

const

1

A =
X

i

(xi � µ)

�

2

) µ̂ =
1

N

X

i

xi

�̂

2 =
1

N

X

i

(xi � µ)2

�̂

2 =
1

N � 1

X

i

(xi � µ)2

(an unbiased estimator) .

Note: if σ̂² is an unbiased estimate of σ², then √{σ̂²} is a biased estimate of σ.



COVARIANCE AND CORRELATION

75

Define covariance cov[x,y] (also use matrix notation Vxy) as  

Correlation coefficient (dimensionless) defined as

If x, y, independent, i.e., ,   then

→ x and  y, ‘uncorrelated’

N.B. converse not always true.
[G. Cowan]



CORRELATION (CONT.) 
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[G. Cowan]



CORRELATION (CONT.) 
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http://en.wikipedia.org/wiki/Correlation_and_dependence

http://en.wikipedia.org/wiki/Correlation_and_dependence


MUTUAL INFORMATION

Mutual Information is a more general notion of ‘correlation’  

‣ it is symmetric:  I(X;Y) = I(Y;X) 
‣ if and only if X,Y totally independent:   I(X;Y)=0 
‣ possible for X,Y to be uncorrelated, but not independent

78
X

Y Mutual Information doesn’t seem 
to be used much within HEP, but 
it seems quite useful



B I A S / VA R I A N C E  T R A D E O F F

•We introduced Bias and Variance of estimators 

•Most physicist are allergic to the idea of a biased estimator 

• try to find unbiased estimator with smallest variance 

• hence importance of Cramér-Rao bound 

•But what if we just want to minimize the mean-squared error? 

•it decomposes like this 

•So it encodes some relative weight to bias and variance. Think harder!
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MSE[µ̂|µ] = Var[µ̂|µ] + (Bias[µ̂|µ])2

MSE[µ̂|µ] = E[(µ̂� µ)2] |µ]

Var[µ̂|µ] = E[(µ̂� E[µ|µ])2] |µ]



CRAMÉR-RAO BOUND

The minimum variance bound on an estimator is given by the 
Cramér-Rao inequality: 
‣ simple univariate case: 

‣ For an unbiased estimator the Cramér-Rao bound states 

‣ where I(θ) is the Fisher information 

‣ General form for multiple parameters: 

Maximum Likelihood Estimators asymptotically reach this bound
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cov[

ˆ✓|✓]ij � I�1
ij (✓)

Var[✓̂|✓] = E[(✓̂ � E[✓|✓])2] |✓]

Var[✓̂|✓] � 1

I(✓)



J A M E S - S T E I N  E S T I M AT O R  

•Consider a standard multivariate Gaussian distribution for x⃗ 
in n dimensions centered around μ⃗ 

•Goal: minimize mean-squared error 
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f(~x|~µ) =
nY

i=1

1p
2⇡

exp

✓
� (xi � µi)

2

2

◆
.

•MLE (unbiased) •James-Stein (weird)

MSE[~̂µ] = E[||~̂µ� ~µ||2])

µ̂JS =

✓
1� n� 2

||x̄||2

◆
x̄

~̂µMLE = x =
1

m

mX

j=1

~xj



J A M E S - S T E I N  E S T I M AT O R

•The James-Stein estimator seems like a horrible suggestion 

• clearly biased (MLE is not) 

• shifts towards origin is not  
translationally invariant  
x → x’ = x+Δ

82

µ̂JS =

✓
1� n� 2

||x̄||2

◆
x̄



J A M E S - S T E I N  E S T I M AT O R

•The James-Stein estimator seems like a horrible suggestion 

• clearly biased (MLE is not) 

• shifts towards origin is not  
translationally invariant  
x → x’ = x+Δ
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•Yet, it has smaller mean squared  
error than MLE for n>2 ! 

• it “dominates” the MLE

µ̂JS =

✓
1� n� 2

||x̄||2

◆
x̄
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•We introduced Bias and Variance of estimators 

•Most physicist are allergic to the idea of a biased estimator 

• try to find unbiased estimator with smallest variance 

• hence importance of Cramér-Rao bound 

•But what if we just want to minimize the mean-squared error? 

•it decomposes like this 

•So it encodes some relative weight to bias and variance. Think harder!
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MSE[µ̂|µ] = Var[µ̂|µ] + (Bias[µ̂|µ])2

MSE[µ̂|µ] = E[(µ̂� µ)2] |µ]
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S TAT I S T I C A L  D E C I S I O N  T H E O R Y  I N  1  S L I D E

•Θ - States of nature;     X - possible observations;      A - action to be taken 

•f(x|θ) - statistical model;          π(θ) - prior 

•δ: X → A - decision rule (take some action based on observation) 

•L: Θ x A → ℝ - loss function, real-valued function true parameter and action 

•R(θ,δ) = E
f(x|θ)

[L(θ, δ)] - risk 

• A decision δ* rule  dominates a decision rule δ if and only if R(θ,δ*)≤ R(θ,δ) for all θ, and the inequality is strict for 
some θ. 

• A decision rule is admissible if and only if no other rule dominates it; otherwise it is inadmissible 

•r(π, δ) = E
π(θ)

[ R(θ,δ)] - Bayes risk  (expectation over θ w.r.t. prior and possible observations) 

•ρ(π, δ | x ) = E
π(θ|x)

[ L(θ,δ(x))] - expected loss (expectation over θ w.r.t. posterior π(θ|x) ) 

• δ’ is a (generalized) Bayes rule if it minimizes the expected loss 

• under mild conditions every admissible rule is a (generalized) Bayes rule (with respect to some prior —possibly an 
improper one—that favors distributions  where that rule achieves low risk). Thus, in frequentist decision theory it is 
sufficient to consider only (generalized) Bayes rules. 

• Conversely, while Bayes rules with respect to proper priors are virtually always admissible, generalized Bayes rules 
corresponding to improper priors need not yield admissible procedures. Stein's example is one such famous 
situation.
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L E C T U R E  2
•Hypothesis Testing ↔ Classification  

• Neyman-Pearson, Likelihood Ratio 

• “Bayes Optimal” Machine Learning Classifiers & Loss 

•Extending to include systematics: 

• statistical modeling with nuisance parameters 

• RooFit ↔ TensorFlow, automatic differentiation 

• Profile Likelihood Ratio & concept of a “pivot” 

•Parametrized learning 

• for classification 

• high dimensional reweighting
85



Kyle Cranmer (NYU) Stanford Statistics, Oct 14, 2014 

HYPOTHESIS TESTING
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HYPOTHESIS TESTING

One of the most common uses of statistics in particle physics is 
Hypothesis Testing (e.g. for discovery of a new particle) 
‣ assume one has pdf for data under two hypotheses: 

● Null-Hypothesis, H0:  eg. background-only 
● Alternate-Hypothesis H1: eg. signal-plus-background 

‣ one makes a measurement and then needs to decide whether to 
reject or accept H0 
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HYPOTHESIS TESTING

Before we can make much progress with statistics, we 
need to decide what it is that we want to do. 
‣ first let us define a few terms: 

● Rate of Type I error  
● Rate of Type II  
● Power =  
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● Power =  

Treat the two hypotheses asymmetrically 
‣ the Null is special.   

● Fix rate of Type I error, call it “the size of the test”
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HYPOTHESIS TESTING

Before we can make much progress with statistics, we 
need to decide what it is that we want to do. 
‣ first let us define a few terms: 

● Rate of Type I error  
● Rate of Type II  
● Power =  

Treat the two hypotheses asymmetrically 
‣ the Null is special.   

● Fix rate of Type I error, call it “the size of the test”
Now one can state “a well-defined goal” 
‣ Maximize power for a fixed rate of Type I error
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H Y P O T H E S I S  T E S T I N G

•Classical hypothesis testing typically framed in terms of 
true/false : positive/negative 

89

power

actually guilty ↔ new physics 

       verdict guilty ↔ claim discovery

null alternate



6 Glen Cowan Multivariate Statistical Methods in Particle Physics

Finding an optimal decision boundary
Maybe select events with “cuts”:

xi < ci
xj  < cj

Or maybe use some other type of decision boundary:

Goal of multivariate analysis is to do this in an “optimal” way.

H0 H0

H0

H1

H1H1
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Or maybe use some other type of decision boundary:

Goal of multivariate analysis is to do this in an “optimal” way.
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H Y P O T H E S I S  T E S T I N G

•If the data are high-dimensional, it’s not obvious how to draw 
the boundary between accept/reject the null hypothesis

90



6 Glen Cowan Multivariate Statistical Methods in Particle Physics

Finding an optimal decision boundary
Maybe select events with “cuts”:

xi < ci
xj  < cj

Or maybe use some other type of decision boundary:

Goal of multivariate analysis is to do this in an “optimal” way.

H0 H0

H0

H1

H1H1

6 Glen Cowan Multivariate Statistical Methods in Particle Physics

Finding an optimal decision boundary
Maybe select events with “cuts”:

xi < ci
xj  < cj

Or maybe use some other type of decision boundary:

Goal of multivariate analysis is to do this in an “optimal” way.

H0 H0

H0

H1

H1H1

H Y P O T H E S I S  T E S T I N G

•If the data are high-dimensional, it’s not obvious how to draw 
the boundary between accept/reject the null hypothesis

90



THE NEYMAN-PEARSON LEMMA

91

The Neyman & Pearson’s Theory

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H0 (background only)

- the Alternate Hypothesis H1 (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis

α = P (x /∈ W |H0)

Find the region W such that we minimize the probability of wrongly
accepting the H0 (when H1 is true)

β = P (x ∈ W |H1)

April 11, 2005

EFI High Energy Physics Seminar

Modern Data Analysis Techniques

for High Energy Physics (page 6)

Kyle Cranmer

Brookhaven National Laboratory

(Convention: if data falls in W then we accept H0)



The region W that minimizes the probability of wrongly accepting H0     
is just a contour of the Likelihood Ratio

Any other region of the same size will have less power 

The likelihood ratio is an example of a Test Statistic, eg. a real-
valued function that summarizes the data in a way relevant to the 
hypotheses that are being tested

THE NEYMAN-PEARSON LEMMA
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P (x|H1)
P (x|H0)

> k�



A SHORT PROOF OF NEYMAN-PEARSON

Consider the contour of the likelihood ratio that has size a given size 
(eg. probability under H0 is 1-α)
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P (x|H1)
P (x|H0)

> k�

W WC



A SHORT PROOF OF NEYMAN-PEARSON

Now consider a variation on the contour that has the same size
94



A SHORT PROOF OF NEYMAN-PEARSON

Now consider a variation on the contour that has the same size (eg. 
same probability under H0)
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P ( |H0) = P ( |H0)



A SHORT PROOF OF NEYMAN-PEARSON

Because the new area is outside the contour of the likelihood ratio, 
we have an inequality
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P (x|H1)
P (x|H0)

< k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H0)k�



A SHORT PROOF OF NEYMAN-PEARSON

And for the region we lost, we also have an inequality 
Together they give...
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A SHORT PROOF OF NEYMAN-PEARSON
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The new region region has less power.

P (x|H1)
P (x|H0)

< k�
P (x|H1)
P (x|H0)

> k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H1)
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S TAT I S T I C A L  D E C I S I O N  T H E O R Y  I N  1  S L I D E

•Θ - States of nature;     X - possible observations;      A - action to be taken 

•f(x|θ) - statistical model;          π(θ) - prior 

•δ: X → A - decision rule (take some action based on observation) 

•L: Θ x A → ℝ - loss function, real-valued function true parameter and action 

•R(θ,δ) = E
f(x|θ)

[L(θ, δ)] - risk 

• A decision δ* rule  dominates a decision rule δ if and only if R(θ,δ*)≤ R(θ,δ) for all θ, and the inequality is strict for 
some θ. 

• A decision rule is admissible if and only if no other rule dominates it; otherwise it is inadmissible 

•r(π, δ) = E
π(θ)

[ R(θ,δ)] - Bayes risk  (expectation over θ w.r.t. prior and possible observations) 

•ρ(π, δ | x ) = E
π(θ|x)

[ L(θ,δ(x))] - expected loss (expectation over θ w.r.t. posterior π(θ|x) ) 

• δ’ is a (generalized) Bayes rule if it minimizes the expected loss 

• under mild conditions every admissible rule is a (generalized) Bayes rule (with respect to some prior —possibly an 
improper one—that favors distributions  where that rule achieves low risk). Thus, in frequentist decision theory it is 
sufficient to consider only (generalized) Bayes rules. 

• Conversely, while Bayes rules with respect to proper priors are virtually always admissible, generalized Bayes rules 
corresponding to improper priors need not yield admissible procedures. Stein's example is one such famous 
situation.
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Statistical
Issues in
Searches

Richard
Lockhart

General

Optimality

Exclusion

Meta-analysis

Estimating
Equations

Multimodal L

Bayes Power

Separate
hypotheses

Stu↵ I won’t
get to

The longest highest bridge in the world -21

Optimality theory: Data X . Model f (x |✓), ✓ 2 ⇥.

Decision problem: observe X , make decision d(X ).

Lose L(d(X ), ✓) – real valued.

Judge quality of d(X ) by long run average risk:

R(d , ✓) = hL(d(X ), ✓i✓ = E [L(d(X ), ✓|✓] .

Key idea: admissibility.

Procedure d1 is better than d2 if, for all ✓,

R(d1, ✓) < R(d2, ✓).

We call d2 inadmissible.

Richard Lockhart Statistical Issues in Searches
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Statistical
Issues in
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Richard
Lockhart

General

Optimality

Exclusion

Meta-analysis

Estimating
Equations

Multimodal L

Bayes Power

Separate
hypotheses

Stu↵ I won’t
get to

Admissibility and Bayes -20

Theorem

Every admissible procedure is Bayes.

Theorem

Every Bayes procedure is admissible

Written separately because neither is quite right.
But meaning is – sensible procedures need to be Bayes.
Not always an easy restriction to impose – but wise, in my
view, to remember.

Richard Lockhart Statistical Issues in Searches
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Stu↵ I won’t
get to

Famous example – Neyman-Pearson lemma -19

Data X with density f0 or f1.

Decision: observe X guess which density. Hypothesis
testing.

Loss: 1 if wrong, 0 if right.

Risk is
(P0(Reject),P1(Accept))

Neyman Pearson say minimize second component subject
to constraint on first.

Richard Lockhart Statistical Issues in Searches
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Richard
Lockhart

General

Optimality

Exclusion
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Estimating
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Multimodal L

Bayes Power

Separate
hypotheses

Stu↵ I won’t
get to

Implied Priors -18

Langrange multipliers. Minimize

P1(Accept) + �P0(Reject) = � + �↵.

Same as Bayes for prior P(f1 true) = 1/(1 + �).

Then adjust prior (�) to find Bayes procedure which
satisfies constraint.

Notice that �/(1 + �) = P(Ho).

Procedure implies (at least one) prior.

Richard Lockhart Statistical Issues in Searches



Motivation for likelihood-free inference 
& machine learning



OVERVIEW OF PREDICTIONS
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OVERVIEW OF PREDICTIONS

105

The language is Quantum Field Theory1)
Feynman Diagrams 
are used to predict 
high-energy 
interaction among 
fundamental particles

2)

Uses of Multivariate Methods

Complex final state of VBF H → WW → llEmiss
T well-suited for multivariate methods

Used 7 variables:
∆ηll, ∆φll, Mll, ∆ηjj, ∆φjj, Mjj, MT

Compared Neural Networks, Genetic Program-
ming, and Support Vector Regression

q

q

W

W

H
W+

W−

ν

l+

l−

ν̄

Ref. Cuts low-mH Cuts NN GP SVR
120 ee 0.87 1.25 1.72 1.66 1.44
120 eµ 2.30 2.97 3.92 3.60 3.33
120 µµ 1.16 1.71 2.28 2.26 2.08
Combined 2.97 3.91 4.98 4.57 4.26
130 eµ 4.94 6.14 7.55 7.22 6.59

Table 1: Expected significance in sigma after 30 fb−1 for two cut analyses and three multivariate analyses for
different Higgs masses and final state topologies.

March 14, 2006

University of Pennsylvania Seminar

Higgs Searches at the LHC:

Challenges, Prospects, and Developments (page 25)

Kyle Cranmer

Brookhaven National Laboratory
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>100 million sensors
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The language is Quantum Field Theory1)
Feynman Diagrams 
are used to predict 
high-energy 
interaction among 
fundamental particles

2)

The interaction of outgoing particles 
with the detector is simulated.  

3)
e+

e-

mu-

mu+

Finally, we run particle identification algorithms 
on the simulated data as if they were from real 
collisions.

4)

Uses of Multivariate Methods

Complex final state of VBF H → WW → llEmiss
T well-suited for multivariate methods

Used 7 variables:
∆ηll, ∆φll, Mll, ∆ηjj, ∆φjj, Mjj, MT

Compared Neural Networks, Genetic Program-
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Table 1: Expected significance in sigma after 30 fb−1 for two cut analyses and three multivariate analyses for
different Higgs masses and final state topologies.

March 14, 2006

University of Pennsylvania Seminar

Higgs Searches at the LHC:

Challenges, Prospects, and Developments (page 25)
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Brookhaven National Laboratory

>100 million sensors

~10-30 features describe interesting part



D E T E C T O R  S I M U L AT I O N

•Conceptually: Prob(detector response | particles ) 

•Implementation: Monte Carlo integration over micro-physics 

•Consequence: cannot evaluate likelihood for a given event
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D E T E C T O R  S I M U L AT I O N

•Conceptually: Prob(detector response | particles ) 

•Implementation: Monte Carlo integration over micro-physics 

•Consequence: cannot evaluate likelihood for a given event 

•This motivates a new class of algorithms for what is called 
likelihood-free inference, which only require ability to 
generate samples from the simulation in the “forward mode” 
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1 0 ⁸  S E N S O R S   →  1  R E A L - VA L U E D  Q U A N T I T Y

•Most measurements and searches for new particles at the LHC are based on the 
distribution of a single variable or feature 

• choosing a good variable (feature engineering) is a task for a skilled physicist 
and tailored to the goal of measurement or new particle search 

• likelihood p(x|θ) approximated using histograms (univariate density estimation)
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This doesn’t scale if x is high dimensional!



M A C H I N E  L E A R N I N G :  C L A S S I F I E R S

•Common to use machine learning 
classifiers to separate signal (H1) vs. 
background (H0) 

• want a function s: X→ Y that 
maps signal to y=1 and 
background to y=0  

• calculus of variations: find 
function s(x) that minimizes loss:
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L[s] =

Z
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Z
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1
Sometimes there is an additional Poisson term when expected number of signal and background events

is known.
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1
Sometimes there is an additional Poisson term when expected number of signal and background events

is known.
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration
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Sometimes there is an additional Poisson term when expected number of signal and background events

is known.
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S Q U A R E D  L O S S

•What function r(x) minimizes the squared loss? 
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•Euler-Lagrange Equation w/ Lagrange-multiplier 

•imposing the constraint gives            thus 
113

Z
r(x)dx = 1

L[r,�] = F (x, r) + �r(x)

d

dx

✓
�L

�r

0

◆

| {z }
=0

��L

�r

= 0

r(x) = p(x)

�L

�r

= 0 = �� 2p(x)(p(x)� r(x))

r(x) = p� �

2p

� = 0

L[r] = �
Z

p(x)(p(x)� r(x))2| {z }
F (x,r)

dx



S Q U A R E D  L O S S

•What function r(x) minimizes the squared loss? 

• Subject to  

•Euler-Lagrange Equation w/ Lagrange-multiplier 

•imposing the constraint gives            thus 
114

Z
r(x)dx = 1

L[r,�] = F (x, r) + �r(x)

d

dx

✓
�L

�r

0

◆

| {z }
=0

��L

�r

= 0

r(x) = p(x)

�L

�r

= 0 = �� 2p(x)(p(x)� r(x))

r(x) = p� �

2p

� = 0

L[r] = �
Z

p(x)(p(x)� r(x))2| {z }
F (x,r)

dx



A P P R O X I M AT I N G  F R O M  D ATA

•If we have samples from an unknown p(x): 

•We can effectively approximate the true cross-entropy loss: 

•and approximate p(x) even though we can’t evaluate it. 

•In contrast, we can’t use the squared loss if since can’t 
evaluate p(x):
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L[r] = �
Z

p(x) log r(x)| {z }
F (x,r)

dx ⇡ 1

N

NX

i=1

log r(x

i

)

L[r] = �
Z

p(x)(p(x)� r(x))

2

| {z }
F (x,r)

dx ⇡ 1

N

NX

i=1

log(p(x

i

)� r(x

i

))

2

{xi}Ni=1 ⇠ p(x)
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The requirements for inference

The noisy gradient:

1
S

SX

s=1

r⌫ log q(zs;⌫)(log p(x,zs)� log q(zs;⌫)),

where zs ⇠ q(z;⌫)

To compute the noisy gradient of the ELBO we need

Ñ Sampling from q(z)

Ñ Evaluating r⌫ log q(z;⌫)

Ñ Evaluating log p(x,z) and log q(z)

There is no model specific work: black box criteria are satisfied

Black Box Variational Inference (BBVI)
Black box variational inference

REUSABLE 
VARIATIONAL 

FAMILIES

BLACK BOX 
VARIATIONAL 
INFERENCE

p.ˇ; z j x/ANY MODEL

REUSABLE 
VARIATIONAL 

FAMILIES
REUSABLE 

VARIATIONAL 
FAMILIES

MASSIVE
DATA

� Sample from q.�/
� Form noisy gradients without model-specific computation

� Use stochastic optimization

Variational Inference:
Foundations and Modern Methods

p.z j x/

KL.q.zI ⌫⇤/ jj p.z j x//

⌫init

⌫⇤q.zI ⌫/

VI approximates difficult quantities from complex models.

With stochastic optimization we can

Ñ scale up VI to massive data

Ñ enable VI on a wide class of difficult models

Ñ enable VI with elaborate and flexible families of approximations

need likelihood

Variational Inference:
Foundations and Modern Methods

David Blei, Rajesh Ranganath, Shakir Mohamed

NIPS 2016 Tutorial · December 5, 2016



How do we create complicated probability 
densities p(x) that are tractable  

and  

are normalized such that ∫p(x) dx = 1 ?



B I J E C T I O N S

•If I have a bijection: 

•and an arbitrary tractable density on Z: 

•Then density on X follows from a simple change of variables 

•Now construct neural networks fϕ that are bijections & optimize 
“cross entropy” loss 

•If it is a bijection, I can generate samples of x from inverse 
transformation f-1(z)

118

f : X ! Z

p(z)

K.C. & G. Louppe: http://beta.briefideas.org/ideas/5c2f74aedbf3618ca180382e393c7617 

http://beta.briefideas.org/ideas/5c2f74aedbf3618ca180382e393c7617
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Approximations using Change-of-variables

Exploit the rule for change of variables for random variables:

Ñ Begin with an initial distribution q0(z0|x).
Ñ Apply a sequence of K invertible functions fk.

z0

x

z1

…

zK

t = 0 t = 1 … t = T

q(z�) = q(z)

����det
�f

�z

����
�1

log qK(zK) = log q0(z0) �
K�

k=1

log det

����
�fk

�zk

����

zK = fK � . . . � f2 � f1(z0)
Sampling and Entropy

Distribution flows through a sequence of invertible transforms

[Rezende and Mohamed, 2015]

Choice of Transformation Function

L =Eq0(z0)[log p(x,zK)]�Eq0(z0)[log q0(z0)]�Eq0(z0)

ñ KX

k=1

log det

����
@ fk
@ zk

����

ô

Ñ Begin with a fully-factorised Gaussian and improve by change of variables.
Ñ Triangular Jacobians allow for computational efficiency.

zk

h

+

zk+1

zk = zk�1 + uh(w�zk�1 + b)

Planar Flow

zk

t

concat

z1:d zd+1:D

+

y1:d

s ⦿

yd+1:D

zk+1

y1:d = zk�1,1:d

yd+1:D = t(zk�1,1:d) + zd+1:D � exp(s(zk�1,1:d))

Real NVP

zk z<k

har

μ σ

- ÷

zk+1

zk =
zk�1 � µk(z<k, x)

�k(z<k, x)

Inverse AR Flow

[Rezende and Mohamed, 2016; Dinh et al., 2016; Kingma et al., 2016]

Linear time computation of the determinant and its gradient.
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K.C. & G. Louppe: http://beta.briefideas.org/ideas/5c2f74aedbf3618ca180382e393c7617 

http://beta.briefideas.org/ideas/5c2f74aedbf3618ca180382e393c7617
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T W O  A P P R O A C H E S

• Approximate Bayesian 
Computation (ABC) 

• Probabilistic Programming 

• Adversarial Variational 
Optimization (AVO)

122

Use simulator  
(much more efficiently)

Learn simulator  
(with deep learning)

• Generative Adversarial Networks (GANs), 
Variational Auto-Encoders (VAE) 

• Likelihood ratio from classifiers (CARL) 

• Autogregressive models,  
Normalizing Flows

[image credit: A.P. Goucher]

https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/


L E C T U R E  3
•Note: This lecture was largely on the board 

•Generative Adversarial Networks 

• Loss functions → Adversarial minimax games 

• comparison to bijective approaches 

• eg. can’t use for inference 

•The “Data Manifold” (on the board) 

• auto-encoders (on the board) 

•Adversarial Variational Optimization 

•“Learning to pivot with Adversarial Neural Networks:
123



Adversarial Training 
(not just for GANs)
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Catch me if you can

Leo is G Tom is D

5 / 13

Objective

•
Consider the value function

V (D,G ) = E
x⇠p

data

[log(D(x))] + E
z⇠p

noise

[log(1� D(G (z)))];

•
We want to

For fixed G , find D which maximizes V (D,G ),

For fixed D, find G which minimizes V (D,G );

•
In other words, we are looking for the saddle point

(D

⇤,G ⇤
) = max

D
min

G
V (D,G ).

6 / 13

Generative adversarial nets (Goodfellow et al., 2014)

Do not assume any form, but use a neural network to produce

similar samples.

•
Two-player game:

a discriminator D,

a generator G ;

•
D is a classifier X 7! {0, 1} that tries to distinguish between

a sample from the data distribution (D(x) = 1, for x ⇠ p

data

),

and a sample from the model distribution (D(G (z)) = 0, for

z ⇠ p

noise

);

•
G is a generator Z 7! X trained to produce samples G (z) (for

z ⇠ p

noise

) that are di�cult for D to distinguish from data.

4 / 13

Goodfellow, et al arXiv:1406.2661 
slide Gilles Louppe



N E W !  AV O

•Similar to GAN setup, but 
instead of using a neural network 
as the generator, use the actual 
simulation (eg. Pythia, GEANT)
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Adversarial Variational Optimization of Non-Di↵erentiable Simulators

Gilles Louppe1 and Kyle Cranmer1

1New York University

Complex computer simulators are increasingly used across fields of science as generative models
tying parameters of an underlying theory to experimental observations. Inference in this setup is
often di�cult, as simulators rarely admit a tractable density or likelihood function. We introduce
Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-
di↵erentiable generative model incorporating ideas from empirical Bayes and variational inference.
We adapt the training procedure of generative adversarial networks by replacing the di↵erentiable
generative network with a domain-specific simulator. We solve the resulting non-di↵erentiable mini-
max problem by minimizing variational upper bounds of the two adversarial objectives. E↵ectively,
the procedure results in learning a proposal distribution over simulator parameters, such that the
corresponding marginal distribution of the generated data matches the observations. We present
results of the method with simulators producing both discrete and continuous data.

I. INTRODUCTION

In many fields of science such as particle physics, epi-
demiology, and population genetics, computer simulators
are used to describe complex data generation processes.
These simulators relate observations x to the parame-
ters ✓ of an underlying theory or mechanistic model.
In most cases, these simulators are specified as proce-
dural implementations of forward, stochastic processes
involving latent variables z. Rarely do these simulators
admit a tractable density (or likelihood) p(x|✓). The
prevalence and significance of this problem has motivated
an active research e↵ort in so-called likelihood-free infer-

ence algorithms such as Approximate Bayesian Compu-
tation (ABC) and density estimation-by-comparison al-
gorithms [1–6].

In parallel, with the introduction of variational auto-
encoders [7] and generative adversarial networks [8],
there has been a vibrant research program around im-
plicit generative models based on neural networks [9].
While some of these models also do not admit a tractable
density, they are all di↵erentiable by construction. In ad-
dition, generative models based on neural networks are
highly parametrized and the model parameters have no
obvious interpretation. In contrast, scientific simulators
can be thought of as highly regularized generative mod-
els as they typically have relatively few parameters and
they are endowed with some level of interpretation. In
this setting, inference on the model parameters ✓ is often
of more interest than the latent variables z.

In this note, we develop two likelihood-free inference al-
gorithms for non-di↵erentiable, implicit generative mod-
els. The first allows us to perform empirical Bayes
through variational inference, and the second provides
a point estimator of the parameters ✓. We adapt the
adversarial training procedure of generative adversarial
networks [8] by replacing the implicit generative network
with a domain-based scientific simulator, and solve the
resulting non-di↵erentiable minimax problem by mini-
mizing variational upper bounds [10, 11] of the adver-
sarial objectives. The objective of both algorithms is to

match marginal distribution of the generated data to the
empirical distribution of the observations.

II. PROBLEM STATEMENT

We consider a family of parametrized densities p(x|✓)
defined implicitly through the simulation of a stochas-
tic generative process, where x 2 Rd is the data and ✓
are the parameters of interest. The simulation may in-
volve some complicated latent process where z 2 Z is a
latent variable providing an external source of random-
ness. Unlike implicit generative models defined by neural
networks, we do not assume z to be a fixed-size vector
with a simple density. Instead, the dimension of z and
the nature of its components (uniform, normal, discrete,
continuous, etc.) are inherited from the control flow of
the simulation code and may depend on ✓ in some in-
tricate way. Moreover, the dimension of z may be much
larger than the dimension of x.
We assume that the stochastic generative process that

defines p(x|✓) is specified through a non-di↵erentiable
deterministic function g(·;✓) : Z ! Rd. Operationally,

x ⇠ p(x|✓) ⌘ z ⇠ p(z|✓),x = g(z;✓) (1)

such that the density p(x|✓) can be written as

p(x|✓) =
Z

{z:g(z;✓)=x}
p(z|✓)µ(dz), (2)

where µ is a probability measure.
Given some observed data {xi|i = 1, . . . , N} drawn

from the (unknown) true distribution pr(x), our goal is to
estimate the parameters ✓⇤ that minimize the divergence
between pr(x) and the implicit model p(x|✓). That is,

✓⇤ = argmin
✓

⇢(pr(x), p(x|✓)), (3)

where ⇢ is some distance or divergence.

G. Louppe & K.C. arXiv:1707.07113

Catch me if you can

Leo is G Tom is D

5 / 13

•Continue to use a neural network 
discriminator / critic. 

•Difficulty: the simulator isn’t 
differentiable, but there’s a trick! 

•Allows us to efficiently fit /  
tune simulation with stochastic 
gradient techniques!

http://arxiv.org/abs/1707.07113
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Variational Optimization

min

✓
f(✓)  E✓⇠q(✓| )[f(✓)] = U( )

r U( ) = E✓⇠q(✓| )[f(✓)r log q(✓| )]

Piecewise constant � sin(x)
x

q(✓| = (µ,�)) = N (µ, e�)

25 / 38



A D V E R S A R I A L  VA R I AT I O N A L  O P T I M I Z AT I O N

•Like a GAN, but generative model is non-differentiable 
and the parameters of simulator have meaning

128

29 / 38

Adversarial Variational Optimization

• Replace the generative network with a non-di↵erentiable
forward simulator g(z;✓).

• With VO, optimize upper bounds of the adversarial objectives:

Ud = E✓⇠q(✓| )[Ld] (1)

Ug = E✓⇠q(✓| )[Lg] (2)

respectively over � and  .

Credits: 1707.07113

26 / 38Operationally, we get the marginal model:

x ⇠ q(x| ) ⌘ ✓ ⇠ q(✓| ), z ⇠ p(z|✓),x = g(z;✓)

27 / 38

•We use Wasserstein distance, 
as in WGAN

•Effectively sampling from 
marginal model

G. Louppe & K.C. arXiv:1707.07113

http://arxiv.org/abs/1707.07113


L E A R N I N G  T O  P I V O T  W I T H  A D V E R S A R I A L  N E T W O R K S

• Typically classifier f(x) trained to 
minimize loss Lf.  

• want classifier output to be 
insensitive to systematics 
(nuisance parameter ν) 

• introduce an adversary r that 
tries to predict ν based on f.  

• setup as a minimax game:

129

2

Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r

models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f

forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓
f

) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓

f

) on the nuisance Z
is preferred, which can then be stated as requiring

p(f(X; ✓
f

) = s|z, y) = p(f(X; ✓
f

) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p

✓r (z|f(X; ✓
f

) = s) of pa-
rameters ✓

r

and associated loss L
r

(✓
f

, ✓
r

). This model
takes as input realizations f(X; ✓

f

) and produces as out-
put a function modeling the posterior probability den-

sity p
✓r (z|f(X; ✓

f

) = s). Intuitively, if p(f(X; ✓
f

) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓

f

) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p

✓r can be represented
e.g. as a probabilistic classifier R 7! R|Z| whose jth out-
put (for j = 1, . . . , |Z|) is the estimated probability mass
p
✓r (zj |f(X; ✓

f

) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓

f

) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �

j

depend on f(X, ✓
f

) and ✓
r

. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p

✓r (z|f(X; ✓
f

) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p

✓r (z|f(X; ✓
f

) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The jth output corresponds to the estimated value of
the corresponding parameter �

j

of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p
✓r (z|f(X; ✓

f

) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓
f

, ✓
r

) = L
f

(✓
f

)� L
r

(✓
f

, ✓
r

) (3)

that we optimize by finding the minimax solution

✓̂
f

, ✓̂
r

= argmin
✓f

max
✓r

E(✓
f

, ✓
r

). (4)

4

• ✓̂
f

maximizes the conditional entropy
H(Z|f(X; ✓

f

)), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓

f

)) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓

f

) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂

f

) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve L

f

(✓
f

) � H(Z|f(X; ✓
f

)) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term L

r

can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < L
f

(✓
f

)�H(Z|f(X; ✓
f

)) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E
�

(✓
f

, ✓
r

) = L
f

(✓
f

)� �L
r

(✓
f

, ✓
r

), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓

f

, ✓
r

minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓

f

) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓

f

) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓

f

) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {x
i

, y
i

, z
i

}N
i=1, from which we

train a neural network classifier f minimizing L
f

(✓
f

)
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓

f

) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓

f

) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓

f

) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses L

f

, L
r

and L
f

��L
r

are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective L

f

� �L
r

is minimized
by making the classifier less accurate, hence the corre-
sponding increase of L

f

, but which results in a classifier

Objective

•
Consider the value function

V (D,G ) = E
x⇠p

data

[log(D(x))] + E
z⇠p

noise

[log(1� D(G (z)))];

•
We want to

For fixed G , find D which maximizes V (D,G ),

For fixed D, find G which minimizes V (D,G );

•
In other words, we are looking for the saddle point

(D

⇤,G ⇤
) = max

D
min

G
V (D,G ).

6 / 13

4

• ✓̂
f

maximizes the conditional entropy
H(Z|f(X; ✓

f

)), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓

f

)) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓

f

) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂

f

) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve L

f

(✓
f

) � H(Z|f(X; ✓
f

)) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term L

r

can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < L
f

(✓
f

)�H(Z|f(X; ✓
f

)) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as
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r

) = L
f

(✓
f

)� �L
r

(✓
f

, ✓
r

), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓

f

, ✓
r

minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓

f

) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓

f

) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓

f

) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {x
i

, y
i

, z
i

}N
i=1, from which we

train a neural network classifier f minimizing L
f

(✓
f

)
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓

f

) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓

f

) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓

f

) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses L

f

, L
r

and L
f

��L
r

are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective L

f

� �L
r

is minimized
by making the classifier less accurate, hence the corre-
sponding increase of L

f

, but which results in a classifier
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L E A R N I N G  T O  P I V O T  W I T H  A D V E R S A R I A L  N E T W O R K S

• Typically classifier f(x) trained to 
minimize loss Lf.  

• want classifier output to be 
insensitive to systematics 
(nuisance parameter ν) 

• introduce an adversary r that 
tries to predict ν based on f.  

• setup as a minimax game:
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2

Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r

models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f

forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓
f

) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓

f

) on the nuisance Z
is preferred, which can then be stated as requiring

p(f(X; ✓
f

) = s|z, y) = p(f(X; ✓
f

) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p

✓r (z|f(X; ✓
f

) = s) of pa-
rameters ✓

r

and associated loss L
r

(✓
f

, ✓
r

). This model
takes as input realizations f(X; ✓

f

) and produces as out-
put a function modeling the posterior probability den-

sity p
✓r (z|f(X; ✓

f

) = s). Intuitively, if p(f(X; ✓
f

) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓

f

) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p

✓r can be represented
e.g. as a probabilistic classifier R 7! R|Z| whose jth out-
put (for j = 1, . . . , |Z|) is the estimated probability mass
p
✓r (zj |f(X; ✓

f

) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓

f

) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �

j

depend on f(X, ✓
f

) and ✓
r

. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p

✓r (z|f(X; ✓
f

) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p

✓r (z|f(X; ✓
f

) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The jth output corresponds to the estimated value of
the corresponding parameter �

j

of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p
✓r (z|f(X; ✓

f

) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓
f

, ✓
r

) = L
f

(✓
f

)� L
r

(✓
f

, ✓
r

) (3)

that we optimize by finding the minimax solution

✓̂
f

, ✓̂
r

= argmin
✓f

max
✓r

E(✓
f

, ✓
r

). (4)

4

• ✓̂
f

maximizes the conditional entropy
H(Z|f(X; ✓

f

)), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓

f

)) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓

f

) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂

f

) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve L

f

(✓
f

) � H(Z|f(X; ✓
f

)) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term L

r

can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < L
f

(✓
f

)�H(Z|f(X; ✓
f

)) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E
�

(✓
f

, ✓
r

) = L
f

(✓
f

)� �L
r

(✓
f

, ✓
r

), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓

f

, ✓
r

minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓

f

) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓

f

) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓

f

) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {x
i

, y
i

, z
i

}N
i=1, from which we

train a neural network classifier f minimizing L
f

(✓
f

)
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓

f

) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓

f

) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓

f

) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses L

f

, L
r

and L
f

��L
r

are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective L

f

� �L
r

is minimized
by making the classifier less accurate, hence the corre-
sponding increase of L

f

, but which results in a classifier

Objective

•
Consider the value function

V (D,G ) = E
x⇠p

data

[log(D(x))] + E
z⇠p

noise

[log(1� D(G (z)))];

•
We want to

For fixed G , find D which maximizes V (D,G ),

For fixed D, find G which minimizes V (D,G );

•
In other words, we are looking for the saddle point

(D

⇤,G ⇤
) = max

D
min

G
V (D,G ).
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can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
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remains to be proven.
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the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.
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without considering its adversary r. The network ar-
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respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓
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tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
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ations with exponential activations to ensure positivity,
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the softmax function to ensure positivity and normaliza-
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solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
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remains to be proven.
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adversary r implemented as a mixture density network
modeling Z|f(X; ✓

f

) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓

f

) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses L

f

, L
r

and L
f

��L
r

are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective L

f

� �L
r

is minimized
by making the classifier less accurate, hence the corre-
sponding increase of L

f

, but which results in a classifier
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•the γ₁, γ₂, … are the mean, 
standard deviation, and amplitude 
for the Gaussian Mixture Model. 

• the neural network takes in f 
and predicts γ₁, γ₂, …
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Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r

models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f

forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓
f

) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓

f

) on the nuisance Z
is preferred, which can then be stated as requiring

p(f(X; ✓
f

) = s|z, y) = p(f(X; ✓
f

) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p

✓r (z|f(X; ✓
f

) = s) of pa-
rameters ✓

r

and associated loss L
r

(✓
f

, ✓
r

). This model
takes as input realizations f(X; ✓

f

) and produces as out-
put a function modeling the posterior probability den-

sity p
✓r (z|f(X; ✓

f

) = s). Intuitively, if p(f(X; ✓
f

) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓

f

) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p

✓r can be represented
e.g. as a probabilistic classifier R 7! R|Z| whose jth out-
put (for j = 1, . . . , |Z|) is the estimated probability mass
p
✓r (zj |f(X; ✓

f

) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓

f

) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �

j

depend on f(X, ✓
f

) and ✓
r

. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p

✓r (z|f(X; ✓
f

) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p

✓r (z|f(X; ✓
f

) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The jth output corresponds to the estimated value of
the corresponding parameter �

j

of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p
✓r (z|f(X; ✓

f

) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓
f

, ✓
r

) = L
f

(✓
f

)� L
r

(✓
f

, ✓
r

) (3)

that we optimize by finding the minimax solution

✓̂
f

, ✓̂
r

= argmin
✓f

max
✓r

E(✓
f

, ✓
r

). (4)

p(z|f)

f(x)



A N  E X A M P L E

•Technique allows us to tune λ, the tradeoff between 
classification power and robustness to systematic uncertainty
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An example: 
background: 1000 QCD jets 
signal: 100 boosted W’s 

Train W vs. QCD classifier 

Pileup as source of 
uncertainty 

Simple cut-and-count 
analysis with background 
uncertainty. 

standard 
training

optimal tradeoff of classification vs. & robustness

G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046
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FIG. 11. Profile of the paramterized NN responses
to background versus jet mass, where the parameterized
network was evaluated at di↵erent Z0 mass hypotheses.
Top shows the response of the adversarially-trained clas-
sifier, which minimizes correlation with jet mass; bottom
shows the response of a network trained in the traditional
manner, to optimize classification accuracy.

able of interest, the jet mass. This allows the classi-
fier to enhance signal to noise ratio while minimiz-
ing the tendency of the background distribution to
morph into a shape which is degenerate with the ob-
servable signal. When the background cannot be re-
liably predicted a priori, as is often the case, it is im-
portant to be able to constrain its rate in sidebands
surrounding the signal region. Therefore, avoiding
such degeneracy is critical to performing successful
measurements.

We note that, from Fig. 8, it is clear that ap-
plying su�ciently tight cuts to the adversarial clas-
sifier causes significant background morphing, par-
ticularly when compared to the ⌧

21

-based discrimi-
nants. However, the solid lines of Fig. 9 illustrate
the case where the background rate is uncertain
and hence benefits from sideband constraints. We
see that the optimal significance is realized for the
adversarial classifier at a relatively high signal e�-
ciency of roughly 90%, where the background mor-
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FIG. 12. The AUC metric (Area Under the Curve) for
NNs parameterized in mZ0 and tested at several values
(both traditional and adversarial training techniques),
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FIG. 13. Discovery significance for a hypothetical sig-
nal after optimizing thresholds on the output of networks
parameterized in mZ0 trained with an adversarial or tra-
ditional approaches, compared to thresholds on ⌧21, ⌧

0
21

and ⌧ 00
21 or to placing no threshold. Significance is eval-

uated for the case of 50% background uncertainty.

phing is quite limited (Fig. 7). Hence, the adversar-
ial classifier achieves its goal of optimizing the trade-
o↵ between correlation and discrimination power.

We also note that the decorrelation could poten-

9

D E C O R R E L AT E D  TA G G E R S

•Adversarial approach of “Learning 
to Pivot” can also be used to train 
a classifier that is “decorrelated” 
to some other variable.  

• want jet taggers that are 
decorrelated with jet invariant 
mass 

• so that analysis can still search 
for a bump using jet invariant 
mass 

• avoids sculpting background
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K.C, J. Pavez, and G. Louppe, arXiv:1506.02169 
P. Baldi, K.C, T. Faucett, P. Sadowski, D. Whiteson  arXiv:1601.07913 

G. Louppe, M. Kagan, K.C, arXiv:1611.01046 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48 5. Deep Learning for Continuum Suppression

Figure 5.13.: COD signal distribution of 4z with an Adversarial Network’s classifier out-
put. For details of this representation method see Figure 5.10. The classifier
output has significantly fewer correlations to the signal distribution of 4z
than DNN (E+DL+V) in Figure 5.12.

Figure 5.14.: ROC curves of DNN (E+DL) and DNN (E+DL+V) from Section 5.4 and
an Adversarial Network AN trained with the same topology in the classifier
part.

48 5. Deep Learning for Continuum Suppression

Figure 5.13.: COD signal distribution of 4z with an Adversarial Network’s classifier out-
put. For details of this representation method see Figure 5.10. The classifier
output has significantly fewer correlations to the signal distribution of 4z
than DNN (E+DL+V) in Figure 5.12.

Figure 5.14.: ROC curves of DNN (E+DL) and DNN (E+DL+V) from Section 5.4 and
an Adversarial Network AN trained with the same topology in the classifier
part.

46 5. Deep Learning for Continuum Suppression

Figure 5.11.: COD signal distribution of 4z with the classifier DNN (E+DL) from Sec-
tion 5.4. For details of this representation method see Figure 5.10. The
classifier output has close to none correlations to 4z considering the offset
shown in Figure 5.10.

Figure 5.12.: COD signal distribution of 4z with the classifier DNN (E+DL+V) from
Section 5.4. For details of this representation method see Figure 5.10. The
classifier output has significant correlations with the signal distribution of 4z
in contrast to that in Figure 5.11.

5.6. Adversarial Network 45

Figure 5.9.: Schematics of 4z, which is the vertex difference of the two B-mesons in the
boost direction.

Figure 5.10.: Classifier Output Dependent (COD) normalized signal distribution of 4z
with a random classifier. The distribution without applying a classifier cut is
drawn as a black line, while the different quantile cuts are drawn as deviations
from the black line in their respective colors. Significant deviations are drawn
in red, while not important deviations from high quantile cuts fade to white.
The value at the top represents the flatness of the distribution. It is clear,
that the random classifier has no correlation at all to 4z.

Dennis Weyland Master’s thesis ETP-KA/2017-30 
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L E C T U R E  4
•Extending to include systematics: 

• statistical modeling with nuisance parameters 

• RooFit ↔ TensorFlow, automatic differentiation 

• Profile Likelihood Ratio & concept of a “pivot” 

•Parametrized learning 

• for classification 

• high dimensional reweighting 

•Other Likelihood Free techniques 

• ABC & probabilistic programming 

•Gaussian Processes 

• physics-aware kernels 

•QCD-aware neural networks
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Building a Statistical Model 
Systematics & Nuisance Parameters



I will represent PDFs graphically as below (directed acyclic graph) 
‣ eg. a Gaussian                  is parametrized by                     
‣ every node is a real-valued function of the nodes below 

VISUALIZING PROBABILITY MODELS
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G(x|µ, ⇥) (µ, ⇥)

G

x µ σ



ROOFIT: A DATA MODELING TOOLKIT

139
Wouter Verkerke, UCSB 

Building realistic models

– Composition (‘plug & play’)

– Convolution

g(x;m,s)m(y;a0,a1)

=

⊗ =

g(x,y;a0,a1,s)
Possible in any PDF

No explicit support in PDF code needed

Wouter Verkerke, UCSB 

Building realistic models

• Complex PDFs be can be trivially composed using operator classes

– Addition

– Multiplication

+ =

* =

Wouter Verkerke, UCSB 

Parameters of composite PDF objects

RooAddPdf

sum

RooGaussian

gauss1
RooGaussian

gauss2
RooArgusBG

argus
RooRealVar

g1frac
RooRealVar

g2frac

RooRealVar

x
RooRealVar

sigma
RooRealVar

mean1

RooRealVar

mean2
RooRealVar

argpar
RooRealVar

cutoff

RooArgSet *paramList = sum.getParameters(data) ;

paramList->Print("v") ;

RooArgSet::parameters:

1) RooRealVar::argpar : -1.00000 C

2) RooRealVar::cutoff :  9.0000 C

3) RooRealVar::g1frac :  0.50000 C

4) RooRealVar::g2frac :  0.10000 C

5) RooRealVar::mean1  :  2.0000 C

6) RooRealVar::mean2  :  3.0000 C

7) RooRealVar::sigma  :  1.0000 C

The parameters of sum
are the combined 
parameters
of its components

RooFit is a major tool developed at BaBar for data modeling. 
RooStats provides higher-level statistical tools based on these PDFs.



MARKED POISSON PROCESS

Channel: a subset of the data defined by some selection 
requirements.   
‣ eg. all events with 4 electrons with energy > 10 GeV 
‣ n: number of events observed in the channel 
‣ ν: number of events expected in the channel

Discriminating variable: a property of those events that can be 
measured and which helps discriminate the signal from background 
‣ eg. the invariant mass of two particles  
‣ f(x): the p.d.f. of the discriminating variable x

Marked Poisson Process / Extended Likelihood:

140

f(D|⌫) = Pois(n|⌫)
nY

e=1

f(xe)

D = {x1, . . . , xn}



MIXTURE MODEL

Sample: a sample of simulated events corresponding to particular 
type interaction that populates the channel. 
‣ statisticians call this a mixture model

141

⌫
tot

=
X

s2samples

⌫sf(x) =
1

⌫

tot

X

s2samples

⌫sfs(x) ,

10 ATLAS collaboration: Search for the Standard Model Higgs Boson

Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → ℓℓqq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from ℓℓℓℓ and ℓℓνν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → ℓℓqq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the mℓℓ selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → ℓℓνν search

The H → ZZ → ℓℓνν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → ℓℓνν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
ℓνℓν decays can lead to final states that are very similar
to H → ZZ → ℓℓνν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → ℓνℓν de-
cays relative to that from H → ZZ → ℓℓνν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
ZZ → ℓℓνν search in the electron channel before vetoing events
with low Emiss

T . The expected yield for a Higgs boson with
mH = 400 GeV is also shown.

is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l
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PARAMETRIZING THE MODEL

Parameters of interest (µ): parameters of the theory that modify the 
rates and shapes of the distributions, eg. 
‣ the mass of a hypothesized particle 

‣ the “signal strength” μ=0 no signal, μ=1 predicted signal rate 

Nuisance parameters (θ or αp): associated to uncertainty in: 
‣ response of the detector (calibration) 
‣ phenomenological model of interaction in non-perturbative regime 

Lead to a parametrized model:  

142

⌫ ! ⌫(↵), f(x) ! f(x|↵)

↵ = (µ,✓)

f(D|↵) = Pois(n|⌫(↵))

nY

e=1

f(xe|↵)



INCORPORATING SYSTEMATIC EFFECTS

Z+jets top Diboson ...

syst 1

syst 2

...

Tabulate effect of individual variations of sources of systematic uncertainty 
‣ typically one at a time evaluated at nominal and “± 1 σ” 
‣ use some form of interpolation to parametrize pth variation in terms of 

nuisance parameter αp 
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10 ATLAS collaboration: Search for the Standard Model Higgs Boson

Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → ℓℓqq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from ℓℓℓℓ and ℓℓνν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → ℓℓqq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the mℓℓ selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → ℓℓνν search

The H → ZZ → ℓℓνν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → ℓℓνν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
ℓνℓν decays can lead to final states that are very similar
to H → ZZ → ℓℓνν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → ℓνℓν de-
cays relative to that from H → ZZ → ℓℓνν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
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is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l

f(D|↵) = Pois(n|⌫(↵))

nY

e=1

f(xe|↵)



INCORPORATING SYSTEMATIC EFFECTS

Tabulate effect of individual variations of sources of systematic uncertainty 
‣ typically one at a time evaluated at nominal and “± 1 σ” 
‣ use some form of interpolation to parametrize pth variation in terms of 

nuisance parameter αp 
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10 ATLAS collaboration: Search for the Standard Model Higgs Boson

Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → ℓℓqq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from ℓℓℓℓ and ℓℓνν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → ℓℓqq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the mℓℓ selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → ℓℓνν search

The H → ZZ → ℓℓνν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → ℓℓνν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
ℓνℓν decays can lead to final states that are very similar
to H → ZZ → ℓℓνν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → ℓνℓν de-
cays relative to that from H → ZZ → ℓℓνν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l
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Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → ℓℓqq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from ℓℓℓℓ and ℓℓνν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → ℓℓqq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the mℓℓ selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → ℓℓνν search

The H → ZZ → ℓℓνν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → ℓℓνν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
ℓνℓν decays can lead to final states that are very similar
to H → ZZ → ℓℓνν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → ℓνℓν de-
cays relative to that from H → ZZ → ℓℓνν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l
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Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → ℓℓqq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from ℓℓℓℓ and ℓℓνν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → ℓℓqq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the mℓℓ selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → ℓℓνν search

The H → ZZ → ℓℓνν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → ℓℓνν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
ℓνℓν decays can lead to final states that are very similar
to H → ZZ → ℓℓνν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → ℓνℓν de-
cays relative to that from H → ZZ → ℓℓνν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l
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10 ATLAS collaboration: Search for the Standard Model Higgs Boson

Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → ℓℓqq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from ℓℓℓℓ and ℓℓνν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → ℓℓqq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the mℓℓ selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → ℓℓνν search

The H → ZZ → ℓℓνν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → ℓℓνν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
ℓνℓν decays can lead to final states that are very similar
to H → ZZ → ℓℓνν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → ℓνℓν de-
cays relative to that from H → ZZ → ℓℓνν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
ZZ → ℓℓνν search in the electron channel before vetoing events
with low Emiss

T . The expected yield for a Higgs boson with
mH = 400 GeV is also shown.

is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l

After parametrizing each 
component of the mixture model, 
the pdf for a single channel might 
look like this



SIMULTANEOUS MULTI-CHANNEL MODEL

Simultaneous Multi-Channel Model: Several disjoint regions of the 
data are modeled simultaneously.  Identification of common 
parameters across many channels requires coordination between 
groups such that meaning of the parameters are really the same. 

where 

Control Regions: Some channels are not populated by signal 
processes, but are used to constrain the nuisance parameters 
‣ attempt to describe systematics in a statistical language 
‣ Prototypical Example: “on/off” problem with unknown  
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Dsim = {D1, . . . ,Dc
max

}

fsim(Dsim|↵) =

Y

c2channels

"
Pois(nc|⌫c(↵))

ncY

e=1

fc(xce|↵)

#

⌫b

f(n,m|µ, ⌫b) = Pois(n|µ+ ⌫b)| {z }
signal region

·Pois(m|⌧⌫b)| {z }
control region



CONSTRAINT TERMS

Often detailed statistical model for auxiliary measurements that 
measure certain nuisance parameters are not available.  
‣ one typically has MLE for αp, denoted ap and standard error 

Constraint Terms: are idealized pdfs for the MLE. 

‣ common choices are Gaussian, Poisson, and log-normal  
‣ New: careful to write constraint term a frequentist way 
‣ Previously:                                            with uniform η 

Simultaneous Multi-Channel Model with constraints:  

where
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fp(ap|↵p) for p 2 S

for p 2 SDsim = {D1, . . . ,Dc
max

} G = {ap},

f
tot

(D
sim

,G|↵) =

Y

c2channels

"
Pois(nc|⌫c(↵))

ncY

e=1

fc(xce|↵)

#
·
Y

p2S
fp(ap|↵p)

⇡(↵p|ap) = fp(ap|↵p)⌘(↵p)



CONCEPTUAL BUILDING BLOCKS

148

Probability models can be constructed to simultaneously describe several channels, that is several
disjoint regions of the data defined by the associated selection criteria. I will use e as the index over
events and c as the index over channels. Thus, the number of events in the cth channel is nc and the
value of the eth event in the cth channel is xce. In this context, the data is a collection of smaller datasets:
Dsim = {D

1

, . . . , Dc
max

} = {{xc=1,e=1

. . . xc=1,e=n
c

}, . . . {xc=c
max

,e=1

. . . xc=c
max

,e=n
c

max

}}. In RooFit
the index c is referred to as a RooCategory and it is used to inside the dataset to differentiate events as-
sociated to different channels or categories. The class RooSimultaneous associates the dataset Dc with
the corresponding marked Poisson model. The key point here is that there are now multiple Poisson
terms. Thus we can write the combined (or simultaneous) model

fsim(Dsim|↵) =

Y

c2channels

"
Pois(nc|⌫(↵))

n
cY

e=1

f(xce|↵)

#
, (2)

remembering that the symbol product over channels has implications for the structure of the dataset.

Experiment

Ensemble

Channel
c ∈ channels

fc (x | α)

Event
e ∈ events
{1…nc}

Observable(s)
xec

Sample
s ∈ samples

Distribution
fsc (x | α)

Expected Number of Events
νs 

Constraint Term
fp(ap | αp )

p ∈ parameters with constraints

global observable
a

Parameter
α, θ, μ

Shape Variation
fscp(x | αp = X )

A

B

C

Legend:
A "has many" Bs. 
B "has a" C.
Dashed is optional.

Fig. 1: A schematic diagram of the logical structure of a typical particle physics probability model and dataset
structures.

2.2 Auxiliary measurements
Auxiliary measurements or control regions can be used to estimate or reduce the effect of systematic
uncertainties. The signal region and control region are not fundamentally different. In the language that
we are using here, they are just two different channels.

A common example is a simple counting experiment with an uncertain background. In the fre-
quentist way of thinking, the true, unknown background in the signal region is a nuisance parameter,
which I will denote ⌫B .5 If we call the true, unknown signal rate ⌫S and the number of events in the
signal region n

SR

then we can write the model Pois(n
SR

|⌫S + ⌫B). As long as ⌫B is a free parameter,
5Note, you can think of a counting experiment in the context of Eq. 1 with f(x) = 1, thus it reduces to just the Poisson

term.

5

Constrained Unconstrained
Normalization Variation OverallSys (⌘cs) NormFactor (�p)
Coherent Shape Variation HistoSys �csb –
Bin-by-bin variation ShapeSys & StatError �cb ShapeFactor �csb

Table 1: Conceptual building blocks for constructing more complicated PDFs: parameters.

2 The Likelihood Template

2.1 Index Convention

In what follows we use the term channel as a region of the data defined by the corresponding
event selection, as opposed to a particular scattering process. The channels are required to
have disjoint event selection requirements. We use the term sample for a set of scattering
processes that can be added together incoherently; thus scattering processes that interfere
quantum mechanically must be considered in the same sample.

We will use the following mnemonic index conventions:

• e 2 events

• b 2 bins

• c 2 channels

• s 2 samples

• p 2 parameters

We define the following subsets of parameters N = {�p} the unconstrained normalization
factors (ie. NormFactor), S = {↵p} the parameters associated to systematic that have ex-
ternal constraints (ie. OverallSys and HistoSys), � = {�csb} (the bin-by-bin uncertainties
with constraints (statistical errors, ShapeSys but not those associated to an unconstrained
ShapeFactor). We also use greek symbols for parameters of the model and roman symbols
for observable quantities with a frequentist notion of probability.

2.2 The Template

The parametrized probability density function constructed by the HistFactory is of a con-
crete form, but su�ciently flexible to describe many analyses based on template histograms.
In general, the HistFactory produces probability density functions of the form

P(nc, xe, ap |�p,↵p, �b) =
Y

c2channels

"
Pois(nc|⌫c)

ncY

e=1

fc(xe|↵)

#
·G(L

0

|�,�L) ·
Y

p2S+�

fp(ap|↵p) (5)

where fp(ap|↵p) is a constraint term describing an auxiliary measurement ap that constrains
the nuisance parameter ↵p (see Section 4.2). Denote the bin containing xe as be. We have
the following expression for the expected (mean) number of events in a given bin

⌫cb(�p,↵p, �b) = �cs �cb �cs(↵) ⌘cs(↵) �csb(↵) , (6)

4



EXAMPLE OF DIGITAL PUBLISHING 
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RooFit’s Workspace now provides the 
ability to save in a ROOT file the full 
likelihood model, any priors you might 
want, and the minimal data necessary to 
reproduce likelihood function. 

Need this for combinations, as p-value is 
not sufficient information for a proper 
combination.



VISUALIZING THE COMBINED MODEL

State of the art: At the time of the discovery, the combined Higgs search 
included 100 disjoint channels and >500 nuisance parameters 

RooFit / RooStats: is the modeling language (C++) which provides 
technologies for collaborative modeling 
‣ provides technology to publish likelihood functions digitally 
‣ and more, it’s the full model so we can also generate pseudo-data 
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f
tot

(D
sim

,G|↵) =

Y

c2channels

"
Pois(nc|⌫c(↵))

ncY

e=1

fc(xce|↵)

#
·
Y

p2S
fp(ap|↵p)



EVOLUTION OF MODEL COMPLEXITY
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FIG. 1. Invariant or transverse mass distributions for the selected candidate events, the total background and the signal expected
in the following channels: (a) H → γγ, (b) H → ZZ(∗) → ℓ+ℓ−ℓ+ℓ− in the entire mass range, (c) H → ZZ(∗) → ℓ+ℓ−ℓ+ℓ− in
the low mass range, (d) H → ZZ → ℓ+ℓ−νν, (e) b-tagged selection and (f) untagged selection for H → ZZ → ℓ+ℓ−qq, (g) H →
WW (∗) → ℓ+νℓ−ν+0-jets, (h) H → WW (∗) → ℓ+νℓ−ν+1-jet, (i) H → WW (∗) → ℓ+νℓ−ν+2-jets, (j) H → WW → ℓνqq′+0-
jets, (k) H → WW → ℓνqq′+1-jet and (l) H → WW → ℓνqq′+2-jets. The H → WW (∗) → ℓ+νℓ−ν+2-jets distribution is
shown before the final selection requirements are applied.
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FIG. 2. Invariant or transverse mass distributions for the selected candidate events, the total background and the signal expected
in the following channels: (a) H → τlepτlep+0-jets, (b) H → τlepτlep 1-jet, (c) H → τlepτlep+2-jets, (d) H → τlepτhad+0-jets and
1-jet, (e) H → τlepτhad+2-jets, (f) H → τhadτhad. The bb invariant mass for (g) the ZH → ℓ+ℓ−bb̄, (h) the WH → ℓνbb̄ and (i)
the ZH → ννbb̄ channels. The vertical dashed lines illustrate the separation between the mass spectra of the subcategories in
pZT, p

W
T , and Emiss

T , respectively. The signal distributions are lightly shaded where they have been scaled by a factor of five or
ten for illustration purposes.



T E N S O R B O A R D

•Modern Machine Learning tools like TensorFlow express the 
model in a similar way as a Directed Acyclic Graph (DAG)
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A U T O M AT I C  D I F F E R E N T I AT I O N

153https://en.wikipedia.org/wiki/Automatic_differentiation 

https://en.wikipedia.org/wiki/Automatic_differentiation
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Probabilistic programming frameworks

carl.distributions tensorprob

RooFit serves us well, but shows limits in terms of scalability.

Using a data flow graph framework, RooFit would be distributed, GPU-enabled 
and automatically differentiable. 

Feasibility? Certainly within reach! As illustrated by our tentative 
proof-of-concepts carl.distributions [Gilles Louppe] and tensorprob [Igor 
Babuschkin, now at DeepMind]. See also Edward.



Profile Likelihood Ratio
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Fig. 2: A graphical proof of the Neyman-Pearson lemma.

p-value is given by
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T
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f(T |↵)dT =
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f(D|↵) ✓(T (D) � T

0

) dD = P (T � T
0

|↵) , (10)

where T
0

is the value of the test statistic based on the observed data and ✓(·) is the Heaviside function.10

Usually the p-value is just written as p, but I have written it as p(↵) to make its ↵-dependence explicit.
Given that the p-value depends on ↵, how does one decide to accept or reject the null hypothesis?

Remembering that ↵
poi

takes on a specific value for the null hypothesis, we are worried about how the
p-value changes as a function of the nuisance parameters. It is natural to say that one should not reject the
null hypothesis if the p-value is larger than the size of the test for any value of the nuisance parameters.
Thus, in a frequentist approach one should either present p-value explicitly as a function of ↵
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or take
its maximal (or supremum) value

p
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As a final note it is worth mentioning that the size of the test, which serves as the threshold for
rejecting the null hypothesis, is purely conventional. In most sciences conventional choices of the size
are 10%, 5%, or 1%. In particle physics, our conventional threshold for discovery is the infamous 5�
criterion – which is a conventional way to refer to ↵ = 2.87 · 10

�7. This is an incredibly small rate of
Type-I error, reflecting that claiming the discovery of new physics would be a monumental statement.
The origin of the 5� criterion has its roots in the fact that traditionally we lacked the tools to properly
incorporate systematics, we fear that there are systematics that may not be fully under control, and we
perform many searches for new physics and thus we have many chances to reject the background-only
hypothesis. We will return to this in the discussion of the look-elsewhere effect.

3.3 Excluded and allowed regions as confidence intervals
Often we consider a new physics model that is parametrized by theoretical parameters. For instance, the
mass or coupling of a new particle. In that case we typically want to ask what values of these theoretical

10The integral
R
dD is a bit unusual for a marked Poisson model, because it involves both a sum over the number of events

and an integral over the values of x
e

for each of those events.
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THE PROFILE LIKELIHOOD RATIO

Consider our general model with a single parameter of interest µ  
‣ let µ=0 be no signal, µ=1 nominal signal 

Define profile likelihood ratio 

‣ where                  is best fit with µ fixed  (the constrained maximum 
likelihood estimator, depends on data) 

‣ and θ̂ and µ̂ are best fit with both left floating (unconstrained) 
‣ Tevatron used QTev = λ(µ=1)/λ(µ=0) as generalization of QLEP
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�(µ) =
L(µ, ˆ̂✓(µ))

L(µ̂, ✓̂)
=

f(D,G|µ, ˆ̂✓(µ;D,G) )
f(D,G|µ̂, ✓̂)

ˆ̂✓(µ;D,G)



AN EXAMPLE

Essentially, you need to fit your model to the data twice: 
once with everything floating, and once with signal fixed to 0
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where the ai are the parameters used to parameterize the fake-tau background and ν represents all nui-680

sance parameters of the model: σH ,mZ,σZ,rQCD,a1,a2,a3. When using the alternate parameterization681

of the signal, the exact form of Equation 14 is modified to coincide with parameters of that model.682

Figure 14 shows the fit to the signal candidates for a mH = 120 GeV Higg with (a,c) and without683

(b,d) the signal contribution. It can be seen that the background shapes and normalizations are trying to684

accommodate the excess near mττ = 120 GeV, but the control samples are constraining the variation.685

Table 13 shows the significance calculated from the profile likelihood ratio for the ll-channel, the lh-686

channel, and the combined fit for various Higgs boson masses.687
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Figure 14: Example fits to a data sample with the signal-plus-background (a,c) and background only

(b,d) models for the lh- and ll-channels at mH = 120 GeV with 30 fb−1 of data. Not shown are the

control samples that were fit simultaneously to constrain the background shape. These samples do not

include pileup.
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�(µ = 0) =
L(µ = 0, ˆ̂✓(µ = 0))

L(µ̂, ✓̂)
=

f(D,G|µ = 0, ˆ̂✓(µ = 0;D,G) )
f(D,G|µ̂, ✓̂)

f(D,G|µ = 0, ˆ̂✓(µ = 0;D,G) )f(D,G|µ̂, ✓̂)



PROPERTIES OF THE PROFILE LIKELIHOOD RATIO

After a close look at the profile likelihood ratio 

one can see the function is independent of true values of θ 
‣ though its distribution might depend indirectly 

Wilks’s theorem states that under certain conditions the distribution of 
-2 ln λ (μ=μ0) given that the true value of μ is μ0 converges to a chi-
square distribution  
‣ more on this later, but the important points are: 
‣ “asymptotic distribution” is known and it is independent of θ ! 

● a quantity whose distribution is independent of θ is called a pivot 
● more complicated if parameters have boundaries (eg. µ≥ 0) 

Thus, we can calculate the p-value for the background-only 
hypothesis without having to generate Toy Monte Carlo!
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�(µ) =
L(µ, ˆ̂✓(µ))

L(µ̂, ✓̂)
=

f(D,G|µ, ˆ̂✓(µ;D,G) )
f(D,G|µ̂, ✓̂)



“THE ASIMOV PAPER”
Recently we showed how to generalize this asymptotic approach 
‣ generalize Wilks’s theorem when boundaries are present 
‣ use Wald’s result for distribution for alternate hypothesis f(-2logλ(µ) | µ’)
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Eur.Phys.J.C71:1554,2011

Asymptotic formulae for likelihood-based tests of new physics
Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells

http://arxiv.org/abs/1007.1727v2
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Figure 2: Illustration of the the p-
value corresponding to the median
of qµ assuming a strength parame-
ter µ′ (see text).

procedure can be extended to the case where several search channels are combined, and in
Sec. 4.3 we describe how to give statistical error bands for the sensitivity.

4.1 The median significance from Asimov values of the test statistic

By using the Asimov data set one can easily obtain the median values of q0, qµ and q̃µ, and
these lead to simple expressions for the corresponding median significance. From Eqs. (53),
(60) and (68) one sees that the significance Z is a monotonic function of q, and therefore
the median Z is simply given by the corresponding function of the median of q, which is
approximated by its Asimov value. For discovery using q0 one wants the median discov-
ery significance assuming a strength parameter µ

′ and for upper limits one is particularly
interested in the median exclusion significance assuming µ

′ = 0, med[Zµ|0]. For these one
obtains

med[Z0|µ′] =
√

q0,A , (79)

med[Zµ|0] =
√

qµ,A . (80)

When using q̃µ for establishing upper limits, the general expression for the exclusion
significance Zµ is somewhat more complicated depending on µ

′, but is in any case found by
substituting the appropriate values of q̃µ,A and σA into Eq. (68). For the usual case where one
wants the median significance for µ assuming data distributed according to the background-
only hypothesis (µ′ = 0), Eq. (68) reduces in fact to a relation of the same form as Eq. (60),
and therefore one finds

med[Zµ|0] =
√

q̃µ,A . (81)

4.2 Combining multiple channels

In many analyses, there can be several search channels which need to be combined. For
each channel i there is a likelihood function Li(µ,θi), where θi represents the set of nuisance
parameters for the ith channel, some of which may be common between channels. Here
the strength parameter µ is assumed to be the same for all channels. If the channels are
statistically independent, as can usually be arranged, the full likelihood function is given by
the product over all of the channels,

20
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Figure 9: The distributions
f(qµ|0) (red) and f(qµ|µ) (blue)
from both the asymptotic formulae
and Monte Carlo histograms (see
text).

The vertical line in Fig. 9 gives the median value of qµ assuming a strength parameter
µ

′ = 0. The area to the right of this line under the curve of f(qµ|µ) gives the p-value of
the hypothesized µ, as shown shaded in green. The upper limit on µ at a confidence level
CL = 1−α is the value of µ for which the p-value is pµ = α. Figure 9 shows the distributions
for the value of µ that gave pµ = 0.05, corresponding to the 95% CL upper limit.

In addition to reporting the median limit, one would like to know how much it would vary
for given statistical fluctuations in the data. This is illustrated in Fig. 10, which shows the
same distributions as in Figure 9, but here the vertical line indicates the 15.87% quantile of the
distribution f(qµ|0), corresponding to having µ̂ fluctuate downward one standard deviation
below its median.
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Figure 10: The distributions
f(qµ|0) (red) and f(qµ|µ) (blue) as
in Fig. 9 and the 15.87% quantile of
f(qµ|0) (see text).

By simulating the experiment many times with Monte Carlo, we can obtain a histogram
of the upper limits on µ at 95% CL, as shown in Fig. 11. The ±1σ (green) and ±2σ (yellow)
error bands are obtained from the MC experiments. The vertical lines indicate the error
bands as estimated directly (without Monte Carlo) using Eqs. (88) and (89). As can be seen
from the plot, the agreement between the formulae and MC predictions is excellent.

Figures 9 through 11 correspond to finding upper limit on µ for a specific value of the peak
position (mass). In a search for a signal of unknown mass, the procedure would be repeated
for all masses (in practice in small steps). Figure 12 shows the median upper limit at 95% CL
as a function of mass. The median (central blue line) and error bands (±1σ in green, ±2σ in
yellow) are obtained using Eqs. (88) and (89). The points and connecting curve correspond
to the upper limit from a single arbitrary Monte Carlo data set, generated according to the
background-only hypothesis. As can be seen, most of the plots lie as expected within the
±1σ error band.
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COMPARISON OF ASYMPTOTIC AND ENSEMBLES

Compare asymptotic distributions to distributions obtained with large ensembles 
of pseudo-experiments generated with Monte Carlo techniques
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6 Implementation in RooStats

Many of the results presented above are implemented or are being implemented in the
RooStats framework [15], which is a C++ class library based on the ROOT [16] and RooFit [17]
packages. The tools in RooStats can be used to represent arbitrary probability density func-
tions that inherit from RooAbsPdf, the abstract interfaces for probability density functions
provided by RooFit.

The framework provides an interface with minimization packages such as Minuit [18].
This allows one to obtain the estimators required in the the profile likelihood ratio: µ̂,

θ̂, and ˆ̂
θ. The Asimov dataset defined in Eq. (24) can be determined for a probability

density function by specifying the ExpectedData() command argument in a call to the
generateBinned method. The Asimov data together with the standard HESSE covariance
matrix provided by Minuit makes it is possible to determine the Fisher information matrix
shown in Eq. (28), and thus obtain the related quantities such as the variance of µ̂ and the
noncentrality parameter Λ, which enter into the formulae for a number of the distributions
of the test statistics presented above.

The distributions of the various test statistics and the related formulae for p-values, sensi-
tivities and confidence intervals as given in Sections 2, 3 and 4 are being incorporated as well.
RooStats currently includes the test statistics tµ, t̃µ, q0, and q,qµ, and q̃µ as concrete imple-
mentations of the TestStatistic interface. Together with the Asimov data, this provides
the ability to calculate the alternative estimate, σA, for the variance of µ̂ shown in Eq. (30).
The noncentral chi-square distribution is being incorporated into both RooStats and ROOT’s
mathematics libraries for more general use. The various transformations of the noncentral

29

G. Cowan, KC, E. Gross, O. Vitells 
Eur.Phys.J. C71 (2011) 1554  

[arXiv:1007.1727]

This is a significant development as  
building this distribution from  
Monte Carlo approaches can take 
100,000 CPU hours for Higgs search!
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Parametrized Learning



M A C H I N E  L E A R N I N G :  C L A S S I F I E R S

•Common to use machine learning 
classifiers to separate signal (H1) vs. 
background (H0) 

• want a function s: X→ Y that 
maps signal to y=1 and 
background to y=0  

• calculus of variations: find 
function s(x) that minimizes loss:
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L[s] =

Z
p(x|H0) (0� s(x))2 dx

+

Z
p(x|H1) (1� s(x))2dx

⇡
X

i

(yi � s(xi))
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1
Sometimes there is an additional Poisson term when expected number of signal and background events

is known.
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1
Sometimes there is an additional Poisson term when expected number of signal and background events

is known.
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1
Sometimes there is an additional Poisson term when expected number of signal and background events
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•Imagine a simple example of bump on flat background 

• train on samples with α=α₀ to obtain fixed classifier s(x) 

• uncertainty in α modifies location and width of peak 

• we can propagate the fixed learner, but classifier not optimal for α≠α₀
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s(x;α)

•We want a learner parametrized by α 

• augment training data (x,c) → (x,α,c) to obtain s(x;α)

• problem: how do we evaluate on testing data when α is unknown?
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PA R A M E T R I Z E D  C L A S S I F I E R S

•We started with a classifier that was learning 

•Implicitly that classifier depends on H0 and H1 used to 
generate the training data. Make that explicit 

•Can do the same thing for any two points in parameter 
space. I call this a parametrized classifier 

169

s(x;H0, H1) =
p(x|H1)

p(x|H0) + p(x|H1)

s(x) =
p(x|H1)

p(x|H0) + p(x|H1)

s(x; ✓0, ✓1) =
p(x|✓1)

p(x|✓0) + p(x|✓1)



•Ideally classifier will learn 

which is 1-to-1 with the likelihood 
ratio 

but often inverting s(x)→ r(x) typically 
doesn't work well because the 
classifier isn’t well calibrated and 
learns something monotonic in r(x). 

Still ok, just need to calibrate it

I M P O R TA N C E  O F  C A L I B R AT I O N
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1
Sometimes there is an additional Poisson term when expected number of signal and background events

is known.
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It is su�cient to show that q
x

(x) = q

s

(s(x)). The function q

s

(s) is based on
the induced densities p0(s) and p1(s). The induced density p1(s) is given by

(2.5) p1(s
⇤) =

Z
dx�(s⇤ � s(x))p1(x) =

Z
d⌦

s

⇤
p1(x)/|n̂ · rs|

and a similar equation for p0(s).

Theorem 1: We have the following equality

(2.6)
p1(s(x))

p0(s(x))
=

p1(x)

p0(x)
.

Proof For x 2 ⌦
s

⇤ , we can factor out of the integral the constant p1(x)/p0(x).
Thus

(2.7) p1(s
⇤) =

Z
d⌦

s

⇤
p1(x)/|n̂ · rs| =

p1(x)

p0(x)

Z
d⌦

s

⇤
p0(x)/|n̂ · rs| ,

and the integrals cancel in the likelihood ratio

(2.8)
p1(s⇤)

p0(s⇤)
=

p1(x)

p0(x)

R
d⌦

s

⇤
p0(x)/|n̂ · rs|R

d⌦
s

⇤
p0(x)/|n̂ · rs|

=
p1(x)

p0(x)
8x 2 ⌦

s

⇤
.

One can think of the ratio p1(s)/p0(s) as a way of calibrating the the
discriminative classifier and correcting for the monotonic transformation m

of the desired likelihood ratio as in Eq. 1.3.

3. Embedding the classifier into the likelihood. Thus far we have
shown that the target likelihood ratio p(x|✓0)/p(x|✓1) with high dimensional
features x can be reproduced via the univariate densities p(s|✓0)/p(s|✓1) if
the classifier s(x|✓0, ✓1) is a strictly increasing function of p(x|✓0)/p(x|✓1). We
now generalize from the ratio of two simple hypotheses specified by ✓0 and
✓1 to the case where ✓ are continuous model parameters. We postpone the
practicalities of training the classifier and estimating the density to Section 5
and continue in the likelihood-free setting with idealized classifiers and their
densities.

In the case of a fixed classifier s(x) it is possible to compute s

e

= s(x
e

)
for the observed data and never refer back to the original features x

e

. In the
parametrized setting it is not possible to pre-compute s(x

e

; ✓0, ✓1) since ✓0

and ✓1 are unknown.
The critical observation is that if we postpone the evaluation of the clas-

sifier to the stage of evaluating the enveloping likelihood ratio, then we can

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169

If s(x) is monotonic with p1(x)/p0(x), then we have 

http://arxiv.org/abs/1506.02169
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•The target likelihood ratio test based on high-dimensional features x is: 

•I can show that an equivalent test can be made from 1-D projection 

•if the map s: X → ℝ has the same level sets as the likelihood ratio 

•Remember that a classifier that minimizes squared loss ∑ [ yᵢ - s(xᵢ) ]²  approximates 
the regression function, which has the same level sets!
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1
Sometimes there is an additional Poisson term when expected number of signal and background events

is known.

2

s     

p
(s

)  
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ABC as it does not require a prior over the parameters and can also be used
in the classical (frequentist) setting. A strength of this approach is that it
separates the quality of the approximation of the target likelihood from the
quality of the calibration. In Section 7 we discuss the scheme sketched by
Neal (2007) that also suggests using a classifier as a dimensionality reduction
map to aid in the estimation of the likelihood function.

1.1. Notation and Assumptions. We use the following notation:

• x: a vector of features for an event
• D: a data set of D = {x1, . . . , xn}, where x

e

are assumed to be i.i.d.
• ✓: parameters of a statistical model
• p(x|✓): probability density (simulation-based model) for x given ✓

• y: a class label used for training a classifier.
• s(x; ✓0, ✓1): real-valued discriminative classification score, parametrized

by ✓0 and ✓1

• p(s
✓0,✓1 |✓): The probability density for s(x; ✓0, ✓1) implied by p(x|✓)

We will assume the x

e

are i.i.d., so that p(D|✓) =
Q

n

e=1 p(xe|✓).

1.2. Prelude. In the setting where one is interested in simple hypothesis
testing between a null ✓ = ✓0 against an alternate ✓ = ✓1, the Neyman-
Pearson lemma states that the likelihood ratio

(1.1) T (D; ✓0, ✓1) =
nY

e=1

p(x
e

|✓0)
p(x

e

|✓1)

is the most powerful test statistic. In order to evaluate T (D), one must be
able to evaluate the probability density p(x|✓) at any value x. However,
it is increasingly common in science that one has a complex simulation
that can act as generative model for p(x|✓), but one cannot evaluate the
density directly. For instance, this is the case high energy physics where
the simulation of particle detectors can only be done in the ‘forward mode’.
This same setting has been considered by Scott and Nowak (2005), Xin Tong
(2013), and Neal (2007).

The main result of this paper is to generalize the observation that one
can form an equivalent test based on

(1.2) T

0(D; ✓0, ✓1) =
nY

e=1

p(s
e

|✓0)
p(s

e

|✓1)

if

(1.3) s

e

= s(x
e

; ✓0, ✓1) = m ( p(x
e

|✓0)/p(xe|✓1) )

APPROXIMATING LIKELIHOOD RATIOS WITH CLASSIFIERS 7

identify the value of the parameters that are being compared in the likeli-
hood ratio with the values used as input to s(x; ✓0, ✓1).

(3.1) T (D; ✓0, ✓1) =
Y

e

p(x
e

|✓0)
p(x

e

|✓1)
=

Y

e

p(s(x
e

; ✓0, ✓1)|✓0)
p(s(x

e

; ✓0, ✓1)|✓1)
.

This is equivalent to approximating the likelihood function for ✓0 when ✓1

is held fixed.

4. Composite hypotheses and the generalized likelihood ratio.
In the case of composite hypotheses ✓ 2 ⇥0 against an alternative ✓ 2 ⇥C

0 ,
the generalized likelihood ratio1 test is commonly used

(4.1) �(⇥0) =
sup

✓2⇥0
p(D|✓)

sup
✓2⇥ p(D|✓) .

This generalized likelihood ratio can be used both for hypothesis tests in
the presence of nuisance parameters or to create confidence intervals with or
without nuisance parameters. Often, the parameter vector is broken into two
components ✓ = (µ, ⌫), where the µ components are considered parameters
of interest while the ⌫ components are considered nuisance parameters. In
that case ⇥0 corresponds to all values of ⌫ with µ fixed.

Denote the maximum likelihood estimator

(4.2) ✓̂ = arg max
✓

p(D|✓)

and the conditional maximum likelihood estimator

(4.3) ˆ̂
✓ = arg max

✓2⇥0

p(D|✓) .

It is not obvious that if we are working with the distributions p(s|✓) (for
some particular s(x; ✓0, ✓1) comparison) that we can find the same estima-
tors. Fortunately, there is a construction based on p(s|✓) that works. The
maximum likelihood estimate of Eq. 4.2 is the same as the value that max-
imizes the likelihood ratio with respect to p(D|✓1) for some fixed value of
✓1. This allows us to use Theorem 1 to reformulate the maximum likelihood
estimate

(4.4) ✓̂ = arg max
✓

X
ln

p(x
e

|✓)
p(x

e

|✓1)
= arg max

✓

X
ln

p(s(x
e

; ✓, ✓1)|✓)
p(s(x

e

; ✓, ✓1)|✓1)
.

It is important that we include the denominator p(s(x
e

; ✓, ✓1)|✓1) because
this cancels Jacobian factors that vary with ✓.

1Also known as the profile likelihood ratio.

s(x; ✓0; ✓1) = monotonic[ p(x|✓0)/p(x|✓1) ]

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169

http://arxiv.org/abs/1506.02169
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sup
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This generalized likelihood ratio can be used both for hypothesis tests in
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without nuisance parameters. Often, the parameter vector is broken into two
components ✓ = (µ, ⌫), where the µ components are considered parameters
of interest while the ⌫ components are considered nuisance parameters. In
that case ⇥0 corresponds to all values of ⌫ with µ fixed.

Denote the maximum likelihood estimator

(4.2) ✓̂ = arg max
✓

p(D|✓)

and the conditional maximum likelihood estimator

(4.3) ˆ̂
✓ = arg max

✓2⇥0

p(D|✓) .

It is not obvious that if we are working with the distributions p(s|✓) (for
some particular s(x; ✓0, ✓1) comparison) that we can find the same estima-
tors. Fortunately, there is a construction based on p(s|✓) that works. The
maximum likelihood estimate of Eq. 4.2 is the same as the value that max-
imizes the likelihood ratio with respect to p(D|✓1) for some fixed value of
✓1. This allows us to use Theorem 1 to reformulate the maximum likelihood
estimate

(4.4) ✓̂ = arg max
✓

X
ln

p(x
e

|✓)
p(x

e

|✓1)
= arg max

✓

X
ln

p(s(x
e

; ✓, ✓1)|✓)
p(s(x

e

; ✓, ✓1)|✓1)
.

It is important that we include the denominator p(s(x
e

; ✓, ✓1)|✓1) because
this cancels Jacobian factors that vary with ✓.

1Also known as the profile likelihood ratio.

APPROXIMATING LIKELIHOOD RATIOS WITH CLASSIFIERS 7

identify the value of the parameters that are being compared in the likeli-
hood ratio with the values used as input to s(x; ✓0, ✓1).

(3.1) T (D; ✓0, ✓1) =
Y

e

p(x
e

|✓0)
p(x

e

|✓1)
=

Y

e

p(s(x
e

; ✓0, ✓1)|✓0)
p(s(x

e

; ✓0, ✓1)|✓1)
.

This is equivalent to approximating the likelihood function for ✓0 when ✓1

is held fixed.

4. Composite hypotheses and the generalized likelihood ratio.
In the case of composite hypotheses ✓ 2 ⇥0 against an alternative ✓ 2 ⇥C

0 ,
the generalized likelihood ratio1 test is commonly used

(4.1) �(⇥0) =
sup

✓2⇥0
p(D|✓)

sup
✓2⇥ p(D|✓) .

This generalized likelihood ratio can be used both for hypothesis tests in
the presence of nuisance parameters or to create confidence intervals with or
without nuisance parameters. Often, the parameter vector is broken into two
components ✓ = (µ, ⌫), where the µ components are considered parameters
of interest while the ⌫ components are considered nuisance parameters. In
that case ⇥0 corresponds to all values of ⌫ with µ fixed.

Denote the maximum likelihood estimator

(4.2) ✓̂ = arg max
✓

p(D|✓)

and the conditional maximum likelihood estimator

(4.3) ˆ̂
✓ = arg max

✓2⇥0

p(D|✓) .

It is not obvious that if we are working with the distributions p(s|✓) (for
some particular s(x; ✓0, ✓1) comparison) that we can find the same estima-
tors. Fortunately, there is a construction based on p(s|✓) that works. The
maximum likelihood estimate of Eq. 4.2 is the same as the value that max-
imizes the likelihood ratio with respect to p(D|✓1) for some fixed value of
✓1. This allows us to use Theorem 1 to reformulate the maximum likelihood
estimate

(4.4) ✓̂ = arg max
✓

X
ln

p(x
e

|✓)
p(x

e

|✓1)
= arg max

✓

X
ln

p(s(x
e

; ✓, ✓1)|✓)
p(s(x

e

; ✓, ✓1)|✓1)
.

It is important that we include the denominator p(s(x
e

; ✓, ✓1)|✓1) because
this cancels Jacobian factors that vary with ✓.

1Also known as the profile likelihood ratio.

•The denominator in the likelihood ratio is just a constant

6 K. CRANMER

It is su�cient to show that q
x

(x) = q

s

(s(x)). The function q

s

(s) is based on
the induced densities p0(s) and p1(s). The induced density p1(s) is given by

(2.5) p1(s
⇤) =

Z
dx�(s⇤ � s(x))p1(x) =

Z
d⌦

s

⇤
p1(x)/|n̂ · rs|

and a similar equation for p0(s).

Theorem 1: We have the following equality

(2.6)
p1(s(x))

p0(s(x))
=

p1(x)

p0(x)
.

Proof For x 2 ⌦
s

⇤ , we can factor out of the integral the constant p1(x)/p0(x).
Thus

(2.7) p1(s
⇤) =

Z
d⌦

s

⇤
p1(x)/|n̂ · rs| =

p1(x)

p0(x)

Z
d⌦

s

⇤
p0(x)/|n̂ · rs| ,

and the integrals cancel in the likelihood ratio

(2.8)
p1(s⇤)

p0(s⇤)
=

p1(x)

p0(x)

R
d⌦

s

⇤
p0(x)/|n̂ · rs|R

d⌦
s

⇤
p0(x)/|n̂ · rs|

=
p1(x)

p0(x)
8x 2 ⌦

s

⇤
.

One can think of the ratio p1(s)/p0(s) as a way of calibrating the the
discriminative classifier and correcting for the monotonic transformation m

of the desired likelihood ratio as in Eq. 1.3.

3. Embedding the classifier into the likelihood. Thus far we have
shown that the target likelihood ratio p(x|✓0)/p(x|✓1) with high dimensional
features x can be reproduced via the univariate densities p(s|✓0)/p(s|✓1) if
the classifier s(x|✓0, ✓1) is a strictly increasing function of p(x|✓0)/p(x|✓1). We
now generalize from the ratio of two simple hypotheses specified by ✓0 and
✓1 to the case where ✓ are continuous model parameters. We postpone the
practicalities of training the classifier and estimating the density to Section 5
and continue in the likelihood-free setting with idealized classifiers and their
densities.

In the case of a fixed classifier s(x) it is possible to compute s

e

= s(x
e

)
for the observed data and never refer back to the original features x

e

. In the
parametrized setting it is not possible to pre-compute s(x

e

; ✓0, ✓1) since ✓0

and ✓1 are unknown.
The critical observation is that if we postpone the evaluation of the clas-

sifier to the stage of evaluating the enveloping likelihood ratio, then we can

•Provides a non-trivial diagnostic:

•Now we can go beyond classification, and estimate parameters of 
theory and confidence intervals
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Diagnostics

In practice r̂(ŝ(x; ✓
0

, ✓
1

)) will not be exact. Diagnostic procedures
are needed to assess the quality of this approximation.

1. For inference, the value of the MLE ✓̂ should be independent
of the value of ✓

1

used in the denominator of the ratio.

2. Train a classifier to distinguish between unweighted samples
from p(x|✓

0

) and samples from p(x|✓
1

) weighted by
r̂(ŝ(x; ✓

0

, ✓
1

)).

16 / 23

6 K. CRANMER

It is su�cient to show that q
x

(x) = q

s

(s(x)). The function q

s

(s) is based on
the induced densities p0(s) and p1(s). The induced density p1(s) is given by

(2.5) p1(s
⇤) =

Z
dx�(s⇤ � s(x))p1(x) =

Z
d⌦

s

⇤
p1(x)/|n̂ · rs|

and a similar equation for p0(s).

Theorem 1: We have the following equality

(2.6)
p1(s(x))

p0(s(x))
=

p1(x)

p0(x)
.

Proof For x 2 ⌦
s

⇤ , we can factor out of the integral the constant p1(x)/p0(x).
Thus

(2.7) p1(s
⇤) =

Z
d⌦

s

⇤
p1(x)/|n̂ · rs| =

p1(x)

p0(x)

Z
d⌦

s

⇤
p0(x)/|n̂ · rs| ,

and the integrals cancel in the likelihood ratio

(2.8)
p1(s⇤)

p0(s⇤)
=

p1(x)

p0(x)

R
d⌦

s

⇤
p0(x)/|n̂ · rs|R

d⌦
s

⇤
p0(x)/|n̂ · rs|

=
p1(x)

p0(x)
8x 2 ⌦

s

⇤
.

One can think of the ratio p1(s)/p0(s) as a way of calibrating the the
discriminative classifier and correcting for the monotonic transformation m

of the desired likelihood ratio as in Eq. 1.3.

3. Embedding the classifier into the likelihood. Thus far we have
shown that the target likelihood ratio p(x|✓0)/p(x|✓1) with high dimensional
features x can be reproduced via the univariate densities p(s|✓0)/p(s|✓1) if
the classifier s(x|✓0, ✓1) is a strictly increasing function of p(x|✓0)/p(x|✓1). We
now generalize from the ratio of two simple hypotheses specified by ✓0 and
✓1 to the case where ✓ are continuous model parameters. We postpone the
practicalities of training the classifier and estimating the density to Section 5
and continue in the likelihood-free setting with idealized classifiers and their
densities.

In the case of a fixed classifier s(x) it is possible to compute s

e

= s(x
e

)
for the observed data and never refer back to the original features x

e

. In the
parametrized setting it is not possible to pre-compute s(x

e

; ✓0, ✓1) since ✓0

and ✓1 are unknown.
The critical observation is that if we postpone the evaluation of the clas-

sifier to the stage of evaluating the enveloping likelihood ratio, then we can

= r(x)
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(a) Poorly trained, well calibrated. (b) Poorly trained, well calibrated.

(c) Poorly calibrated, well trained. (d) Poorly calibrated, well trained.

(e) Well trained, well calibrated. (f) Well trained, well calibrated.

Figure 5: Results from the diagnostics described in Sec. 3.5. The rows correspond to the

quality of the training and calibration of the classifier. The left plots probe the sensitivity

to ✓

1

, while the right plots show the ROC curve for a calibrator trained to discriminate

samples from p(x|✓
0

) and samples from p(x|✓
1

) weighted as indicated in the legend.
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A M O R T I Z E D  L I K E L I H O O D - F R E E  I N F E R E N C E

•Once we’ve learned the function s(x; θ) to approximate the 
likelihood, we can apply it to any data x.  

• unlike MCMC, we pay biggest computational costs up front 

• Here we repeat inference thousands of times & check 
asymptotic statistical theory

177

(a) Exact vs. approximated MLEs. (b) p(�2 log⇤(� = 0.05) | � = 0.05)

Figure 2: Using approximated likelihood ratios for parameter inference yields an unbi-

ased maximum likelihood estimator �̂, as empirically estimated from an ensemble of 1000

artificial datasets.

An advantage of this approach compared to Approximate Bayesian Computation (Beau-

mont et al., 2002) is that the classifier and calibration – computationally intensive parts of

the approximation – are independent of the dataset D. Thus once trained and calibrated,

the approximation can be applied to any dataset D. This makes it computationally e�cient

to perform ensemble tests of the method.

Figure 2a shows the empirical distribution of the maximum likelihood estimators (MLEs)

from the approximate likelihood compared to the distribution of the MLEs from the exact

likelihood. It clearly demonstrates that in this case the approximate likelihood yields an

unbiased estimator with essentially the same variance as the exact MLE. In addition to

the MLE, we can study the coverage of a confidence interval based on the likelihood ra-

tio test statistic. This is done by evaluating �2 log⇤(� = 0.05) for samples drawn from

p(x|� = 0.05). Wilks’s theorem states that the distribution of �2 log⇤(� = 0.05) should

follow a �

2

1

distribution. Figure 2b also confirms this behavior, supporting the applicability

18

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169

http://arxiv.org/abs/1506.02169
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•Handy utility to wrap any python 
function as a RooAbsReal
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from ROOT import * 
import numpy as np 
from sklearn import svm 
from sklearn.externals import joblib 

def scikitlearnFunc(x=0.): 
 clf = joblib.load('../adaptive.pkl')  
 traindata = np.array((x,0.)) 
 outputs=clf.predict(traindata) 
 return outputs[0] 

def scikitlearnTest(): 
 gSystem.Load( 'libSciKitLearnWrapper' )  
 x = RooRealVar('x','x',0.2,-5,5)  
 s = SciKitLearnWrapper('s','s',x) 
 s.RegisterCallBack( scikitlearnFunc ); 

 c1 = TCanvas('c1') 
 frame = x.frame() 
 s.plotOn(frame) 
 frame.Draw() 
 c1.SaveAs('scikitlearn-wrapper-plot.pdf') 

if __name__ == '__main__': 
 scikitlearnTest() 
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• Postpone evaluation of the classifier 
to the time when the likelihood is 
evaluated and a specific value of the 
parameter θ is being tested
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APPROXIMATING LIKELIHOOD RATIOS WITH CLASSIFIERS 7

identify the value of the parameters that are being compared in the likeli-
hood ratio with the values used as input to s(x; ✓0, ✓1).

(3.1) T (D; ✓0, ✓1) =
Y

e

p(x
e

|✓0)
p(x

e

|✓1)
=

Y

e

p(s(x
e

; ✓0, ✓1)|✓0)
p(s(x

e

; ✓0, ✓1)|✓1)
.

This is equivalent to approximating the likelihood function for ✓0 when ✓1

is held fixed.

4. Composite hypotheses and the generalized likelihood ratio.
In the case of composite hypotheses ✓ 2 ⇥0 against an alternative ✓ 2 ⇥C

0 ,
the generalized likelihood ratio1 test is commonly used

(4.1) �(⇥0) =
sup

✓2⇥0
p(D|✓)

sup
✓2⇥ p(D|✓) .

This generalized likelihood ratio can be used both for hypothesis tests in
the presence of nuisance parameters or to create confidence intervals with or
without nuisance parameters. Often, the parameter vector is broken into two
components ✓ = (µ, ⌫), where the µ components are considered parameters
of interest while the ⌫ components are considered nuisance parameters. In
that case ⇥0 corresponds to all values of ⌫ with µ fixed.

Denote the maximum likelihood estimator

(4.2) ✓̂ = arg max
✓

p(D|✓)

and the conditional maximum likelihood estimator

(4.3) ˆ̂
✓ = arg max

✓2⇥0

p(D|✓) .

It is not obvious that if we are working with the distributions p(s|✓) (for
some particular s(x; ✓0, ✓1) comparison) that we can find the same estima-
tors. Fortunately, there is a construction based on p(s|✓) that works. The
maximum likelihood estimate of Eq. 4.2 is the same as the value that max-
imizes the likelihood ratio with respect to p(D|✓1) for some fixed value of
✓1. This allows us to use Theorem 1 to reformulate the maximum likelihood
estimate

(4.4) ✓̂ = arg max
✓

X
ln

p(x
e

|✓)
p(x

e

|✓1)
= arg max

✓

X
ln

p(s(x
e

; ✓, ✓1)|✓)
p(s(x

e

; ✓, ✓1)|✓1)
.

It is important that we include the denominator p(s(x
e

; ✓, ✓1)|✓1) because
this cancels Jacobian factors that vary with ✓.

1Also known as the profile likelihood ratio.

θ

p( s(x; θ) | θ)
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Example: Z’→ t t ̅

The networks were trained on 28 features: 22 low-level, 5 high-level, and the mass

•Train at mZ’=500,750,1250,1500 GeV 

•Almost identical performance to 
dedicated training at mZ’=1000 GeV

arXiv:1601.07913, together with:

5

FIG. 7: Comparison of the signal-to-background discrimi-
nation for four classes of networks for a testing sample with
m

X

= 1000 GeV. A parameterized network trained on a set
of masses (m

X

= 500, 750, 1000, 1250, 1500) is compared to a
single network trained at m

X

= 1000 GeV. The performance
is equivalent. A second parameterized network is trained only
with samples at m

x

= 500, 750, 1250, 1500, forcing it to in-
terpolate the solution at m

X

= 1000 GeV. Lastly, a single
non-parameterized network trained with all the mass points
shows a reduced performance. The results are indistinguish-
able for cases where the networks use only low-level features
(shown) or low-level as well as high-level features (not shown,
but identical).

work is capable of generalizing the solution even in a
high-dimensional example.

Conversely, Fig 8 compares the performance of the
parameterized network to a single network trained at
mX = 1000 GeV when applied across the mass range
of interest, which is a common application case. This
demonstrates the loss of performance incurred by tradi-
tional approaches and recovered in this approach. Simi-
larly, we see that a single network trained an unlabeled
mixture of signal samples from all masses has reduced
performance at each mass value tested.

In previous work, we have shown that deep networks
such as these do not require the additional of high-level
features [21, 22] but are capable of learning the necessary
functions directly from the low-level four-vectors. Here
we extend that by repeating the study above without
the use of the high-level features; see Fig 7. Using only
the low-level features, the parameterized deep network
is achieves essentially indistinguishable performance for
this particular problem and training sets of this size.

DISCUSSION

We have presented a novel structure for neural net-
works that allows for a simplified and more powerful so-
lution to a common use case in high-energy physics and
demonstrated improved performance in a set of exam-
ples with increasing dimensionality for the input feature
space. While these example use a single parameter ✓, the

500 750 1000 1250 1500

0ass of signal

0.5

0.6

0.7

0.8

0.9

1.0

A
8
C

PaUaPeteUized 11 (Pass is a featuUe)

1etwoUN tUained on all Passes

1etwoUN tUained at Pass 1000 only

FIG. 8: Comparison of the performance in the signal-
background discrimination for the parameterized network,
which learns the entire problem as a function of mass, and a
single network trained only at m

X

= 1000 GeV. As expected,
the AUC score decreases for the single network as the mass
deviates from the value in the training sample. The param-
eterized network shows improvement over this performance;
the trend of improving AUC versus mass reflects the increas-
ing separation between the signal and background samples
with mass, see Figs. 5 and 6. For comparison, also shown in
the performance a single network trained with an unlabeled
mixture of signal samples at all masses.

technique is easily applied to higher dimensional param-
eter spaces.

Parameterized networks can also provide optimized
performance as a function of nuisance parameters that
describe systematic uncertainties, where typical networks
are optimal only for a single specific value used during
training. This allows statistical procedures that make
use of profile likelihood ratio tests [23] to select the net-
work corresponding to the profiled values of the nuisance
parameters [13].

Datasets used in this paper containing millions of
simulated collisions can be found in the UCI Machine
Learning Repository [24] at archive.ics.uci.edu/ml/

datasets/HEPMASS.
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FIG. 1: Left, individual networks with input features
(x1, x2), each trained with examples with a single value of
some parameter ✓ = ✓

a

, ✓

b

. The individual networks are
purely functions of the input features. Performance for in-
termediate values of ✓ is not optimal nor does it necessarily
vary smoothly between the networks. Right, a single network
trained with input features (x1, x2) as well as an input pa-
rameter ✓; such a network is trained with examples at several
values of the parameter ✓.

that the resulting inference is Bayesian. In the studies
presented below, we simply use equal sized samples for
a few discrete values of ✓̄. Another issue is that some or
all of the components of ✓̄ may not be meaningful for a
particular target class. For instance, the mass of a new
particle is not meaningful for the background training
examples. In what follows, we randomly assign values to
those components of ✓̄ according to the same distribu-
tion used for the signal class. In the examples studied
below the networks have enough generalization capacity
and the training sets are large enough that the resulting
parameterized classifier performs well without any tuning
of the training procedure. However, the robustness of the
resulting parameterized classifier to the implicit distribu-
tion of ✓̄ in the training sample will in general depend on
the generalization capacity of the classifier, the number
of training examples, the physics encoded in the distribu-
tions p(x̄|✓̄, y), and how much those distributions change
with ✓̄.

TOY EXAMPLE

As a demonstration for a simple toy problem, we con-
struct a parameterized network, which has a single in-
put feature x and a single parameter ✓. The network
is trained using labeled examples where examples with
label 0 are drawn from a uniform background and exam-
ples with label 1 are drawn from a Gaussian with mean
✓ and width � = 0.25. Training samples are generated
with ✓ = �2,�1, 0, 1, 2; see Fig. 2a.

As shown in Fig. 2, this network generalizes the so-
lution and provides reasonable output even for values

of the parameter where it was given no examples. Note
that the response function has the same shape for these
values (✓ = �1.5,�0.5, 0.5, 1.5) as for values where train-
ing data was provided, indicating that the network has

FIG. 2: Top, training samples in which the signal is drawn
from a Gaussian and the background is uniform. Bottom,
neural network response as a function of the value of the input
feature x, for various choices of the input parameter ✓; note
that the single parameterized network has seen no training
examples for ✓ = �1.5,�0.5, 0.5, 1.5.

successfully parameterized the solution. The signal-
background classification accuracy is as good for values
where training data exist as it is for values where training
data does not.

1D PHYSICAL EXAMPLE

A natural physical case is the application to the search
for new particle of unknown mass. As an example, we
consider the search for a new particle X which decays
to tt̄. We treat the most powerful decay mode, in which
tt̄ ! W

+
bW

�
b̄ ! qq

0
b`⌫ b̄. The dominant background

is standard model tt̄ production, which is identical in
final state but distinct in kinematics due to the lack of
an intermediate resonance. Figure 3 shows diagrams for
both the signal and background processes.

We first explore the performance in a one-dimensional
case. The single event-level feature of the network is
mWWbb, the reconstructed resonance mass, calculated
using standard techniques identical to those described
in Ref. [14]. Specifically, we assume resolved top quarks
in each case, for simplicity. Events are are simulated at
parton level with madgraph5 [15], using pythia [16]
for showering and hadronization and delphes [17] with
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Example: Inference from multidimensional data

Let assume 5D data x generated
from the following process p

0

:

1. z := (z
0

, z
1

, z
2

, z
3

, z
4

), such that

z
0

⇠ N (µ = ↵,� = 1),

z
1

⇠ N (µ = �,� = 3),

z
2

⇠ Mixture(

1

2

N (µ = �2,� =

1), 1

2

N (µ = 2,� = 0.5)),
z
3

⇠ Exponential(� = 3), and

z
4

⇠ Exponential(� = 0.5);

2. x := Rz, where R is a fixed semi-positive

definite 5⇥ 5 matrix defining a fixed

projection of z into the observed space.

Our goal is to infer the values ↵ and
� based on D.

Observed data D

Check out (Louppe et al., 2016) to reproduce this example.

9 / 13

p₀ has α=1, β=-1 
p₁ has α=0, β=0
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Figure 4: Inference from exact and approximate likelihood ratios. The red dot corresponds

to the true values (↵ = 1, � = �1) used to generate D, the green dot is the MLE from

the exact likelihood, while the blue dot is the MLE from the approximate likelihood. 1,

2 and 3-� contours are shown in white. (4a) The exact �2 log⇤(↵, �) for the observed

data D. (4b) The approximate �2 log⇤(↵, �) evaluated on a coarse 15 ⇥ 15 grid. (4c) A

Gaussian Process surrogate of �2 log⇤(↵, �) ratio estimated from a Bayesian optimization

procedure. White dots show the parameter points sampled during the optimization process.
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Figure ��: Inference from truth likelihood ratio and carl’s estimate for the fully di�erential case
with regression. Le�: scatter plot showing the di�erence between the exact expected
likelihood ratio for ��� randomly sampled points and θ1 and carl’s estimate. Right:
true (white) and approximate (cyan) likelihood contours, using a Gaussian Process for
interpolation. �e white and cyan dots show the exact and approximate maximum-
likelihood estimators.�e green and red dots show θobserved and θ1, respectively. Finally,
the small grey dots show the sampled parameter points at which the likelihood ratio
was evaluated.
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Weak boson fusion, h → 4�
� Production vs decay

� hZZ decay vertex:
many angular structures

� Very clean

� Same operators as before:OB = i g2 (Dµ�†)(Dν�)Bµν OW = i g2 (Dµ�)†σ k(Dν�)W k
µν

OBB = − g′24 (�†�)Bµν Bµν OWW = − g24 (�†�)W k
µν W µν k

O� ,2 = 1
2
∂µ(�†�) ∂µ(�†�) OWW̃ = − g24 (�†�)W k

µν W̃ µν k

� Setup as before, except:
� No backgrounds, no smearing
� L ⋅ ε = 100 fb−1
� Cuts: pT , j > 20 GeV, �η j � < 5.0, pT ,� > 10 GeV, �η� � < 2.5

W , Z

W , Z

h

Z

Z

q

q

q′
�−
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High Dimensional Reweighting



G B R e w e i g h t e r

• Nice blog post by Alex Rogozhnikov [link] (Yandex Data Science group based at CERN 
contributing to hep_ml package). He developed GBReweighter. 

• Find decision trees that maximize “symmetrized χ²” 

• “Note, that I want it to be as high as possible. If the weights of original and target distribution 
are equal, I don’t need to reweight in this bin and corresponding summand is zero. If the 
summand is high, reweighting in bin is needed.” 

• Then he boosts: 

186

from hep_ml.reweight import GBReweighter
gb = GBReweighter()
gb.fit(mc_data, real_data)
gb.predict_weights(mc_other_channel)

http://arogozhnikov.github.io/2015/10/09/gradient-boosted-reweighter.html


A P P R O X I M AT E  L I K E L I H O O D  R AT I O S  W I T H  C L A S S I F I E R S

•Idea is to train a classifier for signal 
(H1) vs. background (H0) 

• with a balanced sample of y=0,1 
labels and a squared loss the 
optimal classifier would learn 
the regression function 

• which is 1-to-1 with the 
likelihood ratio

187

p(x|H1)

p(x|H0)

s(x) =
p(x|H1)

p(x|H0) + p(x|H1)



•Ideally classifier will learn 

which is 1-to-1 with the likelihood 
ratio 

but often inverting s(x)→ r(x) typically 
doesn't work well because the 
classifier isn’t well calibrated and 
learns something monotonic in r(x). 

Still ok, just need to calibrate it

I M P O R TA N C E  O F  C A L I B R AT I O N
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1
Sometimes there is an additional Poisson term when expected number of signal and background events

is known.

2

s     

p
(s

)  
 

s(x) =
p(x|H1)

p(x|H0) + p(x|H1)
=

r(x)

1 + r(x)

r(x) =
p(x|H1)

p(x|H0)
=

s(x)

1� s(x)

r(x) =
p(x|H1)

p(x|H0)
=

p(s(x)|H1)

p(s(x)|H0)Theorem if s monotonic with r —> 
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6 K. CRANMER

It is su�cient to show that q
x

(x) = q

s

(s(x)). The function q

s

(s) is based on
the induced densities p0(s) and p1(s). The induced density p1(s) is given by

(2.5) p1(s
⇤) =

Z
dx�(s⇤ � s(x))p1(x) =

Z
d⌦

s

⇤
p1(x)/|n̂ · rs|

and a similar equation for p0(s).

Theorem 1: We have the following equality

(2.6)
p1(s(x))

p0(s(x))
=

p1(x)

p0(x)
.

Proof For x 2 ⌦
s

⇤ , we can factor out of the integral the constant p1(x)/p0(x).
Thus

(2.7) p1(s
⇤) =

Z
d⌦

s

⇤
p1(x)/|n̂ · rs| =

p1(x)

p0(x)

Z
d⌦

s

⇤
p0(x)/|n̂ · rs| ,

and the integrals cancel in the likelihood ratio

(2.8)
p1(s⇤)

p0(s⇤)
=

p1(x)

p0(x)

R
d⌦

s

⇤
p0(x)/|n̂ · rs|R

d⌦
s

⇤
p0(x)/|n̂ · rs|

=
p1(x)

p0(x)
8x 2 ⌦

s

⇤
.

One can think of the ratio p1(s)/p0(s) as a way of calibrating the the
discriminative classifier and correcting for the monotonic transformation m

of the desired likelihood ratio as in Eq. 1.3.

3. Embedding the classifier into the likelihood. Thus far we have
shown that the target likelihood ratio p(x|✓0)/p(x|✓1) with high dimensional
features x can be reproduced via the univariate densities p(s|✓0)/p(s|✓1) if
the classifier s(x|✓0, ✓1) is a strictly increasing function of p(x|✓0)/p(x|✓1). We
now generalize from the ratio of two simple hypotheses specified by ✓0 and
✓1 to the case where ✓ are continuous model parameters. We postpone the
practicalities of training the classifier and estimating the density to Section 5
and continue in the likelihood-free setting with idealized classifiers and their
densities.

In the case of a fixed classifier s(x) it is possible to compute s

e

= s(x
e

)
for the observed data and never refer back to the original features x

e

. In the
parametrized setting it is not possible to pre-compute s(x

e

; ✓0, ✓1) since ✓0

and ✓1 are unknown.
The critical observation is that if we postpone the evaluation of the clas-

sifier to the stage of evaluating the enveloping likelihood ratio, then we can

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169

If s(x) is monotonic with p1(x)/p0(x), then we have 

http://arxiv.org/abs/1506.02169


A toy example

R E P R O D U C I B L E  N O T E B O O K  W I T H  C O D E  A N D  P L O T S :  
h t t p s : / / g i t h u b . c o m / c r a n m e r / c a r l - n o t e b o o k s / b l o b / m a s t e r / r e w e i g h i n g - h i g h - d i m e n s i o n a l - d a t a . i p y n b

https://github.com/cranmer/carl-notebooks/blob/master/reweighing-high-dimensional-data.ipynb
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Example: Inference from multidimensional data

Let assume 5D data x generated
from the following process p

0

:

1. z := (z
0

, z
1

, z
2

, z
3

, z
4

), such that

z
0

⇠ N (µ = ↵,� = 1),

z
1

⇠ N (µ = �,� = 3),

z
2

⇠ Mixture(

1

2

N (µ = �2,� =

1), 1

2

N (µ = 2,� = 0.5)),
z
3

⇠ Exponential(� = 3), and

z
4

⇠ Exponential(� = 0.5);

2. x := Rz, where R is a fixed semi-positive

definite 5⇥ 5 matrix defining a fixed

projection of z into the observed space.

Our goal is to infer the values ↵ and
� based on D.

Observed data D

Check out (Louppe et al., 2016) to reproduce this example.

9 / 13

p₀ has α=1, β=-1 
p₁ has α=0, β=0
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•1-d projections of the original and target distributions

192



T W O  R E W E I G H I N G  M E T H O D S :  1 0 0 K  S A M P L E S
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hep_ml.GBReweigher carl with calibrated MLP



E VA L U AT I N G  T H E  Q U A L I T Y  O F  T H E  R E W E I G H T I N G

•Train a new classifier to discriminate between events from target and events resampled from 
original distribution with probabilities given by the predicted weights 

• classifier can easily distinguish unweighted distributions;  

• exact weights are perfect (AUC~0.5) 

• carl doing a little better than GBReweighter on this problem (no special effort to tune either) 

• neither is perfect

194

Important: 
Performance evaluated on 
independent testing sample



Alex’s example

R E P R O D U C I B L E  N O T E B O O K  W I T H  C O D E  A N D  P L O T S :  
h t t p s : / / g i t h u b . c o m / c r a n m e r / c a r l - n o t e b o o k s / b l o b / m a s t e r / r e w e i g h i n g - m c - d a t a . i p y n b

https://github.com/cranmer/carl-notebooks/blob/master/reweighing-mc-data.ipynb


F R O M  A L E X ’ S  B L O G
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• example data: https://github.com/arogozhnikov/hep_ml/blob/data/data_to_download/

before reweighting after reweighting

• looks great here, but using all the same data for training and making the 
plots. What does the performance look like if we hold out an independent 
testing set?

https://github.com/arogozhnikov/hep_ml/blob/data/data_to_download/
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Huge differences 

I  S P E N T  S O M E  T I M E  O N  T H I S  
B U T  S E E M S  L I K E  A  B A D  

E X A M P L E ,  H U G E  W E I G H T S !



H U G E  W E I G H T S  A N D  “ C O M M O N  S U P P O R T ”

•Since the distributions are so different, you expect to see huge weights, and you do.  

•For reweighting to work, p₀(x) and p₁(x) need a common support. To check this, I recommend 
to make a histogram of the weights. 

•This causes all sorts of problems downstream. It’s like that one QCD event that passes your 
cuts and has a huge weight.

198

maximum weight = 781 !

Huge differences 



O V E R F I T T I N G
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GBRweighter: 
apply reweighing to testing data

GBRweighter: 
apply reweighing to training data

NB: original example had many more events from target distribution.  
Here I’m using balanced data



c a r l  v s .  G B R e w i g h t e r
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GBRweighter: 
apply reweighing to testing data

carl: 
apply reweighing to testing data

NB: original example had many more events from target distribution.  
Here I’m using balanced data

N E I T H E R  L O O K  G O O D ,  H U G E  W E I G H T S  A  P R O B L E M



D I F F E R E N T  A P P R O A C H E S  T O  D I S C R I M I N AT O R

•A discriminator is a good tool to quantify the performance of the reweighting. Two approaches: 

• Resample the original distribution with probabilities proportional to the weights. Train 
classifier with the resulting unweighted events. 

• large weights lead to large fluctuations in the resampling 

• Use a discriminator trained with weighted events.  

• large weights can lead to problems in training and evaluation of ROC curve
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S U M M A R Y

•Reweighting in high dimensions is hard when you don’t have can’t evaluate p₀(x) 
and p₁(x)  

• histograms and density estimation won’t work well 

• As Gilles discussed yesterday, classifiers can be used to approximate likelihood/
density ratios (implemented in carl), which can be used for reweighting 

• the GBReweighter is another strategy, and there are other direct density ratio 
techniques as well 

•Instead of relying on goodness of fit variables for 1-d projections, it is better to use 
a discriminator to look for differences between target and reweighted distribution in 
the high dimensional space 

•Use cross-validation (independent testing data) to evaluate the performance, or you 
can fool yourself 

•Large weights will cause problems downstream, so check that explicitly.

202



Likelihood Free



T H E  P L AY E R S

P R E D I C T I O N

I N F E R E N C E

x 
observed data 
simulated data

θ 
parameters of interest

forward modeling 
generation 
simulation

inverse problem 
measurement 

parameter estimation

p( x, z | θ, ν )

ν 
nuisance parameters

z 
latent variables 

Monte Carlo truth



T W O  A P P R O A C H E S

• Approximate Bayesian 
Computation (ABC) 

• Probabilistic Programming 

• Adversarial Variational 
Optimization (AVO)

205

Use simulator  
(much more efficiently)

Learn simulator  
(with deep learning)

• Generative Adversarial Networks (GANs), 
Variational Auto-Encoders (VAE) 

• Likelihood ratio from classifiers (CARL) 

• Autogregressive models,  
Normalizing Flows

[image credit: A.P. Goucher]

https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/
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https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/
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‘Likelihood-Free’ Inference

Rejection Algorithm

Draw ✓ from prior ⇡(·)
Accept ✓ with probability ⇡(D | ✓)

Accepted ✓ are independent draws from the posterior distribution,
⇡(✓ | D).
If the likelihood, ⇡(D|✓), is unknown:

‘Mechanical’ Rejection Algorithm

Draw ✓ from ⇡(·)
Simulate X ⇠ f (✓) from the computer model

Accept ✓ if D = X , i.e., if computer output equals observation

The acceptance rate is
R

P(D|✓)⇡(✓)d✓ = P(D).

*From Richard Wilkinson’s talk at Data science @LHC 

← exact Bayesian Computation
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Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any ✓. Instead,
there is an approximate version:

Uniform Rejection Algorithm

Draw ✓ from ⇡(✓)

Simulate X ⇠ f (✓)

Accept ✓ if ⇢(D,X )  ✏

✏ reflects the tension between computability and accuracy.

As ✏ ! 1, we get observations from the prior, ⇡(✓).

If ✏ = 0, we generate observations from ⇡(✓ | D).

For reasons that will become clear later, we call this uniform-ABC.

*From Richard Wilkinson’s talk at Data science @LHC 
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P R E D I C T I O N

I N F E R E N C E

x 
observed data 
simulated data

θ 
parameters of interest

forward modeling 
generation 
simulation

inverse problem 
measurement 

parameter estimation

p( x, z | θ, ν )

ν 
nuisance parameters

z 
latent variables 

Monte Carlo truth
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Catch me if you can

Leo is G Tom is D

5 / 13

Objective

•
Consider the value function

V (D,G ) = E
x⇠p

data

[log(D(x))] + E
z⇠p

noise

[log(1� D(G (z)))];

•
We want to

For fixed G , find D which maximizes V (D,G ),

For fixed D, find G which minimizes V (D,G );

•
In other words, we are looking for the saddle point

(D

⇤,G ⇤
) = max

D
min

G
V (D,G ).

6 / 13

Generative adversarial nets (Goodfellow et al., 2014)

Do not assume any form, but use a neural network to produce

similar samples.

•
Two-player game:

a discriminator D,

a generator G ;

•
D is a classifier X 7! {0, 1} that tries to distinguish between

a sample from the data distribution (D(x) = 1, for x ⇠ p

data

),

and a sample from the model distribution (D(G (z)) = 0, for

z ⇠ p

noise

);

•
G is a generator Z 7! X trained to produce samples G (z) (for

z ⇠ p

noise

) that are di�cult for D to distinguish from data.

4 / 13

Goodfellow, et al arXiv:1406.2661 
slide Gilles Louppe
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Then assumption 1 is satisfied and therefore W (Pr,P✓) is continuous everywhere
and di↵erentiable almost everywhere.

Proof. See Appendix C

All this shows that EM is a much more sensible cost function for our problem
than at least the Jensen-Shannon divergence. The following theorem describes the
relative strength of the topologies induced by these distances and divergences, with
KL the strongest, followed by JS and TV, and EM the weakest.

Theorem 2. Let P be a distribution on a compact space X and (Pn)n2N be a
sequence of distributions on X . Then, considering all limits as n ! 1,

1. The following statements are equivalent

• �(Pn,P) ! 0 with � the total variation distance.

• JS(Pn,P) ! 0 with JS the Jensen-Shannon divergence.

2. The following statements are equivalent

• W (Pn,P) ! 0.

• Pn
D�! P where

D�! represents convergence in distribution for random
variables.

3. KL(PnkP) ! 0 or KL(PkPn) ! 0 imply the statements in (1).

4. The statements in (1) imply the statements in (2).

Proof. See Appendix C

This highlights the fact that the KL, JS, and TV distances are not sensible
cost functions when learning distributions supported by low dimensional manifolds.
However the EM distance is sensible in that setup. This obviously leads us to the
next section where we introduce a practical approximation of optimizing the EM
distance.

3 Wasserstein GAN

Again, Theorem 2 points to the fact that W (Pr,P✓) might have nicer properties
when optimized than JS(Pr,P✓). However, the infimum in (1) is highly intractable.
On the other hand, the Kantorovich-Rubinstein duality [22] tells us that

W (Pr,P✓) = sup
kfkL1

Ex⇠Pr [f(x)]� Ex⇠P✓ [f(x)] (2)

where the supremum is over all the 1-Lipschitz functions f : X ! R. Note that if
we replace kfkL  1 for kfkL  K (consider K-Lipschitz for some constant K),
then we end up with K ·W (Pr,Pg). Therefore, if we have a parameterized family of

6

The contributions of this paper are:

• In Section 2, we provide a comprehensive theoretical analysis of how the Earth
Mover (EM) distance behaves in comparison to popular probability distances
and divergences used in the context of learning distributions.

• In Section 3, we define a form of GAN called Wasserstein-GAN that mini-
mizes a reasonable and e�cient approximation of the EM distance, and we
theoretically show that the corresponding optimization problem is sound.

• In Section 4, we empirically show that WGANs cure the main training prob-
lems of GANs. In particular, training WGANs does not require maintaining
a careful balance in training of the discriminator and the generator, and does
not require a careful design of the network architecture either. The mode
dropping phenomenon that is typical in GANs is also drastically reduced.
One of the most compelling practical benefits of WGANs is the ability to
continuously estimate the EM distance by training the discriminator to op-
timality. Plotting these learning curves is not only useful for debugging and
hyperparameter searches, but also correlate remarkably well with the observed
sample quality.

2 Di↵erent Distances

We now introduce our notation. Let X be a compact metric set (such as the
space of images [0, 1]d) and let ⌃ denote the set of all the Borel subsets of X . Let
Prob(X ) denote the space of probability measures defined on X . We can now define
elementary distances and divergences between two distributions Pr,Pg 2 Prob(X ):

• The Total Variation (TV) distance

�(Pr,Pg) = sup
A2⌃

|Pr(A)� Pg(A)| .

• The Kullback-Leibler (KL) divergence

KL(PrkPg) =

Z
log

✓
Pr(x)

Pg(x)

◆
Pr(x)dµ(x) ,

where both Pr and Pg are assumed to be absolutely continuous, and therefore
admit densities, with respect to a same measure µ defined on X .2 The KL
divergence is famously assymetric and possibly infinite when there are points
such that Pg(x) = 0 and Pr(x) > 0.

2
Recall that a probability distribution Pr 2 Prob(X ) admits a density pr(x) with respect to µ,

that is, 8A 2 ⌃, Pr(A) =

R
A Pr(x)dµ(x), if and only it is absolutely continuous with respect to µ,

that is, 8A 2 ⌃, µ(A) = 0 ) Pr(A) = 0 .

3

• The Jensen-Shannon (JS) divergence

JS(Pr,Pg) = KL(PrkPm) +KL(PgkPm) ,

where Pm is the mixture (Pr + Pg)/2. This divergence is symmetrical and
always defined because we can choose µ = Pm.

• The Earth-Mover (EM) distance or Wasserstein-1

W (Pr,Pg) = inf
�2⇧(Pr,Pg)

E(x,y)⇠�

⇥ kx� yk ⇤ , (1)

where⇧(Pr,Pg) denotes the set of all joint distributions �(x, y) whose marginals
are respectively Pr and Pg. Intuitively, �(x, y) indicates how much “mass”
must be transported from x to y in order to transform the distributions Pr

into the distribution Pg. The EM distance then is the “cost” of the optimal
transport plan.

The following example illustrates how apparently simple sequences of probability
distributions converge under the EM distance but do not converge under the other
distances and divergences defined above.

Example 1 (Learning parallel lines). Let Z ⇠ U [0, 1] the uniform distribution on
the unit interval. Let P0 be the distribution of (0, Z) 2 R2 (a 0 on the x-axis and
the random variable Z on the y-axis), uniform on a straight vertical line passing
through the origin. Now let g✓(z) = (✓, z) with ✓ a single real parameter. It is easy
to see that in this case,

• W (P0,P✓) = |✓|,

• JS(P0,P✓) =

(
log 2 if ✓ 6= 0 ,

0 if ✓ = 0 ,

• KL(P✓kP0) = KL(P0kP✓) =

(
+1 if ✓ 6= 0 ,

0 if ✓ = 0 ,

• and �(P0,P✓) =

(
1 if ✓ 6= 0 ,

0 if ✓ = 0 .

When ✓t ! 0, the sequence (P✓t)t2N converges to P0 under the EM distance, but
does not converge at all under either the JS, KL, reverse KL, or TV divergences.
Figure 1 illustrates this for the case of the EM and JS distances.

Example 1 gives us a case where we can learn a probability distribution over a low
dimensional manifold by doing gradient descent on the EM distance. This cannot
be done with the other distances and divergences because the resulting loss function
is not even continuous. Although this simple example features distributions with
disjoint supports, the same conclusion holds when the supports have a non empty

4

Dual Description
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CaloGAN: Simulating 3D High Energy Particle
Showers in Multi-Layer Electromagnetic Calorimeters
with Generative Adversarial Networks

Michela Paganinia,b, Luke de Oliveiraa, and Benjamin Nachmana
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Abstract: Simulation is a key component of physics analysis in particle physics and nuclear physics.
The most computationally expensive simulation step is the detailed modeling of particle showers inside
calorimeters. Full detector simulations are too slow to meet the growing demands resulting from large
quantities of data; current fast simulations are not precise enough to serve the entire physics program.
Therefore, we introduce CaloGAN, a new fast simulation based on generative adversarial neural
networks (GANs). We apply the CaloGAN to model electromagnetic showers in a longitudinally
segmented calorimeter. This represents a significant stepping stone toward a full neural network-based
detector simulation that could save significant computing time and enable many analyses now and
in the future. In particular, the CaloGAN achieves speedup factors comparable to or better than
existing fast simulation techniques on CPU (100⇥-1000⇥) and even faster on GPU (up to ⇠ 10

5⇥))
and has the capability of faithfully reproducing many aspects of key shower shape variables for a variety
of particle types.
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Abstract

Inferring model parameters from experimental data is a grand challenge in many sciences, including cosmol-
ogy. This often relies critically on high fidelity numerical simulations, which are prohibitively computationally
expensive. The application of deep learning techniques to generative modeling is renewing interest in using high
dimensional density estimators as computationally inexpensive emulators of fully-fledged simulations. These
generative models have the potential to make a dramatic shift in the field of scientific simulations, but for that
shift to happen we need to study the performance of such generators in the precision regime needed for science
applications. To this end, in this letter we apply Generative Adversarial Networks to the problem of generating
cosmological weak lensing convergence maps. We show that our generator network produces maps that are
described by, with high statistical confidence, the same summary statistics as the fully simulated maps.

The scientific success of the next generation of sky
surveys (e.g. [1–5]) to test the current “standard model”
of cosmology (⇤CDM), hinges critically on the success
of underlying simulations. Answering questions in cos-
mology about the nature of cold dark matter, dark
energy and the inflation of the early universe, requires
relating observations of a large number of astrophysical
objects which trace the underlying matter density field,
to simulations of “virtual universes” with different cos-
mological parameters. Currently the creation of each
virtual universe requires an extremely computationally
expensive simulation on High Performance Computing
resources. In order to make this inverse problem prac-
tically solvable, constructing a computationally cheap
surrogate model or an emulator [6, 7] is imperative.

However, traditional approaches to emulators re-
quire the use of a summary-statistic which is to be em-
ulated. An approach that does not require such math-
ematical templates of the simulation outcome would
be of considerable value in the field. The ability to
emulate these simulations with high fidelity, in a frac-
tion of the computational time, would boost our ability
to understand the fundamental nature of the universe.
While in this letter we focus our attention on cosmol-
ogy, and in particular weak lensing convergence maps,
we believe that this approach is relevant to many areas
of science and engineering.

Recent developments in deep generative modeling
techniques open the potential to meet this need. The
density estimators in these models are built out of neu-
ral networks which can serve as universal approxima-
tors [8], thus having the ability to learn the underlying
distributions of data and emulate the observable with-
out being biased by the choice of summary-statistics,

⇤Corresponding author: mmustafa@lbl.gov

as in the traditional approach to emulators.
In this letter, we study the ability of a recent vari-

ant of generative models - Generative Adversarial Net-
works (GANs) [9] to generate weak lensing convergence
maps. The training and validation maps are produced
using N-body simulations of ⇤CDM cosmology. We
show that maps generated by the neural network ex-
hibit, with high statistical confidence, the same power
(Fourier) spectrum of the fully-fledged simulator maps,
as well as higher order non-Gaussian features, thus
demonstrating that such scientific data is amenable to
a GAN treatment for generation. The very high level
of agreement we achieve offers promise for building em-
ulators out of deep neural networks. We first present
our results and analysis then outline the future inves-
tigations which we think are critical to build such em-
ulators in the Discussion section.

Results

Gravitational lensing has potential to be one of the
most sensitive probes of the nature of dark energy [10],
and affects the shape and apparent brightness of every
galaxy we observe. Convergence (⌫) is the quantity
that defines the brightness of an observed object as it
is affected by the matter along the line of sight between
that galaxy and the observer. It can be interpreted as
a measure of the density of the universe observed from
a particular direction. A full N-body simulation cre-
ates convergence maps corresponding to many random
realizations of the same cosmological model. We set
out to train a GAN model on 256 ⇥ 256 pixels conver-
gence maps taken from these simulations. A descrip-
tion of the simulations and data preparation methods
is in the Methods section. Before we describe our re-

1
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Figure 1: Weak lensing convergence maps for a ⇤CDM cosmological model with �

8

= 0.798, w = �1.0,
⌦

m

= 0.26 and ⌦

⇤

= 0.74. Randomly selected maps from validation dataset (top) and GAN generated
examples (bottom).

sults we first outline the objective of generative models
and the GANs framework.

The central problem of generative models is the ques-

tion: given a distribution of data P
data

can one devise

a generator G such that the distribution of model gen-

erated data P
model

= P
data

? Our information about
P
data

comes from the training dataset, typically an in-
dependent and identically distributed random sample
x

1

, x

2

, . . . , x

n

which is assumed to have the same dis-
tribution as P

data

. Achieving a high fidelity genera-
tion scheme amounts to the construction of a density
estimator of the training data. In the GANs frame-
work a generator function G is optimized to generate
samples that are indistinguishable from training data
as judged by a discriminator function D. D is opti-
mized to discriminate between training data and gen-
erated data. In the neural network formulation of this
framework the generator network G

✓

parametrized by
network parameters ✓ and discriminator network D

w

parametrized by w are simultaneously optimized using
gradient-descent.

Of interest to us here is the generator G
✓

. Its param-
eters are optimized to map a vector z sampled from a
prior to the support of P

model

. The only requirement
on the generator is that it is differentiable with respect
to its parameters and input (except at possibly finitely
many points). For the 256 ⇥ 256 convergence maps we
study, we choose a normal prior, so:

z ⇠ [N
0

(0, 1), . . . ,N
63

(0, 1)]

G

✓

: z ! x ✏ R256⇥256

.

The dimension of the vector z needs to be com-
mensurate with the support of the training conver-
gence maps P

data

in R256⇥256. Because the underly-
ing physics of the convergence maps is translation and
rotation invariant [11], we chose to construct the gener-
ator and discriminator networks mainly from convolu-
tional layers. To allow the network to learn the proper
correlations on the components of the input z early on,
the first layer of the generator network needs to be a
fully-connected layer. A well studied architecture that
meets these criteria is the Deep Convolutional Gener-
ative Adversarial Networks (DCGAN) [12]. DCGAN
is a set of empirically chosen architectural guidelines
and hyper-parameters which have been shown to be
robust to excel at a variety of tasks. We experimented
with DCGAN architectural parameters and we found
that most of the hyper-parameters optimized for natu-
ral images by the original authors perform well on the
convergence maps, for example, changing the learning
rates or the kernel sizes worsens the performance. We
used DCGAN with slight modifications to meet our
problem dimensions as described in the Methods sec-
tion.

2

Figure 8: Average ⇡+

Geant shower (top), and average ⇡+

CaloGAN shower (bottom), with
progressive calorimeter depth (left to right).

Figure 9: Five randomly selected e+ showers per calorimeter layer from the training set (top) and the
five nearest neighbors (by euclidean distance) from a set of CaloGAN candidates.

Figure 10: Five randomly selected � showers per calorimeter layer from the training set (top) and the
five nearest neighbors (by euclidean distance) from a set of CaloGAN candidates.

Figure 11: Five randomly selected ⇡+ showers per calorimeter layer from the training set (top) and
the five nearest neighbors (by euclidean distance) from a set of CaloGAN candidates.

– 10 –



•Use of generative models of 
galaxy images to help calibrate 
down-stream analysis in next-
generation surveys. 

215

1
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Abstract—Understanding the nature of dark energy, the mys-
terious force driving the accelerated expansion of the Universe, is
a major challenge of modern cosmology. The next generation of
cosmological surveys, specifically designed to address this issue,
rely on accurate measurements of the apparent shapes of distant
galaxies. However, shape measurement methods suffer from
various unavoidable biases and therefore will rely on a precise
calibration to meet the accuracy requirements of the science
analysis. This calibration process remains an open challenge as
it requires large sets of high quality galaxy images. To this
end, we study the application of deep conditional generative
models in generating realistic galaxy images. In particular we
consider variations on conditional variational autoencoder and
introduce a new adversarial objective for training of conditional
generative networks. Our results suggest a reliable alternative
to the acquisition of expensive high quality observations for
generating the calibration data needed by the next generation
of cosmological surveys.

The last two decades have greatly clarified the contents of
the Universe, while leaving several large mysteries in our cos-
mological model. We now have compelling evidence that the
expansion rate of the Universe is accelerating, suggesting that
the vast majority of the total energy content of the Universe
is the so-called dark energy. Yet we lack an understanding
of what dark energy actually is, which provides one of the
main motivations behind the next generation of cosmological
surveys such as LSST (LSST Science Collaboration et al.,
2009), Euclid (Laureijs et al., 2011) and WFIRST (Green
et al., 2012). These billion dollar projects are specifically
designed to shed light on the nature of dark energy by
probing the Universe through the weak gravitational lensing
effect –i.e., the minute deflection of the light from distant
objects by the intervening massive large scale structures of the
Universe. On cosmological scales, this lensing effect causes
very small but coherent deformations of background galaxy
images, which appear slightly sheared, providing a way to
statistically map the matter distribution in the Universe. To
measure the lensing signal, future surveys will image and
measure the shapes of billions of galaxies, significantly driving
down statistical errors compared to the current generation of
surveys, to the level where dark energy models may become
distinguishable.

However, the quality of this analysis hinges on the accuracy
of the shape measurement algorithms tasked with estimating
the ellipticities of the galaxies in the survey. This point
is particularly crucial to the success of these missions, as
any unaccounted for measurement biases in their ensemble

averages would impact the final cosmological analysis and
potentially lead to false conclusions. In order to detect and/or
calibrate any such biases, future surveys will heavily rely on
image simulations, closely mimicking real observations but
with a known ground truth lensing signal.

Fig. 1: Illustration of the processes involved in the measurement
of weak gravitational lensing. The light from distant galaxies is
deflected by the matter in the Universe, causing a shearing of the
galaxy images, which are then further blurred by the atmosphere and
the telescope optics and finally pixelated into a noisy image by the
imaging sensor. Image credit: Mandelbaum et al. (2014), adapted
from Kitching et al. (2010).

Producing these image simulations, however, is challenging
in itself as they require high quality galaxy images as the
input of the simulation pipeline. Such observations can only be
obtained by extremely expensive space-based imaging surveys,
which will remain a scarce resource for the foreseeable future.
The largest current survey being used for image simulation
purposes is the COSMOS survey (Scoville et al., 2007), carried
out using the Hubble Space Telescope (HST). Despite being
the largest available dataset, COSMOS is relatively small, and
there is great interest in increasing the size of our galaxy
image samples to improve the quality of this crucial calibration
process.

In this work, we propose an alternative to the expensive
acquisition of more high quality calibration data using deep
conditional generative models. In recent years, these models
have achieved remarkable success in modeling complex high-
dimensional distributions, producing natural images that can
pass the visual Turing test. Two prominent approaches for
training these models are variational autoencoder (VAE)
(Kingma and Welling, 2013; Rezende et al., 2014) and gener-
ative adversarial network (GAN) (Goodfellow et al., 2014).
Our aim is to train a coditional variation of these models
using existing HST data and generate new galaxy images
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Abstract—Understanding the nature of dark energy, the mys-
terious force driving the accelerated expansion of the Universe, is
a major challenge of modern cosmology. The next generation of
cosmological surveys, specifically designed to address this issue,
rely on accurate measurements of the apparent shapes of distant
galaxies. However, shape measurement methods suffer from
various unavoidable biases and therefore will rely on a precise
calibration to meet the accuracy requirements of the science
analysis. This calibration process remains an open challenge as
it requires large sets of high quality galaxy images. To this
end, we study the application of deep conditional generative
models in generating realistic galaxy images. In particular we
consider variations on conditional variational autoencoder and
introduce a new adversarial objective for training of conditional
generative networks. Our results suggest a reliable alternative
to the acquisition of expensive high quality observations for
generating the calibration data needed by the next generation
of cosmological surveys.

The last two decades have greatly clarified the contents of
the Universe, while leaving several large mysteries in our cos-
mological model. We now have compelling evidence that the
expansion rate of the Universe is accelerating, suggesting that
the vast majority of the total energy content of the Universe
is the so-called dark energy. Yet we lack an understanding
of what dark energy actually is, which provides one of the
main motivations behind the next generation of cosmological
surveys such as LSST (LSST Science Collaboration et al.,
2009), Euclid (Laureijs et al., 2011) and WFIRST (Green
et al., 2012). These billion dollar projects are specifically
designed to shed light on the nature of dark energy by
probing the Universe through the weak gravitational lensing
effect –i.e., the minute deflection of the light from distant
objects by the intervening massive large scale structures of the
Universe. On cosmological scales, this lensing effect causes
very small but coherent deformations of background galaxy
images, which appear slightly sheared, providing a way to
statistically map the matter distribution in the Universe. To
measure the lensing signal, future surveys will image and
measure the shapes of billions of galaxies, significantly driving
down statistical errors compared to the current generation of
surveys, to the level where dark energy models may become
distinguishable.

However, the quality of this analysis hinges on the accuracy
of the shape measurement algorithms tasked with estimating
the ellipticities of the galaxies in the survey. This point
is particularly crucial to the success of these missions, as
any unaccounted for measurement biases in their ensemble

averages would impact the final cosmological analysis and
potentially lead to false conclusions. In order to detect and/or
calibrate any such biases, future surveys will heavily rely on
image simulations, closely mimicking real observations but
with a known ground truth lensing signal.

Fig. 1: Illustration of the processes involved in the measurement
of weak gravitational lensing. The light from distant galaxies is
deflected by the matter in the Universe, causing a shearing of the
galaxy images, which are then further blurred by the atmosphere and
the telescope optics and finally pixelated into a noisy image by the
imaging sensor. Image credit: Mandelbaum et al. (2014), adapted
from Kitching et al. (2010).

Producing these image simulations, however, is challenging
in itself as they require high quality galaxy images as the
input of the simulation pipeline. Such observations can only be
obtained by extremely expensive space-based imaging surveys,
which will remain a scarce resource for the foreseeable future.
The largest current survey being used for image simulation
purposes is the COSMOS survey (Scoville et al., 2007), carried
out using the Hubble Space Telescope (HST). Despite being
the largest available dataset, COSMOS is relatively small, and
there is great interest in increasing the size of our galaxy
image samples to improve the quality of this crucial calibration
process.

In this work, we propose an alternative to the expensive
acquisition of more high quality calibration data using deep
conditional generative models. In recent years, these models
have achieved remarkable success in modeling complex high-
dimensional distributions, producing natural images that can
pass the visual Turing test. Two prominent approaches for
training these models are variational autoencoder (VAE)
(Kingma and Welling, 2013; Rezende et al., 2014) and gener-
ative adversarial network (GAN) (Goodfellow et al., 2014).
Our aim is to train a coditional variation of these models
using existing HST data and generate new galaxy images
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Fig. 2: Samples from the GALAXY-ZOO dataset and generated samples using conditional generative adversarial network of Section III. Each
synthetic image is a 128⇥ 128 colored image (here inverted) produced by conditioning on the same set of features y 2 [0, 1]37 as its real
pair. These instances are selected from the test-set and were unavailable to the model during the training.

conditioned on statistics of interest such as the brightness or
size of the galaxy. This will allow us to synthesize calibration
datasets for specific galaxy populations, with objects exhibit-
ing realistic morphologies.

In the following, Section I gives a brief background on the
image generation for calibration and its significance for mod-
ern cosmology. We then review the current approaches to deep
conditional generative models and introduce new techniques
for our problem setting in Sections II and III. In Section IV we
assess the quality of the generated images by comparing the
conditional distributions of shape and morphology parameters
between simulated and real galaxies, and find good agreement.

I. WEAK GRAVITATIONAL LENSING

In the weak regime of gravitational lensing, the distortion of
background galaxy images can be modeled by an anisotropic
shear, noted �, whose amplitude and orientation depend on
the matter distribution between the observer and these distant
galaxies. This shear affects in particular the apparent ellipticity
of galaxies, denoted e. Measuring this weak lensing effect is
made possible under the assumption that background galaxies
are randomly oriented, so that the ensemble average of the
shapes would average to zero in the absence of lensing. Their
apparent ellipticity e can then be used as a noisy but unbiased
estimator of the shear field �: E[e] = �. The cosmological
analysis then involves computing auto- and cross-correlations
of the measured ellipticities for galaxies at different distances.
These correlation functions are compared to theoretical pre-
dictions in order to constrain cosmological models and shed
light on the nature of dark energy.

However, measuring galaxy ellipticities such that their
ensemble average (used for the cosmological analysis) is
unbiased is an extremely challenging task. Fig. 1 illustrates
the main steps involved in the acquisition of the science
images. The weakly sheared galaxy images undergo additional
distortions (essentially blurring) as they go through the at-
mosphere and telescope optics, before being acquired by the
imaging sensor which pixelates the noisy image. As this figure
illustrates, the cosmological shear is clearly a subdominant
effect in the final image and needs to be disentangled from
subsequent blurring by the atmosphere and telescope options.
This blurring, or Point Spread Function (PSF), can be directly

measured by using stars as point sources, as shown at the top
of Fig. 1.

Once the image is acquired, shape measurement algorithms
are used to estimate the ellipticity of the galaxy while correct-
ing for the PSF. However, despite the best efforts of the weak
lensing community for nearly two decades, all current state-
of-the-art shape measurement algorithms are still susceptible
to biases in the inferred shears. These measurement biases are
commonly modeled in terms of additive and multiplicative bias
parameters c and m defined as:

E[e] = (1 +m) � + c (1)

where � is the true shear. Depending on the shape measure-
ment method being used, m and c can depend on factors such
as the PSF size/shape, the level of noise in the images or,
more generally, intrinsic properties of the galaxy population
(like their size and ellipticity distributions, etc. ). Calibration of
these biases can be achieved using image simulations, closely
mimicking real observations for a given survey but using
galaxy images distorted with a known shear, thus allowing
the measurement of the bias parameters in Eq. (1).

Image simulation pipelines, such as the GalSim package
(Rowe et al., 2015), use a forward modeling of the observa-
tions, reproducing all the steps of the image acquisition pro-
cess in Fig. 1, and therefore require as a starting point galaxy
images with high resolution and S/N. The main difficulty in
these image simulations is therefore the need for a calibration
sample of high quality galaxy images representative of the
galaxy population of the survey being simulated. Our aim in
this work is to train a deep generative model which can be
used to cheaply synthesize such data sets for specific galaxy
populations, by conditioning the samples on measurable quan-
tities.

A. Data set

As our main dataset, we use the COSMOS survey to build
a training and validation set of galaxy images and extract
from the corresponding catalog a condition vector y with
three features: half-light radius (measure of size), magnitude
(measure of brightness) and redshift (cosmological measure of
distance). To facilitate the training, we align all galaxies along

G E N E R AT I V E  M O D E L S  F O R  C A L I B R AT I O N
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Adversarial Variational Optimization of Non-Di↵erentiable Simulators

Gilles Louppe1 and Kyle Cranmer1

1New York University

Complex computer simulators are increasingly used across fields of science as generative models
tying parameters of an underlying theory to experimental observations. Inference in this setup is
often di�cult, as simulators rarely admit a tractable density or likelihood function. We introduce
Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-
di↵erentiable generative model incorporating ideas from empirical Bayes and variational inference.
We adapt the training procedure of generative adversarial networks by replacing the di↵erentiable
generative network with a domain-specific simulator. We solve the resulting non-di↵erentiable mini-
max problem by minimizing variational upper bounds of the two adversarial objectives. E↵ectively,
the procedure results in learning a proposal distribution over simulator parameters, such that the
corresponding marginal distribution of the generated data matches the observations. We present
results of the method with simulators producing both discrete and continuous data.

I. INTRODUCTION

In many fields of science such as particle physics, epi-
demiology, and population genetics, computer simulators
are used to describe complex data generation processes.
These simulators relate observations x to the parame-
ters ✓ of an underlying theory or mechanistic model.
In most cases, these simulators are specified as proce-
dural implementations of forward, stochastic processes
involving latent variables z. Rarely do these simulators
admit a tractable density (or likelihood) p(x|✓). The
prevalence and significance of this problem has motivated
an active research e↵ort in so-called likelihood-free infer-

ence algorithms such as Approximate Bayesian Compu-
tation (ABC) and density estimation-by-comparison al-
gorithms [1–6].

In parallel, with the introduction of variational auto-
encoders [7] and generative adversarial networks [8],
there has been a vibrant research program around im-
plicit generative models based on neural networks [9].
While some of these models also do not admit a tractable
density, they are all di↵erentiable by construction. In ad-
dition, generative models based on neural networks are
highly parametrized and the model parameters have no
obvious interpretation. In contrast, scientific simulators
can be thought of as highly regularized generative mod-
els as they typically have relatively few parameters and
they are endowed with some level of interpretation. In
this setting, inference on the model parameters ✓ is often
of more interest than the latent variables z.

In this note, we develop two likelihood-free inference al-
gorithms for non-di↵erentiable, implicit generative mod-
els. The first allows us to perform empirical Bayes
through variational inference, and the second provides
a point estimator of the parameters ✓. We adapt the
adversarial training procedure of generative adversarial
networks [8] by replacing the implicit generative network
with a domain-based scientific simulator, and solve the
resulting non-di↵erentiable minimax problem by mini-
mizing variational upper bounds [10, 11] of the adver-
sarial objectives. The objective of both algorithms is to

match marginal distribution of the generated data to the
empirical distribution of the observations.

II. PROBLEM STATEMENT

We consider a family of parametrized densities p(x|✓)
defined implicitly through the simulation of a stochas-
tic generative process, where x 2 Rd is the data and ✓
are the parameters of interest. The simulation may in-
volve some complicated latent process where z 2 Z is a
latent variable providing an external source of random-
ness. Unlike implicit generative models defined by neural
networks, we do not assume z to be a fixed-size vector
with a simple density. Instead, the dimension of z and
the nature of its components (uniform, normal, discrete,
continuous, etc.) are inherited from the control flow of
the simulation code and may depend on ✓ in some in-
tricate way. Moreover, the dimension of z may be much
larger than the dimension of x.
We assume that the stochastic generative process that

defines p(x|✓) is specified through a non-di↵erentiable
deterministic function g(·;✓) : Z ! Rd. Operationally,

x ⇠ p(x|✓) ⌘ z ⇠ p(z|✓),x = g(z;✓) (1)

such that the density p(x|✓) can be written as

p(x|✓) =
Z

{z:g(z;✓)=x}
p(z|✓)µ(dz), (2)

where µ is a probability measure.
Given some observed data {xi|i = 1, . . . , N} drawn

from the (unknown) true distribution pr(x), our goal is to
estimate the parameters ✓⇤ that minimize the divergence
between pr(x) and the implicit model p(x|✓). That is,

✓⇤ = argmin
✓

⇢(pr(x), p(x|✓)), (3)

where ⇢ is some distance or divergence.

G. Louppe & K.C. arXiv:1707.07113

Catch me if you can

Leo is G Tom is D

5 / 13

•Continue to use a neural network 
discriminator / critic. 

•Difficulty: the simulator isn’t 
differentiable, but there’s a trick! 

•Allows us to efficiently fit /  
tune simulation with stochastic 
gradient techniques!

http://arxiv.org/abs/1707.07113
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Variational Optimization

min

✓
f(✓)  E✓⇠q(✓| )[f(✓)] = U( )

r U( ) = E✓⇠q(✓| )[f(✓)r log q(✓| )]

Piecewise constant � sin(x)
x

q(✓| = (µ,�)) = N (µ, e�)

25 / 38
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29 / 38

Adversarial Variational Optimization

• Replace the generative network with a non-di↵erentiable
forward simulator g(z;✓).

• With VO, optimize upper bounds of the adversarial objectives:

Ud = E✓⇠q(✓| )[Ld] (1)

Ug = E✓⇠q(✓| )[Lg] (2)

respectively over � and  .

Credits: 1707.07113

26 / 38Operationally, we get the marginal model:

x ⇠ q(x| ) ⌘ ✓ ⇠ q(✓| ), z ⇠ p(z|✓),x = g(z;✓)

27 / 38

•We use Wasserstein distance, 
as in WGAN

•Effectively sampling from 
marginal model

G. Louppe & K.C. arXiv:1707.07113

http://arxiv.org/abs/1707.07113
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H O W  D O E S  I T  W O R K ?

•In short: hijack the random number generators and use 
NN’s to perform a very smart type of importance sampling
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Input: an inference 
problem denoted in 
a universal PPL
(Anglican, CPProb)

Output: a trained 
inference network, 
or “compilation 
artifact”
(Torch, PyTorch)

Le, Baydin and Wood. Inference Compilation and Universal Probabilistic Programming. AISTATS 2017. 
arXiv:1610.09900

Inference compilation



(defquery captcha 
 [image num-chars tol]
 (let [[w h] (size image)
       ;; sample random characters
       num-chars (sample 
                  (poisson num-chars))
       chars (repeatedly 
               num-chars sample-char)]
  ;; compare rendering to true image
  (map (fn [y z] 
         (observe (normal z tol) y)) 
       (reduce-dim image)
       (reduce-dim (render chars w h)))
  ;; predict captcha text
  {:text
   (map :symbol (sort-by :x chars))}))

Posterior Samples

CAPTCHA breaking
Generative ModelObservation

y
x

text image
Mansinghka,, Kulkarni, Perov, and Tenenbaum  

“Approximate Bayesian image interpretation using generative probabilistic graphics programs." NIPS (2013).
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(defquery arrange-bumpers []
    (let [number-of-bumpers (sample (poisson 20))
          bumpydist (uniform-continuous 0 10)
          bumpxdist (uniform-continuous -5 14)
          bumper-positions (repeatedly
                            number-of-bumpers
                            #(vector (sample bumpxdist) 
                                     (sample bumpydist)))

          ;; code to simulate the world
          world (create-world bumper-positions)
          end-world (simulate-world world)
          balls (:balls end-world)

          ;; how many balls entered the box?
          num-balls-in-box (balls-in-box end-world)]

      {:balls balls
       :num-balls-in-box num-balls-in-box
       :bumper-positions bumper-positions}))

A N A L O G Y:  R A N D O M  B U M P E R S  ~  R A N D O M  C A L O R I M E T E R  S H O W E R
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C A R L

•The intractable likelihood ratio based on high-dimensional features x is: 

•We can show that an equivalent test can be made from 1-D projection 

•if the scalar map s: X → ℝ has the same level sets as the likelihood ratio 

•Estimating the density of                       via the simulator calibrates the ratio. 
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1
Sometimes there is an additional Poisson term when expected number of signal and background events

is known.

2

s     

p
(s

)  
 

s(x; ✓0; ✓1) = monotonic[ p(x|✓0)/p(x|✓1) ]

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169

p(x|✓0)
p(x|✓1)

p(x|✓0)
p(x|✓1)

=
p(s(x; ✓0, ✓1)|✓0)
p(s(x; ✓0, ✓1)|✓1)

s(x; ✓0, ✓1)

✓0✓1

http://arxiv.org/abs/1506.02169


C A R L

•Binary classifier on balanced y=0 and y=1 labels learns 

•Which is one-to-one with the likelihood ratio  

•Can do the same thing for any two points θ₀ & θ₁ in 
parameter space. I call this a parametrized classifier 
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s(x; ✓0, ✓1) =
p(x|✓1)

p(x|✓0) + p(x|✓1)

s(x) =
p(x|y = 1)

p(x|y = 0) + p(x|y = 1)

p(x|y = 0)

p(x|y = 1)
= 1� 1

s(x)

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169

http://arxiv.org/abs/1506.02169
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http://diana-hep.org/carl/

Gilles Louppe
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Figure ��: Inference from truth likelihood ratio and carl’s estimate for the fully di�erential case
with regression. Le�: scatter plot showing the di�erence between the exact expected
likelihood ratio for ��� randomly sampled points and θ1 and carl’s estimate. Right:
true (white) and approximate (cyan) likelihood contours, using a Gaussian Process for
interpolation. �e white and cyan dots show the exact and approximate maximum-
likelihood estimators.�e green and red dots show θobserved and θ1, respectively. Finally,
the small grey dots show the sampled parameter points at which the likelihood ratio
was evaluated.
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Weak boson fusion, h → 4�
� Production vs decay

� hZZ decay vertex:
many angular structures

� Very clean

� Same operators as before:OB = i g2 (Dµ�†)(Dν�)Bµν OW = i g2 (Dµ�)†σ k(Dν�)W k
µν

OBB = − g′24 (�†�)Bµν Bµν OWW = − g24 (�†�)W k
µν W µν k

O� ,2 = 1
2
∂µ(�†�) ∂µ(�†�) OWW̃ = − g24 (�†�)W k

µν W̃ µν k

� Setup as before, except:
� No backgrounds, no smearing
� L ⋅ ε = 100 fb−1
� Cuts: pT , j > 20 GeV, �η j � < 5.0, pT ,� > 10 GeV, �η� � < 2.5
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A M O R T I Z E D  L I K E L I H O O D - F R E E  I N F E R E N C E

•Once we’ve learned the function s(x; θ) to approximate the 
likelihood, we can apply it to any data x.  

• unlike MCMC, we pay biggest computational costs up front 

• Here we repeat inference thousands of times & check 
asymptotic statistical theory

232

(a) Exact vs. approximated MLEs. (b) p(�2 log⇤(� = 0.05) | � = 0.05)

Figure 2: Using approximated likelihood ratios for parameter inference yields an unbi-

ased maximum likelihood estimator �̂, as empirically estimated from an ensemble of 1000

artificial datasets.

An advantage of this approach compared to Approximate Bayesian Computation (Beau-

mont et al., 2002) is that the classifier and calibration – computationally intensive parts of

the approximation – are independent of the dataset D. Thus once trained and calibrated,

the approximation can be applied to any dataset D. This makes it computationally e�cient

to perform ensemble tests of the method.

Figure 2a shows the empirical distribution of the maximum likelihood estimators (MLEs)

from the approximate likelihood compared to the distribution of the MLEs from the exact

likelihood. It clearly demonstrates that in this case the approximate likelihood yields an

unbiased estimator with essentially the same variance as the exact MLE. In addition to

the MLE, we can study the coverage of a confidence interval based on the likelihood ra-

tio test statistic. This is done by evaluating �2 log⇤(� = 0.05) for samples drawn from

p(x|� = 0.05). Wilks’s theorem states that the distribution of �2 log⇤(� = 0.05) should

follow a �

2

1

distribution. Figure 2b also confirms this behavior, supporting the applicability

18

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169

http://arxiv.org/abs/1506.02169


T W O  A P P R O A C H E S

• Approximate Bayesian 
Computation (ABC) 

• Probabilistic Programming 

• Adversarial Variational 
Optimization (AVO)

233

Use simulator  
(much more efficiently)

Learn simulator  
(with deep learning)

• Generative Adversarial Networks (GANs), 
Variational Auto-Encoders (VAE) 

• Likelihood ratio from classifiers (CARL) 

• Autogregressive models,  
Normalizing Flows

[image credit: A.P. Goucher]

https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/
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Approximations using Change-of-variables

Exploit the rule for change of variables for random variables:

Ñ Begin with an initial distribution q0(z0|x).
Ñ Apply a sequence of K invertible functions fk.

z0

x

z1

…

zK

t = 0 t = 1 … t = T

q(z�) = q(z)

����det
�f

�z

����
�1

log qK(zK) = log q0(z0) �
K�

k=1

log det

����
�fk

�zk

����

zK = fK � . . . � f2 � f1(z0)
Sampling and Entropy

Distribution flows through a sequence of invertible transforms

[Rezende and Mohamed, 2015]

Choice of Transformation Function

L =Eq0(z0)[log p(x,zK)]�Eq0(z0)[log q0(z0)]�Eq0(z0)

ñ KX

k=1

log det

����
@ fk
@ zk

����

ô

Ñ Begin with a fully-factorised Gaussian and improve by change of variables.
Ñ Triangular Jacobians allow for computational efficiency.

zk

h

+

zk+1

zk = zk�1 + uh(w�zk�1 + b)

Planar Flow

zk

t

concat

z1:d zd+1:D

+

y1:d

s ⦿

yd+1:D

zk+1

y1:d = zk�1,1:d

yd+1:D = t(zk�1,1:d) + zd+1:D � exp(s(zk�1,1:d))

Real NVP

zk z<k

har

μ σ

- ÷

zk+1

zk =
zk�1 � µk(z<k, x)

�k(z<k, x)

Inverse AR Flow

[Rezende and Mohamed, 2016; Dinh et al., 2016; Kingma et al., 2016]

Linear time computation of the determinant and its gradient.

•Normalizing flows and autoregressive models
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P H Y S I C S - A W A R E  M A C H I N E  L E A R N I N G

•We can inject our knowledge of physics into the variational family 
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FIG. 1: Three parameter covariance

FIG. 2: Gaussian Process covariance

in to the paper may be tricky

• essentially, does our Gaussian Process have features
we’d expect from JES/PDF e↵ects

To better construct a kernel, we can also include our un-
derstanding of detector e↵ects and physics e↵ects. We
look at the covariance matrix of the 3 parameter fit func-
tion by fitting the ATLAS dataset and using Markov
Chain Monte Carlo [cite emcee?] to sample the posterior
(Fig 1). One can see a visible structure in the covariance,
suggesting the inflexibility of the fit function causes an-
chor points which the fit pivots around. This hints that
the parametric fits have some sort of inherent structure
that is not grounded in any physical properties of the
distribution.

As a comparison, the covariance matrix created from
posterior samples from the Gaussian Process fit to the
ATLAS dataset show less correlation between points at
higher mass (Fig 2). The correlation seems constrained
to diagonal, with the o↵ diagonal dying o↵ quickly.

We can now look at two e↵ects; jet energy scale (JES)
and parton density function (PDF) e↵ects. JES e↵ects
smear out the spectrum due to uncertainty on the mea-
sured energy of the jet. To model this, we use a Gaus-
sian kernel of various widths and means to smear out our

FIG. 3: JES Covariance Structure

FIG. 4: PDF Covariance Structure

distribution, and create a covariance matrix from these
samples (Fig 3). One can see a high degree of correlation
across all points in the distribution.
PDF e↵ects were implemented in the paper [cite] by

taking the 8 TeV dijet analysis data [cite] and comput-
ing a covariance matrix from applying di↵erent PDF sets
(Fig 4).
For comparison, we also create a covariance from a

Sliding Window Fit (SWiFt). The SWiFt solution to
the problems with fitting at high luminosities is to fit the
parametric form within smaller segments of the distribu-
tion, and piece together a final background estimation
across the whole spectrum. This method should create a
covariance structure which is limited to the diagonal and
zero in the o↵ diagonal, as each fit includes only a small
portion of the distribution. Indeed this is what we see in
Figure 5.

Other related plots

• Covariance and correlations as a function of mjj i.e.
plotting each row of the correlation and covariance
matrix separately.
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+ Jet Energy Scale

+ Parton Density  
Functions

Final Kernel = 

Poisson fluctuations 

+ Mass Resolution=

+ 
…

+ 

QCD-Aware recursive neural networks
• arXiv:1702.00748• arXiv:1709.05681

Physics-aware Gaussian Processes

QCD-Aware graph convolutional neural networks
• NIPS2017 workshop
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https://arxiv.org/abs/1709.05681
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signal variability noise data
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astrophysics and spacecraft

The anatomy of a transit observation
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[Slides by Dan Foreman-Mackey]

https://indico.cern.ch/event/395374/timetable/#41-scalable-gaussian-processes
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HUGE
the data are drawn from one

Gaussian
* the dimension is the number of data points.

*



A  PA R T I C L E  P H Y S I C S  E X A M P L E  O F  A  G A U S S I A N  P R O C E S S

•The unfolding process gives us a best estimate for unfolded distribution f(zᵢ) and 
covariance matrix (eg. f(zᵢ) and f(zᵢ₊₁) are usually highly correlated) 

• the result of unfolding can be considered a Gaussian Process (GP). 

• Gaussian Processes can be generalized to continuous z (unbinned distribution)

244

4

FIG. 2: Schematic of the relationship between an ad-hoc function and the GP. An example toy dataset is shown
(left) with samples from the posterior for an ad-hoc 1-parameter function (red) and a GP (green). Each posterior
sample is an entire curve f(x), which corresponds to a particular point in the (center) plane of f(x

A

) vs. f(x
B

).
The red dots for the ad-hoc 1-parameter function trace out a 1-dimensional curve, which reveals how the function is

overly-rigid. In contrast, the green dots from the GP relax the assumptions and fill a correlated multivariate
Gaussian (with covariance indicated by the black ellipse). The covariance kernel ⌃(x, x0) for the GP is shown (right)

with ⌃(x
A

, x

B

) corresponding to the black ellipse of the center panel.

Connection to unfolding

The process of constructing a GP kernel, which en-
codes our physical requirements for the background
model, is closely related to the more familiar topic of im-
posing physical requirements when unfolding di↵erential
cross section distributions.

In unfolding, we have an observed set of bin counts
for an observable x, which we also assume to arise from a
Poisson point process as in Eq. 1. In contrast to searches,
the goal is to estimate the di↵erential cross section for a
theoretical quantity z, removing dependence on experi-
mental e�ciency, acceptance, and detector e↵ects. The
relationship between the target theoretical intensity f(z)
and the intensity for the observable f(x) is given by

f(x) =

Z
f(z)W (x|z)dz , (7)

where W (x|z) is a folding matrix or transfer function
that encodes smearing e↵ects from detector resolution.
Ideally, the experimentalist makes no assumptions about
the theoretical intensity f(z), and infers f(z) through the
unfolding process. As has been well studied, this type of
inverse problem is ill-posed in the technical sense that
the solution f(z) is sensitive to small changes to f(x) or
observed data. The unregularized maximum likelihood
solution to the unfolding problem often exhibits unphysi-
cal oscillations in f(z). Physical considerations motivate
additional regularization or penalty terms to the likeli-
hood that are not motivated by auxiliary measurements,
but which lead to solutions that behave better for the

f(z) we consider relevant. 3

Of particular interest for particle physics is to revisit
Eq. 7 when f(z) is itself a GP. In that case Eq. 7 can
be seen as applying the linear operator

R
W (x|z)dz to

the GP f(z), which gives rise to another GP through a
process convolution [25, 26] resulting in

⌃(x, x0) =

Z Z
dzdz

0⌃(z, z0)W (x, z)W (x0
, z

0) (8)

As expected, even in the extreme case where di↵erent
bins of the theoretical distribution are allowed to be to-
tally uncorrelated, ⌃(z, z0) / �(z � z

0), the finite resolu-
tion of the detector will introduce correlations in x via
W . For example, if W (x|z) is a Gaussian smearing with
resolution �

x

, then the resulting GP is an exponential
squared kernel (see Eq. 9) with length scale l =

p
2�

x

.

Physically motivated kernels

Next, we motivate contributions to the kernel that are
clearly grounded in experimental and theoretical forms
of uncertainty cast in terms of Eq. 7. In the ideal case,

3 There is a deep connection between Tikhonov regularization and
other forms of regularization used in unfolding and the kernels
of Gaussian Processes, which is formalized in the language of
Reproducing Kernel Hilbert Spaces [8, 24]. A detailed discussion
of this connection is beyond the scope of this paper; however, we
should anticipate a contribution to the Gaussian Process kernel
that is connected to this loosely defined notion of smoothness in
the underlying physics.

z

f(z) W (x|z)
M

=

truth level
folding / smearing 
detector response

x

folded distribution 
& poisson fluctuations

•Consider unfolding when the detector response / “folding matrix”  is known 
exactly (eg. no systematic uncertainty in detector response). 

• the bin counts of observed distribution are uncorrelated Poisson fluctuations.
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where

[K↵(x, �)]ij = �i
2
�ij + k↵(xi, xj)

y ⇠ N (f✓(x), K↵(x, �))

The mathematical model

kernel function 
(where the magic happens)

log p(y |x, �, ✓, ↵) =� 1

2

[y � f✓(x)]
T K↵(x, �)

�1
[y � f✓(x)]

� 1

2

log detK↵(x, �)�
N

2

log 2⇡

where

The mathematical model

[K↵(x, �)]ij = �i
2
�ij + k↵(xi, xj)

see: gaussianprocess.org/gpml     github.com/dfm/george
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FIG. 2: Schematic of the relationship between an ad-hoc function and the GP. An example toy dataset is shown
(left) with samples from the posterior for an ad-hoc 1-parameter function (red) and a GP (green). Each posterior
sample is an entire curve f(x), which corresponds to a particular point in the (center) plane of f(x

A

) vs. f(x
B

).
The red dots for the ad-hoc 1-parameter function trace out a 1-dimensional curve, which reveals how the function is

overly-rigid. In contrast, the green dots from the GP relax the assumptions and fill a correlated multivariate
Gaussian (with covariance indicated by the black ellipse). The covariance kernel ⌃(x, x0) for the GP is shown (right)

with ⌃(x
A

, x

B

) corresponding to the black ellipse of the center panel.

Connection to unfolding

The process of constructing a GP kernel, which en-
codes our physical requirements for the background
model, is closely related to the more familiar topic of im-
posing physical requirements when unfolding di↵erential
cross section distributions.

In unfolding, we have an observed set of bin counts
for an observable x, which we also assume to arise from a
Poisson point process as in Eq. 1. In contrast to searches,
the goal is to estimate the di↵erential cross section for a
theoretical quantity z, removing dependence on experi-
mental e�ciency, acceptance, and detector e↵ects. The
relationship between the target theoretical intensity f(z)
and the intensity for the observable f(x) is given by

f(x) =

Z
f(z)W (x|z)dz , (7)

where W (x|z) is a folding matrix or transfer function
that encodes smearing e↵ects from detector resolution.
Ideally, the experimentalist makes no assumptions about
the theoretical intensity f(z), and infers f(z) through the
unfolding process. As has been well studied, this type of
inverse problem is ill-posed in the technical sense that
the solution f(z) is sensitive to small changes to f(x) or
observed data. The unregularized maximum likelihood
solution to the unfolding problem often exhibits unphysi-
cal oscillations in f(z). Physical considerations motivate
additional regularization or penalty terms to the likeli-
hood that are not motivated by auxiliary measurements,
but which lead to solutions that behave better for the

f(z) we consider relevant. 3

Of particular interest for particle physics is to revisit
Eq. 7 when f(z) is itself a GP. In that case Eq. 7 can
be seen as applying the linear operator

R
W (x|z)dz to

the GP f(z), which gives rise to another GP through a
process convolution [25, 26] resulting in

⌃(x, x0) =

Z Z
dzdz

0⌃(z, z0)W (x, z)W (x0
, z

0) (8)

As expected, even in the extreme case where di↵erent
bins of the theoretical distribution are allowed to be to-
tally uncorrelated, ⌃(z, z0) / �(z � z

0), the finite resolu-
tion of the detector will introduce correlations in x via
W . For example, if W (x|z) is a Gaussian smearing with
resolution �

x

, then the resulting GP is an exponential
squared kernel (see Eq. 9) with length scale l =

p
2�

x

.

Physically motivated kernels

Next, we motivate contributions to the kernel that are
clearly grounded in experimental and theoretical forms
of uncertainty cast in terms of Eq. 7. In the ideal case,

3 There is a deep connection between Tikhonov regularization and
other forms of regularization used in unfolding and the kernels
of Gaussian Processes, which is formalized in the language of
Reproducing Kernel Hilbert Spaces [8, 24]. A detailed discussion
of this connection is beyond the scope of this paper; however, we
should anticipate a contribution to the Gaussian Process kernel
that is connected to this loosely defined notion of smoothness in
the underlying physics.



M O A R  D ATA !

•GP fits the background well, and continues to as we add 
more data. Parametric function no longer fits well
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FIG. 9: Mean and standard deviation of the �

2/d.o.f.
measure in toy data generated from ATLAS collisions,
as a function of integrated luminosity, for the ad-hoc fit

and the Gaussian process.

incorporate a signal contribution will have no discovery
power.

Here, we test the GP model’s performance in the toy
data constructed as described earlier, but with signal in-
jected as well.

We used a generic Gaussian resonance, and performed
tests with various values for the signal mass, width and
amplitude. The hyperparameters of the GP (both for
the background mean and kernel functions) are fixed
from our fit to the ATLAS dataset; in a realistic applica-
tion, experimenters could establish the hyperparameters
in simulated samples. We only fit the three parameters
(amplitude, mass, and width) of the Gaussian signal. For
the parametric fit, we fit all six parameters: the three fit
function parameters and three signal parameters. An ex-
ample of this background-plus-signal fit is shown with an
injected 2.5 TeV Gaussian signal shape in the top panel
of Fig. 10.

This single example is illustrative and qualitative, but
the statistical test for the presence of a signal in ob-
served data relies on the likelihood ratio ⇤ between
the background-only and the signal-plus-background hy-
potheses. We calculate the likelihood ratio between the
two hypotheses in cases background-only toy data as well
as background-plus-signal toy data. This involves the use
of Eq. 11 twice, as the posterior mean background pre-
diction is di↵erent for the background-only and signal-
plus-background fits. This is analogous to the profile
likelihood ratio where there are two fits and the condi-
tional maximum likelihood estimate of the background in
the background-only case is generally di↵erent from the
background estimate in the signal-plus-background fit.

The distribution of �2 log⇤ is shown in Figure 11 for
background-only toys for both the 3-parameter ad-hoc
function and the GP. In these fits the signal mass and
width were fixed and the signal strength was treated as
the parameter of interest. In the parametric case, we

FIG. 10: Invariant mass of dijet pairs reported by
ATLAS [15] in proton-proton collisions at

p
s = 13 TeV

with integrated luminosity of 3.6 fb�1 with a false
signal injected at m

jj

= 2.5 TeV. The green line is the
Gaussian process background-only model; the red line is
the signal-plus-background model. The central pane

shows the significance of the residual between the data
and the background fit; the bottom-pane shows the
significance of the residual between the data and the

background-plus-signal fit.

can invoke Wilks’ theorem, which says this distribution
should follow a chi-square distribution if the true distri-
bution generating the data corresponds to some point
in the parameter space of the background model [16].
However, in this case, the background-only toys were not
generated from the ad-hoc function, instead they were
generated from a smoothed version of the ATLAS data.
Nevertheless, the distribution closely tracks a chi-square
distribution.

In the case of the GP, the situation is more subtle be-
cause of the 2-step nature of the statistical approach and
the subtle Bayesian vs. Frequentist issues. Because of
the Gaussian form, we expect correspondence between
the posterior mean and the maximum likelihood esti-
mate, thus we two-step nature is an irrelevant techni-
cal detail. The more subtle issue is that the likelihood of
Eq. 1 only reflects the Poisson fluctuations, while the con-
straint terms the kernel encodes are not reflected in this
likelihood. In this case there is not significant tension be-
tween the data and the covariance kernel so the likelihood
ratio distribution also tracks a chi-square distribution. In
general, this will need to be checked explicitly.

Next we directly assess the power of the search by
considering the distribution of �2 log⇤ for signal-plus-
background toys with signals of various masses. Fig-
ure 12 shows the mean of the �2 log⇤ distribution for the

7

where x⇤ are the values where the posterior GP is being
evaluated and x are the values being conditioned on. In
a typical binned analysis x and x⇤ would both be the
the bin centers. In addition, fitting the hyperparameters
of a GP is usually based on maximizing the marginal
likelihood, which has the explicit form

logL = �1

2
log |⌃|�(y�µ(x))T⌃�1(y�µ(x))�n

2
log 2⇡ .

(13)
In order to take advantage of the closed form solutions
above and fast linear algebra implementations, the statis-
tical fluctuations are typically approximated as �2(x) =
y instead of the more accurate Poisson mean.

In principle, one can revisit the logic of a particular
GP kernel to trace back the terms that came from aux-
iliary measurements with a clear frequentist interpreta-
tion, and cary out the equivalent profile likelihood treat-
ment. Given the correspondence between profiling and
marginalization in the Gaussian case, this should lead
to equivalent results with di↵erences of at most constant
factors; however, those factors may depend on the hyper-
parameters. The philosophical and practical use of the
GP’s profile likelihood will also be complicated by the
contributions to the kernel from theoretical considera-
tions that lack a frequentist interpretation and contribu-
tions motivated by regularization considerations. Thus,
we leave this as a direction for future work.

In practice there are roughly four ways the GP can be
integrated into the high-energy physics search strategy.

The first is to take on a fully Bayesian approach using
the GP as the intensity of a Poisson point process, which
forms a doubly stochastic Cox process [20]. Hypothesis
testing and limits can then be based on Bayes factors.
This approach was considered in Ref. [21]; however, it is
computationally very intensive and di�cult to combine
with the bulk of the likelihood-based search strategies.

The second is to approximate the Poisson fluctuations
as Gaussian and use the marginal likelihood of Eq. 13 di-
rectly in the test statistic, which is more computationally
e�cient. One can still use this marginal likelihood as a
test statistic in the frequentist sense, but it requires us-
ing ensemble tests to calibrate the p-values as one cannot
rely on the standard asymptotic formulae [37].

The third approach is a two-step process where one
first calculates the posterior mean of Eq. 11 and then uses
µ(x) as the intensity for the Poisson likelihood of Eq. 1 or
its corresponding binned version. Similar to the profile
likelihood approach, the background model can be con-
ditioned on the signal hypothesis being tested, since the
signal’s parameters are present in the prior mean func-
tion. Computationally this approach is similar to the one
above, with an additional cost of evaluating the Poisson
likelihood and the practical considerations of managing
the two-step process.

The last approach is also a two-step process where one
first calculates both the posterior mean of Eq. 11 and

FIG. 5: Invariant mass of dijet pairs reported by
ATLAS [15] in proton-proton collisions at

p
s = 13 TeV

with integrated luminosity of 3.6 fb�1. The green line
shows the resulting Gaussian process background

model. The bottom pane shows the significance of the
residual between the data and the GP model.

the posterior covariance of Eq. 12 and then uses those in
a down-stream least-squares analysis. For example, this
approach is convenient for goodness-of-fit tests.
In the studies below we only use the marginal likeli-

hood for fitting the hyperparameters, which we optimize
using Minuit [38]. In later studies we use the third ap-
proach of treating the posterior mean (conditioned on the
signal model parameters) as the Poisson intensity for the
background. We use the software package george [39]
(see also celerite [40]) for GP regression, which we have
extended by implementing custom kernels.
The posterior mean and posterior correlation matrix

from fitting the GP to the ATLAS dataset are shown in
Figs. 5 and 6. By visual inspection, the mean function fits
the data well and the correlation is constrained near the
diagonal, with the o↵ diagonal dying o↵ quickly. This
structure reflects the locality of the GP, where nearby
bins are closely connected but bins far from each other
in mass are uncorrelated.

PERFORMANCE STUDIES

Figures 5 and 6 demonstrate the fit (posterior mean)
of the GP to a single dataset collected by ATLAS in
proton-proton collisions at

p
s = 13 TeV with integrated

luminosity of 3.6 fb�1 [15]. More important is the char-
acterization the GP approach from fits to an ensemble
of datasets with independent statistical fluctuations and
increasing luminosity. We construct toy data samples by
smoothing the ATLAS data, scaling it to the desired lu-
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FIG. 6: Correlation between pairs of mass bins from the
GP fit, which shows the largely diagonal nature, with

increasing length scale at higher mass.

minosity, and generating independent samples by adding
Poisson noise to each bin.

Below, we present the performance of the GP approach
in these datasets under two aspects of hypothesis testing:

• Background-only tests: these studies test whether
the GP has su�cient flexibility to describe the typ-
ical background spectrum, assuming no signal.

• Signal-plus-background tests: these studies com-
bine a GP background with a specific signal model
and tests the power of a hypothesis test based on
the GP background. This requires that the GP
model not be so flexible that it can absorb the lo-
calized signal into the background model.

Background only tests

The performance of the GP background model is eval-
uated in the toy datasets described above. For each
toy dataset, we fit the GP, extract the posterior mean
from Eq. 11, and evaluate a �

2 quantity from
P

i

(y
i

�
µ(x

i

|y))2/µ(x
i

|y); note that in this test we do not in-
corporate the posterior covariance matrix of Eq. 12. Fig-
ure 7 shows the ±1� about the average µ(x|y) from these
toys, with the ATLAS data to guide the eye, and the ad-
hoc fit for comparison. The GP based on the kernel in
Eq. 10 has more flexibility at high mass, but also pro-
vides a superior fit, as measured by the �

2/dof statistic.
The number of degrees of freedom for the ad-hoc fit is 3,
while the GP has 8 hyperparameters (3 from the mean
function and 5 from the kernel). Figure 8 shows the dis-
tribution of �2/dof, which peaks near �2/dof = 1 for the
GP model and is significantly larger than unity for the
ad-hoc function.

FIG. 7: Tests of the Gaussian process and
three-parameter ad-hoc function in toy data generated
from the ATLAS data. Shown are the ±1� band about
the mean background models, with the ATLAS data

overlaid for reference.

FIG. 8: The distribution of �2 per degree of freedom in
toy data generated from the ATLAS data at luminosity
of 3.6 fb�1. While the goodness of fit for the ad-hoc
function degrades with more data, the GP is robust.

A critical test of the Gaussian process model is its ro-
bustness with increasing luminosity, where the ad-hoc
approach has failed in collider data [15, 17]. In Figure 9,
the mean and standard deviation of the �

2/d.o.f. are
shown as a function of integrated luminosity in the toy
data, demonstrating the robustness of the GP approach.

Background plus signal fits

Adding more flexibility to the background model guar-
antees a better fit to background-only toys; however, this
generally comes at the loss of power in a search for a
signal. A background model that is flexible enough to
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C O N N E C T I O N  T O  U N F O L D I N G

•If we are making predictions with Monte Carlo, truth level distribution f(z) is usually known exactly.  

•To think of f(z) as a Gaussian Process, we need some notion of uncertainty (eg. parton density 
functions, higher-order corrections, renormalization/factorization scales) 

•In unfolding, we often don’t want to make assumptions about f(z)… it could be anything. But 
regularization in unfolding is equivalent to choosing a kernel for f(z). 

•Even in extreme case where we assume no smoothness in f(z), f(x) has to be smooth due to 
detector resolution.
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FIG. 2: Schematic of the relationship between an ad-hoc function and the GP. An example toy dataset is shown
(left) with samples from the posterior for an ad-hoc 1-parameter function (red) and a GP (green). Each posterior
sample is an entire curve f(x), which corresponds to a particular point in the (center) plane of f(x

A

) vs. f(x
B

).
The red dots for the ad-hoc 1-parameter function trace out a 1-dimensional curve, which reveals how the function is

overly-rigid. In contrast, the green dots from the GP relax the assumptions and fill a correlated multivariate
Gaussian (with covariance indicated by the black ellipse). The covariance kernel ⌃(x, x0) for the GP is shown (right)

with ⌃(x
A

, x

B

) corresponding to the black ellipse of the center panel.

Connection to unfolding

The process of constructing a GP kernel, which en-
codes our physical requirements for the background
model, is closely related to the more familiar topic of im-
posing physical requirements when unfolding di↵erential
cross section distributions.

In unfolding, we have an observed set of bin counts
for an observable x, which we also assume to arise from a
Poisson point process as in Eq. 1. In contrast to searches,
the goal is to estimate the di↵erential cross section for a
theoretical quantity z, removing dependence on experi-
mental e�ciency, acceptance, and detector e↵ects. The
relationship between the target theoretical intensity f(z)
and the intensity for the observable f(x) is given by

f(x) =

Z
f(z)W (x|z)dz , (7)

where W (x|z) is a folding matrix or transfer function
that encodes smearing e↵ects from detector resolution.
Ideally, the experimentalist makes no assumptions about
the theoretical intensity f(z), and infers f(z) through the
unfolding process. As has been well studied, this type of
inverse problem is ill-posed in the technical sense that
the solution f(z) is sensitive to small changes to f(x) or
observed data. The unregularized maximum likelihood
solution to the unfolding problem often exhibits unphysi-
cal oscillations in f(z). Physical considerations motivate
additional regularization or penalty terms to the likeli-
hood that are not motivated by auxiliary measurements,
but which lead to solutions that behave better for the

f(z) we consider relevant. 3

Of particular interest for particle physics is to revisit
Eq. 7 when f(z) is itself a GP. In that case Eq. 7 can
be seen as applying the linear operator

R
W (x|z)dz to

the GP f(z), which gives rise to another GP through a
process convolution [25, 26] resulting in

⌃(x, x0) =

Z Z
dzdz

0⌃(z, z0)W (x, z)W (x0
, z

0) (8)

As expected, even in the extreme case where di↵erent
bins of the theoretical distribution are allowed to be to-
tally uncorrelated, ⌃(z, z0) / �(z � z

0), the finite resolu-
tion of the detector will introduce correlations in x via
W . For example, if W (x|z) is a Gaussian smearing with
resolution �

x

, then the resulting GP is an exponential
squared kernel (see Eq. 9) with length scale l =

p
2�

x

.

Physically motivated kernels

Next, we motivate contributions to the kernel that are
clearly grounded in experimental and theoretical forms
of uncertainty cast in terms of Eq. 7. In the ideal case,

3 There is a deep connection between Tikhonov regularization and
other forms of regularization used in unfolding and the kernels
of Gaussian Processes, which is formalized in the language of
Reproducing Kernel Hilbert Spaces [8, 24]. A detailed discussion
of this connection is beyond the scope of this paper; however, we
should anticipate a contribution to the Gaussian Process kernel
that is connected to this loosely defined notion of smoothness in
the underlying physics.

z

f(z) W (x|z)
M

=

truth level
folding / smearing 
detector response x

folded distribution 
& poisson fluctuations

•If the truth level distribution f(z) is a Gaussian Process with kernel Σ(z, z’), 
then the reconstructed distribution f(x) is also a Gaussian process with Σ(x,x’) 
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FIG. 2: Schematic of the relationship between an ad-hoc function and the GP. An example toy dataset is shown
(left) with samples from the posterior for an ad-hoc 1-parameter function (red) and a GP (green). Each posterior
sample is an entire curve f(x), which corresponds to a particular point in the (center) plane of f(x

A

) vs. f(x
B

).
The red dots for the ad-hoc 1-parameter function trace out a 1-dimensional curve, which reveals how the function is

overly-rigid. In contrast, the green dots from the GP relax the assumptions and fill a correlated multivariate
Gaussian (with covariance indicated by the black ellipse). The covariance kernel ⌃(x, x0) for the GP is shown (right)

with ⌃(x
A

, x

B

) corresponding to the black ellipse of the center panel.

Connection to unfolding

The process of constructing a GP kernel, which en-
codes our physical requirements for the background
model, is closely related to the more familiar topic of im-
posing physical requirements when unfolding di↵erential
cross section distributions.

In unfolding, we have an observed set of bin counts
for an observable x, which we also assume to arise from a
Poisson point process as in Eq. 1. In contrast to searches,
the goal is to estimate the di↵erential cross section for a
theoretical quantity z, removing dependence on experi-
mental e�ciency, acceptance, and detector e↵ects. The
relationship between the target theoretical intensity f(z)
and the intensity for the observable f(x) is given by

f(x) =

Z
f(z)W (x|z)dz , (7)

where W (x|z) is a folding matrix or transfer function
that encodes smearing e↵ects from detector resolution.
Ideally, the experimentalist makes no assumptions about
the theoretical intensity f(z), and infers f(z) through the
unfolding process. As has been well studied, this type of
inverse problem is ill-posed in the technical sense that
the solution f(z) is sensitive to small changes to f(x) or
observed data. The unregularized maximum likelihood
solution to the unfolding problem often exhibits unphysi-
cal oscillations in f(z). Physical considerations motivate
additional regularization or penalty terms to the likeli-
hood that are not motivated by auxiliary measurements,
but which lead to solutions that behave better for the

f(z) we consider relevant. 3

Of particular interest for particle physics is to revisit
Eq. 7 when f(z) is itself a GP. In that case Eq. 7 can
be seen as applying the linear operator

R
W (x|z)dz to

the GP f(z), which gives rise to another GP through a
process convolution [25, 26] resulting in

⌃(x, x0) =

Z Z
dzdz

0⌃(z, z0)W (x, z)W (x0
, z

0) (8)

As expected, even in the extreme case where di↵erent
bins of the theoretical distribution are allowed to be to-
tally uncorrelated, ⌃(z, z0) / �(z � z

0), the finite resolu-
tion of the detector will introduce correlations in x via
W . For example, if W (x|z) is a Gaussian smearing with
resolution �

x

, then the resulting GP is an exponential
squared kernel (see Eq. 9) with length scale l =

p
2�

x

.

Physically motivated kernels

Next, we motivate contributions to the kernel that are
clearly grounded in experimental and theoretical forms
of uncertainty cast in terms of Eq. 7. In the ideal case,

3 There is a deep connection between Tikhonov regularization and
other forms of regularization used in unfolding and the kernels
of Gaussian Processes, which is formalized in the language of
Reproducing Kernel Hilbert Spaces [8, 24]. A detailed discussion
of this connection is beyond the scope of this paper; however, we
should anticipate a contribution to the Gaussian Process kernel
that is connected to this loosely defined notion of smoothness in
the underlying physics.



M C - T E M P L AT E  S M O O T H E R

•In H→γγ, we have used functional forms, like Bernstein polynomial.  We “trust” the Monte 
Carlo, and assign “spurious signal” to account for differences between MC and functional 
form, but MC Stat error is a limiting factor for  spurious signal etc.  

•Alternate idea: fit GP to MC histogram. No functional form assumed. Here only assume 
length scale must be > √2 mass resolution.

253https://github.com/mfrate28/gp-mc-template-smoother/blob/master/GPsmearedFitting.ipynb

1) dummy truth-level  
distributions with  
exaggerated fluctuations

2) - smear truth level distributions 
- Poisson samples 
 -fit GP

3) plot pull distribution



E X A M P L E :  P D F  U N C E R TA I N T I E S

•Here we focused on truth level 
distribution f(z). 

•Used dijet spectrum predicted at 
NLO with POWHEG-BOX and look 
into PDF uncertainties from 
NNPDF3 

•This is the PDF uncertainty in the 
truth distribution expressed as a 
Gaussian Process Kernel.
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E X A M P L E :  J E T  E N E R G Y  S C A L E  

•Even if the truth-level distribution is 
known, the folding matrix may not be 
known exactly.  

•Example: consider a jet energy scale with 
2 nuisance parameters, where one 
parameter dominantly affects low-pT jets 
(in situ) and the other high-pT jets (limited 
stats for in situ). 

•Propagate uncertainty in jet energy scale 
to reconstructed mjj spectrum, obtain 
covariance kernel.
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both the theoretical prediction for f(z) and the e�cien-
cies, acceptance, and experimental resolution encoded in
W (x|z) would be well specified. In that ideal case, f(x)
is totally fixed and the GP description of the intensity
would collapse to a single point in function space.

If, however, the detector response were itself uncertain,
then this would propagate into the space of intensities.
Take for example, the jet energy scale (JES) uncertainty.
As described in Refs. [17, 27] the ATLAS JES uncer-
tainty is only a few percent for jets with p

T

of around 1
TeV where data are plentiful, while the the limited size
of observed examples for higher-p

T

jets requires an al-
ternate approach to estimating the JES. The resulting
JES uncertainty therefore grows rapidly with m

jj

and
has an impact of at most 15% [27]. To illustrate the co-
variance due to the JES uncertainty, consider a simplified
two-parameter model for the impact on the m

jj

distri-
bution: J(z, ✓) = 1+ 15% ✓

1

z

4 +5% ✓

2

(1� z), where z is
the true dijet invariant mass and z

max

= 7 TeV. We use
the best fit 3-parameter fit as a proxy for f(z) and fold
in the smearing W (x|z, ✓) = Gaus(x|z J(z/z

max

, ✓),�
x

),
where �

x

= 2%z is the dijet invariant mass resolu-
tion [17]. By assuming a uniform prior and an ap-
propriate scaling for ✓, we sample from the posterior
Gaus(✓

1

|0, 1)Gaus(✓
2

|0, 1) and propagate the uncertainty
in ✓ through to the predicted bin counts f̄(x|✓) as in
Eqs. 4 and 5. This allows us to explicitly build the co-
variance matrix ⌃ using the simulation shown in Fig. 3.
As expected, we see a roughly block-diagonal structure
defined by low and high mass regions.

Similarly, we can study the uncertainty in the theoret-
ical distribution arising from uncertainty in the parton
distribution functions (PDFs), such as that in the AT-
LAS 7 TeV analysis [28, 29]. Figure 3 corresponds to the
PDF uncertainties described in Ref. [30] for NLO calcu-
lations from POWHEG-BOX [31, 32] using the S

no-jet

PDF
sets provided in NNPDF3.0 [33]. In this case, sum rules
in the PDFs lead to anti-correlation between low- and
high-mass regions.

With a satisfying GP description of the theoretical dis-
tribution and knowledge of the smearing W (x|z), we can
arrive at a well-motivated kernel for the observed spec-
trum via Eq. 8.

Implicit covariance in current background models

It is also instructive to examine the e↵ective covari-
ance implied by current approaches: the ad-hoc fit and
the sliding window fit. Again we study this through the
relationship of Eqs. 4 and 5. In the case of the global fit to
the ad-hoc function of Eq. 2, we construct the posterior
for ✓ given the ATLAS data shown in Fig. 1 and a uniform
prior on ✓. We sample the posterior using emcee [34], a
Python implementation of the a�ne-invariant ensemble
sampler for Markov Chain Monte Carlo (MCMC) pro-

FIG. 3: Correlation coe�cients between pairs of mass
bins due to variations in the jet energy scale (left) or

parton distribution functions (right). These
demonstrate the broad but smoothly varying influence

of these e↵ects on the mass spectrum.

FIG. 4: Correlation coe�cients between pairs of mass
bins from many samples of the global ad-hoc fit (left)
and the sliding window fit (right). The plot of the

global fit reveals non-physical pivot points where the
ad-hoc function is less flexible. The sliding window fit
has a strictly limited correlation, by construction.

posed by Goodman & Weare [35]. From the posterior
samples of ✓ ⇠ p(✓|y) we build the covariance matrix ⌃
shown in Fig. 4. The global structure of the covariance re-
sembles those arising from PDF uncertainties, but recall
that the model only sweeps out a 3-dimensional subspace
in the much larger space of functions with this same co-
variance.

In the case of the sliding window approach, we also
estimate the covariance from a table of f(x

i

) values, but
instead of posterior samples, we perform a single fit for
each of 50 mass windows. For the k

th window, if the bin
is outside the window we record 0, otherwise we record
f(x

i

|✓̂
k

), where ✓̂

k

is the best fit value of ✓ for the fit re-
stricted to the window. The covariance is calculated from
these recorded values. This method should create a co-
variance structure which is limited to the diagonal band,
as each fit includes only a small portion of the distribu-
tion – indeed this is what we see4 in Figure 4. While the

4 The slight negative correlation outside of this band is an artifact

5

both the theoretical prediction for f(z) and the e�cien-
cies, acceptance, and experimental resolution encoded in
W (x|z) would be well specified. In that ideal case, f(x)
is totally fixed and the GP description of the intensity
would collapse to a single point in function space.

If, however, the detector response were itself uncertain,
then this would propagate into the space of intensities.
Take for example, the jet energy scale (JES) uncertainty.
As described in Refs. [17, 27] the ATLAS JES uncer-
tainty is only a few percent for jets with p

T

of around 1
TeV where data are plentiful, while the the limited size
of observed examples for higher-p

T

jets requires an al-
ternate approach to estimating the JES. The resulting
JES uncertainty therefore grows rapidly with m

jj

and
has an impact of at most 15% [27]. To illustrate the co-
variance due to the JES uncertainty, consider a simplified
two-parameter model for the impact on the m

jj

distri-
bution: J(z, ✓) = 1+ 15% ✓

1

z

4 +5% ✓

2

(1� z), where z is
the true dijet invariant mass and z

max

= 7 TeV. We use
the best fit 3-parameter fit as a proxy for f(z) and fold
in the smearing W (x|z, ✓) = Gaus(x|z J(z/z

max

, ✓),�
x

),
where �

x

= 2%z is the dijet invariant mass resolu-
tion [17]. By assuming a uniform prior and an ap-
propriate scaling for ✓, we sample from the posterior
Gaus(✓

1

|0, 1)Gaus(✓
2

|0, 1) and propagate the uncertainty
in ✓ through to the predicted bin counts f̄(x|✓) as in
Eqs. 4 and 5. This allows us to explicitly build the co-
variance matrix ⌃ using the simulation shown in Fig. 3.
As expected, we see a roughly block-diagonal structure
defined by low and high mass regions.

Similarly, we can study the uncertainty in the theoret-
ical distribution arising from uncertainty in the parton
distribution functions (PDFs), such as that in the AT-
LAS 7 TeV analysis [28, 29]. Figure 3 corresponds to the
PDF uncertainties described in Ref. [30] for NLO calcu-
lations from POWHEG-BOX [31, 32] using the S

no-jet

PDF
sets provided in NNPDF3.0 [33]. In this case, sum rules
in the PDFs lead to anti-correlation between low- and
high-mass regions.

With a satisfying GP description of the theoretical dis-
tribution and knowledge of the smearing W (x|z), we can
arrive at a well-motivated kernel for the observed spec-
trum via Eq. 8.

Implicit covariance in current background models

It is also instructive to examine the e↵ective covari-
ance implied by current approaches: the ad-hoc fit and
the sliding window fit. Again we study this through the
relationship of Eqs. 4 and 5. In the case of the global fit to
the ad-hoc function of Eq. 2, we construct the posterior
for ✓ given the ATLAS data shown in Fig. 1 and a uniform
prior on ✓. We sample the posterior using emcee [34], a
Python implementation of the a�ne-invariant ensemble
sampler for Markov Chain Monte Carlo (MCMC) pro-

FIG. 3: Correlation coe�cients between pairs of mass
bins due to variations in the jet energy scale (left) or

parton distribution functions (right). These
demonstrate the broad but smoothly varying influence

of these e↵ects on the mass spectrum.

FIG. 4: Correlation coe�cients between pairs of mass
bins from many samples of the global ad-hoc fit (left)
and the sliding window fit (right). The plot of the

global fit reveals non-physical pivot points where the
ad-hoc function is less flexible. The sliding window fit
has a strictly limited correlation, by construction.

posed by Goodman & Weare [35]. From the posterior
samples of ✓ ⇠ p(✓|y) we build the covariance matrix ⌃
shown in Fig. 4. The global structure of the covariance re-
sembles those arising from PDF uncertainties, but recall
that the model only sweeps out a 3-dimensional subspace
in the much larger space of functions with this same co-
variance.

In the case of the sliding window approach, we also
estimate the covariance from a table of f(x

i

) values, but
instead of posterior samples, we perform a single fit for
each of 50 mass windows. For the k

th window, if the bin
is outside the window we record 0, otherwise we record
f(x

i

|✓̂
k

), where ✓̂

k

is the best fit value of ✓ for the fit re-
stricted to the window. The covariance is calculated from
these recorded values. This method should create a co-
variance structure which is limited to the diagonal band,
as each fit includes only a small portion of the distribu-
tion – indeed this is what we see4 in Figure 4. While the

4 The slight negative correlation outside of this band is an artifact



E X A M P L E :  T R A D I T I O N A L  D I J E T

•We can also think of the 
covariance structure for current 
fitting strategies. 

• top: 3-parameter dijet 
function 

• bottom: sliding window 
(SWIFT) 

•These are post-fit covariance 
plots.
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P O S T- F I T  PA R A M E T R I Z E D  D I J E T  K E R N E L

•In addition to kernels constructed 
bottom-up from first-principles, we 
can also construct parametrized 
kernels using some intuition. 

•GPs adapt to the data very well, so 
even simple exponential-squared 
kernels often work fine. 

•For our dijet studies, we used a 
“Gibbs kernel”,  which has length 
scale l(x) and amplitude vary with x 

• plot shows post-fit covariance 
kernel
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6

the sliding window fit approach provides more flexibility
and better scaling to high luminosities than a global fit,
the piecewise approach to background modeling compli-
cates the downstream statistical analysis.

Parametrized kernels

In practice, one rarely works with a covariance
matrix explicitly calculated from samples, but in-
stead parametrizes the kernel ⌃(x, x0). A common
parametrized kernel is the exponential-squared kernel:

⌃(x, x0) = A exp

✓
�(x� x

0)2

2l2

◆
. (9)

This kernel describes a maximal covariance with ampli-
tude A that falls o↵ with a length-scale l. If |x�x

0| � l,
then the covariance is very small. The parameters of the
kernel are traditionally referred to as hyperparameters,
and the values of the hyperparameters can be fit either a
priori (e.g. by considering simulated or control samples),
or to the data simultaneously with the hypothesis test
itself.

In addition to the ability to construct kernels from first
principles as in Eq. 8, there are also rules for various types
of operations on GPs [9, 10]. For example, there are rules
for describing the mean and covariance for a new GP pro-
duced from combining two GPs through the summation
and multiplication. These rules e↵ectively form a gram-
mar that allows us to compose complex kernels through
a narrative.

We can also build parametrized kernels that capture
essential physics in a direct intuitive way. This approach
sits somewhere between the first principles approach and
the use of ad-hoc functions; however, unlike most ad-hoc
functional forms, we will be able to interpret the terms
more directly. For instance, in the dijet case we might
argue that the mass resolution is one of the dominant
contributions to the covariance, and start with an expo-
nential squared kernel. We would anticipate the length
scale to be larger than

p
2�

x

from mass resolution e↵ects
to reflect the intrinsic smoothness of the underlying true
distribution. In practice, the mass resolution is not con-
stant, so we may allow for the length scale (incorporating
both mass resolution and intrinsic smoothness) to have
a linear dependence l(x) = bx + c. This varying length
scale can be accommodated by the Gibbs kernel [8, 36].
In addition, instead of a constant amplitude for the varia-
tion, we take the amplitude of fluctuations to be a falling
exponential. These considerations motivate the following

of recording 0 for the value of the intensity, which is less than
the mean.

parametrized kernel

⌃(x, x0) = Ae

d�(x+x

0)
2a

q
2l(x)l(x

0
)

l(x)

2
+l(x

0
)

2 e

�(x�x

0)2

l(x)2+l(x0)2 (10)

The hyperparameters of this kernel (A, a, b, c, d) will be
determined during the fit to the data, described below.
We can identify the terms associated to the narrative
that produced this kernel, which we argue makes it less
ad-hoc than the functional form of Eq. 2, and the GP
associated to this kernel is much more flexible. Below we
will compare the performance of this kernel to the ad-hoc
function in the context of a dijet resonance search.

Mean function

It is common to use µ(x) = 0 for the mean of a GP,
partially because once conditioned on the observations
y, the posterior mean usually adapts to this o↵set re-
markably well if the spacing between the observed x

i

is
small compared to the length scale. However, if we have
a reasonable estimate of the mean, there is no reason not
to use it. Thus we use the three-parameter fit functions
as the mean µ(x) of the GP, which contributes an ad-
ditional three hyperparameters (✓

0

, ✓

1

, ✓

2

). The results
are very robust to the choice of the mean, the key to the
performance is really in the choice of the kernel.
In the case of signal-plus-background hypothesis test-

ing with a known signal model f
s

(x|✓
s

), the mean func-
tion also includes the signal contribution. Due to the lin-
ear relationship between y and µ(x) in the Gaussian, this
is numerically equivalent to subtracting the signal expec-
tation from the observation and modeling the residuals
with the background-only GP.

Incorporating GPs into the statistical procedure

There are subtle issues associated to the Bayesian and
Frequentist interpretations of the GP. GPs are most com-
monly presented in a Bayesian formalism where the mean
and covariance kernel are interpreted as a prior distribu-
tion over the space of functions. Then given the observa-
tions y we arrive at an updated GP that represents a pos-
terior distribution over the space of functions. Because
both the prior and the posterior are Gaussians there are
explicit formulae for the posterior mean and covariance
that rely on basic linear algebra [8]. In particular

µ(x⇤|y) = µ(x⇤)+⌃(x⇤,x)[⌃(x,x)+�

2(x)I]�1(y�µ(x))
(11)

and

⌃(x⇤,x
0
⇤) = ⌃(x⇤,x

0
⇤) (12)

� ⌃(x⇤,x
0)[⌃(x,x0) + �

2(x)I]�1⌃(x,x0
⇤) ,



F U T U R E  D I R E C T I O N S

•Vocabulary of kernels + grammar for 
composition 

• physics goes into the construction of 
a “Kernel” that describes covariance 
of data
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Structure Discovery in Nonparametric Regression through Compositional Kernel Search

cylinders. Some of their discrete graph structures have
continous analogues in our own space; e.g. SE1 ⇥ SE2

and SE1 ⇥ Per2 can be seen as mapping the data to
a plane and a cylinder, respectively.

Grosse et al. (2012) performed a greedy search over a
compositional model class for unsupervised learning,
using a grammar and a search procedure which parallel
our own. This model class contained a large number
of existing unsupervised models as special cases and
was able to discover such structure automatically from
data. Our work is tackling a similar problem, but in a
supervised setting.

5. Structure discovery in time series

To investigate our method’s ability to discover struc-
ture, we ran the kernel search on several time-series.

As discussed in section 2, a gp whose kernel is a sum
of kernels can be viewed as a sum of functions drawn
from component gps. This provides another method
of visualizing the learned structures. In particular, all
kernels in our search space can be equivalently writ-
ten as sums of products of base kernels by applying
distributivity. For example,

SE⇥ (RQ+ Lin) = SE⇥RQ+ SE⇥ Lin.

We visualize the decompositions into sums of compo-
nents using the formulae given in the appendix. The
search was run to depth 10, using the base kernels from
Section 2.

Mauna Loa atmospheric CO2 Using our method,
we analyzed records of carbon dioxide levels recorded
at the Mauna Loa observatory. Since this dataset was
analyzed in detail by Rasmussen & Williams (2006),
we can compare the kernel chosen by our method to a
kernel constructed by human experts.
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Figure 3. Posterior mean and variance for di↵erent depths
of kernel search. The dashed line marks the extent of the
dataset. In the first column, the function is only modeled
as a locally smooth function, and the extrapolation is poor.
Next, a periodic component is added, and the extrapolation
improves. At depth 3, the kernel can capture most of the
relevant structure, and is able to extrapolate reasonably.
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Figure 4. First row: The posterior on the Mauna Loa
dataset, after a search of depth 10. Subsequent rows show
the automatic decomposition of the time series. The de-
compositions shows long-term, yearly periodic, medium-
term anomaly components, and residuals, respectively. In
the third row, the scale has been changed in order to clearly
show the yearly periodic structure.
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•Instead of fitting the dijet spectrum with an ad hoc 3-5 
parameter function, use GP with kernel motivated from physics
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FIG. 6: The ATLAS 13 TeV dijet dataset with (top)
Gaussian Process fit and (bottom) 3 parameter fit

function fit

PERFORMANCE

Background only fit: no signal

• Show fits to BG only (ATLAS + toy), compare GP
to 3-param function

• Show tests as function of luminosity

A requirement of the background estimation procedure
is to produce a smooth background given any dataset.
Our first test of this is to fit each of the 10000 toys cre-
ated with the smoothed data with our Gaussian Process
and 3 parameter fit function, with the results shown in
figure 7. The Gaussian Process and 3 parameter fit func-
tion appear to perform similarly.
For each fit to a toy, we calculate the �2 goodness of

fit. The distribution of �2 for both Gaussian Process and
parametric fits is shown in Figure 8.
A second test that our Gaussian Process must pass is

its ability to fit at higher luminosity. For this, we scale
the smoothed data to luminosities of 5, 10, 15, 20, 25,
30, 35, 40, 45, and 50 fb�1, and then generate 1000 toys
at each luminosity. For each fit, we calculate the �2. We
then show the median and standard deviation of the �2

across all toys as a function of luminosity in Figure 9.

Other plots

• compare refitting all hyperparameters to not refit-
ting any (only scaling the mean function up with
luminosity) for the luminosity test. Current don’t
refit any

• distribution of �2 for each luminosity

• using GP covariance matrix in calculation of �2

rather then just sqrt(obs).

Background only fit: with signal

• show that we can extract background when there
is a signal

• show GP signal can accurately pick out signal even
on odd signal shapes

Our background estimation procedure must not only be
able to produce a smooth background on datasets with-
out signal, but must be able to handle extracting back-
ground even when a signal is present. Previously, the
fit functions used were not flexible enough to include a
large signal. If a signal was present in data and there-
fore produced a poor background estimation, an itera-
tive procedure to remove the signal and extrapolate the
fit in the area of the removed signal was performed. To

3

FIG. 1: Three parameter covariance

FIG. 2: Gaussian Process covariance

in to the paper may be tricky

• essentially, does our Gaussian Process have features
we’d expect from JES/PDF e↵ects

To better construct a kernel, we can also include our un-
derstanding of detector e↵ects and physics e↵ects. We
look at the covariance matrix of the 3 parameter fit func-
tion by fitting the ATLAS dataset and using Markov
Chain Monte Carlo [cite emcee?] to sample the posterior
(Fig 1). One can see a visible structure in the covariance,
suggesting the inflexibility of the fit function causes an-
chor points which the fit pivots around. This hints that
the parametric fits have some sort of inherent structure
that is not grounded in any physical properties of the
distribution.

As a comparison, the covariance matrix created from
posterior samples from the Gaussian Process fit to the
ATLAS dataset show less correlation between points at
higher mass (Fig 2). The correlation seems constrained
to diagonal, with the o↵ diagonal dying o↵ quickly.

We can now look at two e↵ects; jet energy scale (JES)
and parton density function (PDF) e↵ects. JES e↵ects
smear out the spectrum due to uncertainty on the mea-
sured energy of the jet. To model this, we use a Gaus-
sian kernel of various widths and means to smear out our

FIG. 3: JES Covariance Structure

FIG. 4: PDF Covariance Structure

distribution, and create a covariance matrix from these
samples (Fig 3). One can see a high degree of correlation
across all points in the distribution.
PDF e↵ects were implemented in the paper [cite] by

taking the 8 TeV dijet analysis data [cite] and comput-
ing a covariance matrix from applying di↵erent PDF sets
(Fig 4).
For comparison, we also create a covariance from a

Sliding Window Fit (SWiFt). The SWiFt solution to
the problems with fitting at high luminosities is to fit the
parametric form within smaller segments of the distribu-
tion, and piece together a final background estimation
across the whole spectrum. This method should create a
covariance structure which is limited to the diagonal and
zero in the o↵ diagonal, as each fit includes only a small
portion of the distribution. Indeed this is what we see in
Figure 5.

Other related plots

• Covariance and correlations as a function of mjj i.e.
plotting each row of the correlation and covariance
matrix separately.
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the problems with fitting at high luminosities is to fit the
parametric form within smaller segments of the distribu-
tion, and piece together a final background estimation
across the whole spectrum. This method should create a
covariance structure which is limited to the diagonal and
zero in the o↵ diagonal, as each fit includes only a small
portion of the distribution. Indeed this is what we see in
Figure 5.

Other related plots

• Covariance and correlations as a function of mjj i.e.
plotting each row of the correlation and covariance
matrix separately.
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in to the paper may be tricky

• essentially, does our Gaussian Process have features
we’d expect from JES/PDF e↵ects

To better construct a kernel, we can also include our un-
derstanding of detector e↵ects and physics e↵ects. We
look at the covariance matrix of the 3 parameter fit func-
tion by fitting the ATLAS dataset and using Markov
Chain Monte Carlo [cite emcee?] to sample the posterior
(Fig 1). One can see a visible structure in the covariance,
suggesting the inflexibility of the fit function causes an-
chor points which the fit pivots around. This hints that
the parametric fits have some sort of inherent structure
that is not grounded in any physical properties of the
distribution.

As a comparison, the covariance matrix created from
posterior samples from the Gaussian Process fit to the
ATLAS dataset show less correlation between points at
higher mass (Fig 2). The correlation seems constrained
to diagonal, with the o↵ diagonal dying o↵ quickly.

We can now look at two e↵ects; jet energy scale (JES)
and parton density function (PDF) e↵ects. JES e↵ects
smear out the spectrum due to uncertainty on the mea-
sured energy of the jet. To model this, we use a Gaus-
sian kernel of various widths and means to smear out our
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plotting each row of the correlation and covariance
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FIG. 5: SWiFt Covariance Structure

• comparing covariance at low mass, mid mass, and
high mass as a function of mjj i.e. 1st row, middle
row, and last row of covariance matrix

• fit function parameter corner plots. 1D distribu-
tions of fit function parameters from posterior sam-
ples. 2D distributions (i.e. p0 vs p1, p0 vs p2, p1 vs
p2) of fit function parameters from posterior sam-
ples.

• fit function bin counts corner plots. 1D distribu-
tions of bin values from posterior samples. 2D dis-
tributions (i.e. bin1 vs bin 2, bin 1 vs bin 20...) of
bin values from posterior samples

• covariance plots for GP and fit function when fit to
smooth 5 param fit function with Poisson errors

• covariance plots and fit for GP using two di↵erent
kernels: fit function kernel (kernel is fit function at
x times fit function at x’) and exponential curve fit
from paper [cite] where they have no mean and try
to use kernel to cover large data range.

Mean function

• what are we using as our mean function and why

We use a 3-parameter dijet fit functions as our mean
function, which is given in Eq. 3, where s is the center
of mass energy. . This is chosen as it is the lowest order
fit function used in the 13 TeV dijet analyses. Because
Gaussian Processes are so flexible, the choice of mean
function does not need to be precise, as in we do not
need to go through similar procedures to the dijet anal-
yses in order to choose the best fit function. Rather, the
mean should be roughly corresponding to the underlying
structure of the distribution, while the covariance func-
tion will take care of modeling the fluctuations.

µ(x) = p0 ⇥ (1� xp
s
)p1 ⇥ (

xp
s
)p2 (3)

PROCEDURE

• more mathematical description of GP

• what packages are we using

• what is defined as the background estimate for a
Gaussian Process

In this paper, we use the Python library called george
for our Gaussian Process regression [cite george]. George
must be given a kernel and some initial hyperparameters,
as well as the independent coordinates. In our setup,
there are several hyperparameters to be fitted, which in-
clude the five kernel parameters (a, b, c, d, and some
overall amplitude we call A,) and our three mean pa-
rameters (p0, p1, p2), as seen in Eq. 2 and Eq. 3. To
get these hyperparameters, we pass the negative log like-
lihood of the fit into Minuit minimizer[cite]. The log
likelihood is Gaussian in nature and given by �ln(L) =
1
2 (ln(|⌃(x, x)|) + (y� µ(x))T⌃(x, x)�1(y� µ(x)) + const
where ⌃, µ are the kernel and mean function evaluated
at the independent coordinates, and y is the data. Our
final background estimation is the mean of the condi-
tional distribution of the Gaussian Process, given by
m = µ(x0) + ⌃(x, x0)[⌃(x, x) + �2I]�1(y � µ(x)) where
⌃, µ are once again the kernel and mean function, x is the
independent coordinates, y is data, and x’ is the indepen-
dent coordinates the conditional distribution should be
evaluated at.

DATASETS

• 13 TeV ATLAS dataset, see Fig ??.

• toy mc. Take 5-param function, fit to 13 TeV AT-
LAS dataset (cite) see Fig ??, then generate 1000
data samples.

The base dataset used to fit is a 13 TeV ATLAS dataset
of 3.6fb�1 [cite]. To test the e↵ectiveness of our Gaussian
Process, we perform a set of tests that we compare our
Gaussian Process to the standard fit function approach
using a 3 parameter fit function (Eq. 3). As a first check,
we compare the fits to the ATLAS dataset, with the re-
sults shown in figure 6.
We also compare Gaussian Process and parametric fits

on toy datasets. These toys are generated from smoothed
data.

+ Jet Energy Scale

+ Parton Density  
Functions

Final Kernel = 

Poisson stats 
+ Mass Resolution

with Meghan Frate 
& Daniel Whiteson

=

+ 
…

+ 
…



Integration into our Statistical Procedures



B AY E S  V S .  F R E Q U E N T I S T

•The statistical interpretation of GPs can be a bit subtle. Specifically 
Bayesian vs. Frequentist issues 

• Most GP literature is presented in a Bayesian formalism 

• the GP is usually thought of as a prior over functions, and the result of 
the fit is posterior given observations 

• then usually fit “hyperparameters” of kernel using marginal likelihood 

•However, also consistent to think of the GP likelihood where the kernel 
represents auxiliary measurements / constraint terms. 

•A third interpretation is that the kernel represents the penalty term in 
“penalized maximum likelihood” in the spirit of regularization in unfolding 
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I N T E G R AT I O N  I N T O  O U R  S TAT I S T I C A L  P R O C E D U R E S

•Integration of GPs into our statistical procedures can be done in a few ways. 

• start with our typical extended maximum likelihood for a statistical 
model parametrized by θ 

• If we are using a binned distribution in a high-statistics regime, and we 
approximate the effect of the constraint terms on the bin counts as a 
Gaussian, then we can approximate this as 

• The Poisson mean             can be a parametrized signal + a Gaussian 
Processs for the background. 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FIG. 1: Invariant mass of dijet pairs reported by
ATLAS [15] in proton-proton collisions at

p
s = 13 TeV

with integrated luminosity of 3.6 fb�1. The blue line is
a fit using the first three terms of Eq. 2. The bottom
pane shows the significance of the residual between the

data and the fit.

GAUSSIAN PROCESS APPROACH

Conceptually, GPs provide a generalization of the in-
tensity f(x) that is not tied to a particular functional
form with a fixed number of parameters. Instead, the
intensity at x is modeled as a Gaussian and the relation-
ship between the intensity at di↵erent points is encoded
in the covariance kernel ⌃(x, x0). In this way, GPs allow
for the description of a much broader set of functions (see
Fig. 2) and provide a natural way to incorporate auxiliary
information and prior knowledge.

While the exact treatment of Poisson statistical fluctu-
ations together with GPs is somewhat cumbersome2, in
situations with many events we can simplify the situation
by working with a binned likelihood where the Poisson
counts in each bin y

i

are accurately approximated with
a Gaussian distribution. In that case, the likelihood of
Eq. 3 can be approximated as

p(y,a|✓) =
Q

n

i=1

Pois(y
i

|f̄(x
i

|✓)) · p
constr.

(a|✓) (4)

⇡ Gaus(y|f̄(x|✓),�2) ·Gaus(f̄(x|✓)|µ,⌃) ,

where x are the bin centers, y are the observed bin
counts, and f̄(x|✓) are the expected bin counts from av-
eraging f(x|✓) within the corresponding bin. The first

2 From the point of view of the statistics literature, the combina-
tion of a Poisson point process with a Gaussian Process as the
intensity is known as a Cox process, named after the statistician
David Cox, who first published the model in 1955 [20]. In or-
der to enforce positivity in the intensity, it is common to model
the log of the intensity with a Gaussian process as was done in
Ref. [21]. Inference in a doubly stochastic process is technically
more cumbersome than the approach described above [22].

term of Eq. 5 is the per-bin Poisson statistical fluctuation,
while the second term is an n⇥ n multivariate Gaussian
distribution that approximates the e↵ect of p

constr.

(a|✓)
propagated to the expected bin counts f̄(x|✓).
The second term reveals how an ad-hoc functional

form parametrized by ✓ 2 Rd can be overly rigid. In
the n-dimensional space of bin counts, the parametrized
function f̄(x|✓) only maps out a d-dimensional subspace
(e.g. the red markers in Fig. 2).
Gaussian Processes provide a natural way to expand

around the overly restricted parametrized model and fill
in the full space of possibilities. A Gaussian Process is
defined as “a collection of random variables, any finite
number of which have a joint Gaussian distribution” [8,
21]. Instead of providing a parametric form, we directly
model the mean (µ) and covariance functions (⌃) of the
Gaussian process defined as

µ(x) = E[f(x)] (5)

⌃(x, x0) = E[(f(x)� µ(x))(f(x0)� µ(x0))] . (6)

This covariance kernel ⌃ is then augmented with the
diagonal (uncorrelated) statistical component �

2(x)I to
provide the likelihood for the observed bin counts y.

GPs have rarely been used in high-energy physics, with
few exceptions including a top-quark mass measurement
by the CMS experiment [23] and a paper by Golchi
& Lockhart focusing on other statistical aspects in the
search for the Higgs boson [21]. Those analyses took
advantage of the nice properties of GPs, but did not em-
phasize or explore how physics considerations come into
play in the choice of the kernel. An attractive feature of
GPs for high-energy physics is that the kernel directly en-
codes understanding of the underlying physics, which is
manifest as covariance among the bin counts. For exam-
ple, our understanding of the mass resolution, the parton
density function uncertainties, the jet energy scale uncer-
tainties, and expected smoothness can be incorporated
into the kernel.
An advantage of interpreting the Gaussian process

through the relationship of Eqs. 4 and 5 is that it makes
clear how to connect the GP formalism with the existing
considerations around sources of uncertainty: those asso-
ciated to auxiliary measurements with a clear frequentist
interpretation, those associated to theoretical considera-
tions that cannot be identified with a random variable
with frequentist probability, and those terms that are in-
troduced for the sake of regularization.
In the following sections, we outline the connection

to unfolding, study the typical covariance structure from
physical processes that a↵ect the shape of the background
spectrum, construct kernel and mean functions and de-
scribe the procedure to fit the GP to the observed spec-
trum.

2

GPs are remarkably flexible and have been used to im-
prove modeling for geostatistics, climate, exoplanets, and
machine learning [5–10]. It is curious that GPs have not
yet been widely used in high-energy physics. We sus-
pect that this is due to a few barriers, which we aim to
address. First, the GP formalism is somewhat foreign
to high-energy physicists, so we detail how it is that we
can translate our understanding of the underlying physics
into the GP formalism. Secondly, a large portion of the
GP literature is focused on regression problems, instead
of modeling probability distributions. Thus, we make
an e↵ort to connect the traditional extended likelihood
treatment in high-energy physics to the GP approach.
Lastly, there are subtle issues related to the statistical in-
terpretation and procedures of GPs, so in addition to the
more pedagogical goals of the paper we also incorporate
some more technical statistical considerations for com-
pleteness. These technicalities are not essential to the
main point, and should not deter the interested reader.

We use as a test case the LHC search for resonances
decaying to two hadronic jets, which is one of the most
powerful searches for new physics at the LHC and ex-
amines a falling spectrum over a broad mass range, pro-
viding a vigorous test of the method. In the following,
we describe the historical approach, give the details of
the GP approach and present studies that documents its
performance.

PARAMETRIZED FUNCTION APPROACH

Dijet Resonance Search Example

Searching for a resonance above a smooth background
is a powerful technique in the hunt for new particles
and interactions. This classic approach has been used in
many experiments at di↵erent facilities, spanning several
decades [1, 11–14]. In particular, the search for dijets at
the LHC is a simple but e↵ective search for new physics.
It analyzes the invariant mass spectrum of pairs of high-
p

T

jets which are found back-to-back in the detector.
The dominant background is due to multi-jet production
via non-resonant hadronic interactions, which historically
has been di�cult to model accurately using simulation,
from the bulk to the high-mass tail. For this reason,
a functional approach with three parameters was intro-
duced by the UA2 collaboration [1]. In the intervening
thirty years, this form has needed the addition of further
terms in order to be able to adequately describe observed
spectra, leading to the most recent form used by the AT-
LAS collaboration [15] (previously ✓

3

= 0):

f(x|✓) = ✓

0

(1� x)✓1x✓2
x

✓3 log x (2)

where x = m

jj

/

p
s. The selection of the particular func-

tional form has been performed by comparing a handful

of choices of varying complexity, selecting the simplest
that satisfies the Wilk’s test [16] which seeks “to deter-
mine if the background estimation would be significantly
improved by an additional degree of freedom” [15]. The
structure of this parametric function and the selection of
the terms is nearly entirely pragmatic, and has little ba-
sis in knowledge of the underlying physics processes. An
example fit of the three-parameter version to the ATLAS
2015 dijet data at

p
s = 13 TeV is shown in Fig. 1.

In some cases, experimental papers attempt to assess a
systematic uncertainty on the result due to the arbitrary
structure of this function [15]. An alternative approach
is to abandon the full-spectrum fit entirely and fit only
a narrow sliding window [3, 17], which tolerates a sim-
pler functional form, but sacrifices the power of the full
spectrum and complicates the global statistical interpre-
tation.

Incorporating auxiliary information

In the dijet case, the parameters ✓ are only constrained
by the data D; but more generally some auxiliary in-
formation a (e.g. calibration measurements, theoretical
considerations, etc) may be used to constrain the param-
eters through an additional constraint term leading to
the likelihood1

p(D,a|✓) = Pois(N |⌫(✓))
NY

e=1

p(x
e

|✓) · p
constr.

(a|✓) . (3)

In addition to constraint terms in the likelihood corre-
sponding to auxiliary measurements a that have a clear
frequentist interpretation, it is common to incorporate
terms in the likelihood that reflect prior knowledge. For
instance, uncertainties in theoretical cross section due to
missing higher-order corrections typically are not treated
as unconstrained parameters, instead the size of these un-
certainties are estimated via varying the renormalization
and factorization scales. Moreover, when very flexible
models are used (e.g. in unfolding problems) it is of-
ten desirable to include penalty terms that regularize the
problem in order to avoid unphysical solutions. Lastly,
consideration of multiple functional forms can fit into this
formalism where ✓ takes on discrete values indexing the
model choice [18]. For a more pedagogical discussion of
constraint terms, see Ref. [19].

1 In statistics literature, probability models of the form of Eq. 1
are referred to as a Poisson point process with an intensity f(x).

f̄(x|✓)



I N T E G R AT I O N  I N T O  O U R  S TAT I S T I C A L  P R O C E D U R E S

•Integration of GPs into our statistical procedures can be done in a 
few ways. 

1.Fully Bayesian analysis using Poisson fluctuations about a GP 
mean. This is called a Cox process. Cumbersome to implement 
because it is “doubly stochastic” 

2.Fit the total model (parametrized signal + background GP) to the 
data (assuming stat errors are Gaussian), use result as the mean  
                                             in standard likelihood Poisson likelihood 

3.Fit the GP, use the posterior mean and covariance of the GP as a 
simple Gaussian likelihood / chi-square with covariance matrix. 

•We used option 2., most consistent with our existing statistical 
procedures
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the sliding window fit approach provides more flexibility
and better scaling to high luminosities than a global fit,
the piecewise approach to background modeling compli-
cates the downstream statistical analysis.

Parametrized kernels

In practice, one rarely works with a covariance
matrix explicitly calculated from samples, but in-
stead parametrizes the kernel ⌃(x, x0). A common
parametrized kernel is the exponential-squared kernel:

⌃(x, x0) = A exp

✓
�(x� x

0)2

2l2

◆
. (9)

This kernel describes a maximal covariance with ampli-
tude A that falls o↵ with a length-scale l. If |x�x

0| � l,
then the covariance is very small. The parameters of the
kernel are traditionally referred to as hyperparameters,
and the values of the hyperparameters can be fit either a
priori (e.g. by considering simulated or control samples),
or to the data simultaneously with the hypothesis test
itself.

In addition to the ability to construct kernels from first
principles as in Eq. 8, there are also rules for various types
of operations on GPs [9, 10]. For example, there are rules
for describing the mean and covariance for a new GP pro-
duced from combining two GPs through the summation
and multiplication. These rules e↵ectively form a gram-
mar that allows us to compose complex kernels through
a narrative.

We can also build parametrized kernels that capture
essential physics in a direct intuitive way. This approach
sits somewhere between the first principles approach and
the use of ad-hoc functions; however, unlike most ad-hoc
functional forms, we will be able to interpret the terms
more directly. For instance, in the dijet case we might
argue that the mass resolution is one of the dominant
contributions to the covariance, and start with an expo-
nential squared kernel. We would anticipate the length
scale to be larger than

p
2�

x

from mass resolution e↵ects
to reflect the intrinsic smoothness of the underlying true
distribution. In practice, the mass resolution is not con-
stant, so we may allow for the length scale (incorporating
both mass resolution and intrinsic smoothness) to have
a linear dependence l(x) = bx + c. This varying length
scale can be accommodated by the Gibbs kernel [8, 36].
In addition, instead of a constant amplitude for the varia-
tion, we take the amplitude of fluctuations to be a falling
exponential. These considerations motivate the following

of recording 0 for the value of the intensity, which is less than
the mean.

parametrized kernel

⌃(x, x0) = Ae

d�(x+x

0)
2a

q
2l(x)l(x

0
)

l(x)

2
+l(x

0
)

2 e

�(x�x

0)2

l(x)2+l(x0)2 (10)

The hyperparameters of this kernel (A, a, b, c, d) will be
determined during the fit to the data, described below.
We can identify the terms associated to the narrative
that produced this kernel, which we argue makes it less
ad-hoc than the functional form of Eq. 2, and the GP
associated to this kernel is much more flexible. Below we
will compare the performance of this kernel to the ad-hoc
function in the context of a dijet resonance search.

Mean function

It is common to use µ(x) = 0 for the mean of a GP,
partially because once conditioned on the observations
y, the posterior mean usually adapts to this o↵set re-
markably well if the spacing between the observed x

i

is
small compared to the length scale. However, if we have
a reasonable estimate of the mean, there is no reason not
to use it. Thus we use the three-parameter fit functions
as the mean µ(x) of the GP, which contributes an ad-
ditional three hyperparameters (✓

0

, ✓

1

, ✓

2

). The results
are very robust to the choice of the mean, the key to the
performance is really in the choice of the kernel.
In the case of signal-plus-background hypothesis test-

ing with a known signal model f
s

(x|✓
s

), the mean func-
tion also includes the signal contribution. Due to the lin-
ear relationship between y and µ(x) in the Gaussian, this
is numerically equivalent to subtracting the signal expec-
tation from the observation and modeling the residuals
with the background-only GP.

Incorporating GPs into the statistical procedure

There are subtle issues associated to the Bayesian and
Frequentist interpretations of the GP. GPs are most com-
monly presented in a Bayesian formalism where the mean
and covariance kernel are interpreted as a prior distribu-
tion over the space of functions. Then given the observa-
tions y we arrive at an updated GP that represents a pos-
terior distribution over the space of functions. Because
both the prior and the posterior are Gaussians there are
explicit formulae for the posterior mean and covariance
that rely on basic linear algebra [8]. In particular

µ(x⇤|y) = µ(x⇤)+⌃(x⇤,x)[⌃(x,x)+�

2(x)I]�1(y�µ(x))
(11)

and

⌃(x⇤,x
0
⇤) = ⌃(x⇤,x

0
⇤) (12)

� ⌃(x⇤,x
0)[⌃(x,x0) + �

2(x)I]�1⌃(x,x0
⇤) ,



H Y P O T H E S I S  T E S T I N G

•Here true hypothesis has no signal, but is neither the ad-hoc function 
nor the GP, so we don’t expect it to be a chi-square exactly. 
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FIG. 11: Distribution of �2 log(⇤), where ⇤ is the
likelihood ratio between the background-only and the

background-plus-signal hypotheses, for toy data with no
signal present, shown for both the ad-hoc fit (top) and
the Gaussian process background model (bottom).

Overlaid in red is a �

2 distribution with one degree of
freedom.

FIG. 12: Mean log likelihood ratio (⇤) between the
background-only and the background-plus-signal

hypotheses, shown both for the of Gaussian process
model and the ad-hoc fit, in 1000 toy data sets for
varying injected signal mass. Solid and dashed lines
indicate the threshold for 3� significance and for an

↵-level of 0.05.

ad-hoc function and the GP model. The added flexibility
of the GP does not degrade the power of the search – in
fact, the GP has more sensitivity to a signal at low mass,
while the two methods are comparable at high mass. This
gain in power is logically possible because the distribution
used to true generate the background (which is normally
unknown) does not correspond to the ad-hoc function ex-
actly. In our case the GP background model is able to
more accurately follow the true background (generated
from smeared ATLAS data) than the ad-hoc function.
If a signal is detected, it is also vital to be able to

extract the signal parameters. For a two choices of sig-
nal mass (m

jj

= 3 and 5 TeV), we performed fits to
signal-plus-background toys fitting the mass, width, and
signal strength. Figure 13 shows that the extracted sig-
nal width and yield are reliable estimators of the true
values.

MODELING GENERIC LOCALIZED SIGNALS

The search for specific resonances above a smooth
background is only one type of search strategy. More
broadly, we hope to be sensitive to localized deviations
that take di↵erent, potentially unanticipated shapes. For
instance, a cascade decay can lead to triangular distribu-
tions with a sharp endpoint [41], though helicity corre-
lations can modify this shape in detail. Searches like
this require balancing a small number of tests of the
background-only model using generic properties of a sig-
nal and a larger number of tests of the background-only
model using more specific signal properties. A single
number-counting search using the full mass range is very
generic, but has very little power. Conversely, an enor-
mous scan over specific hypothesized signals individually
have more power, but this strategy su↵ers from a large
look-elsewhere e↵ect.
Historically, the search for generic signals over a

background model has used algorithms such as Bump-
Hunter [4]. This approach imposes only minimal struc-
ture on the signal: that it is a localized, contiguous ex-
cess. This approach can be e↵ective, but it has signif-
icant practical drawbacks as it contains many ad-hoc
algorithmic elements. For example, in common usage
BumpHunter requires that the excess be localized to
at least two bins, and at most half of the bins. This al-
gorithmic characterization of the signal is e↵ective, but
it is di�cult to interpret and characterize statistically.
Secondly, to address the look-elsewhere e↵ect, this ap-
proach explicitly accounts for multiple testing and cali-
brates the distribution of the test statistic by applying
the entire procedure to background-only toys. This re-
quires a global background-only prediction, which is com-
plicated when we rely on the data to help fit the back-
ground model. In particular, if a signal is present in the
data, it is unclear how this impacts the background esti-
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The search for specific resonances above a smooth
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mous scan over specific hypothesized signals individually
have more power, but this strategy su↵ers from a large
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background model has used algorithms such as Bump-
Hunter [4]. This approach imposes only minimal struc-
ture on the signal: that it is a localized, contiguous ex-
cess. This approach can be e↵ective, but it has signif-
icant practical drawbacks as it contains many ad-hoc
algorithmic elements. For example, in common usage
BumpHunter requires that the excess be localized to
at least two bins, and at most half of the bins. This al-
gorithmic characterization of the signal is e↵ective, but
it is di�cult to interpret and characterize statistically.
Secondly, to address the look-elsewhere e↵ect, this ap-
proach explicitly accounts for multiple testing and cali-
brates the distribution of the test statistic by applying
the entire procedure to background-only toys. This re-
quires a global background-only prediction, which is com-
plicated when we rely on the data to help fit the back-
ground model. In particular, if a signal is present in the
data, it is unclear how this impacts the background esti-

•Worry is GP might be too flexible.  

•So need to check expected 
significance (power) by injecting 
signal.  

•(Result depends on kernel used) 



Modeling Generic Localized Signals 

(related to spurious signal)



B U M P H U N T E R  

•In many exotics searches, we don’t want to assume a specific 
signal model. 

• difficult to do likelihood-ratio based tests using shape 
information, since we don’t know the signal’s shape 

• Instead, typically use BumpHunter and look for a localized 
signal in some mass window. 

• difficulties here because BumpHunter needs a global 
background estimate to do background-only toys to 
correct for look elsewhere effect 

• If we are fitting background from data, this is circular do 
we do this?
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A N  A LT E R N AT I V E

•An alternative is to use a GP for the signal 

• Use a kernel that looks for an excess only in a localized 
excess in a window around mass m with width t (keeping 
length scale l for smoothness )  

• Now we have a signal shape, so we can do likelihood-ratio 
tests between signal and background 

•The issue now is that the signal has many free parameters, so 
these tests will have a look-elsewhere effect. 

• this isn’t a problem though, we still do background-only fits 
to get the “global p-value”
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FIG. 13: Extracted signal parameters versus true parameters for an injected Gaussian signals with m

jj

= 3 TeV
(top) and m

jj

= 5.5 TeV (bottom). Left: the extracted signal width (�) for a fixed signal yield. Right: the
extracted signal yield (N) for a fixed signal width (� = 250 GeV). Results are shown for both the Gaussian Process

background model (green) and the ad-hoc fit function (blue).

mate. Thus far, the main strategy has been an iterative
background estimation procedure that defines a signal
region and extrapolates the background fit into this re-
gion. This approach introduces a coupling of algorithmic
decisions with the statistical considerations. Similarly, in
the context of a sliding window background model, the
procedure is further complicated by the fact that there
is not a single global background prediction, but a set of
correlated background predictions specific to the signal
window under consideration.

In this section, we consider an alternative approach
which uses a GP to model a generic localized signal.
In this case, the basic physical requirement of the lo-
calized signal can be encoded directly in the kernel of
the signal GP, rather indirectly through ad-hoc algorith-
mic choices. This approach allows us to perform signal-
plus-background fits where the signal GP absorbs the
localized excess and the background GP accounts for the
background. The background component from such a fit
can provide global background estimate to be used in the
context of a BumpHunter approach even when a signal
is present in the data. More importantly, this approach
enables hypothesis tests of the background-only model
against a weakly specified signal-plus-background model
directly based on the likelihood ratio or Bayes factor.

We initiate the study of this approach with a specific

signal GP described by the following kernel

⌃(x, x0) = Ae

� 1
2 (x�x

0
)

2
/l

2

e

� 1
2 ((x�m)

2
+(x

0�m)

2
)/t

2

, (14)

which has three main terms. The first termA is an overall
amplitude for the signal. The second term is the standard
exponential-squared kernel with length scale l. The third
term is an envelope that localizes the signal around a
mass m with a width t, which is analogous to the mass
window.
To demonstrate the flexibility of this kernel, we per-

formed signal-plus-background fits for a variety of signal
shapes. Figure 14 shows the background extraction on
both a linear piecewise triangular signal and Figure 15
shows a square signal; both have been smeared to model
detector jet energy resolution e↵ects. Our studies indi-
cate the GP signal is able to accommodate a wide variety
of signal shapes leaving the background model responsi-
ble for for the smoother background-only component.

Look-elsewhere e↵ect

This approach does not eliminate the look-elsewhere
e↵ect that arises from considering multiple signal hy-
potheses. Instead of a finite number of search windows or
signal hypotheses, the GP describes a continuous family



L O O K - E L S E W H E R E  E F F E C T
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GPs. The lack of an asymptotic theory has little practical
impact since even in the case of signal models with a few
parameters, the asymptotic distributions are only accu-
rate for very significant (& 4�) excesses, and background-
only toys are usually used in the interesting region of
2� 5�.

The e↵ective trials factor will depend on the specific
background model and the kernel used for the signal GP.
To illustrate this, we examined the log-likelihood ratio
distribution for an ensemble of background-only toys sim-
ilar to what was done in Fig. 11. In this case we fit
the mass hyperparameter m in the range 2-5 TeV and
fixed the hyperparameter t = 600 GeV, which specifies
that the signal is localized roughly to a 600 GeV region.
Naively, the trials factor from allowing the mass to float
(range over width) to be about 6. In addition we consider
two di↵erent values for the length scale: l = t and l = t/3.
Smaller values for l allow the signal GP more flexibility
within the e↵ective mass resolution, and thus further in-
crease the trials factor. Figure 16 shows the log-likelihood
ratio distribution from these tests, confirms our intuition
that smaller values of l imply a larger look-elsewhere ef-
fect, and demonstrates that it is straight forward to di-
rectly calculate the global p-value from background-only
toy Monte Carlo.

DISCUSSION

In this paper, we give a broad overview of the potential
to use Gaussian Processes to model smooth backgrounds
and generic localized signals. The use of GPs for model-
ing smooth backgrounds addresses the shortcomings of
the current approaches based on ad-hoc parametrized
functions. In particular, overly rigid parametrized func-
tions lead to problems in high-luminosity searches be-
cause the inevitable deviations between the functional
form and the true distribution can no longer hide behind
statistical fluctuations. In contrast, the GP approach re-
laxes the rigid structure of a parametrized function, while
maintaining the necessary notions of smoothness.

We have outlined the logical continuity between the
GP likelihood to the conventional binned and unbinned
Poisson likelihoods used in high-energy physics. We have
discussed the interpretation of the kernel from first prin-
ciples through a precise connection to unfolding and in-
vestigated the kernels associated to specific experimental
and theoretical sources of uncertainty.

We have studied in detail the performance of a simple
intuitive kernel designed for dijet resonance searches. Fi-
nally, we have introduced a novel strategy for the search
for generic localized signal excesses in which the weak
specification of signal properties is provided via a GP
kernel instead of the ad-hoc algorithmic choices of cur-
rent approaches.

Gaussian Processes have improved the statistical mod-

FIG. 16: Distribution of �2 log(⇤), where ⇤ is the
likelihood ratio between the background-only and the

background-plus-signal hypotheses, for toy data with no
signal present. The deviation from the �

2

1

distribution
is due to the look-elsewhere e↵ect. The top plot

corresponds to a signal GP with l = t/3, which has
more flexibility and a larger trials factor than the

bottom plot with l = t.

eling in a number of scientific fields, and these stud-
ies demonstrate their potential for high-energy physics.
Their robustness in a high-luminosity setting and their
ability to model weakly specified signals are both wel-
come and timely.
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FIG. 14: Top, an example fit with both a GP
background and signal model to toy data with injected
triangular signal. The panes below show the significance
of residuals between the toy data and the background
model, the toy data and the background-and-signal

model. Bottom, the residuals between the toy data and
the background model, overlaid with the injected signal

and the fitted GP signal.

of signal hypotheses. This is not fundamentally di↵erent
than the look-elsewhere e↵ect that arises from consid-
ering a signal model with an unknown mass or width,
though it is in a non-parametric setting. While both GP
and the the simple example of an unknown mass corre-
spond to an infinite number of signal hypotheses, they
are highly correlated and the e↵ective trials factor is fi-
nite [42, 43].

Fundamentally, the fact that some parameters of the

FIG. 15: Top, an example fit with both a GP
background and signal model to toy data with injected
square signal. The panes below show the significance of
residuals between the toy data and the background
model, the toy data and the background-and-signal

model. Bottom, the residuals between the toy data and
the background model, overlaid with the injected signal

and the fitted GP signal.

signal model (e.g. mass and width) have no e↵ect in the
background only-case (in statistics jargon, they are not

identified under the null [44]) means that the conditions
necessary for Wilks’s theorem are not satisfied and the
log likelihood ratio distribution will not take on the chi-
square form. While there are approaches to estimate the
asymptotic distribution of the likelihood ratio test statis-
tic for signal models with one or a few parameters [42, 43],
we are not aware of an asymptotic theory in the case of

The plot below shows 2logΛ(μ=0) 
for the background-only.Use this 
for global p-value. 
(depends on kernel hyper parameters)



Software & Examples



S O F T W A R E

•You don’t need to do this yourself, there’s many Gaussian  

•Process packages that do this for you  

• See github.com/mfrate28/ComparingGPpackages for a 
comparison of GP packages  

•Meghan worked on some tutorials that help with common HEP 
use cases 

• https://github.com/mfrate28/GP_Tutorial 

•We are investigating a RooFit interface.
270

https://github.com/mfrate28/GP_Tutorial


Physics-Aware Machine Learning 

(choosing the variational family)



N N  =  A  H I G H LY  F L E X I B L E  FA M I LY  O F  F U N C T I O N S
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Shallow neural network Deep neural network 

image credit: Michael Nielsen

•In calculus of variations, the optimization is over all functions: 

• In applied calculus of variations, we consider a highly flexible family of 
functions sθ and optimize: i.e.  

• Think of neural networks as a highly flexible family of functions 

• Machine learning also includes non-convex optimization algorithms that 
are effective even with millions of parameters!

ŝ = argmin
s

L[s]

✓̂ = argmin
✓

L[s✓] ŝ ⇡ s✓̂



C O N V O L U T I O N A L  N E U R A L  N E T W O R K S

•Another major idea of deep learning: convolutional filters 

• the world is compositional ⇒ hierarchical architecture 

• images are translationally invariant ⇒ shared weights

273image credit: MathWorks

https://www.mathworks.com/help/nnet/convolutional-neural-networks.html


J E T  S U B S T R U C T U R E

•Many scenarios for physics Beyond the Standard Model 
include highly boosted W, Z, H bosons or top quarks  

•Identifying these rests on subtle substructure inside jets 

• an enormous number of theoretical effort in developing 
observables and techniques to tag jets like this 
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b Rbb Rfilt

Rbbg

b
R

mass drop filter

FIG. 1: The three stages of our jet analysis: starting from a hard massive jet on angular scale R, one identifies the Higgs
neighbourhood within it by undoing the clustering (effectively shrinking the jet radius) until the jet splits into two subjets
each with a significantly lower mass; within this region one then further reduces the radius to Rfilt and takes the three hardest
subjets, so as to filter away UE contamination while retaining hard perturbative radiation from the Higgs decay products.

objects (particles) i and j, recombines the closest pair,
updates the set of distances and repeats the procedure
until all objects are separated by a ∆Rij > R, where R
is a parameter of the algorithm. It provides a hierarchical
structure for the clustering, like the K⊥algorithm [9, 10],
but in angles rather than in relative transverse momenta
(both are implemented in FastJet 2.3[11]).

Given a hard jet j, obtained with some radius R, we
then use the following new iterative decomposition proce-
dure to search for a generic boosted heavy-particle decay.
It involves two dimensionless parameters, µ and ycut:

1. Break the jet j into two subjets by undoing its last
stage of clustering. Label the two subjets j1, j2 such
that mj1 > mj2 .

2. If there was a significant mass drop (MD), mj1 <
µmj, and the splitting is not too asymmetric, y =
min(p2

tj1
,p2

tj2
)

m2

j

∆R2
j1,j2

> ycut, then deem j to be the

heavy-particle neighbourhood and exit the loop.
Note that y ≃ min(ptj1 , ptj2)/ max(ptj1 , ptj2).

1

3. Otherwise redefine j to be equal to j1 and go back
to step 1.

The final jet j is to be considered as the candidate Higgs
boson if both j1 and j2 have b tags. One can then identify
Rbb̄ with ∆Rj1j2 . The effective size of jet j will thus be
just sufficient to contain the QCD radiation from the
Higgs decay, which, because of angular ordering [12, 13,
14], will almost entirely be emitted in the two angular
cones of size Rbb̄ around the b quarks.

The two parameters µ and ycut may be chosen inde-
pendently of the Higgs mass and pT . Taking µ ! 1/

√
3

ensures that if, in its rest frame, the Higgs decays to a
Mercedes bb̄g configuration, then it will still trigger the
mass drop condition (we actually take µ = 0.67). The cut
on y ≃ min(zj1 , zj2)/ max(zj1 , zj2) eliminates the asym-
metric configurations that most commonly generate sig-
nificant jet masses in non-b or single-b jets, due to the

1 Note also that this ycut is related to, but not the same as, that
used to calculate the splitting scale in [5, 6], which takes the jet
pT as the reference scale rather than the jet mass.

Jet definition σS/fb σB/fb S/
√

B · fb

C/A, R = 1.2, MD-F 0.57 0.51 0.80

K⊥, R = 1.0, ycut 0.19 0.74 0.22

SISCone, R = 0.8 0.49 1.33 0.42

TABLE I: Cross section for signal and the Z+jets background
in the leptonic Z channel for 200 < pTZ/GeV < 600 and
110 < mJ/GeV < 125, with perfect b-tagging; shown for
our jet definition, and other standard ones at near optimal R
values.

soft gluon divergence. It can be shown that the maxi-
mum S/

√
B for a Higgs boson compared to mistagged

light jets is to be obtained with ycut ≃ 0.15. Since we
have mixed tagged and mistagged backgrounds, we use a
slightly smaller value, ycut = 0.09.

In practice the above procedure is not yet optimal
for LHC at the transverse momenta of interest, pT ∼
200 − 300 GeV because, from eq. (1), Rbb̄ ! 2mh/pT is
still quite large and the resulting Higgs mass peak is sub-
ject to significant degradation from the underlying event
(UE), which scales as R4

bb̄
[15]. A second novel element

of our analysis is to filter the Higgs neighbourhood. This
involves resolving it on a finer angular scale, Rfilt < Rbb̄,
and taking the three hardest objects (subjets) that ap-
pear — thus one captures the dominant O (αs) radiation
from the Higgs decay, while eliminating much of the UE
contamination. We find Rfilt = min(0.3, Rbb̄/2) to be
rather effective. We also require the two hardest of the
subjets to have the b tags.

The overall procedure is sketched in Fig. 1. We il-
lustrate its effectiveness by showing in table I (a) the
cross section for identified Higgs decays in HZ produc-
tion, with mh = 115 GeV and a reconstructed mass re-
quired to be in an moderately narrow (but experimen-
tally realistic) mass window, and (b) the cross section
for background Zbb̄ events in the same mass window.
Our results (C/A MD-F) are compared to those for the
K⊥algorithm with the same ycut and the SISCone [16]
algorithm based just on the jet mass. The K⊥algorithm
does well on background rejection, but suffers in mass
resolution, leading to a low signal; SISCone takes in less
UE so gives good resolution on the signal, however, be-
cause it ignores the underlying substructure, fares poorly
on background rejection. C/A MD-F performs well both
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⌘
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pre-process

convolutional layer

max-pooling

dense layer

quark jet

gluon jet

| {z }
⇥3

Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

would be much slower. There are many options for a smaller set of channels. For example,

one could consider one channel for hadrons and one for leptons, or channels for positively

charged, neutral and negatively charged particles. To be concrete, in this study we take three

input channels:

red = transverse momenta of charged particles

green = the transverse momenta of neutral particles

blue = charged particle multiplicity

– 9 –

image: Komiske, Metodiev, Schwartz arxiv:1612.01551

Whiteson, et al arXiv:1603.09349 
Oliveira, et. al arXiv:1511.05190

Barnard, et al arXiv:1609.00607

http://arxiv.org/abs/arXiv:1603.09349
http://arxiv.org/abs/arXiv:1511.05190


J E T  I M A G E S

•Apply deep learning algorithms to classify to “jet images” 

• good results (based on fast simulation & idealized uniform calorimeter) 

• preprocessed to mod out symmetries in the data 

• discretization into images looses information 
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L2 norm such that

P
I2i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVs WZ, →Pythia 8, W'

/GeV < 260 GeV, 65 < mass/GeV < 95
T

240 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVs WZ, →Pythia 8, W'

/GeV < 260 GeV, 65 < mass/GeV < 95
T

240 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVsPythia 8, QCD dijets, 

/GeV < 260 GeV, 65 < mass/GeV < 95
T

240 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVsPythia 8, QCD dijets, 

/GeV < 260 GeV, 65 < mass/GeV < 95
T

240 < p

Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L2 norm such that

P
I2i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many

– 4 –

Average Boosted W Jet (y=1) Average QCD Jet (y=0)

Whiteson, et al arXiv:1603.09349 
Oliveira, et. al arXiv:1511.05190

Dawe, et al arXiv:1609.00607

http://arxiv.org/abs/arXiv:1603.09349
http://arxiv.org/abs/arXiv:1511.05190


J E T S  A S  A  G R A P H

•Using message passing neural networks over a fully connected graph 
on the particles 

• Two approaches for adjacency matrix for edges 

• inject physics knowledge by using dij of jet algorithms 

• learn adjacency matrix and export new jet algorithm
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Example Boosted W Jet (y=1) Example QCD Jet (y=0)

Isaac Henrion



N O N - U N I F O R M  G E O M E T R Y
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H O W  C A N  W E  I M P R O V E ?
•Image based approaches are doing well, but…. 

• would be nice to be able to work with a variable length input 

• avoid pre-processing into a regular-grid (eg. non-uniform 
calorimeters) 

• avoid representing empty pixels (sparse input) 

• would be nice if classifier had nice theoretical properties 

• infrared & collinear safety, robustness to pileup, etc. 

• would be nice to be more data efficient, most image-based 
networks use a LOT of training data. 
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F R O M  I M A G E S  T O  S E N T E N C E S

•Recursive Neural Networks showing great performance for 
Natural Language Processing tasks 

• neural network’s topology given by parsing of sentence!

281



F R O M  I M A G E S  T O  S E N T E N C E S

•Recursive Neural Networks showing great performance for 
Natural Language Processing tasks 

• neural network’s topology given by parsing of sentence!

281

Analogy: 
word → particle 
parsing → jet algorithm



Q C D - I N S P I R E D  R E C U R S I V E  N E U R A L  N E T W O R K S

282

•Work with Gilles Louppe, Kyunghyun Cho, Cyril Becot 

• Use sequential recombination jet algorithms to 
provide network topology (on a per-jet basis) 

• path towards ML models with good theoretical 
properties 

• Top node of recursive network provides a fixed-length 
embedding of a jet that can be fed to a classifier

kt anti-kt

• arXiv:1702.00748  & follow up work with Joan Bruna using graph conv nets



6

FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using kt topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.

FIG. 4. Jet classification performance of the RNN classifier
based on various network topologies for the embedding (par-
ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with
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Appendix A: Gated recursive embedding of jets

The recursive activation proposed in the previous sec-
tion su↵ers from two critical issues. First, it assumes
that left-child, right-child and local node information
hkL , hkR , uk are all equally relevant for computing the
new activation, while only some of this information may
be needed and selected. Second, it forces information to
pass through several levels of non-linearities and does not
allow to propagate unchanged from leaves to root. Ad-
dressing these issues and generalizing from [5–7], we pro-
pose to recursively define a recursive activation equipped

with reset and update gates as follows:

hk =

8
><

>:

uk if k is a leaf

zH � h̃k + zL � hkL+ otherwise

,! zR � hkR + zN � uk

(A1)

uk = � (Wuok + bu) (A2)

ok =

(
vi(k) if k is a leaf

okL + okR otherwise
(A3)

h̃k = �

0

@Wh̃

2

4
rL � hkL

rR � hkR

rN � uk

3

5+ bh̃

1

A (A4)
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64

zH
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zR

zN

3

75 = softmax

0

BB@Wz

2

664

h̃k

hkL

hkR

uk

3

775+ bz

1

CCA (A5)

2

4
rL

rR

rN

3

5 = sigmoid

0

@Wr

2

4
hkL

hkR

uk

3

5+ br

1

A (A6)

where Wh̃ 2 Rq⇥3q, bh̃ 2 Rq, Wz 2 Rq⇥4q, bz 2 Rq,
Wr 2 Rq⇥3q, br 2 Rq, Wu 2 Rq⇥4 and bu 2 Rq form
together the shared parameters to be learned, � is the
ReLU activation function and � denotes the element-
wise multiplication.

Intuitively, the reset gates rL, rR and rN control how
to actively select and then merge the left-child embed-
ding hkL , the right-child embedding hkR and the local
node information uk to form a new candidate activation
h̃k. The final embedding hk can then be regarded as a

It scales!

• arXiv:1702.00748  & follow up work with Joan Bruna using graph conv nets
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FIG. 1: Three parameter covariance
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in to the paper may be tricky

• essentially, does our Gaussian Process have features
we’d expect from JES/PDF e↵ects

To better construct a kernel, we can also include our un-
derstanding of detector e↵ects and physics e↵ects. We
look at the covariance matrix of the 3 parameter fit func-
tion by fitting the ATLAS dataset and using Markov
Chain Monte Carlo [cite emcee?] to sample the posterior
(Fig 1). One can see a visible structure in the covariance,
suggesting the inflexibility of the fit function causes an-
chor points which the fit pivots around. This hints that
the parametric fits have some sort of inherent structure
that is not grounded in any physical properties of the
distribution.

As a comparison, the covariance matrix created from
posterior samples from the Gaussian Process fit to the
ATLAS dataset show less correlation between points at
higher mass (Fig 2). The correlation seems constrained
to diagonal, with the o↵ diagonal dying o↵ quickly.

We can now look at two e↵ects; jet energy scale (JES)
and parton density function (PDF) e↵ects. JES e↵ects
smear out the spectrum due to uncertainty on the mea-
sured energy of the jet. To model this, we use a Gaus-
sian kernel of various widths and means to smear out our

FIG. 3: JES Covariance Structure

FIG. 4: PDF Covariance Structure

distribution, and create a covariance matrix from these
samples (Fig 3). One can see a high degree of correlation
across all points in the distribution.
PDF e↵ects were implemented in the paper [cite] by

taking the 8 TeV dijet analysis data [cite] and comput-
ing a covariance matrix from applying di↵erent PDF sets
(Fig 4).
For comparison, we also create a covariance from a

Sliding Window Fit (SWiFt). The SWiFt solution to
the problems with fitting at high luminosities is to fit the
parametric form within smaller segments of the distribu-
tion, and piece together a final background estimation
across the whole spectrum. This method should create a
covariance structure which is limited to the diagonal and
zero in the o↵ diagonal, as each fit includes only a small
portion of the distribution. Indeed this is what we see in
Figure 5.

Other related plots

• Covariance and correlations as a function of mjj i.e.
plotting each row of the correlation and covariance
matrix separately.
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