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Menu of Topics



Statistical Topics

e probability, Bayes/Frequentist, Likelihood, transformation properties, correlation vs. mutual
information, information geometry

e parameter estimation, bias/variance tradeoff, Cramér-Rao bound, James-Stein paradox
 Statistical Decision Theory

e Conceptual issues around Goodness of fit

e Hypothesis Testing, Neyman-Pearson, likelihood ratios

e Confidence intervals, coverage, Neyman Construction, Bayesian credible intervals, MCMC,
ClLs

e Systematics, profile-likelihood, asymptotic distributions
e Bayesian Posteriors, MCMC, and Variational Inference
e |ook-elsewhere effect, 1-d, 2-d, combination of experiments, ...

e unfolding, inverse problems, regularization, connection to Gaussian Processes & RBKH



Probabilistic Modeling of Data: Classical and Machine Learning versions
o clarification of “correlated systematic” confusion

e Scientific Narratives: Monte-Carlo template based, parametrized
function, data-driven, ...

e Template approach & HistFactory, “experimental design”

e Kernel Density estimation

e Gaussian Processes & connection to unfolding

* neural density estimation, autoregressive models, normalizing flows
e the data manifold and auto-encoders, anomaly detection

e GANSs and Variational Auto-encoders



ML < Stats correspondence
e goodness of fit <> anomaly detection
e Hypothesis Testing < classifiers

e parameter estimation < regression (and neural networks as function

approximations)

e statistical decision theory < reinforcement learning

e Systematics: Learning to Profile and Learning to Pivot
e credible intervals with Bayesian neural networks & Gaussian Processes

e Auto-encoding variational Bayes



ML-based Likelihood-free approaches
e Kernel Density estimation
* Cox Process & Gaussian Processes https://arxiv.org/abs/1709.05681
e likelihood ratios from classitfiers & parametrized learning
* conditional density estimation: autoregressive models, normalizing flows
e the data manifold and auto-encoders, anomaly detection
e Approximate Bayesian Computation
e Probabilistic Programming
e GANs and Variational Auto-encoders
e Adversarial Variational Optimization
Black box optimization

e Bayesian Optimization & Variational Optimization


https://arxiv.org/abs/1709.05681

Recent ML Topics:
e Parametrized learning for classification
e Parametrized learning for likelihood-free inference
e High-dimensional reweighting
e |ncorporating systematics into neural network training “Learning to pivot”
e Decorrelating neural networks from some variable (eg. mass of particle)
e Gaussian Processes for modeling backgrounds & generic localized signals
* Information geometry as a tool for phenomenology
e Adversarial Variational Optimization for tuning simulation

e QCD-aware neural networks

e Simplified likelihoods



TWO APPROACHES

Use simulator Learn simulator
(much more efficiently) (with deep learning)

conv (180w + 5b)

= - hon-linear
””;‘“ maxpool conv (450w + 10b) ®
. 0%0
( ' non- Imear' ¢ = 0
X O = €
) =@
= 0
s —= on. Imear maxpool i g
St fully- connecfed‘ = ©
e (1600w + 10b)
e Approximate Bayesian e Generative Adversarial Networks (GANs),
Computation (ABC) Variational Auto-Encoders (VAE)
e Probabilistic Programming e Likelihood ratio from classitiers (CARL)
e Adversarial Variational e Autogregressive models,

Optimization (AVO) Normalizing Flows


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

LECTURE NOTES

Practical Statistics for the LHC

Kyle Cranmer
Center for Cosmology and Particle Physics, Physics Department, New York University, USA

Abstract

This document is a pedagogical introduction to statistics for particle physics.
Emphasis is placed on the terminology, concepts, and methods being used at
the Large Hadron Collider. The document addresses both the statistical tests
applied to a model of the data and the modeling itself . 1 expect to release
updated versions of this document in the future.
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TERMS

The next lectures will rely on a clear understanding of these terms:

- Random variables / “observables” x

> Probability mass and probability density function (pdf) p(x) or f(x)

- Parametrized Family of pdfs / "'model” p(xla)

- Parameter «

- Likelihood L(a)

- Estimate (of a parameter) a(x)

11



PROBABILITY MASS FUNCTIONS

When dealing with discrete random variables, define a
Probability Mass Function as probability for it possibility

P(x;) = pi -
ng
Defined as limit of long term frequency N .

» probabillity of rolling a 3 := limit #triais~ (# rolls with 3 / # trials)
- you don’t need an infinite sample for definition to be useful

And it is normalized

12



PROBABILITY DENSITY FUNCTIONS

When dealing with continuous random variables, need to
introduce the notion of a Probability Density Function

P(x € |[r,x + dx|) = f(z)dx

Note, f(x) is NOT a probability

X04

PDFs are always normalized - oss
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CUMULATIVE DENSITY FUNCTIONS

Often useful to use a cumulative distribution:

» in 1-dimension: v N
f(x")dz" = F(x)
— 00
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CUMULATIVE DENSITY FUNCTIONS

Often useful to use a cumulative distribution:

» INn 1-dimension: x
[t = Fla

| ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ’>-<\ _I ! ! !
=04¢ . = 1
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» alternatively, define density as
partial of cumulative:

_9F (@)
- Ox

f(z)
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CUMULATIVE DENSITY FUNCTIONS

Often useful to use a cumulative distribution:

» In 1-dimension: T o
[t = Fla
— OO
Z2oafp- o~ 3 Z -
0.8
0.6
0.4 [
0.2
O—(;I -2IIII-1IIIIOIIII1IIII2IIIIX3
» alternatively, define density as » same relationship as total and
partial of cumulative: differential cross section:
OF (x) 1 Oo

f(z) f(E) =

ox o OF

14



HISTOGRAM {X;}— F(X)

Given a set of observations {x;} we can approximate the pdf with a

histogram.

Think of a pdf as a histogram with:

10

= 30 | T T T = 100 T | T T
. . = =
infinite data sample, @) | o
zero bin width, a ]
° [ 50 B 7
normalized to unit area. | |
25 n
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f(w) — 0 | ! | | 0 | l
’TLASIJ 0 2 4 6 8 10 0 2 4 6 8
X X
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200 - 02 u
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0 ] ] 0 ]
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[G. Cowan]
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PARAMETRIZED FAMILIES / MODELS

Often we are interested in a parametried family of pdfs
» We will write these as:  f(x|a) said “fof x given
- where o are the parameters of the "model” (written in greek characters)
A discrete example:

» The Poisson distribution is a probability mass function for n, the
number of events one observes, when one expects u events
. ne !t
Pois(n|p) = p o

A continuous example

» The Gaussian distribution is a probability density function for a
continuous variable x characterized by a mean ¢ and standard
deviation o

1 (z—p)?
G(x|p,0) = e 202

V2o

16



THE LIKELIHOOD FUNCTION

Consider the Poisson distribution describes a discrete event count »
for a real-valued mean u.

. ne "
Pois(n|u) = —
The likelihood of u given n is the same nim T
equation evaluated as a function of u = @
» Now it's a continuous function S0 -
» But it is not a pdf! P A
L(p) = Pois(n|u) 3:_ _____________________ R
2 - —
Common to plotthe -In L (or -21In L) E E
» helps avoid thinking of it as a PDF ; T | u
» connection to 2 distribution o s

Figure from R. Cousins,
Am. J. Phys. 63 398 (1995)

17



REPEATED OBSERVATIONS

In particle physics we are usually able to perform repeated
observations of x that are independent & identically distributed

» These repeated observations are written {x;}
» and the likelihood in that case is

= Hf($i|04)

» and the log-likelihood is

log L(« Zlogf T;|a)

18
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CHANGE OF VARIABLES
What happens with x— cos(x)

Mopb
P S OO ~JOYDM B WN -

import numpy as np
import matplotlib.pyplot as plt

N_MC=100000 # number of Monte Carlo Experiments

nBins = 50 # number of bins for Hist

data_x, data_y = [],[] #lists that

¥ do experiments
for i in range(N_MC):
¥ generate observation for Xx
X = np.random.uniform(@,2%np.pi)

y = np.cos(x)
data_x.append(x)
data_y.append(y)

¥setup figures

fig = plt.fiqure(figsize=(13,5))
fig_x = fig.add_subplot(1,2,1)
fig_y = fig.add_subplot(1,2,2)

fig_x.hist{data_x,nBins)
fig_x.set_xlabel('angle')

fig_y.hist(data_y,nBins)
fig_y.set_xlabel('cos(angle)')

plt.show()

ograms

will hold x and y
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CHANGE OF VARIABLES
What happens with x— cos(x)

el
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import numpy as np
import matplotlib.pyplot as plt

N_MC=100000 # number of Monte Carlo Experiments
nBins = 50 # number of bins for Histograms

data_x, data_y = [],[] #lists that will hold x and vy

¥ do experiments
for i in range(N_MC):
¥ generate observation for X
X = np.random.uniform(@,2%np.pi)

y = np.cos(x)
data_x.append(x)
data_y.append(y)

¥setup figures

fig = plt.fiqure(figsize=(13,5))
fig_x = fig.add_subplot(1,2,1)
fig_y = fig.add_subplot(1,2,2)

fig_x.hist{data_x,nBins)
fig_x.set_xlabel('angle')

fig_y.hist(data_y,nBins)
fig_y.set_xlabel('cos(angle)')

plt.show()
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CHANGE OF VARIABLES

If f{(x) is the pdf for x and y(x) is a change of variables, then the pdf
g(y) must satisfy

Tp y(zp)
Plr, <x<umyp) = / f(x)dx = /( | g(y)dy = P(y(x,) <y < y(xp))

We can rewrite the integral on the right

y(fli'b) Iy dy
/ g(y)dyI/ g(y(r)) | 5| do
y(a?a) La dCE

therefore, the two pdfs are related by a Jacobian factor

f(x) = g(y) Z—i




AN EXAMPLE
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AN EXAMPLE

| am glossing over the fact that the map
Is not 1-to-1. Different values of x, map
into same value of y. We will need to
sum/integrate over them. Here it is easy,
but in general this may become
iIntractable... need inverse map

—
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SUMMARY
Change of variable x, change of parameter 0

For pdf p(xI0) and change of variable from x to y(x):
p(y(x)10) = p(xI6) / Idy/dxI.

Jacobian modifies probability density, guaranties that
P(y(X;)<y<y(x,)) = P(x;<x<Xx,),i.e., that

Probabilities are invariant under change of variable x.

— Mode of probability density is not invariant (so, e.g.,
criterion of maximum probability density is ill-defined).

— Likelihood ratio is invariant under change of variable x.
(Jacobian in denominator cancels that in numerator).

For likelihood £(6) and reparametrization from 6 to u(6):
L£(0) = L(u(e)) ().

— Likelihood £ (0) is invariant under reparametrization of
parameter 0 (reinforcing fact that £ is not a pdf in 0).

Bob Cousins, CMS, 2008
24



THE LIKELIHOOD FUNCTION

Consider the Poisson distribution describes a discrete event count »
for a real-valued mean u.

. ne "
Pois(n|u) = —
The likelihood of u given n is the same nim T
equation evaluated as a function of u = @
» Now it's a continuous function S0 -
» But it is not a pdf! P A
L(p) = Pois(n|u) 3:_ _____________________ R
2 - —
Common to plotthe -In L (or -21In L) E E
» helps avoid thinking of it as a PDF ; T | u
» connection to 2 distribution o s

Figure from R. Cousins,
Am. J. Phys. 63 398 (1995)
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PROBABILITY INTEGRAL TRANSFORM

Consider a specific change of variables related to the cumulative for
some arbitrary f(x)

y(x) = /:; f(z")dx’

Using our general change of variables formula:

f(x) = g(y) Z—i

We find for this case the Jacobian factor is

dy|
. = f(x)

Thus g(y) =3\



SUMMARY
Probability Integral Transform

“...seems likely to be one of the most fruitful conceptions
introduced into statistical theory in the last few years”
— Egon Pearson (1938)

Given continuous x € (a,b), and its pdf p(x), let
y(x) =/, p(x)dx’ .
Theny e (0,1) and p(y) = 1 (uniform) for all y. (!)
So there always exists a metric in which the pdf is uniform.

Many issues become more clear (or trivial) after this
transformation®. (If x is discrete, some complications.)

The specification of a Bayesian prior pdf p(u) for parameter
u is equivalent to the choice of the metric f(u) in which
the pdf is uniform. This is a deep issue, not always
recognized as such by users of flat prior pdf’s in HEP!

*And the inverse transformation provides for efficient M.C. generation of p(x) starting from RAN().
Bob Cousins, CMS, 2008
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BAYES' THEOREM

Bayes’ theorem relates the conditional and
marginal probabilities of events A & B

P(B|A)P(A)
P(B)

= P(A) is the prior probability. It is "prior" in the sense that
it does not take into account any information about B.

» P(A1B) is the conditional probability of A, given B. It is
also called the posterior probability because it is
derived from or depends upon the specified value of B.

P(A|B) =

= P(B 1A) is the conditional probability of B given A.

= P(B) is the prior or marginal probability of B, and acts
as a normalizing constant.

f(x]0)7(0)
N

w(0|x) = x L(0)m(0)

29


http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Conditional_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Normalizing_constant

... IN PICTURES (FROM BOB COUSINS)

P, Conditional P, and Derivation of Bayes’ Theorem
in Pictures
0 P(B) =

P(A) = ——

@
Whole space L

0
‘B P(AIB) = " P(BIA) =

¢
P(AnB)= i

P(A) x P(BIA) = X 0 = = P(A N B)
q d

P(B P(AIB) = X — = P(ANB

(B) x P(AIB) @ (AN B)

Bob Cousins, CMS, 2008 — P(BIA) = P(AIB) X P(B) / P(A)

30



... IN PICTURES (FROM BOB COUSINS)

P, Conditional P, and Derivation of Bayes’ Theorem
in Pictures ‘

P(A) = —— P(B) =

@
Whole space L

0
‘B P(AIB) = " P(BIA) =

P(A N B) = —

.‘-

Don’t forget about "Whole space” (3 | will drop it from the
notation typically, but occasionally it is important.

Bob Cousins, CMS, 2008 — P(BIA) = P(AIB) X P(B) / P(A)

30



LOUIS'S EXAMPLE

P (Data;Theory) %= P (Theory;Data)

Theory = male or female

Data = pregnant or not pregnant

P (pregnant ; female) ~ 3%
but

P (female ; pregnant) >>>3%

31



AXIOMS OF PROBABILITY

These Axioms are a mathematical starting point
for probability and statistics

1. probability for every element, E, is non-
negative P(E)>0 VYECF =2%

2. probabillity for the entire space of
possibilitiesis 1 P(Q2) = 1.

3. If elements E; are disjoint, probability is
additive P(E,UE,U---) =) P(E;).

Consequences:
P(AU B) = P(A) + P(B) — P(AN B)

P(Q\ E)=1- P(E)

Kolmogorov
axioms (1933)

32



DIFFERENT DEFINITIONS OF PROBABILITY

Frequentist -
» defined as limit of long term frequency ) ;’ A
» probability of rolling a 3 := limit of (# rolls with 3 / # trials) Q‘Q ’

- you don’t need an infinite sample for definition to be useful

- sometimes ensemble doesn’t exist
« eg. P(Higgs mass = 125 GeV), P(it will snow tomorrow)

» Intuitive if you are familiar with Monte Carlo methods

» compatible with orthodox interpretation of probability in Quantum Mechanics.
Probability to measure spin projected on x-axis if spin of beam is polarized
along +z

Subjective Bayesian (D = 1
- Probability is a degree of belief (personal, subjective) 2
- can be made quantitative based on betting odds

- most people’s subjective probabilities are not coherent and do not obey
laws of probability

http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1
33
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ESTIMATORS

Given some model f(x|a) and a set of observations {x;} often one

wants to estimate the true value of a (assuming the model is true).

An estimator is function of the data written &(x+,...x,)
» Since the data are random, so is the resulting estimate
» often it is just written ¢, where the x-dependence is implicit
» one can compute expectation of the estimator

Ela(z)]o] = / &(2) f (z]a)dz

Properties of estimators:
» bias FEla(x)|lal —a  (unbiased means bias=0)
» variance E[(a(z) — a)%|a] = / (a(z) — @)% f(z]a)dz
» asymptotic bias limit of bias with infinite observations

35



MAXIMUM LIKELIHOOD ESTIMATORS

There are many different possible estimators, but the most well-
known and well-studied is the maximum likelihood estimator (MLE)

- | | | | y
&(x) = argmax, L(a) = argmax,, f(z|a) | y -
- 9 ]
This is just the value of a that maximizes the likelihood s | —
i =2 1In L(ne=3 1 ) ]
S0 E B
Example: the Poisson distribution e E
e H 2 - -
Pois(n|u) = u'" —— - §
(n|p) . E -
Maximizing L(«) is the same as minimizing -In L(u) 055 'M' R T
d d n Figure from R. Cousins
—— L], =0=— [p—nlnp+hn! | =1—— '
Ay ()l Ay (“ " ”“+§1%) y Am. J. Phys. 63 398 (1995)
= =n

In this case, the MLE is unbiased b/c E[n]=u
36



A SECOND EXAMPLE

Consider a set of observations {x;} and we want to estimate the mean
of a Gaussian with known o

Clalp,0) = —p—e™ T
. . p— 20
which gives Sl w/gmye
d d (#i — ) (zi — p)
dwﬂwww(z 7 L,_/”)Z =
v const v

= I = % Z x; (anunbiased estimator) .
0

1

However, the MLE 6* = = > (z: — u)* is biased
"

It can be shown that 42 = 7 2w — 1)? 1S unbiased

Thus, the MLE is asymptotially unbiased .

Note: if 62 is an unbiased estimate of 02, then \/{0?} is a biased estimate of T.

37



COVARIANCE AND CORRELATION

Define covariance cov|x,y] (also use matrix notation V) as

covlz,y] = Elzy] — papy = El(z — pz)(y — py)]
Correlation coefficient (dimensionless) defined as

cov|z, y]

Pxy —
O'QjO'y

If x, y, independent, i.e.,  f(x,y) = fe(x)fy(y), then
Elzy] = / / vy f(x,y) dedy = pgpy
— coV|z,y] =0 x and y, ‘uncorrelated’

N.B. converse not always true.

[G. Cowan]
38



CORRELATION (CONT.)

p=0.75

p = 0.95

10

10

(b)

10

10

p= —0.75

p = 0.25

[G. Cowan]
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CORRELATION (CONT.)

. J r-
) -?1‘ ’ B vf. \ \c
N kR okivx
1 of 3 Ll o dlate e
X ‘a ' ,6 (:\a‘ T - o .“‘4b
. g ) 28 me A AL iy
a" ' ‘&%‘ 51? g R
2 2 52

0 -0.4 -0.8

http://en.wikipedia.org/wiki/Correlation_and_dependence
40


http://en.wikipedia.org/wiki/Correlation_and_dependence

MUTUAL INFORMATION

Mutual Information is a more general notion of ‘correlation’

I(X;Y)=> > plx,y) log( p(z.y) ), I(X:Y) = H(X) — H(X|Y)

yeY zeX Pl(-”?) P2('y) = H(Y) - H(Y|X)
— H(X)+ H(Y) - H(X,Y)
» it is symmetric: [(X;Y) = [(Y;X)
» If and only if X,Y totally independent: 1(X;Y)=0

» possible for X,Y to be uncorrelated, but not independent

Mutual Information doesn’t seem
to be used much within HEP, but
it seems quite useful

41



BIAS/VARIANCE TRADEOFF

We introduced Bias and Variance of estimators
Var[ji|u] = E[(4 — Elp|u])*] |4l
Most physicist are allergic to the idea of a biased estimator
e try to find unbiased estimator with smallest variance
e hence importance of Cramér-Rao bound
But what if we just want to minimize the mean-squared error?

MSEljilp] = E[(ft — 11)?] |l

it decomposes like this
MSElfi|p] = Var[j|u] + (Bias[fi|])?

So it encodes some relative weight to bias and variance. Think harder!



CRAMER-RAO BOUND

The minimum variance bound on an estimator is given by the
Cramér-Rao inequality:

» simple univariate case:
Var[0|0] = E[(6 — E[0|6])?] |6]

» For an unbiased estimator the Cramér-Rao bound states
1
Var 6’ v
0] > 0

» where [(0) is the Fisher information

(Z(0),,=E [ddg (X 0)—lnf X;9)|9] .

» General form for multiple parameters:

cov[|0);; > I-(9)

Maximum Likelihood Estimators asymptotically reach this bound



JAMES-STEIN ESTIMATOR

Consider a standard multivariate Gaussian distribution for X
in n dimensions centered around p

F@m =11
1=1

6 1
1 (@i — Mi)2> >
exp | — : 41 °

V 27 P ( 2 3+
2

1

4 o ® ‘{%':..0

Goal: minimize mean-squared error ‘36’\ s
2

1

5

%
MSE[i] = E[l|ji — i) T e
MLE (unbiased)

James-Stein (weird)

5 1 — . n—2\ _
MMLE—ZU—mZSCJ hyjs = (1 )

— L
7]}




JAMES-STEIN ESTIMATOR

The James-Stein estimator seems like a horrible suggestion

— 2
ﬂJSZ(l n2>az ;
|z i

6
5
T ° % o
. . 37 N e _o P
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JAMES-STEIN ESTIMATOR

The James-Stein estimator seems like a horrible suggestion

— 2
ﬂJSZ(l n2>az ;
|z i

6
5
4 (e} ~ .
. . 37 e _o ° ®
e clearly biased (MLE is not) SRR
° o o ®
(;: ..$ (o}
. S 3 .
e shifts towards origin is not @\
2
translationally invariant oM 5, 3 a4 5
X = X = Xx+A
4.5 —‘jame's-Steirll
. 40T — MLE
Yet, it has smaller mean squared .|

g
error than MLE for n>2 | £

e it "dominates” the MLE




BIAS/VARIANCE TRADEOFF

We introduced Bias and Variance of estimators
Var[ji|u] = E[(4 — Elp|u])*] |4l
Most physicist are allergic to the idea of a biased estimator
e try to find unbiased estimator with smallest variance
e hence importance of Cramér-Rao bound
But what if we just want to minimize the mean-squared error?

MSEljilp] = E[(ft — 11)?] |l

it decomposes like this
MSElfi|p] = Var[j|u] + (Bias[fi|])?

So it encodes some relative weight to bias and variance. Think harder!



STATISTICAL DECISION THEORY IN 1T SLIDE

O - States of nature; X - possible observations; A - action to be taken
f(x|0) - statistical model; () - prior
d: X = A - decision rule (take some action based on observation)

L: © x A = R - loss function, real-valued function true parameter and action

R(B,0) = Ef L(B, O)] - risk

(X|9)[
e A decision 0* rule dominates a decision rule d if and only if R(8,0*)< R(8,0) for all 8, and the inequality is strict for

some 0.

e A decision rule is admissible if and only if no other rule dominates it; otherwise it is inadmissible

r(m, 8) = E__[R(B,0)] - Bayes risk (expectation over 8 w.r.t. prior and possible observations)

()

p(r, O | x) En(elx)[ L(0,0(x))] - expected loss (expectation over 0 w.r.t. posterior n(0|x) )

e 0'is a(generalized) Bayes rule if it minimizes the expected loss

* under mild conditions every admissible rule is a (generalized) Bayes rule (with respect to some prior —possibly an
improper one—that favors distributions where that rule achieves low risk). Thus, in frequentist decision theory it is
sufficient to consider only (generalized) Bayes rules.

* Conversely, while Bayes rules with respect to proper priors are virtually always admissible, generalized Bayes rules
corresponding to improper priors need not yield admissible procedures. Stein's example is one such famous
situation.
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HYPOTHESIS TESTING

One of the most common uses of statistics in particle physics is
Hypothesis Testing (e.g. for discovery of a new particle)

» assume one has pdf for data under two hypotheses:
- Null-Hypothesis, Ho: eg. background-only
- Alternate-Hypothesis H1: eg. signal-plus-background

» one makes a measurement and then needs to decide whether to
reject or accept Ho
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HYPOTHESIS TESTING

One of the most common uses of statistics in particle physics is
Hypothesis Testing (e.g. for discovery of a new particle)

» assume one has pdf for data under two hypotheses:
- Null-Hypothesis, Ho: eg. background-only
- Alternate-Hypothesis H1: eg. signal-plus-background

» one makes a measurement and then needs to decide whether to
reject or accept Ho
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HYPOTHESIS TESTING

Before we can make much progress with statistics, we
need to decide what it is that we want to do.

» first let us define a few terms:

Actual condition

Guilty Not guilty
. —_ False Positive
Rate of Type | error & Verdictof (e, guit reported
. guilty’ rue Positive unksirly)
?ate Of ype II /6 Type | error
Decision
o Dower — 1 — ﬁ False Negative

Verdict of (i.e. guilt
'not guilty' not detected)
Type Il error

True Negative

50



HYPOTHESIS TESTING

Before we can make much progress with statistics, we
need to decide what it is that we want to do.

» first let us define a few terms:

Actual condition

Guilty Not guilty
o False Positive
Rate of Type | error & Verdictof . (ie. gl reported
. 'quilty’ unfairly)
?ate Of Type II /6 Decision Type | error
o Dower — 1 — ﬁ False Negative

Verdict of (i.e. guilt
'not guilty' not detected)
Type Il error

True Negative

Treat the two hypotheses asymmetrically

» the Null Is special.
- Fix rate of Type | error, call it “the size of the test”
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HYPOTHESIS TESTING

Before we can make much progress with statistics, we
need to decide what it is that we want to do.

Actual condition

» first let us define a few terms: Gty | hotquity
. —— False Positive
?ate Of ype I error e Verdict of True Positive (i.e. guiflt reptorted
o 'quilty’ unfairly)
Rate of Type Il iy Type | error
o Dower — 1 — ﬁ Decision False Negative

Verdict of (i.e. guilt
'not guilty' not detected)
Type Il error

True Negative

Treat the two hypotheses asymmetrically

» the Null Is special.
- Fix rate of Type | error, call it “the size of the test”

Now one can state “a well-defined goal”
» Maximize power for a fixed rate of Type | error

50



HYPOTHESIS TESTING
The idea of a "50” discovery criteria for particle physics is really a
conventional way to specify the size of the test
» usually 50 corresponds to o = 2.87 - 107
- €g. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy
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HYPOTHESIS TESTING

The idea of a "50” discovery criteria for particle physics is really a
conventional way to specify the size of the test

» usually 50 corresponds to o = 2.87 - 107

- €g. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy
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THE NEYMAN-PEARSON LEMMA

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H (background only)
- the Alternate Hypothesis H; (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis
a= Plx € W|H))

(Convention: if data falls in W then we accept Ho)

Find the region W such that we minimize the probability of wrongly
accepting the Hy (when Hj is true)

6:P($€W‘H1)
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THE NEYMAN-PEARSON LEMMA

The region W that minimizes the probability of wrongly accepting Ho
IS just a contour of the Likelihood Ratio

P(ZE Hl)
P(QZ‘ H())

Any other region of the same size will have less power

> ko

The likelihood ratio is an example of a Test Statistic, eg. a real-
valued function that summarizes the data in a way relevant to the
hypotheses that are being tested
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A SHORT PROOF OF NEYMAN-PEARSON

W W

P(x|Hy)

> kq
P(x|Ho)

Consider the contour of the likelihood ratio that has size a given size
(eg. probability under Ho is 1-a)
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A SHORT PROOF OF NEYMAN-PEARSON

Now consider a variation on the contour that has the same size
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A SHORT PROOF OF NEYMAN-PEARSON

P(\_|Ho) = P(~/|Ho)

Now consider a variation on the contour that has the same size (eq.
same probability under Ho)
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A SHORT PROOF OF NEYMAN-PEARSON

- P(\_|Hy) = P(_/ |Hy)
P(z|Ho)

P(\_|H:1) < P(\_|Ho)k,

< kq

Because the new area is outside the contour of the likelihood ratio,
we have an inequality
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A SHORT PROOF OF NEYMAN-PEARSON

P(x|H,)
P(x|Ho)

P(z|H,)

< kg
P(z|Ho)

P(\_|H1) < P(\_|Ho)k, P(_/|Hy1) > P(_/|Ho)k,

And for the region we lost, we also have an inequality
Together they give...

> kg

58



A SHORT PROOF OF NEYMAN-PEARSON

P(x|H,)
P(x|Hy)

P(x|H)
P(z|Ho)

< kq

P(\_|H1) < P(\_|Ho)k, P(_/|Hy) > P(_/|Hy)k,

P(\_|H1) < P(_/|H,)

The new region region has less power.

> kg
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STATISTICAL DECISION THEORY IN 1T SLIDE

O - States of nature; X - possible observations; A - action to be taken
f(x|0) - statistical model; () - prior
d: X = A - decision rule (take some action based on observation)

L: © x A = R - loss function, real-valued function true parameter and action

R(B,0) = Ef L(B, O)] - risk

(X|9)[
e A decision 0* rule dominates a decision rule d if and only if R(8,0*)< R(8,0) for all 8, and the inequality is strict for

some 0.

e A decision rule is admissible if and only if no other rule dominates it; otherwise it is inadmissible

r(m, 8) = E__[R(B,0)] - Bayes risk (expectation over 8 w.r.t. prior and possible observations)

()

p(r, O | x) En(elx)[ L(0,0(x))] - expected loss (expectation over 0 w.r.t. posterior n(0|x) )

e 0'is a(generalized) Bayes rule if it minimizes the expected loss

* under mild conditions every admissible rule is a (generalized) Bayes rule (with respect to some prior —possibly an
improper one—that favors distributions where that rule achieves low risk). Thus, in frequentist decision theory it is
sufficient to consider only (generalized) Bayes rules.

* Conversely, while Bayes rules with respect to proper priors are virtually always admissible, generalized Bayes rules
corresponding to improper priors need not yield admissible procedures. Stein's example is one such famous
situation.
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Richard
Lockhart

Optimality

The longest highest bridge in the world

Optimality theory: Data X. Model f(x|0),0 € ©.
Decision problem: observe X, make decision d(X).
Lose L(d(X),8) — real valued.

Judge quality of d(X) by long run average risk:

R(d,0) = (L(d(X),0)y = E[L(d(X),0]0].

m Key idea: admissibility.
m Procedure dy is better than d> if, for all 0,

R(dl, (9) < R(dg, 9)

We call d»> inadmissible.

Richard Lockhart
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w4 Admissibility and Bayes

Richard
Lockhart

Every admissible procedure is Bayes.

Every Bayes procedure i1s admissible

Optimality

Written separately because neither is quite right.

But meaning is — sensible procedures need to be Bayes.
Not always an easy restriction to impose — but wise, in my
view, to remember.

Richard Lockhart
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Famous example — Neyman-Pearson lemma -19

Richard

sockhart Data X with density fy or f;.

m Decision: observe X guess which density. Hypothesis
testing.

Optimality

m Loss: 1 if wrong, O if right.
m Risk is
(Po(Reject), P1(Accept))

m Neyman Pearson say minimize second component subject
to constraint on first.

Richard Lockhart
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s  Implied Priors

Richard
Lockhart Langrange multipliers. Minimize

P1(Accept) + APg(Reject) = 5 + Aa.

Optimality

m Same as Bayes for prior P(f; true) = 1/(1 + A).

m Then adjust prior (\) to find Bayes procedure which
satisfies constraint.

m Notice that A\/(1 4+ \) = P(H,).

Procedure implies (at least one) prior.

Richard Lockhart
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BAYES' THEOREM

Bayes’ theorem relates the conditional and
marginal probabilities of events A & B

P(B|A)P(A)
P(B)

= P(A) is the prior probability. It is "prior" in the sense that
it does not take into account any information about B.

» P(A1B) is the conditional probability of A, given B. It is
also called the posterior probability because it is
derived from or depends upon the specified value of B.

P(A|B) =

= P(B 1A) is the conditional probability of B given A.

= P(B) is the prior or marginal probability of B, and acts
as a normalizing constant.

f(x]0)7(0)
N

w(0|x) = x L(0)m(0)
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http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Conditional_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Normalizing_constant

... IN PICTURES (FROM BOB COUSINS)

P, Conditional P, and Derivation of Bayes’ Theorem
in Pictures
0 P(B) =

P(A) = ——

@
Whole space L

0
‘B P(AIB) = " P(BIA) =

¢
P(AnB)= i

P(A) x P(BIA) = X 0 = = P(A N B)
q d

P(B P(AIB) = X — = P(ANB

(B) x P(AIB) @ (AN B)

Bob Cousins, CMS, 2008 — P(BIA) = P(AIB) X P(B) / P(A)
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... IN PICTURES (FROM BOB COUSINS)

P, Conditional P, and Derivation of Bayes’ Theorem
in Pictures ‘

P(A) = —— P(B) =

@
Whole space L

0
‘B P(AIB) = " P(BIA) =

P(A N B) = —

.‘-

Don’t forget about "Whole space” (3 | will drop it from the
notation typically, but occasionally it is important.

Bob Cousins, CMS, 2008 — P(BIA) = P(AIB) X P(B) / P(A)
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LOUIS'S EXAMPLE

P (Data;Theory) %= P (Theory;Data)

Theory = male or female

Data = pregnant or not pregnant

P (pregnant ; female) ~ 3%
but

P (female ; pregnant) >>>3%
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AXIOMS OF PROBABILITY

These Axioms are a mathematical starting point
for probability and statistics

1. probability for every element, E, is non-
negative P(E)>0 VYECF =2%

2. probabillity for the entire space of
possibilitiesis 1 P(Q2) = 1.

3. If elements E; are disjoint, probability is
additive P(E,UE,U---) =) P(E;).

Consequences:
P(AU B) = P(A) + P(B) — P(AN B)

P(Q\ E)=1- P(E)

Kolmogorov
axioms (1933)
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DIFFERENT DEFINITIONS OF PROBABILITY

Frequentist -
» defined as limit of long term frequency ) ;’ A
» probability of rolling a 3 := limit of (# rolls with 3 / # trials) Q‘Q ’

- you don’t need an infinite sample for definition to be useful

- sometimes ensemble doesn’t exist
« eg. P(Higgs mass = 125 GeV), P(it will snow tomorrow)

» Intuitive if you are familiar with Monte Carlo methods

» compatible with orthodox interpretation of probability in Quantum Mechanics.
Probability to measure spin projected on x-axis if spin of beam is polarized
along +z

Subjective Bayesian (D = 1
- Probability is a degree of belief (personal, subjective) 2
- can be made quantitative based on betting odds

- most people’s subjective probabilities are not coherent and do not obey
laws of probability

http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1
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http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1

Measurement / Estimators



ESTIMATORS

Given some model f(x|a) and a set of observations {x;} often one

wants to estimate the true value of a (assuming the model is true).

An estimator is function of the data written &(x+,...x,)
» Since the data are random, so is the resulting estimate
» often it is just written ¢, where the x-dependence is implicit
» one can compute expectation of the estimator

Ela(z)]o] = / &(2) f (z]a)dz

Properties of estimators:
» bias FEla(x)|lal —a  (unbiased means bias=0)
» variance E[(a(z) — a)%|a] = / (a(z) — @)% f(z]a)dz
» asymptotic bias limit of bias with infinite observations
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MAXIMUM LIKELIHOOD ESTIMATORS

There are many different possible estimators, but the most well-
known and well-studied is the maximum likelihood estimator (MLE)

- | | | | y
&(x) = argmax, L(a) = argmax,, f(z|a) | y -
- 9 ]
This is just the value of a that maximizes the likelihood s | —
i =2 1In L(ne=3 1 ) ]
S0 E B
Example: the Poisson distribution e E
e H 2 - -
Pois(n|u) = u'" —— - §
(n|p) . E -
Maximizing L(«) is the same as minimizing -In L(u) 055 'M' R T
d d n Figure from R. Cousins
—— L], =0=— [p—nlnp+hn! | =1—— '
Ay ()l Ay (“ " ”“+§1%) y Am. J. Phys. 63 398 (1995)
= =n

In this case, the MLE is unbiased b/c E[n]=u
73



A SECOND EXAMPLE

Consider a set of observations {x;} and we want to estimate the mean
of a Gaussian with known o

Clalp,0) = —p—e™ T
. . p— 20
which gives Sl w/gmye
d d (#i — ) (zi — p)
dwﬂwww(z 7 L,_/”)Z =
v const v

= I = % Z x; (anunbiased estimator) .
0

1

However, the MLE 6* = = > (z: — u)* is biased
"

It can be shown that 42 = 7 2w — 1)? 1S unbiased

Thus, the MLE is asymptotially unbiased .

Note: if 62 is an unbiased estimate of 02, then \/{0?} is a biased estimate of T.
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COVARIANCE AND CORRELATION

Define covariance cov|x,y] (also use matrix notation V) as

covlz,y] = Elzy] — papy = El(z — pz)(y — py)]
Correlation coefficient (dimensionless) defined as

cov|z, y]

Pxy —
O'QjO'y

If x, y, independent, i.e.,  f(x,y) = fe(x)fy(y), then
Elzy] = / / vy f(x,y) dedy = pgpy
— coV|z,y] =0 x and y, ‘uncorrelated’

N.B. converse not always true.

[G. Cowan]
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CORRELATION (CONT.)

p=0.75

p = 0.95

10

10

(b)

10

10

p= —0.75

p = 0.25

[G. Cowan]
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CORRELATION (CONT.)

. J r-
) -?1‘ ’ B vf. \ \c
N kR okivx
1 of 3 Ll o dlate e
X ‘a ' ,6 (:\a‘ T - o .“‘4b
. g ) 28 me A AL iy
a" ' ‘&%‘ 51? g R
2 2 52

0 -0.4 -0.8

http://en.wikipedia.org/wiki/Correlation_and_dependence
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http://en.wikipedia.org/wiki/Correlation_and_dependence

MUTUAL INFORMATION

Mutual Information is a more general notion of ‘correlation’

I(X;Y)=> > plx,y) log( p(z.y) ), I(X:Y) = H(X) — H(X|Y)

yeY zeX Pl(-”?) P2('y) = H(Y) - H(Y|X)
— H(X)+ H(Y) - H(X,Y)
» it is symmetric: [(X;Y) = [(Y;X)
» If and only if X,Y totally independent: 1(X;Y)=0

» possible for X,Y to be uncorrelated, but not independent

Mutual Information doesn’t seem
to be used much within HEP, but
it seems quite useful

/8



BIAS/VARIANCE TRADEOFF

We introduced Bias and Variance of estimators
Var[ji|u] = E[(4 — Elp|u])*] |4l
Most physicist are allergic to the idea of a biased estimator
e try to find unbiased estimator with smallest variance
e hence importance of Cramér-Rao bound
But what if we just want to minimize the mean-squared error?

MSEljilp] = E[(ft — 11)?] |l

it decomposes like this
MSElfi|p] = Var[j|u] + (Bias[fi|])?

So it encodes some relative weight to bias and variance. Think harder!



CRAMER-RAO BOUND

The minimum variance bound on an estimator is given by the
Cramér-Rao inequality:

» simple univariate case:
Var[0|0] = E[(6 — E[0|6])?] |6]

» For an unbiased estimator the Cramér-Rao bound states
1
Var 6’ v
0] > 0

» where [(0) is the Fisher information

(Z(0),,=E [ddg (X 0)—lnf X;9)|9] .

» General form for multiple parameters:

cov[|0);; > I-(9)

Maximum Likelihood Estimators asymptotically reach this bound



JAMES-STEIN ESTIMATOR

Consider a standard multivariate Gaussian distribution for X
in n dimensions centered around p

F@m =11
1=1

6 1
1 (@i — Mi)2> >
exp | — : 41 °

V 27 P ( 2 3+
2

1

4 o ® ‘{%':..0

Goal: minimize mean-squared error ‘36’\ s
2

1

5

%
MSE[i] = E[l|ji — i) T e
MLE (unbiased)

James-Stein (weird)

5 1 — . n—2\ _
MMLE—ZU—mZSCJ hyjs = (1 )
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JAMES-STEIN ESTIMATOR

The James-Stein estimator seems like a horrible suggestion
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JAMES-STEIN ESTIMATOR

The James-Stein estimator seems like a horrible suggestion
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BIAS/VARIANCE TRADEOFF

We introduced Bias and Variance of estimators
Var[ji|u] = E[(4 — Elp|u])*] |4l
Most physicist are allergic to the idea of a biased estimator
e try to find unbiased estimator with smallest variance
e hence importance of Cramér-Rao bound
But what if we just want to minimize the mean-squared error?

MSEljilp] = E[(ft — 11)?] |l

it decomposes like this
MSElfi|p] = Var[j|u] + (Bias[fi|])?

So it encodes some relative weight to bias and variance. Think harder!



STATISTICAL DECISION THEORY IN 1T SLIDE

O - States of nature; X - possible observations; A - action to be taken
f(x|0) - statistical model; () - prior
d: X = A - decision rule (take some action based on observation)

L: © x A = R - loss function, real-valued function true parameter and action

R(B,0) = Ef L(B, O)] - risk

(X|9)[
e A decision 0* rule dominates a decision rule d if and only if R(8,0*)< R(8,0) for all 8, and the inequality is strict for

some 0.

e A decision rule is admissible if and only if no other rule dominates it; otherwise it is inadmissible

r(m, 8) = E__[R(B,0)] - Bayes risk (expectation over 8 w.r.t. prior and possible observations)

()

p(r, O | x) En(elx)[ L(0,0(x))] - expected loss (expectation over 0 w.r.t. posterior n(0|x) )

e 0'is a(generalized) Bayes rule if it minimizes the expected loss

* under mild conditions every admissible rule is a (generalized) Bayes rule (with respect to some prior —possibly an
improper one—that favors distributions where that rule achieves low risk). Thus, in frequentist decision theory it is
sufficient to consider only (generalized) Bayes rules.

* Conversely, while Bayes rules with respect to proper priors are virtually always admissible, generalized Bayes rules
corresponding to improper priors need not yield admissible procedures. Stein's example is one such famous
situation.



LECTURE 2

Hypothesis Testing <> Classification

e Neyman-Pearson, Likelihood Ratio

e "Bayes Optimal” Machine Learning Classifiers & Loss
Extending to include systematics:

e statistical modeling with nuisance parameters

* RooFit « TensorFlow, automatic differentiation

e Profile Likelihood Ratio & concept of a “pivot”
Parametrized learning
e for classification

e high dimensional reweighting
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HYPOTHESIS TESTING

One of the most common uses of statistics in particle physics is
Hypothesis Testing (e.g. for discovery of a new particle)

» assume one has pdf for data under two hypotheses:
- Null-Hypothesis, Ho: eg. background-only
- Alternate-Hypothesis H1: eg. signal-plus-background

» one makes a measurement and then needs to decide whether to
reject or accept Ho
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HYPOTHESIS TESTING

One of the most common uses of statistics in particle physics is
Hypothesis Testing (e.g. for discovery of a new particle)

» assume one has pdf for data under two hypotheses:
- Null-Hypothesis, Ho: eg. background-only
- Alternate-Hypothesis H1: eg. signal-plus-background

» one makes a measurement and then needs to decide whether to
reject or accept Ho
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HYPOTHESIS TESTING

Before we can make much progress with statistics, we
need to decide what it is that we want to do.

» first let us define a few terms:

Actual condition

Guilty Not guilty
. —_ False Positive
Rate of Type | error & Verdictof (e, guit reported
. guilty’ rue Positive unksirly)
?ate Of ype II /6 Type | error
Decision
o Dower — 1 — ﬁ False Negative

Verdict of (i.e. guilt
'not guilty' not detected)
Type Il error

True Negative
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HYPOTHESIS TESTING

Before we can make much progress with statistics, we
need to decide what it is that we want to do.

» first let us define a few terms:

Actual condition

Guilty Not guilty
o False Positive
Rate of Type | error & Verdictof . (ie. gl reported
. 'quilty’ unfairly)
?ate Of Type II /6 Decision Type | error
o Dower — 1 — ﬁ False Negative

Verdict of (i.e. guilt
'not guilty' not detected)
Type Il error

True Negative

Treat the two hypotheses asymmetrically

» the Null Is special.
- Fix rate of Type | error, call it “the size of the test”
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HYPOTHESIS TESTING

Before we can make much progress with statistics, we
need to decide what it is that we want to do.

Actual condition

» first let us define a few terms: Gty | hotquity
. —— False Positive
?ate Of ype I error e Verdict of True Positive (i.e. guiflt reptorted
o 'quilty’ unfairly)
Rate of Type Il iy Type | error
o Dower — 1 — ﬁ Decision False Negative

Verdict of (i.e. guilt
'not guilty' not detected)
Type Il error

True Negative

Treat the two hypotheses asymmetrically

» the Null Is special.
- Fix rate of Type | error, call it “the size of the test”

Now one can state “a well-defined goal”
» Maximize power for a fixed rate of Type | error

38



HYPOTHESIS TESTING

Classical hypothesis testing typically framed in terms of
true/false : positive/negative

- r

Actual condition null alternate P Ep

Guil Not guil
Y — TP FN TN
False Positive
Verdict of True Positive (i.e. guilt .reported
'quilty’ unfairly)
power Type | error
Decision i L
False Negative P 100% A _
Verdict of (i.e. guilt True Negative //,— ,
'not guilty' not detected) / '
Type Il error g 4
&
I_ .
actually guilty <> new physics

verdict guilty < claim discovery 0% FPR 100%



HYPOTHESIS TESTING

't the data are high-dimensional, it's not obvious how to draw

the boundary between accept/reject the null hypothesis




HYPOTHESIS TESTING

't the data are high-dimensional, it's not obvious how to draw
the boundary between accept/reject the null hypothesis

GGG

accept

chihuahua or muffin Select



THE NEYMAN-PEARSON LEMMA

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H (background only)
- the Alternate Hypothesis H; (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis
a= Plx € W|H))

(Convention: if data falls in W then we accept Ho)

Find the region W such that we minimize the probability of wrongly
accepting the Hy (when Hj is true)

6:P($€W‘H1)
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THE NEYMAN-PEARSON LEMMA

The region W that minimizes the probability of wrongly accepting Ho
IS just a contour of the Likelihood Ratio

P(ZE Hl)
P(QZ‘ H())

Any other region of the same size will have less power

> ko

The likelihood ratio is an example of a Test Statistic, eg. a real-
valued function that summarizes the data in a way relevant to the
hypotheses that are being tested
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A SHORT PROOF OF NEYMAN-PEARSON

W W

P(x|Hy)

> kq
P(x|Ho)

Consider the contour of the likelihood ratio that has size a given size
(eg. probability under Ho is 1-a)
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A SHORT PROOF OF NEYMAN-PEARSON

Now consider a variation on the contour that has the same size
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A SHORT PROOF OF NEYMAN-PEARSON

P(\_|Ho) = P(~/|Ho)

Now consider a variation on the contour that has the same size (eq.
same probability under Ho)
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A SHORT PROOF OF NEYMAN-PEARSON

- P(\_|Hy) = P(_/ |Hy)
P(z|Ho)

P(\_|H:1) < P(\_|Ho)k,

< kq

Because the new area is outside the contour of the likelihood ratio,
we have an inequality
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A SHORT PROOF OF NEYMAN-PEARSON

P(x|H,)
P(x|Ho)

P(z|H,)

< kg
P(z|Ho)

P(\_|H1) < P(\_|Ho)k, P(_/|Hy1) > P(_/|Ho)k,

And for the region we lost, we also have an inequality
Together they give...

> kg
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A SHORT PROOF OF NEYMAN-PEARSON

P(x|H,)
P(x|Hy)

P(x|H)
P(z|Ho)

< kq

P(\_|H1) < P(\_|Ho)k, P(_/|Hy) > P(_/|Hy)k,

P(\_|H1) < P(_/|H,)

The new region region has less power.

> kg
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STATISTICAL DECISION THEORY IN 1T SLIDE

O - States of nature; X - possible observations; A - action to be taken
f(x|0) - statistical model; () - prior
d: X = A - decision rule (take some action based on observation)

L: © x A = R - loss function, real-valued function true parameter and action

R(B,0) = Ef L(B, O)] - risk

(X|9)[
e A decision 0* rule dominates a decision rule d if and only if R(8,0*)< R(8,0) for all 8, and the inequality is strict for

some 0.

e A decision rule is admissible if and only if no other rule dominates it; otherwise it is inadmissible

r(m, 8) = E__[R(B,0)] - Bayes risk (expectation over 8 w.r.t. prior and possible observations)

()

p(r, O | x) En(elx)[ L(0,0(x))] - expected loss (expectation over 0 w.r.t. posterior n(0|x) )

e 0'is a(generalized) Bayes rule if it minimizes the expected loss

* under mild conditions every admissible rule is a (generalized) Bayes rule (with respect to some prior —possibly an
improper one—that favors distributions where that rule achieves low risk). Thus, in frequentist decision theory it is
sufficient to consider only (generalized) Bayes rules.

* Conversely, while Bayes rules with respect to proper priors are virtually always admissible, generalized Bayes rules
corresponding to improper priors need not yield admissible procedures. Stein's example is one such famous
situation.
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olvoly

Richard
Lockhart

Optimality

The longest highest bridge in the world

Optimality theory: Data X. Model f(x|0),0 € ©.
Decision problem: observe X, make decision d(X).
Lose L(d(X),8) — real valued.

Judge quality of d(X) by long run average risk:

R(d,0) = (L(d(X),0)y = E[L(d(X),0]0].

m Key idea: admissibility.
m Procedure dy is better than d> if, for all 0,

R(dl, (9) < R(dg, 9)

We call d»> inadmissible.

Richard Lockhart
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w4 Admissibility and Bayes

Richard
Lockhart

Every admissible procedure is Bayes.

Every Bayes procedure i1s admissible

Optimality

Written separately because neither is quite right.

But meaning is — sensible procedures need to be Bayes.
Not always an easy restriction to impose — but wise, in my
view, to remember.

Richard Lockhart
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Famous example — Neyman-Pearson lemma -19

Richard

sockhart Data X with density fy or f;.

m Decision: observe X guess which density. Hypothesis
testing.

Optimality

m Loss: 1 if wrong, O if right.
m Risk is
(Po(Reject), P1(Accept))

m Neyman Pearson say minimize second component subject
to constraint on first.

Richard Lockhart
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s  Implied Priors

Richard
Lockhart Langrange multipliers. Minimize

P1(Accept) + APg(Reject) = 5 + Aa.

Optimality

m Same as Bayes for prior P(f; true) = 1/(1 + A).

m Then adjust prior (\) to find Bayes procedure which
satisfies constraint.

m Notice that A\/(1 4+ \) = P(H,).

Procedure implies (at least one) prior.

Richard Lockhart



Motivation for likelihood-free inference
& machine learning



OVERVIEW OF PREDICTIONS
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OVERVIEW OF PREDICTIONS
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Feynman Diagrams
are used to predict
high-energy
Interaction among
fundamental particles
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OVERVIEW OF PREDICTIONS

1 e 1 s 1 i 1%
cSM = ;W“u * WI - EB[“,BI - E(Jlul(,‘tf‘

W
Kinetic energies and self-interactions of the gauge hosons

7

1 1 1
+ LA"(i0, — 597 W, — =¢'YB,)L + Ry"(id, — EQIYBI‘)R

N 2 —
Kinetic energies and electroweak interactions of fermions
1 1 1 2
o It - FA s
+ i |(vz()“ — EQT W, — §g} B,) (D| — V(o)

W
W, Z ~.and Higgs masses and couplings

LN Tty o I v . M
+ q (q ) T},Q)(JH + E(JIL(DR + (JQL(D‘_.R + h.(.’.)
interactions between quarks and gluons fennion masses and couplings to Higgs

1 )The language is Quantum Field Theory

Feynman Diagrams R
2 are used to predict
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Interaction among W
fundamental particles .

The interaction of outgoing particles
with the detector is simulated.

>100 million sensors

105



OVERVIEW OF PREDICTIONS
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+
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Kinetic energies and electroweak interactions of fermions
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W+ Z ~.and Higgs masses and couplings

"Y' T.q) G, + (G1LOR + GoLé R + h.c.)

W

W
interactions between quarks and gluons fennion masses and couplings to Higgs

mu-+

mu-

1 )The language is Quantum Field Theory

2)

4

Feynman Diagrams
are used to predict
high-energy
Interaction among
fundamental particles

The interaction of outgoing particles
with the detector is simulated.

>100 million sensors

Finally, we run particle identification algorithms
on the simulated data as if they were from real

collisions.

~10-30 features describe interesting part

105



DETECTOR SIMULATION

Conceptually: Prob(detector response | particles )
Implementation: Monte Carlo integration over micro-physics

Consequence: cannot evaluate likelihood for a given event

| | | | | | | |
Om im 2m im am 5m ém /m
Key:
Muon

Electron

Charged Hadron (e.g. Pion)
~ = — - Neutral Hadron (e.g. Neutron)
----- Photon

Silicon
Tracker

/I

Hadron Superconducting
Calorimeter Solenoid

' Electromagnetic
)] 'l Calorimeter
' 4

Iron return yoke interspersed
Transverse slice with Muon chambers
through CMS




DETECTOR SIMULATION

Conceptually: Prob(detector response | particles )

Implementation: Monte Carlo integration over micro-physics

Consequence: cannot evaluate likel

This motivates a new class of algorit
likelihood-free inference, which on

ihood for a given event

nms for what is called

y require ability to

generate samples from the simulation in the “"forward mode”



10° SENSORS — 1 REAL-VALUED QUANTITY

Most measurements and searches for new particles at the LHC are based on the
distribution of a single variable or feature

e choosing a good variable (feature engineering) is a task for a skilled physicist
and tailored to the goal of measurement or new particle search

 likelihood p(x|0) approximated using histograms (univariate density estimation)
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10° SENSORS — 1 REAL-VALUED QUANTITY

Most measurements and searches for new particles at the LHC are based on the
distribution of a single variable or feature

e choosing a good variable (feature engineering) is a task for a skilled physicist
and tailored to the goal of measurement or new particle search

 likelihood p(x|0) approximated using histograms (univariate density estimation)

> 40 .
r T T T T T T T &S F ATLAS Preliminary
Key: - o 35'_ e Data o
Ele;:r(;n adron (e.g. Pion : E - Background 2z
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T I Signal (m =190 GeV)
25 I Signal (m =360 GeV)
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15 Vs =7TeV: [Ldt = 4.8 fo’
- 's =8 TeV: [Ldt=5.8 fb
) 10—
with Muon chambers _ é
: 200 400 600
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This doesn’t scale if x is high dimensional!



MACHINE LEARNING

Normalized

RBF SVM

. CLASSIFIERS

° [
°
1 8 Em Isidnla.ll T | T T 17 | T T 1 T T 1 T T 1 T T 1 T T 1
~ 7] Background .
1.6 — —
14— _:
1.2 -2
- 15
- —H o
1 —e
L =)
0.8 2
- S
- o
0.6 — S
_ e
0.4 — o
C %)
0.2 -7 8

0 I I
-08 -06 -04 -0.2

-0 0.2 0.4 0.6 0.8

S

Common to use machine learning

classifiers to separate signal (H1) vs.
background (Ho)

e want a function s: X— Y that
maps signal to y=1 and
background to y=0

e calculus of variations: find
function s(x) that minimizes loss:

Lis] = / p(e|Ho) (0 — s(x))? da
T / p(alHy) (1 — s(x))?da



MACHINE LEARNING: CLASSIFIERS

Normalized

RBF SVM
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e applied calculus of variations:
find function s(x) that minimizes
loss: Lis|= / p(zHy) (0 — s(x))? da

T / p(x|Hy) (1 - s(x))2da

e j.e. approximate the optimal
classitier
H
S(ZE) _ p(il?‘ 1)
p(x|Ho) + p(z|H:)

e which is 1-to-1 with the
likelihood ratio

p(z|Hq)
p(z|Hp)




MACHINE LEARNING: CLASSIFIERS

Normalized
— — —

FS

RBF SVM
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e applied calculus of variations:
find function s(x) that minimizes
loss:  Lis)= [ plalHo) (0~ s(2))? da

—y/ﬂﬂng—s@»mx

~ ]1[21(% — s(x;))°
e j.e. approximate the optimal
classitier
x| H
S(ZB) L p( ‘ 1)

- p(x|Ho) + p(z|Hy)

e which is 1-to-1 with the
ikelihood ratio
p(

p(x

Hy)
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Loss Functions



DENSITY ESTIMATION VIA CALCULUS OF VARIATIONS

What function r(x) minimizes the “cross-entropy” loss?

L|r] = —/p(w) logr(x) dx

\ _J/
-~

F(x,r)

e Subject to /r(az)daz =1




DENSITY ESTIMATION VIA CALCULUS OF VARIATIONS

What function r(x) minimizes the ”cross—entropy” loss?

L) = - [ pla)logr(o zlogm

F(a: T)

e Subjectto /r(az)da; =1




DENSITY ESTIMATION VIA CALCULUS OF VARIATIONS

What function r(x) minimizes the "cross- entropy” loss?

L) = - [ pla)logr(o Zlog"rxz

F(a: T)

e Subjectto /r(az)daz =1

Fuler-Lagrange Equation w/ Lagrange-multiplier

Lir,A\| = F(x,r) + Ar(x)

d (oL\ oL oL  ~ —p(z)
@(W) 5T_O W_O_ r(x) - A
=0 r(z) = p(x)/A

imposing the constraint gives A = 1 thus r(z) = p(x)



SQUARED LOSS

What function r(x) minimizes the squared loss?

Lir] = - / p(2) (plx) — r(2))? da
F(x,r)

e Subjectto /r(a;)da; =1



SQUARED LOSS

What function r(x) minimizes the squared loss?

Lir] = / p(2) (p(x) — r(x))? da
F(x,r)

e Subjectto /r(az)daz =1

Fuler-Lagrange Equation w/ Lagrange-multiplier

Lir,A\| = F(x,r) + Ar(x)

d (oL oL

iz (r) 50§ =0=A - @) ()
= () .
= r(r) =p

2p
imposing the constraint gives A = 0 thus r(x) = p(x)



APPROXIMATING FROM DATA

If we have samples from an unknown p(x): {z;};v; ~ p(z)

We can effectively approximate the true cross-entropy loss:

Llr| = —/p(:z;) logr(x) dx ~ E log r(x;)
%/_/
F(x,r)

and approximate p(x) even though we can’t evaluate it.

In contrast, we can’t use the squared loss if since can't
evaluate p(x):

Li) = - [ plo)(pla) — r(a))? dz = L ™ og(3lon) - rlan))

F(x,r)




VARIATIONAL INFERENCE

Variational Inference:

Foundations and Modern Methods

David Blei, Rajesh Ranganath, Shakir Mohamed

NIPS 2016 Tutorial - December 5, 2016

&2 COLUMBIA UNIVERSITY PRINCETON .
UNIVERSITY DeepMind

IN THE CITY OF NEW YORK

Variational Inference:
Foundations and Modern Methods

p(z|x) |

S KLq(@:v*) || pz] %)

VI approximates difficult quantities from complex models.
With stochastic optimization we can

= scale up VI to massive data

= enable VI on a wide class of difficult models

= enable VI with elaborate and flexible families of approximations

Black Box Variational Inference (BBVI)

REUSABLE MASSIVE
VARIATIONAL DATA
FAMILIES

ANY MODEL

BLACK BOX
VARIATIONAL
INFERENCE

p(B.2]x)

The requirements for inference

The noisy gradient:

s
§ 227 logate; M1ogp(s 2) ~logates; )
where z, ~ q(z; v)
To compute the noisy gradient of the ELBO we need
= Sampling from q(z)
= Evaluating V,logq(z; v)
= Evaluating logp(x,z) and logq(z)

There is no model specific work: black box criteria are satisfied

need likelihood




How do we create complicated probability
densities p(x) that are tractable

and

are normalized such that [p(x) dx =17



BlJECTlONS K.C. & G. Louppe: http://beta.briefideas.org/ideas/5c2f/4aedbf3618ca180382e393c7617

f | have a bijection: f : X — Z

and an arbitrary tractable density on Z: p(z)

Then density on X follows from a simple change of variables

0
p(x) = p(fp(x)) det( Yolx) )‘

6xT

Now construct neural networks f; that are bijections & optimize
“cross entropy” loss

It it is a bijection, | can generate samples of x from inverse
transformation f'(z)


http://beta.briefideas.org/ideas/5c2f74aedbf3618ca180382e393c7617

ENGINEERING BIJECTIONS

Approximations using Change-of-variables

Exploit the rule for change of variables for random variables:

= Begin with an initial distribution g, (zy|x).
= Apply a sequence of K invertible functions f.

; (@) -E-E-E

Sampling and Entropy
zx = fro...0 fyo fi(zo)
K
log g (1) = log o(20) — Y logdet | ==
k=1 PR
¥aa
‘ I
4
M /// 4 :
XA !
~ P |
N:- - | ; 7 :
S=czzdTr !
t=T

Distribution flows through a sequence of invertible transforms

[Rezende and Mohamed, 2015]

Choice of Transformation Function

K
o
L =Eq z)llogp(x, 2x) 1-Eqy 5y [108 q0(20) ] — Eg 2, [Z logdet a—z];
k=1

|

= Begin with a fully-factorised Gaussian and improve by change of variables.
= Triangular Jacobians allow for computational efficiency.

Planar Flow Real NVP Inverse AR Flow

@)
I

Y:d = Zh-1,1:d 2i—1 — pie(2<k, T)
2z = —— 12T
2k = 2k +uh(w ' zp_y +b) Yar1:0 = H2zk—1,1:4) + Zdr1:0 © exp(s(2x—1,1:4)) * or(z<k, )

[Rezende and Mohamed, 2016; Dinh et al., 2016; Kingma et al., 2016]

Linear time computation of the determinant and its gradient.




BIJECTIONS: FLOWS & AUTOREGRESSIVE MODELS

K.C. & G. Louppe: http://beta.briefideas.org/ideas/5c2f74aedbf3618ca180382e393c/617

Recent work in density estimation uses a bijection f : X — Z (e.g. an invertible flow or
autoregressive model) and a tractable density p(z) (e.g. [1] [2] [3] [4]).

det ( Pp) >| ,
6xT

where ¢ are the internal network parameters for the bijection f¢. Learning proceeds via gradient
ascent V¢ Zi log p(x;) with data x; (i.e. maximum likelihood wrt. the internal parameters ¢).
Since f is invertible, then this model can also be used as a generative model for X .

p(x) = p(fp(x))

This can be generalized to the conditional density p(x|6) by utilizing a family of bijections
fo : X — Z parametrized by @ (e.g. [5] [6]).
of 4.9(x)
det ( Ui )‘

axT

p(x10) = p(f4;6(x))

Here @ and x are input to the network (and its inverse) and ¢ are internal network parameters.
Again, learning proceeds via gradient ascent V Y.; log p(x;|6;) with data x;, 6;.

We observe that not only can this model be used as a conditional generative model p(x|8), but it
can also be used to perform asymptotically exact, amortized likelihood-free inference on 6.

This is particularly interesting when @ is identified with the parameters of an intractable, non-
differentiable computer simulation or the conditions of some real world data collection process.


http://beta.briefideas.org/ideas/5c2f74aedbf3618ca180382e393c7617
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TWO APPROACHES

Use simulator Learn simulator
(much more efficiently) (with deep learning)

conv (180w + 5b)

= - hon-linear
””;‘“ maxpool conv (450w + 10b) ®
. 0%0
( ' non- Imear' ¢ = 0
X O = €
) =@
= 0
s —= on. Imear maxpool i g
St fully- connecfed‘ = ©
e (1600w + 10b)
e Approximate Bayesian e Generative Adversarial Networks (GANs),
Computation (ABC) Variational Auto-Encoders (VAE)
e Probabilistic Programming e Likelihood ratio from classitiers (CARL)
e Adversarial Variational e Autogregressive models,

Optimization (AVO) Normalizing Flows


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

LECTURE 3

Note: This lecture was largely on the board

Generative Adversarial Networks
e Loss functions = Adversarial minimax games
e comparison to bijective approaches
° eg. can't use for inference
The “"Data Manitold” (on the board)
* auto-encoders (on the board)
Adversarial Variational Optimization

"Learning to pivot with Adversarial Neural Networks:
12:



Adversarial Training
(not just for GANS)



Goodfellow, et al arXiv:1406.2661

GENERATIVE ADVERSARIAL NETWORKS e e e

generated distribution true data distribution
A

P(X)

\

unit gaussian

generative
O model .
(neural net) +._[loss

/
7/
’
Z S 7
S A

image space image space

e Two-player game:
m a discriminator D,
m a generator G;
e D is a classifier X — {0,1} that tries to distinguish between

m a sample from the data distribution (D(x) = 1, for X ~ pgata),
m and a sample from the model distribution (D(G(z)) = 0, for

Zn~ pnoise);
e G is a generator Z +— X trained to produce samples G(z) (for
Z ~ Pnoise) that are difficult for D to distinguish from data.

(D*, G*) = max min V(D, G).

Leo is G Tom is D



NEW! AVO

Adversarial Variational Optimization of Non-Differentiable Simulators

Gilles Louppe'! and Kyle Cranmer!
'New York University

Complex computer simulators are increasingly used across fields of science as generative models
tying parameters of an underlying theory to experimental observations. Inference in this setup is
often difficult, as simulators rarely admit a tractable density or likelihood function. We introduce
Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-
differentiable generative model incorporating ideas from empirical Bayes and variational inference.
We adapt the training procedure of generative adversarial networks by replacing the differentiable
generative network with a domain-specific simulator. We solve the resulting non-differentiable mini-
max problem by minimizing variational upper bounds of the two adversarial objectives. Effectively,
the procedure results in learning a proposal distribution over simulator parameters, such that the
corresponding marginal distribution of the generated data matches the observations. We present
results of the method with simulators producing both discrete and continuous data.

Leo is G Tom is D

G. Louppe & K.C. arXiv:1707.07113

Similar to GAN setup, but
instead of using a neural network

as the generator, use the actual
simulation (eg. Pythia, GEANT)

Continue to use a neural network
discriminator / critic.

Difficulty: the simulator isn't
differentiable, but there’s a trick!

Allows us to efficiently fit /
tune simulation with stochastic
gradient technigues!


http://arxiv.org/abs/1707.07113

VARIATIONAL OPTIMIZATION

min f(6) < Eo~q0)4) L/ (0)] = U(9)

VypU() = Eg g4 [ (0)Vy log q(0)|1))]

0.0 -

—0.2 4

—0.4 -

—0.8 A

-100 -75 =50 =25 0.0 2.5 5.0 7.5 10.0

Piecewise constant —Sin}gx) q(0|p = (u, B8)) = N (p, eP)




ADVERSARIAL VARIATIONAL OPTIMIZATION

Like a GAN, but generative model is non-differentiable
and the parameters ot simulator have meaning

e Replace the generative network with a non-differentiable

forward simulator ¢(z; ). 1.05
e With VO, optimize upper bounds of the adversarial objectives: L 00 1.0 = X~gz()i)) 0
e x~px|y)y=
Ua = Eo~q(opy) | La] (1) 0.5+ 08 B
Uy = Egq(0]w)|Lg] (2 ¢ o0 0.6
respectively over ¢ and 1. 0.85 ‘30\ 0.4
— q@ly) y=0
0801 — q@ly) y=5 0.2
. . > e 0°=(42,0.9)
Effectively sampling from Y N B
41 42 43 ~1.0 -05 0.0 05 1.0
inal model o
marginal maoae
—— —Ugy=0
1.5 - — “HYay=>
x ~ q(x[¢p) = 0 ~ q(O|),z ~ p(2]0),x = g(z; 0)
1.0 -
We use Wasserstein distance,
as in WGAN . .

0 50 100 150 200 250 300

G. Louppe & K.C. arXiv:1707.07113


http://arxiv.org/abs/1707.07113

LEARNING TO PIVOT WITH ADVERSARIAL NETWORKS

Typically classitier f(x) trained to
minimize loss L.

normal training

e want classifier output to be 30 10
. . e . 2.5 0.9
Insensitive to systematics 0s

2.0
(nuisance parameter v) s 07
) 1.0 0.6
* introduce an adversary r that | 05
0.4
tries to predict v based onf. oo N
.. -0.5 0.2
® setup as a minimax game: I o

-1.0-0.5 0.0 0.5 1.0 1.5 2.0

9},6’; = arg minmax E(0¢,0,). 4.0

s r 3.5}
E>\(0f797“) :Ef(ef) _>\£7"(9f70’r‘) 30l
2.5}
50|
s T sl
‘?E’Z 1.01-f
By 0.5}

0.%. C

0.2

G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046

adversarial training

3.0

1.5

1.0

0.5

0.0

-0.5

_191.0 —0.5 0.0 0.5 1.0 1.5 2.0

4.0

0.84

0.72

0.60

0.48

0.36

0.24

0.12




LEARNING TO PIVOT WITH ADVERSARIAL NETWORKS

Typically classitier f(x) trained to
minimize loss L.

e want classifier output to be 30 g Lo 30
. . . X1 B 7 0.9 2.5
Insensitive to systematics ©plv 0
2.0 Vet 2.0
(nuisance parameter v) 15 °T s
) 1.0 ko oo 1.0
* introduce an adversary r that . °s
0.4
tries to predict v based onf. oo s 00
. . -0.5 0.2 -0.5
o . N
Setup as a mlnlmax game. -1.0 0.1 _191.0 —-0.5 0.0 0.5 1.0 1.5 2.0

-1.0-0.5 0.0 0.5 1.0 1.5 2.0

9},6’; = arg minmax E(0¢,0,). 4.0

normal training

4.0

s r 3.5}
E>\(0f797“) :Ef(ef) _>\£7"(9f70’r‘) 30l
2.5}
50|
s T sl
‘?E’Z 1.01-f
By 0.5}

adversarial training

0.84

0.72

0.60

0.48

0.36

0.24

0.12

0.%. C

02 04

G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046




THE ADVERSARIAL MODEL

Classifier f

Adversary r

’71(f(X; Qf); 97“)
O

f(X;6y) Y2 (f(X;05);0:)
X ——— T O ,P(fyla'y?a"')
I s
T T pe, (Zf(X;05))
0 Ly(0r) 0 Lr(0f,0r)

the Y1, Y2, ... are the mean,
standard deviation, and amplitude
for the Gaussian Mixture Model.

 the neural network takes in f
and predicts Y1, Y2, ...

p(z|f)




G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046

AN EXAMPLE

Technigue allows us to tune A, the tradeoft between
classification power and robustness to systematic uncertainty

An example: :
background: 1000 QCD jets
signal: 100 boosted W's

A=0/Z=0
A=0
A=1

Train W vs. QCD classifier

Pileup as source of
uncertainty

Simple cut-and-count

Expected significance of search

analysis with background O |
uncertainty. ) l l l l
0.0 0.2 0.4 0.6 0.8 1.0

threshold on f(X)



DECORRELATED TAGGERS

Adversarial approach of “Learning
to Pivot” can also be used to train
a classitier that is “decorrelated”
to some other variable.

e want jet taggers that are
decorrelated with jet invariant

Mass

e so that analysis can still search
for a bump using jet invariant

Mass

e avoids sculpting background

NN output

NN output

K.C, J. Pavez, and G. Louppe, arXiv:1506.02169

P. Baldi, K.C, T. Faucett, P. Sadowski, D. Whiteson arXiv:1601.07913

—_

0.5

0.5

G. Louppe, M. Kagan, K.C, arXiv:1611.01046
Shimmin, et. al. arXiv:1703.03507

' mass=20 GeV

' mass=35 GeV

' mass=50 GeV

ass=100 GeV

ass=200 GeV

' mass=300 GeV

Adv. Trained NN

l l
100 150 200
Jet Invariant Mass [GeV]

' mass=20 GeV

' mass=35 GeV

' mass=50 GeV

ass=100 GeV

' mass=200 GeV

ass=300 GeV

| | ;;H?
e wg@%ﬁaﬁ% iﬁ

Trad. NN

ﬁi

»~

ettt Q&W‘Wwﬁﬁﬁm

100 150 200
Jet Invariant Mass [GeV]



DECORRELATION IN BELLE Il

DNN (E+DL+V) (0.0437)

80

60 o

40

20

0
0.06  0.08

-0.08 -0.06 —0.04_ -0.02 0.00 0.02 0.04
signal shape of Az

ROC Rejection Plot

AN (/\:0.4, E+DL+V) (0.0138) 1.00
80 0.98
[
i)
2
& 0.96
60 o
o
[
>
S 0.94
40 <
@
o
0.92 - DNN(E+DL+V) 0.9977
20 —— AN (A=0.4, E+DL+V) 0.9974
— DNN(E+DL) 0.9950
0.90
0.90 0.92 0.94 0.96 0.98 1.00
0 Signal Efficiency
-0.08 -0.06 -0.04 -0.02 000 002 004 006 0.08

signal shape of AZ

Dennis Weyland Master's thesis ETP-KA/2017-30



ADVERSARIAL EXAMPLES

“panda” “gibbon”

57.7% confidence 09.3% confidence



ADVERSARIAL EXAMPLES
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ADVERSARIAL EXAMPLES
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LECTURE 4

Extending to include systematics:
* statistical modeling with nuisance parameters

* RooFit « TensorFlow, automatic differentiation

e Profile Likelihood Ratio & concept of a “pivot”
Parametrized learning

o for classitfication

e high dimensional reweighting
Other Likelihood Free techniques

e ABC & probabilistic programming
Gaussian Processes

e physics-aware kernels

QCD-aware neural networks
13¢



Building a Statistical Model
Systematics & Nuisance Parameters



VISUALIZING PROBABILITY MODELS

| will represent PDFs graphically as below (directed acyclic graph)
» eg. a Gaussian G(x|u, o) is parametrized by (i, o)
» every node is a real-valued function of the nodes below

100

80

Nt
®/®@

138



ROOFIT: A DATA MODELING TOOLKIT

RooFit is a major tool developed at BaBar for data modeling.

RooStats provides higher-level statistical tools based on these PDFs.

RooAddPdf
sum
RooGaussian RooRealVar RooGaussian RooRealVar RooArgusBG
gaussl glfrac gauss2 g2frac argus
RooRealVar RooRealVar RooRealVar RooRealVar RooRealVar RooRealVar
meanl sigma X mean2 argpar cutoff

Composition (‘plug & play’) e
Addition | A
i Suf i %d' Lg.ua_ I.EI[IZSt__.__ ! ,( ; RSy =08657
%m: %::L ;g-mr. 353, 0.002 zﬁg{;'ﬁ@@ : :
il s i o ol Il i "'fr i
bt o P - 1o ’l];l"lilﬁr I;ilifl fif/ il’t\\
S g ,,;;,,;,, o
: 4 i o
) " i s "“’"’ " "f
m- :::E Jl:n I'Ili : ll‘- z 25 3 olI'I 8 {F i 3 z 1 B W "’” 6 8 *D
“ R T | i T R S T T T o "‘“"““i‘“g G WO R Y T ® ! 003 & 4

g(x;m,s)

Possible in any PDF

No explicit support in PDF code needed

Multiplication :

P — Convolution
%mi’_— oy g
e Er g
_;\j},;l %u g.ml-
(-%MI_ 'T?.‘I :' %m!;

*’h ol £

—
ansf ums |- —
ool a2

E Olllleé_g- [t ) l

r\riﬂ 1% 10 5 n
Wouter Verkerke,

Lol bl L
5

0 15 n
[}
Wouter Verkerke, UCSB
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MARKED POISSON PROCESS

Channel: a subset of the data defined by some selection
requirements.

» eg. all events with 4 electrons with energy > 10 GeV
» n. number of events observed in the channel
» v: number of events expected in the channel

Discriminating variable: a property of those events that can be
measured and which helps discriminate the signal from background

» 9. the invariant mass of two particles
» f{x): the p.d.f. of the discriminating variable x

D={x1,...,x,}
Marked Poisson Process / Extended Likelihood:

f(D|v) = Pois(n|v) | [ f(z)

140



MIXTURE MODEL

Sample: a sample of simulated events corresponding to particular
type interaction that populates the channel.

» statisticians call this a mixture model

f)=— 3 wh), ve= Y. w

Vo 1
sEsamples sEsamples
>106""I""""I""I""
o ATLAS
5 ® data
g 10 ] Z+jets
< 10* H— eevv ( _400 GeV) Jtop
i B Diboson
£ q0° f L dt = 35 pb” T e
> 5 Js = 7 TeV [ Multijet
w10 —— Signal (m =400 GeV

IIIIIlIJJ IIIIILIJJ IIIIILIJJ Ilm IIIIIIH] IIIIIIH] IIIIIILI| R

10°
0 50 100 150 200 250
ET° [GeV]
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PARAMETRIZING THE MODEL o = (i, 0)

Parameters of interest (u): parameters of the theory that modify the
rates and shapes of the distributions, eq.

» the mass of a hypothesized particle
» the “signal strength” u=0 no signal, u=1 predicted signal rate

Nuisance parameters (0 or ay): associated to uncertainty in:
» response of the detector (calibration)
» phenomenological model of interaction in non-perturbative regime

Lead to a parametrized model: p — y(a), flx) — f(:zt|a)

n

£(D|a) = Pois(nlv(a)) [] (x|

e=1
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INCORPORATING SYSTEMATIC EFFECTS

Tabulate effect of individual variations of sources of systematic uncertainty

Events / 5 GeV

- typically one at a time evaluated at nominal and "+ 1 ¢~

» use some form of interpolation to parametrize p™ variation in terms of

nuisance parameter a,

10°

105 ATLAS

® data

I Z+iets

1 04 H— eevv (mH=4OO GeV) ] top
~ 1 B Diboson
10° f L dt =35 pb [ W+ets
5 \s =7 TeV 2 Multijet
10 —— Signal (m =400 GeV

10
;
10
102

\

3
107, 50

100 150 200 250

IIIIIIll| |IIII|lI] |IIII|lI] IIMI |IIII|lI] |IIII|lI] IIIIIILI| AR

ET*° [GeV]

Z+jets

top

Diboson

syst 1

syst 2

n

£(D|er) = Pois(nlu(a)) [ f(zeler)

e=1
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INCORPORATING SYSTEMATIC EFFECTS

Tabulate effect of individual variations of sources of systematic uncertainty
- typically one at a time evaluated at nominal and "+ 1 ¢~

Events / 5 GeV

» use some form of interpolation to parametrize p™ variation in terms of
nuisance parameter a,

106""|""""|""|""
105 ATLAS ® data
[ Z+jets
10* H— eevv (mH=400 GeV) Jtop
10° f L dt = 35 pb’’ E \[,’\;Ej’est‘s’”
’ 02 \s =7 TeV 2 Multijet

10
;
10"
102
-3
107,

50

—— Signal (mH=4OO GeV

\

IIIIIIll| |IIII|lI] |IIII|lI] IIMI |IIII|lI] |IIII|lI] IIIIIILI| AR

150

200
ET*° [GeV]

100

250

f(x)

.......

I

_llllllllllllllllllIlllllllll_
S

B

-

| | |

IIlIllllIllllIlIllIIlll

lllll

170 180 190

n

Ll l Ll 1
200

£(D|er) = Pois(nlu(a)) [ f(zeler)

e=1
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INCORPORATING SYSTEMATIC EFFECTS
Tabulate effect of individual variations of sources of systematic uncertainty
- typically one at a time evaluated at nominal and "+ 1 ¢~

» use some form of interpolation to parametrize p™ variation in terms of
nuisance parameter a,

Events / 5 GeV

1 06 T T T T | T T T T T T T T | T T T T | T T T T § | e I I Histogram — hh_x_a|pha I
1 05 ATLAS ® data —;. ,,,,,
I Z+jets S st AN |
1 04 H— eevv (mH=400 GeV) [ Jtop = e S
_ 1 B Diboson - D4l TR e
10° f L dt =35 pb ] W+ets E RN N
1 02 \s=7TeV ] M_UItijet _i :.5‘2
—— Signal (mH=4OO GeV)§ Fﬁo
10 N =

1
10 x
10°
107 50 100 150 200 250
ET*° [GeV] n
f(Dley) = Pois(nlv(a) [ f(aelew
e=1
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VISUALIZING THE MODEL FOR ONE CHANNEL

06

IIIIII.IJ.| IIIIII.IJ.| IIIIII.IJ.| IIMIJ IIIIII.IJ.| IIIIII.IJ.| IIIIII.I.I] Lo

250

170 180 190 200

210 220 230

X

> 1 T T T T | T T T T T | T T T T | T T T T
8 1 05 ATLAS ® data
L0 ] Z+jets
< 104 H— eevv (mH=4OO GeV) Jtop
i 3 -1 Bl Diboson
% 1 03 fl_ dt =35 pb I:l W+jets
> _ I Multijet
w 10° \s=7TeV —— Signal (m =400 GeV
10 ¢
1
10"
10
107
0) 50 100 150 200
ET° [GeV]
:I Ill III UIF IIIII l‘.li llllll]"[l]llii:
025~ [T -
T~ 0.2 -
> - .
N
G N Trrrrr ]
0.15 —]
0.1 —
oosi-- | T —
- -
0_. | | | | | | | | .
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VISUALIZING THE MODEL FOR ONE CHANNEL

After parametrizing each
component of the mixture model,
the pdf for a single channel might
look like this

Events / 5 GeV

107
0 50 100 150 200 250

o ’ E™ [GeV]
omm , ‘

ﬁ?ﬁiﬁ: ”‘|f‘
E

ZINS==27 m&;so ///////‘\\\\\ ///'\\\\\ /// \\\ DI )U' ‘\\\\D jf m

145



SIMULTANEOUS MULTI-CHANNEL MODEL

Simultaneous Multi-Channel Model: Several disjoint regions of the
data are modeled simultaneously. |dentification of common
parameters across many channels requires coordination between
groups such that meaning of the parameters are really the same.

fsim(Dsim|a) — H POIS nc‘Vc H fc CEce

cEchannels

where Dsim — {Dh IR 7Dcmax}

Control Regions: Some channels are not populated by signal
processes, but are used to constrain the nuisance parameters

» attempt to describe systematics in a statistical language
» Prototypical Example: “on/off” problem with unknown 1,

f(n,m|u, vy) = Pois(n|u + vp) - Pois(m|Tvy)
S—— N —
signal region control region
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CONSTRAINT TERMS

Often detailed statistical model for auxiliary measurements that
measure certain nuisance parameters are not available.

» one typically has MLE for a,, denoted ap and standard error
Constraint Terms: are idealized pdfs for the MLE.
fp(aplap) for pes
» common choices are Gaussian, Poisson, and log-normal
» New: careful to write constraint term a frequentist way
» Previously: m(aylay) = fplap|ap)n(ay,) with uniform n

Simultaneous Multi-Channel Model with constraints:

fiot (Dsim, G| ) = H Pois(n.|v.(a)) H fe(Tee|) | - H folaplap)

cE€channels L e=1 1  péES

where

Slm {DlwﬂaDcmaX}, Q:{ap} for peS
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CONCEPTUAL BUILDING BLOCKS

A Ensemble
B .
Experiment
! =
~
~
~
C N
Channel Constraint Term

Legend:
A "has manyn Bs. ¢ € channels fp(ap I ap)
B "has a" C. f (xla) . :
Dashed is optional. c p € parameters with constraints

Event Sample
global observable
e € events s € samples

a

{1...nC}
We will use the following mnemonic index conventions:
A4

Observable(s) Distribution Expected Number of Events ® c € events
Yec fsc (x1a) Ys e b € bins
? \ e ¢ € channels
“' e s € samples
Shape Variation Parameter
fscp(x | @, = X) a 0, ® p € parameters
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EXAMPLE OF DIGITAL PUBLISHING

l Edit View gptions |nspect Classes | :J—?{Jeil
File View Options A RooPlot of "x"
{24 wspace..root 52 (] e = = R I s N
All Folders Contents of "/ROOT Files/wspace.root" % ao:—
(] ot g i
(_]PROOF Sessions j 60—
[:__]."user."verked<e."toofit."mﬂ<dir | i
l:' ROOT Files MyWorkSpace;1 o o
) p——— :
. | . Ap
RooFit's Workspace now provides the ]
ability to save in a ROOT file the full . : To
likelihood model, any priors you might L ARooPlot of 'm” |

want, and the minimal data necessary to
reproduce likelihood function.

Need this for combinations, as p-value is
not sufficient information for a proper 2
combination.

Projection of profile likelihood

11 1 l 11 1 l 11 1 l L1 1 l 11 1 l 11 1 l 11 1 11 1 l | I - l | I -
01 -0.08 006 004 002 O 002 004 006 008 01
m
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VISUALIZING THE COMBINED MODEL

State of the art: At the time of the discovery, the combined Higgs search
iIncluded 100 disjoint channels and >500 nuisance parameters

RooFit / RooStats: is the modeling language (C++) which provides
technologies for collaborative modeling

» provides technology to publish likelihood functions digitally
» and more, it's the full model so we can also generate pseudo-data

fiot (Dsim, Glar) = H Pois(n.|v.(a)) H fe(Teela) | - H folaplap)

. cEchannels
\

_ e=1 1  peS




Events / GeV

Events / 50 GeV

Events / 10 GeV

VOLUTION OF MODEL COMPLEXITY
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800 ATLAS 4 Data 2011 E 8 r ATLAS - Data 2011 bl & 12 4 Dpata2011 ATLAS . E T \ATL‘\AS }‘_|‘,I \T +\ o T Bl E 250 ATLJqs . T 1‘_ - E E ATLAS T T ]
B o r )_, i ) F 770, 4 3500 lepClep 4 L —Tienliep T 1) i 160 : D. —

7008 H=yy D Total background = g 12: H—ZZ —al D Total background q PR D Total background H—ZZ —al B © E . + E I L eee ] < 140: HA)T‘EPT'EP +2 + ata 2011 |
F E 2 r B < r 1 5 3000 Data 2011 = 5 200 7 P E Total background |
600F [ m=r2scev, 1xsm 5 'O [ m=t2scev. 1xsm g L [m=125Gev, 1xsm ] 2 E k| £ F - patazon ] 2 1200 % [ o backgron E

g 1 2 o E fin] 8 i - L% 2500 D Total background = L%’ 150:, D Total background 7: L% E |:| m,=125 GeV, 10X SM ]

500F = F 4 E E:7TeV,det:4.8fb 1 E E 5 . 100F =

E E:7Tev,det:4.91b 1 L E=7T9fo'-d‘=4-3 for ] = - 2000F |:|mH=‘25 GeV, 10xSM r |:|m =125 GeV, 10xSM ] £ 1

4001~ E 6 7 E E El 100E ¥ ' ] 80 E—7Tevam—47ib" E

F E F ] E 1500F . - F . E srievjra=arios 3

300 E 4 - 40 E s 7Tev‘f|'d‘ 471 E E:7Tev,det=4.7fb" ] 60 B
E E F ] [ 1000 E 5 ] E 3
£ 7 . i C £ J 40 —t— -
2001~ 2F 3 ing E E 501~ - E k!
E ;! [ ] L 4 500F E [ ] 20 E
10006110720 780 140 150 760 % ~""700 200 300 400 500 600 %66 120 140 160 180 200 220 240 oL ST RSIN A v~ e e IS = - 05““‘““““=‘}%\Wf‘—'_'_'_‘E
40 60 80 100 120 140 160 180 200 50 100 150 200 250 300 50 100 150 200 250
m,, [GeV] my, [GeV] my, [GeV] m,, [GeV] m,, [GeV] m,, [GeV]
a b ¢

(a) (b) (c) (a) (b) (c)

E T T T T T > 8— T T T T T T ] > 200— T T T el 40 120
90F- ATLAS [ E ATLAS Data 2011 E [ E AT[_AS Data 2011 E % E T T T T " T E % E T T T T T Bl % I T T T T T T T i

E HoZZoly  E=7TeV, [Lat=471 o 7E + E = TN + E © 1800 ATLAS  Homgrga+ 01 15 E ATLAS Hott,+2i 15 [ ATLAS Hoty ., f5=7TeV, [Ldt=471"]
80E- qq 35F p =

E hy 6: H—-ZZ—llbb D Total background 3 N 160 D Total background — =4 1600 = < E 3 N 100 i

E 2 E E 2 E E \ E —4— Data 2011 E > E E > [ Data 2011 ]
70F ~+- Data 2011 € F [ =350 Gev, 1xsM ] S 1400 [ m-ss0cev. 1xsm 3 2 1400F ° E g %0 - ownzon E £ gf + 3
60:- DTotal background o 5; i } E o 120 E % 12005 l:l m,=125 GeV, 10xSM ] :>J’ 251 l:l m,=125 GeV, 10x SM — E r DTO‘B' background -

= £ s=7TeV,| Ldt=47f" £ SR E E E B L 4
50§ . =350 GeV, 1 x SM 4F f B 100¢ 5=7 Terdet =471 o 1000~ D Total background 20F D Total background 60— |:| m,=125 GeV, 10 x SM—
40F £ 7 80 3 £ B £ 3 C ]

E 3F E E E 800F E E E

£ o i = | = B E -1 L ]
30E 5 E 60 E 600E 5= 7TeV,det= 471" 3 19F \s= 7T9va'-d‘= 471" 40 B

= E E E E E E 10 E r 1
20 E E 40F E 400F E F E 200 N
10F ] i3 E 20 E 200 E 5E- 3 F ]

)= S s . I E| e O L S TP A e WO Y I 3 0E e L T ey E i ‘ ‘ ‘ . & E ‘ ‘ ‘ ; ‘ = L ‘ ‘ ‘ ‘ ]
200 300 400 500 600 700 800 900 200 300 400 500 600 700 800 200 300 400 500 600 700 800 00 50100 150 200 250 300 350 400 00 50 100 150 200 250 300 B350 400 0 80 80 100 120 140 160 180
m; [GeV] My, [GeV] my; [GeV] My [GeV] My [GeV] m,. [GeV]
d e f
(d) (e) () (d) (e) (f)
100 ~ B0 e N 180 "

E | 3 [} C ATLAS | [0) E 3 > TT T T T T T T I T T T T T T T T T T T T > F rTT T T T T T T T T T T T T T T T T T T T T T T T B > F L L L L L L L L B
QO?ATLAS H—>WW-lviv+0j o 25E HWW o] —— Data 2011 E O 45t y vcv'l\'IL»j\IS , —4— Data 2011 E 3 LAS ZH—Ibb - Data 2011 8 1ol ATLAS WH-NbD - Data 201t E 3 sse ATLAS ZH-wbb 4 Data 2011 E
80F- —4 Data 2011 Y L [ m.=125 GeV, 1xSM | A ) vl [ 125 Gev. 1 xsm 3 2 . 2 F 4 E 2 E q

E > E 3 5 E Notfinal selection M 3 b S=7TeV, f Lat=471" [ Total background T q40F B=7Tev, f Ldt=471%" [ ] Total background N fL ieapn’ || Totalbackgound 3
(= _ € r Total background t 3.5F E ] 2] E E 2 b = ) = E
eoE- [ =25 Gov. 1 xsm 2 20¢ L ] g E [ ] ot backgrouna E § [Jm=t2scev,5xs § 1200 ; []met25 Gev, 5xsm] § + . []me=t25Gev, 5xsm 3

E r - - > E 3 fin} f m E H i 7 [in} = H : E
50F + DT‘“&' background 150 E_7Tev’f|'dl_4'7fb = 250 Vs= 7TeV,det =473 100 E ook H E
405 E:?Tev.fl.m:wvb 5 E 2= E 80g E E ]
3 o E 155 E 60 E 18 E
20 s 3 1= = a0f 4 10 + i E
10= E E 1 05: E 200 i i E s : :

055680100 120" 140" 160" 180 200 350 240 Gi‘GBh‘8‘0"1‘(‘)(‘)‘1%(‘)“‘1)1(‘)‘1‘(‘-3(‘)‘1‘é‘3(‘)‘200‘é20 240 80 106" 150200 556306 950 400 450 ST S f““- U FRUT SR : AN CS 0 rhbsin TS v "*;
80-150 : 80-150 80-150 : 80-150 80-150 * 80-150 * 80-150 : 80-150 80-150 : 80-150 H 80-150
my [GeV] my [GeV] my [GeV] m,g [GeV] m,; [GeV] m,g [GeV]

(g) (h) () (g) (h) (i)

Number of Datasets Combined Number of Model Components Number of Parameters in Likelihood
240 80000 800

180 60000 600 5
400 |

120 a 40000

60 /o 20000 200 [

O

0 O—r0 00 o 0 O—
2009 2010 2011 2012 2013 2014 2009 2010 2011 2012 2013 2014 2009 2010 2011 2012 2013 2014

151



TENSORBOARD

Modern Machine Learning tools like TensorFlow express the
model in a similar way as a Directed Acyclic Graph (DAG)
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AUTOMATIC DIFFERENTIATION

Automatic
differentiation

f(x) {...}; o df(x) {
human
programmer
— f X)) == e e e e - - - —-—————— > / E
: ( ) symbolic differentiation Y

(human/computer)

>>> import autograd.numpy as np # Thinly-wrapped numpy

>>> from autograd import grad # The only autograd function you may ever need
>>>
>>> def tanh(x): # Define a function

y = np.exp(-2.0 * x)
return (1.0 - y) / (1.0 + y)

>>> grad_tanh = grad(tanh) # Obtain its gradient function

>>> grad_tanh(1.0) # Evaluate the gradient at x = 1.0
0.41997434161402603

>>> (tanh(1.0001) - tanh(0.9999)) / 0.0002 # Compare to finite differences
0.41997434264973155

We can continue to differentiate as many times as we like, and use numpy's vectorization of scalar-valued functions
across many different input values:

>>> from autograd import elementwise_grad as egrad # for functions that vectorize over inputs
>>> import matplotlib.pyplot as plt

>>> X = np.linspace(-7, 7, 200)

>>> plt.plot(x, tanh(x),

x, egrad(tanh)(x), # first derivative
X, egrad(egrad(tanh))(x), # second derivative
x, egrad(egrad(egrad(tanh)))(x), # third derivative
x, egrad(egrad(egrad(egrad(tanh))))(x), # fourth derivative
X, egrad(egrad(egrad(egrad(egrad(tanh)))))(x), # fifth derivative

e X, egrad(egrad(egrad(egrad(egrad(egrad(tanh))))))(x)) # sixth derivative
e sl https://en.wikipedia.org/wiki/Automatic differentiation



https://en.wikipedia.org/wiki/Automatic_differentiation

Probabilistic programming frameworks

RooFit serves us well, but shows limits in terms of scalability.

Using a data flow graph framework, RooFit would be distributed, GPU-enabled
and automatically differentiable.

Feasibility? Certainly within reach! As illustrated by our tentative
proof-of-concepts carl.distributions and tensorprob
. See also Edward.
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Edward  Alibrary for probabilistic modeling, inference,
and criticism.

Edward is a Python library for probabilistic modeling, inference, and criticism. It is a
testbed for fast experimentation and research with probabilistic models, ranging from

classical hierarchical models on small data sets to complex deep probabilistic models Ph.D. Student Fe| Cke rt
on large data sets. Edward fuses three fields: Bayesian statistics and machine learning, Columbia University
deep learning, and probabilistic programming. dustin@cs.columbia.edu (@dustinviran, ? A
http://dustintran.com N -
It supports modeling with High Energy Physics Ph.D. Candidate

Southern Methodist University
matthew.feickert@cern.ch or mfeickert@smu.edu
GitHub: matthewfeickert @HEPfeickert




Profile Likelihood Ratio



P-VALUES

Instead of choosing to accept/reject Ho 00
one can compute the p-value D = /

f(T1H,)
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P-VALUES
Instead of choosing to accept/reject Ho

O
one can compute the p-value p = / f(T\HO)
1o

If the model for the data

f (T | (l) depends on parameters «.
the p-value also depends

On a.

pla) = TOO f(T|)dT = /f(pya) (T (D) — Tp)dD = P(T > Ty|e)
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P-VALUES

When the model has nuisance parameters, only reject the null if p(e)
sufficiently small for all values of the nuisance parameters.

If the model for the data

f (T | (I) depends on parameters «.
the p-value also depends

On a.

pla) = TOO f(T|)dT = /f(D\a) (T (D) — Tp)dD = P(T > Ty|e)
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THE PROFILE LIKELIHOOD RATIO

Consider our general model with a single parameter of interest i
» let ©=0 be no signal, =1 nominal signal

Define profile likelihood ratio

A A

Ap) = L(:uvé(ﬂ)) _ f(D,gHL,é(,u;D,g))
L(f, 6) f(D, G|, 0)

» where é(ﬂ; D, G) Iis best fit with x fixed (the constrained maximum
likelihood estimator, depends on data)

» and 8 and [ are best fit with both left floating (unconstrained)
» Tevatron used Qrev = Mu=1)/M(n=0) as generalization of QLep
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AN EXAMPLE

Essentially, you need to fit your model to the data twice:
once with everything floating, and once with signal fixed to O

f(D,Glu=0,0(u=0;D,G))

L(p=0,0(u = 0))

AMp=0)= -
L(fi, 0)
f(D, G|, 0)
) I I I | I I I | I I I | I I I
> L T _
ol4f ATLAS :
L2 VBF H(120)—tt—Ih
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PROPERTIES OF THE PROFILE LIKELIHOOD RATIO
After a close look at the profile likelihood ratio

A
A

Ap) = L(p, 0(p)) _ f(D,Q|u,5(u;D, G))
L(j, 0) (D, Glji, )

one can see the function is independent of true values of 6
» though its distribution might depend indirectly

Wilks’s theorem states that under certain conditions the distribution of
-2 In A (u=uo) given that the true value of u is 1o converges to a chi-
square distribution

» more on this later, but the important points are:

» “asymptotic distribution” is known and it is independent of 6 !

- a quantity whose distribution is independent of 4 is called a pivot
- more complicated if parameters have boundaries (eg. 4= 0)

Thus, we can calculate the p-value for the background-only
hypothesis without having to generate Toy Monte Carlo!
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“THE ASIMOV PAPER"

Recently we showed how to generalize this asymptotic approach
» generalize Wilks’'s theorem when boundaries are present

» use Wald'’s result for distribution for alternate hypothesis f(-2logh(n) | 1°)

Asymptotic formulae for likelihood-based tests of new physics

Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells

Eur.Phys.J.C71:1554,2011

http://arxiv.org/abs/1007.1727v2

med

q ]

UCRTY
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COMPARISON OF ASYMPTOTIC AND ENSEMBLES

Compare asymptotic distributions to distributions obtained with large ensembles
of pseudo-experiments generated with Monte Carlo techniques

350

CL = 95% limits
s+b

This is a significant development as T RAREARAREREAE RSN _
building this distribution from

Monte Carlo approaches can take
100,000 CPU hours for Higgs search!

G. Cowan, KC, E. Gross, O. Vitells
Eur.Phys.J. C71 (2011) 1554
[arXiv:1007.1727]




THUMBNAIL OF THE STATISTICAL PROCEDURE

L(u, 0(1) Follow LHC-HCG Combination Procedures

F - EZE_.__ iém 10 é_ ATLAS Preliminary fL dt ~1.0-4.9 fb-1 ‘/§=7 TeV —é
\ CLS = 5 fo g z gy -
Po F = ' _

stb CLS ’[O teSt : jExsschd
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Parametrized Learning



MACHINE LEARNING

Normalized

RBF SVM

. CLASSIFIERS

° [
°
1 8 Em Isidnla.ll T | T T 17 | T T 1 T T 1 T T 1 T T 1 T T 1
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1.6 — —
14— _:
1.2 -2
- 15
- —H o
1 —e
L =)
0.8 2
- S
- o
0.6 — S
_ e
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S

Common to use machine learning

classifiers to separate signal (H1) vs.
background (Ho)

e want a function s: X— Y that
maps signal to y=1 and
background to y=0

e calculus of variations: find
function s(x) that minimizes loss:

Lis] = / p(e|Ho) (0 — s(x))? da
T / p(alHy) (1 — s(x))?da



MACHINE LEARNING: CLASSIFIERS

Normalized

RBF SVM

g 2 °
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S

e applied calculus of variations:
find function s(x) that minimizes
loss: Lis|= / p(zHy) (0 — s(x))? da

T / p(x|Hy) (1 - s(x))2da

e j.e. approximate the optimal
classitier
H
S(ZE) _ p(il?‘ 1)
p(x|Ho) + p(z|H:)

e which is 1-to-1 with the
likelihood ratio

p(z|Hq)
p(z|Hp)




MACHINE LEARNING: CLASSIFIERS

Normalized
— — —

FS

RBF SVM
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e applied calculus of variations:
find function s(x) that minimizes
loss:  Lis)= [ plalHo) (0~ s(2))? da

—y/ﬂﬂng—s@»mx

~ ]1[21(% — s(x;))°
e j.e. approximate the optimal
classitier
x| H
S(ZB) L p( ‘ 1)

- p(x|Ho) + p(z|Hy)

e which is 1-to-1 with the
ikelihood ratio
p(

p(x

Hy)
Hy)




FIXED CLASSIFIER IS NOT OPTIMAL

Imagine a simple example of bump on flat background

e train on samples with x=&q to obtain fixed classifier s(x)

e uncertainty in & modifies location and width of peak

e we can propagate the fixed learner, but classifier not optimal for &=

f(x|x)

A A

s(x)

16/
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A PARAMETRIZED LEARNER

We want a learner parametrized by o

e augment training data (x,c) = (x,X,c) to obtain s(x;x)

 problem: how do we evaluate on testing data when & is unknown?

16¢
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PARAMETRIZED CLASSIFIERS

We started with a classitfier that was learning

S($) _ p($|H1)
p(z|Ho) + p(z|H)

Implicitly that classitier depends on Hg and H; used to
generate the training data. Make that explicit

p(x|H1)
(z|Ho) + p(x|H:)

S(£U7 HO7 Hl) —
p

Can do the same thing for any two points in parameter
space. | call this a parametrized classifier

p(z|61)
z|6o) + p(x|61)

s(x;0p,01) =
(60, 01) p(



IMPORTANCE OF CALIBRATION

r(x)

uncalibrated r monotonic with s

Ideal r=s/(1-5s)

B Signal [ T T T
/U? 18 Background
UL 1

Q.

S
Theorem if s monotonic with r —>

| deally classitier will learn

S(.CI}) _ p($|H1) _ 7n(x)
p(z|Ho) + p(x|H1) 1+4r(x)

which is 1-to-1 with the likelihood

ratio H(z) = p(z|H:) _ s(z)
p(x|Hg) 1 —s(x)

but often inverting s(x)— r(x) typically

doesn't work well because the
classifier isn't well calibrated and
learns something monotonic in r(x).

Still ok, just need to calibrate it

p(z|Hy)  p(s(z)|H)

") = alHy) = pls(x)| Ho)




PROOF

Theorem 1: We have the following equality

ps(@)  pie)
(2.6) (@)~ pol@)

Proof For z € )4+, we can factor out of the integral the constant p;(x)/po(x).
Thus

(2.7) pl(s*):/dQS*pl(x)/\ﬁ-Vﬂ:g;Eg/dﬂs*po(az)/\ﬁ-Vﬂ,

and the integrals cancel in the likelihood ratio
_ ni(@) [ dQspo(z)/|n-Vs| _ pi()
po(s*)  po(w) [ dQspo(x)/I7- Vs po(z)

One can think of the ratio pi(s)/po(s) as a way of calibrating the the
discriminative classifier and correcting for the monotonic transformation m
of the desired likelihood ratio as in Eq. 1.3.

(28) V € QS*.


http://arxiv.org/abs/1506.02169

GENERALIZED LIKELIHOOD RATIO TESTS

The target likelihood ratio test based on high-dimensional features x is:

(e|0p)
T(D; 6o,6:) = pr :9‘;

| can show that an equivalent test can be made from 1-D projection

p(xe|6o) p(s(xe; 00,01)]60) Q
D 0 9 —
0 01) H ze|61) 1 s(e; 00, 01)]61) :

if the map s: X = R has the same level sets as the likelihood ratio

s(x; 60;601) = monotonic| p(x|0y)/p(x|01) |

Remember that a classifier that minimizes squared loss X [ y; - s(x;) > approximates
the regression function, which has the same level sets!

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169


http://arxiv.org/abs/1506.02169

MAXIMUM LIKELIHOOD ESTIMATORS

Now we can go beyond classification, and estimate parameters of
theory and confidence intervals

Denote the maximum likelihood estimator

(4.2) 0

arg max p(D|0)
0

The denominator in the likelihood ratio is just a constant

~ p($e|(9) CCG,H 91)|9)
4.4 0 = areg max In = arg max ln
(4.4 gmax ) | In -7 - gmax ) :ce,e 06r)

It is important that we include the denominator p(s(aze; 0,01)|61) because
this cancels Jacobian factors that vary with 6.

Provides a non-trivial diagnostic: pi(s*)  pu(@) [ dQpo()/|i- V|| pi(a)

po(s*) — po(@)| [ dQspo(x)/|n - V|| po()




SOFTWARE

http://diana-hep.org/carl/

0O (< ] ] = diana-hep.org &
it DiscoveryLinks v Higgs v  RooStats v ALEPH v Apple v News v  Life Stuff v ATLAS Wikipedia, inSpire Theory&Practice v nyuespace JCSS
[ £] G carl API documentation
e 1 module
Sub-modules

o

carl.data

carl.distributions

carl.learning

carl.ratios

Notebooks

o

Composing and fitting
distributions
Diagnostics for
approximate likelihood
ratios

Likelihood ratios of
mixtures of normals
Parameterized inference
from multidimensional
data

Parameterized inference
with nuisance
parameters

carlis atoolbox for likelihood-free inference in Python.

The likelihood function is the central object that summarizes the information from an
experiment needed for inference of model parameters. It is key to many areas of science that
report the results of classical hypothesis tests or confidence intervals using the (generalized or
profile) likelihood ratio as a test statistic. At the same time, with the advance of computing
technology, it has become increasingly common that a simulator (or generative model) is used to
describe complex processes that tie parameters of an underlying theory and measurement
apparatus to high-dimensional observations. However, directly evaluating the likelihood

function in these cases is often impossible or is computationally impractical.

In this context, the goal of this package is to provide tools for the likelihood-free setup, including
likelihood (or density) ratio estimation algorithms, along with helpers to carry out inference on
top of these.

This project is still in its early stage of development. Join us on GitHub if you feel like
contributing!

build 'passing | coverage '91% | DOI 10.5281/zenodo.47798

Likelihood-free inference with calibrated classifiers

Extensive details regarding likelihood-free inference with calibrated classifiers can be found in
the companion paper "Approximating Likelihood Ratios with Calibrated Discriminative
Classifiers', Kyle Cranmer, Juan Pavez, Gilles Louppe. http://arxiv.org/abs/1506.02169

Installation

Display a menu for “diana-hep.org/carl/ratios/index.html|”

HCG ©

Gilles Louppe
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DIAGNOSTICS

In practice 7(5(x; g, 01)) will not be exact. Diagnostic procedures
are needed to assess the quality of this approximation.

1.
of the va
2. Train ac
from p(x
I’(S(X; 90, (91))
14 [ A
— Exact
121 —  Approx., §; =(a=0,3=1)
— Approx., 6, =(a=1,4=-1)
Hor — Approx., 6, =(a=0,3=-1) ||
s 8l +10, 6, =(a=0,0=-1)
o
41
2L
O l l l l
0.7 0.8 0.9 1.0 1.1 1.2 1.3
pi(s*) _ pi(@) [ dQepo()/| - V|| _ pi(w)
po(s7)  po(@) [ d%po(w)/[a- Vs|| ~ polw)

True Positive Rate

For inference, the value of the MLE 6 should be independent
ue of 1 used in the denominator of the ratio.

assifier to distinguish between unweighted samples
o) and samples from p(x|01) weighted by

1.0}

o
(o8]
T

o
(9}
T

o
SN
T

0.2}

x|6, )r(x|6,,0,) exact
z|6,) no weights

— p(
— p(
—  p(x]0,)r(x]0,,0,) approx.

0.2

0.4 0.6 0.8
False Positive Rate

1.0



DIAGNOSTICS

14

10

—2logA(6)

T N 7T

— Exact
— Approx., 0, =(a=0,=1)

— Approx., 0§, =(a=1,=-1)
— Approx., 6, =(a=0,0=-1) |
+lo, 0, =(a=0,4=-1)

14

12}

10

—2logA(0)

T 1T el

— Exact
— Approx., 6, =(a=0,6=1)
— Approx., 6§, =(a=1,=-1)

+10, 0, =(a=0,3=—1)

— Approx., 6, =(a=0,8=-1) ||

calibrated, well trained.

1.3

—2logA(0)

T T T T 17

— Exact
— Approx., 6, =(a=0,6=1)
— Approx., §; =(a=1,=-1)

+10, 6, =(a=0,8=—-1)

— Approx., 6, =(a=0,8=-1) ||

1.3

(e) Well trained, well calibrated.
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(b) Poorly trained, well calibrated.
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(d) Poorly calibrated, well trained.
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(f) Well trained, well calibrated.



AMORTIZED LIKELIHOOD-FREE INFERENCE

Once we've learned the function s(x; 0) to approximate the
ikelihood, we can apply it to any data x.

e unlike MCMC, we pay biggest computational costs up front

e Here we repeat inference thousands of times & check
asymptotic statistical theory

70 2.0

I .| Exact MLEs [ ] | Exact

60 |- I an Approx. MLEs | ~ Approx.
- - 7=0.5 1.5}

50 | -

40 ]
30 | —

20 |

S A

0.02 0.03 0.04 0.05 0.06 0.07 0.08

(a) Exact vs. approximated MLEs. (b) p(—2log A(y = 0.05) | v = 0.05)

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169


http://arxiv.org/abs/1506.02169

WRAPPING SKLEARN, THEANO, XGBOOST,

https://github.com/cranmer/roofit-python-wrapper

from ROOT import *

import numpy as np

from sklearn import svm

from sklearn.externals import joblib

Handy utility to wrap any python

def scikitlearnFunc(x=0.):
clf = joblib.load('../adaptive.pkl"') - .
traindata = np.array((x,0.)) UHCtIOﬂ dsS d ROOAbSReal
outputs=clf.predict(traindata)
return outputs[0]

def scikitlearnTest():
gSystem.Load( 'libSciKitlLearnWrapper' )

©

x = RooRealVar('x','x',0.2,-5,5) g 1 I
s = SciKitLearnWrapper('s','s"',x) 2 L \‘)
s.RegisterCallBack( scikitlearnFunc ); §) =

[s)

o

cl = TCanvas('cl')
frame = x.frame()

p
/'4;7
y /4
s.plotOn(frame) ~ 4
frame.Draw()
cl.SaveAs('scikitlearn-wrapper-plot.pdf') 04
if __name_ == ' main__"': 0.2
scikitlearnTest()
0 |
00

N

N\

N

NN

e
| | | |

400 6 800 1000 1200 1400
mXx




EMBEDDING THE CLASSIFIER IN THE LIKELIHOOD

Postpone evaluation of the classifier " plsb8)]6)

to the time when the likelihood is

CompositeFunctionPdf
sigtemplate_pdf

CompositeFunctionPdf
bkgtemplate_pdf

evaluated and a specific value of the

parameter O is being tested

RooStats::HistFactory::RooBSpline RooStats::HistFactory::RooBSpline RooUniform
fmOmorphfunc_pdf fm1morphfunc_pdf baseline_pdf
RooHistPdf RooStats::HistFactory::RooBSplineBases RooHistPdf
hpOhistpdf0_pdf bases hp1histpdf11_pdf

(D30, 00) = [[ Eert) - T Aeteei P

$e|91

p s(xe; 60,01)|01)

0.2

_||||||||\;§\:}_\\\\|\\||||||||

O||||||||||||||||||||||||||||||| 0 L1 ooy
1000 2000 3000 4000 5000 6000 7000 400 1200 1400

X 0




PARAMETRIZED CLASSIFIERS WITH DNN

Example: Z'— tt togetherwith:

Peter Sadowski , Daniel Whiteson, Pierre Baldi, Taylor Faucett

The networks were trained on 28 teatures: 22 low-level, 5 high-level, and the mass
0.50

0.45F

0.40

o
w
a1

Train at mz=500,/50,1250,1500 GeV

©
W
o

Error rate

Almost identical performance to
dedicated training at mz=1000 GeV

005 ‘ ] ‘ ] ] ] ‘ ] ‘
400 i 600 i 800 1000 1200 i 1400 i 1600
' ‘ Mass ' '



PARAMETRIZED CLASSIFIERS WITH DNN
Example: Z'— tt arXiv:1601.07913, together with:

1.0

B = ._..9
Train at mz=500,750,1250,1500 GeV
é fx1,x2,0)
/ | , Almost identical performance to

0.6l *—x Parameterlz.ed NN (mass is a feature)| . o

/, x---x  Network tra!ned on all masses dedlcated tralnlng at mZ,:1 OOO Gev
» X Network trained at mass=1000 only
%200 750 1000 1250 1500

! i Mass of signal i i



X1

X4

THE DATA

Let assume 5D data x generated
from the following process py:

1. z:= (20,21, 20, 23,24), such that
2o~ N(p=a,0=1),
z1 ~N(p=p8,0=3),
Zy ~ Mixture(%./\/’(,u = —2,0 =
1), 2 N(p = 2,0 = 0.5)),
z3 ~ Exponential(\ = 3), and
z4 ~ Exponential(A = 0.5);
2. x:= Rz, where R is a fixed semi-positive

definite 5 X 5 matrix defining a fixed
projection of z into the observed space.

0o has ax=1, B=-1
01 has a=0, B=0

XA



THE LIKELIHOOD

Let assume 5D data x generated
from the following process py:

1. z:= (20,21, 20, 23,24), such that
20~ N(p=a,0=1),
z1 ~N(p=8,0=3),
Zy ~ Mixture(%./\/’(,u = —2,0 =
1), 2 N(p = 2,0 = 0.5)),
z3 ~ Exponential(\ = 3), and
z4 ~ Exponential(A = 0.5);

true

2. x:= Rz, where R is a fixed semi-positive
000 095 100 105 110 115 defl_nlte_ 5x5 matrlx defining a fixed
a projection of z into the observed space.

0o has ax=1, B=-1
01 has a=0, B=0

|
o
0

I
=
o

approximate
B

I
=
N

-1.4




LEARNING A 16 DIM LIKELIHOOD

8
16.2
O "/ 14.4
O ’g\ 6_ ,//./
O ¢ pL 12.6
SLGEE 4
.T_) S A 10.8
~ 4_. ,,
VR oS P
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True likelihood
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GBReweighter

Nice blog post by Alex Rogozhnikov [link] (Yandex Data Science group based at CERN

Distributions

contributing to hep_ml package). He developed GBReweighter.

Find decision trees that maximize “symmetrized y?”

Biqned Chi2 for each threshold:

D

2 2 (Whin, original — Whin, target)” '; N

A = / 8

% \

bin  Whin, original T Whbin, target

\\\

“Note, that | want it to be as high as possible. If the weights of original and target distribution
are equal, | don't need to reweight in this bin and corresponding summand is zero. If the
summand is high, reweighting in bin is needed.”

Then he boosts: from hep ml.reweight import GBReweighter
gb = GBReweighter ()
1. build a shallow tree to maximize symmetrized XZ gb.fit(mc data, real data)
2. compute predictions in leaves: gb.predict_weights(mc_other_ channel)
Wieaf, target

leaf_pred = In
Wieaf, original
3. reweight distributions (compare with AdaBoost):

e w, if event from target (RD) distribution
w X e, if event from original (MC) distribution


http://arogozhnikov.github.io/2015/10/09/gradient-boosted-reweighter.html

APPROXIMATE LIKELIHOOD RATIOS WITH CLASSIFIERS

RBF SVM
)
° ’3:030
:..:oo o.: @ <
[ J ~.
e LR e}
." e 0’. ) S
°®a0% o
% ..‘ ..0 L)
RBF SVM
°
e® @ % *
o‘. o . . ®
‘. ?":o:..
.’ %’ 0
o %% 0 g,Q *e
® oo, .o..’.
o

|dea is to train a classifier for signal
(H1) vs. background (Ho)

e with a balanced sample of y=0,1

labels and a squared loss the

optimal classitier would learn

the regression function

p(z|Hy)

) = L @lHo) + p(al )

e which is 1-to-1 with the

likelihood ratio
p(x

Hy)

p(x

Hy)



IMPORTANCE OF CALIBRATION

r(x)

uncalibrated r monotonic with s

Ideal r=s/(1-5s)

B Signal [ T T T
/U? 18 Background
UL 1

Q.

S
Theorem if s monotonic with r —>

| deally classitier will learn

S(.CI}) _ p($|H1) _ 7n(x)
p(z|Ho) + p(x|H1) 1+4r(x)

which is 1-to-1 with the likelihood

ratio H(z) = p(z|H:) _ s(z)
p(x|Hg) 1 —s(x)

but often inverting s(x)— r(x) typically

doesn't work well because the
classifier isn't well calibrated and
learns something monotonic in r(x).

Still ok, just need to calibrate it

p(z|Hy)  p(s(z)|H)

") = alHy) = pls(x)| Ho)




PROOF

Theorem 1: We have the following equality

p(s(@)  pi@)
(2.6) (@) ~ o)

Proof For x € Q4+, we can factor out of the integral the constant pi(z)/po(x).
Thus

(2.7) pl(s*):/dﬁs*pl(x)/|ﬁ-V5|zgggz;/dﬁs*po(x)/m-Vﬂ,

and the integrals cancel in the likelihood ratio

pi(s™) _ pi(x) [ dQsepo(x)/|7- Vs| _ pi(x)
po(s*)  po(@) [ dQsepo(x)/|7- Vs|  po(x)

One can think of the ratio pi(s)/po(s) as a way of calibrating the the
discriminative classifier and correcting for the monotonic transformation m
of the desired likelihood ratio as in Eq. 1.3.


http://arxiv.org/abs/1506.02169

A toy example

REPRODUCIBLE NOTEBOOK WITH CODE AND PLOTS:

https://github.com/cranmer/carl-notebooks/blob/master/reweighing-high-dimensional-data.ipynb


https://github.com/cranmer/carl-notebooks/blob/master/reweighing-high-dimensional-data.ipynb

X1

X4

THE DATA

Let assume 5D data x generated
from the following process py:

1. z:= (20,21, 20, 23,24), such that
2o~ N(p=a,0=1),
z1 ~N(p=p8,0=3),
Zy ~ Mixture(%./\/’(,u = —2,0 =
1), 2 N(p = 2,0 = 0.5)),
z3 ~ Exponential(\ = 3), and
z4 ~ Exponential(A = 0.5);
2. x:= Rz, where R is a fixed semi-positive

definite 5 X 5 matrix defining a fixed
projection of z into the observed space.

0o has ax=1, B=-1
01 has a=0, B=0

XA



ORIGINAL VS. TARGET DISTRIBUTIONS

1-d projections of the original and target distributions
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TWO REWEIGHING METHODS: 100K SAMPLES

hep_ml.GBReweigher carl with calibrated MLP
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EVALUATING THE QUALITY OF THE REWEIGHTING

Train a new classifier to discriminate between events from target and events resampled from
original distribution with probabilities given by the predicted weights

e classifier can easily distinguish unweighted distributions;
e exact weights are perfect (AUC~0.5)
e carl doing a little better than GBReweighter on this problem (no special effort to tune either)

* neither is perfect Resampled proportional to weights

10 | |
08|
Important: o
Performance evaluated on % oc L
independent testing sample &
£
v 04 -
= exact weights AUC=0.503
— no weights AUC=0.771
0.2 — GBReweighter AUC=0.613 ||
—— carl Approx LR AUC=0.552
0-0 1 1 1
00 02 04 0.6 08 10

False Positive Rate



Alex’s example

REPRODUCIBLE NOTEBOOK WITH CODE AND PLOTS:

https://github.com/cranmer/carl-notebooks/blob/master/reweighing-mc-data.ipynb


https://github.com/cranmer/carl-notebooks/blob/master/reweighing-mc-data.ipynb

FROM ALEX'S BLOG

example data: https:

Bplus_IPCHI2_OWNPY Bplus ENDVERTEX_CHI2 Bplus PT Bplus_IPCHI2_ OWNPY Bplus ENDVERTEX_CHI2 Bplus PT

03s 220 000014 030 020 000014
LE 000012 - R
015 0 o1s
025 000010 -
020
020 oL 000008 - oo
015
01s 005 000006 - 005
010
010 000004
200 s 000
005 000002 i
oo -005 000000 LE) -005
0 5 10 15 20 25 5 10 15 20 25 30 = 40 & 0 5000 10000 15000 20000 25000 30000 0 s 10 15 20 25 5 10 15 20 25 30 > 40 & 5000 10000 15000 20000 25000 30000
0000012 400 Bplus TAU 00007 mu_min_PT 0000012 Bplus P 400 Bplus TAU 00007 mu_min_PT
350 350
0000010 00008 0000010 00008
300 300
00005 00005
0000008 0000008
250 250
00004 00004
0000036 200 0000006 00
00003 00003
150 150
0000004 0000004
0.0002 20002
100 100
0000002 w 00001 0000002} o 00001
0000000 [ : 00000 -~ : 0000000 . ) : 00000 ~ .
0 5000C000005000E00002500060000%5000800000  0.000 0.002 0.004 0006 0008 0010 0012 0014 0 2000 4000 6000 8000 10000 0 50000000005000E00002500060000(5000800000 0000 0.002 0.004 0.006 0.008 0010 0012 0014 ) 2000 4000 000 800 10000
200040 mu_max PT 000025 mu_max P 000005 mu_min P 000040 mu_max PT 000025 mu_max P 000006 mu_min P
000035 000035
000005 -
0000020 000004 - 0000020
000030 000030
R R 000009
000025 0000015 000003 000025 0.000015
000070 000020 000003 -
000015 0.000010 000002 000015 0.000010
000002 -
000010 000010
0000005 000001 0.000005 00001
0.00005 0.00005
000000 L 0 000000 000000 . 000000 L 0000000 000000 .
5000 10000 15000 00 50000 100000 150000 200000 250000 0 20000 40000 50000 000D 100000120000130000 5000 10000 15000 70000 50000 100000 150000 200000 250000 0 20000 40000 50000 BODDD 100000120000130000
18 mu_max_TRACK_CHIZNDOF 00080 nSPDHIts 16 mu_max_TRACK_CHIZNDOF 00030 nSPDHIts
00035 14
00030 12
00025 10
20020 08
00015 06
00010 0&
2.0005 02
2.0000 00
. 20 25 30 100 200 300 400 500 600 700 800 90 0s 10 15 20 25 1 100 200 200 400 500 600 700 800 90

before reweighting after reweighting

looks great here, but using all the same data for training and making the
plots. What does the performance look like it we hold out an independent
testing set?


https://github.com/arogozhnikov/hep_ml/blob/data/data_to_download/

1D AND 2D PROJECTIONS OF THE DATA
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HUGE WEIGHTS AND "COMMON SUPPORT?"

Since the distributions are so different, you expect to see huge weights, and you do.

For reweighting to work, po(x) and p1(x) need a common support. To check this, | recommend
to make a histogram of the weights.

This causes all sorts of problems downstream. It's like that one QCD event that passes your

cuts and has a huge weight.
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OVERFITTING
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NB: original example had many more events from target distribution.

0.7

Here I'm using balanced data

06

05
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03

02

01

0.0

10

GBRweighter:
apply reweighing to training data

08|

0.6

04

02

0.0

GBRweighter:
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carl vs. GBRewighter
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DIFFERENT APPROACHES TO DISCRIMINATOR

A discriminator is a good tool to quantify the performance of the reweighting. Two approaches:

True Positive Rate

e Resample the original distribution with probabilities proportional to the weights. Train
classifier with the resulting unweighted events.

* large weights lead to large fluctuations in the resampling

e Use a discriminator trained with weighted events.

10}

08}

06

04}

0.2

* large weights can lead to problems in training and evaluation of ROC curve

Resampled proportional to weights

— no weights AUC=0.833

— carl Approx LR AUC=0.563

— GBReweighter AUC=0.540 ||

0.0 0.2 04 0.6 08

False Positive Rate

10

True Positive Rate

Discriminator trained with weights

10 f
08} 4
06| - g
0.4 | - g y
-7 — no weights AUC=0.885
021 -7 —  GBReweighter AUC=0.467 ||
]/ i — carl Approx LR AUC=0.563

0_0 =4 1 1 1 1

0.0 0.2 0.4 0.6 0.8

False Positive Rate
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SUMMARY

Reweighting in high dimensions is hard when you don't have can’t evaluate po(x)
and p1(x)

e histograms and density estimation won't work well

e As Gilles discussed yesterday, classitiers can be used to approximate likelihood/
density ratios (implemented in carl), which can be used for reweighting

e the GBReweighter is another strategy, and there are other direct density ratio
techniques as well

Instead of relying on goodness of fit variables for 1-d projections, it is better to use
a discriminator to look for differences between target and reweighted distribution in
the high dimensional space

Use cross-validation (independent testing data) to evaluate the performance, or you
can fool yourself

Large weights will cause problems downstream, so check that explicitly.



Likelihood Free



THE PLAYERS

forward modeling
generation

simulation

0
parameters of interest p(x,2z|0,Vv)
X
yi
. observed data
latent variables - lated dat
simulated data
\% Monte Carlo truth

nuisance parameters

inverse problem
measurement
parameter estimation



TWO APPROACHES

Use simulator Learn simulator
(much more efficiently) (with deep learning)

conv (180w + 5b)

= - hon-linear
””;‘“ maxpool conv (450w + 10b) ®
. 0%0
( ' non- Imear' ¢ = 0
X O = €
) =@
= 0
s —= on. Imear maxpool i g
St fully- connecfed‘ = ©
e (1600w + 10b)
e Approximate Bayesian e Generative Adversarial Networks (GANs),
Computation (ABC) Variational Auto-Encoders (VAE)
e Probabilistic Programming e Likelihood ratio from classitiers (CARL)
e Adversarial Variational e Autogregressive models,

Optimization (AVO) Normalizing Flows


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/
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Use simulator
(much more efficiently)

e Approximate Bayesian
Computation (ABC)

e Probabilistic Programming

e Adversarial Variational
Optimization (AVO)
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TWO APPROACHES

Use simulator
(much more efficiently)

e Approximate Bayesian
Computation (ABC)
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‘Likelihood-Free’ Inference

Rejection Algorithm

@ Draw 6 from prior 7(-)
@ Accept 6 with probability (D | 6)

Accepted 6 are independent draws from the posterior distribution,
(0 | D).
If the likelihood, 7(D|0), is unknown:

‘Mechanical’ Rejection Algorithm

@ Draw 6 from 7 (-)
@ Simulate X ~ f(#) from the computer model

@ Accept 0 if D = X, i.e., if computer output equals observation

The acceptance rate is [ P(D|0)x(0)d0 = P(D).

*From Richard Wilkinson’s talk at Data science @ LHC



Rejection ABC

If P(D) is small (or D continuous), we will rarely accept any 6. Instead,
there Is an approximate version:

Uniform Rejection Algorithm
@ Draw 6 from m(0)
e Simulate X ~ f(6)
@ Accept 0 if p(D, X) < ¢

e reflects the tension between computability and accuracy.

@ As € — 00, we get observations from the prior, 7(6).

o If e =0, we generate observations from 7 (6 | D).

For reasons that will become clear later, we call this uniform-ABC.

*From Richard Wilkinson’s talk at Data science @ LHC



TWO APPROACHES

Use simulator Learn simulator
(much more efficiently) (with deep learning)

conv (180w + 5b)

= - hon-linear
””;‘“ maxpool conv (450w + 10b) ®
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( ' non- Imear' ¢ = 0
X O = €
) =@
= 0
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e (1600w + 10b)
e Approximate Bayesian e Generative Adversarial Networks (GANs),
Computation (ABC) Variational Auto-Encoders (VAE)
e Probabilistic Programming e Likelihood ratio from classitiers (CARL)
e Adversarial Variational e Autogregressive models,

Optimization (AVO) Normalizing Flows
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TWO APPROACHES

Learn simulator
(with deep learning)

conv (180w + 5b)

L hon-linear

maxpool conv (450w + 10b) ¢ (0]

non- Imear' ¢ = 0

%

¢ = 6
¢ - 0O
C = @
z : §
)8
hon- Imear maxpool Q Sl )
fully-connected @ ©

(1600w + 10b)
e Generative Adversarial Networks (GANSs),
Variational Auto-Encoders (VAE)

e |ikelihood ratio from classifiers (CARL)

e Autogregressive models,
Normalizing Flows
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TWO APPROACHES

Learn simulator
(with deep learning)

conv (180w + 5b)

- non-linear
maxpool co/nv (450w + 10b) © ®
non-linear ¢ - 6
/ ¢ = 6O
R CHIE
=

f \
non-linear maxpool /2 i g
fully-connected@y = @

(1600w + 10b)

e Generative Adversarial Networks (GANSs),
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THE PLAYERS

forward modeling
generation
simulation




LEARNING THE GENERATIVE MODEL

(Generative
Model

I I | | 1 I I I
om m 2m im 4m 5m 6m /m
Key:
Muon
Electron

Charged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)
----- Photon

Silicon
Tracker

» Electromagnetic
);l ]' Calorimeter

Hadron Superconducting
Calorimeter Solenoid

Iron return yoke interspersed

Transverse slice with Muon chambers

through CMS

http://torch.ch/blog/2015/11/13/gan.html

D Bamey, CERN, Febriguy 2004



Goodfellow, et al arXiv:1406.2661

GENERATIVE ADVERSARIAL NETWORKS e e e

generated distribution true data distribution
A

P(X)

\

unit gaussian

generative
O model .
(neural net) +._[loss

/
7/
’
Z S 7
S A

image space image space

e Two-player game:
m a discriminator D,
m a generator G;
e D is a classifier X — {0,1} that tries to distinguish between

m a sample from the data distribution (D(x) = 1, for X ~ pgata),
m and a sample from the model distribution (D(G(z)) = 0, for

Zn~ pnoise);
e G is a generator Z +— X trained to produce samples G(z) (for
Z ~ Pnoise) that are difficult for D to distinguish from data.

(D*, G*) = max min V(D, G).

Leo is G Tom is D



KULLBACK-LEIBLER DIVERGENCE

a

D (P||Q) = / j" P(z) log(

Dxn(PQ) = -2, p(z)logg(z) + >, p(z)logp(z)
= H(P,Q) - H(P)
where H(P,Q) is the cross entropy of Pand Q, and H(P) is the entropy of P.
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WASSERSTEIN DISTANCE / EARTH MOVER'S DISTANCE

e The Total Variation (TV) distance

(P, Py) = sup [P, (A) — Py(A)| .
Aex

Wasserstein GAN

e The Kullback-Leibler (KL) divergence

KL(P,|P,) = / log (i ;Ei;) Po(z)du() | Martin Arjovsky!, Soumith Chintala?, and Léon Bottou®?

1 . . .
where both P, and P, are assumed to be absolutely continuous, and therefore Courant Institute of Mathematical Sciences

admit densities, with respect to a same measure p defined on X.?2 The KL 2Facebook AI Research
divergence is famously assymetric and possibly infinite when there are points
such that P,(x) =0 and P,(z) > 0.

e The Jensen-Shannon (JS) divergence
JS(P,,Py) = KL(P,|Pp) + KL(Py||P)

where P, is the mixture (P, + PP;)/2. This divergence is symmetrical and
always defined because we can choose yu = P,,.

e The Earth-Mover (EM) distance or Wasserstein-1

WIP)T,]P) == i f Ex ~ - ) 1
BB = i B[l ol )

where II(IP,, P, ) denotes the set of all joint distributions vy(x, y) whose marginals
are respectively P, and P,. Intuitively, v(z,y) indicates how much “mass”
must be transported from x to y in order to transform the distributions P,
into the distribution P,. The EM distance then is the “cost” of the optimal
transport plan.

Dual Description

W (P, Py) = Sup Exnp, [f(2)] = Exnp, [f(7)]



GANS FOR PHYSICS

CaloGAN: Simulating 3D High Energy Particle
Showers in Multi-Layer Electromagnetic Calorimeters

Creating Virtual Universes Using Generative Adversarial Networks

. . . Mustafa Mustafa*!, Deborah Bard!, Wahid Bhimji', Rami Al-Rfou?, and Zarija Luki¢!
with Generative Adversarial Networks

Lawrence Berkeley National Laboratory, Berkeley, CA 94720
2Google Research, Mountain View, CA 94043

Michela Paganini®’, Luke de Oliveira®, and Benjamin Nachman®

¢ Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
® Department of Physics, Yale University, New Haven, CT 06520, USA

E-mail: michela.paganini@yale.edu, lukedeoliveira@lbl.gov, bnachman@cern.ch
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Figure 9: Five randomly selected e showers per calorimeter layer from the training set (top) and the
five nearest neighbors (by euclidean distance) from a set of CALOGAN candidates.
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Figure 10: Five randomly selected  showers per calorimeter layer from the training set (top) and the
five nearest neighbors (by euclidean distance) from a set of CALOGAN candidates.
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Figure 11: Five randomly selected 7+ showers per calorimeter layer from the training set (top) and
the five nearest neighbors (by euclidean distance) from a set of CALOGAN candidates.
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GENERATIVE MODELS FOR CALIBRATION

Use of generative models of
galaxy images to help calibrate

down-stream analysis in next-

generation surveys.

Enabling Dark Energy Science with Deep
Generative Models of Galaxy Images

Siamak Ravanbakhsh', Frangois Lanusse?, Rachel Mandelbaum?, Jeff Schneider', and Barnabds Péczos'

chool of Computer Science, Carnegie Mellon University
'School of C ter S Carnegie Mellon Ui 1)

> - . . P
“McWilliams Center for Cosmology, Carnegie Mellon University

Abstract—Understanding the nature of dark energy, the mys-
terious force driving the accelerated expansion of the Universe, is
a major challenge of modern cosmology. The next generation of
cosmological surveys, specifically designed to address this issue,
rely on accurate measurements of the apparent shapes of distant
galaxies. However, shape measurement methods suffer from
various unavoidable biases and therefore will rely on a precise
calibration to meet the accuracy requirements of the science
analysis. This calibration process remains an open challenge as
it requires large sets of high quality galaxy images. To this
end, we study the application of deep conditional generative
models in generating realistic galaxy images. In particular we
consider variations on conditional variational autoencoder and
introduce a new adversarial objective for training of conditional
generative networks. Our results suggest a reliable alternative
to the acquisition of expensive high quality observations for
generating the calibration data needed by the next generation
of cosmological surveys.



TWO APPROACHES

Use simulator Learn simulator
(much more efficiently) (with deep learning)

conv (180w + 5b)

= - hon-linear
””;‘“ maxpool conv (450w + 10b) ®
. 0%0
( ' non- Imear' ¢ = 0
X O = €
) =@
= 0
s —= on. Imear maxpool i g
St fully- connecfed‘ = ©
e (1600w + 10b)
e Approximate Bayesian e Generative Adversarial Networks (GANs),
Computation (ABC) Variational Auto-Encoders (VAE)
e Probabilistic Programming e Likelihood ratio from classitiers (CARL)
e Adversarial Variational e Autogregressive models,

Optimization (AVO) Normalizing Flows
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Use simulator
(much more efficiently)

e Approximate Bayesian
Computation (ABC)

e Probabilistic Programming

e Adversarial Variational
Optimization (AVO)
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TWO APPROACHES

Use simulator
(much more efficiently)

e Adversarial Variational
Optimization (AVO)
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NEW! AVO

Adversarial Variational Optimization of Non-Differentiable Simulators

Gilles Louppe'! and Kyle Cranmer!
'New York University

Complex computer simulators are increasingly used across fields of science as generative models
tying parameters of an underlying theory to experimental observations. Inference in this setup is
often difficult, as simulators rarely admit a tractable density or likelihood function. We introduce
Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-
differentiable generative model incorporating ideas from empirical Bayes and variational inference.
We adapt the training procedure of generative adversarial networks by replacing the differentiable
generative network with a domain-specific simulator. We solve the resulting non-differentiable mini-
max problem by minimizing variational upper bounds of the two adversarial objectives. Effectively,
the procedure results in learning a proposal distribution over simulator parameters, such that the
corresponding marginal distribution of the generated data matches the observations. We present
results of the method with simulators producing both discrete and continuous data.

catch me

0\

If you can

Leo is G Tom is D

G. Louppe & K.C. arXiv:1707.07113

Similar to GAN setup, but
instead of using a neural network
as the generator, use the actual
simulation

Continue to use a neural network
discriminator / critic.

Difficulty: the simulator isn't
differentiable, but there’s a trick!

Allows us to efficiently fit /
tune simulation with stochastic
gradient technigues!


http://arxiv.org/abs/1707.07113

VARIATIONAL OPTIMIZATION

min f(6) < Eo~q0)4) L/ (0)] = U(9)

VypU() = Eg g4 [ (0)Vy log q(0)|1))]

0.0 -

—0.2 4

—0.4 -

—0.8 A

-100 -75 =50 =25 0.0 2.5 5.0 7.5 10.0

Piecewise constant —Sin}gx) q(0|p = (u, B8)) = N (p, eP)




ADVERSARIAL VARIATIONAL OPTIMIZATION

Like a GAN, but generative model is non-differentiable
and the parameters ot simulator have meaning

e Replace the generative network with a non-differentiable

forward simulator ¢(z; ). 1.05
e With VO, optimize upper bounds of the adversarial objectives: L 00 1.0 = X~gz()i)) 0
e x~px|y)y=
Ua = Eo~q(opy) | La] (1) 0.5+ 08 B
Uy = Egq(o]y) L] (2 ¢ o0 0.6
respectively over ¢ and 1. 0.85 "> 0.4
' N — q6ly) y=0 )
0.80 - — q@ly) y=5 0.2
. . SN e 0°=(42,0.9)
Effectively sampling from Y N B
41 42 43 ~1.0 -05 0.0 05 1.0
inal model o
marginal maoae
—— —Ugy=0
1.5 - — Yav=>s
x ~ q(x[¢p) = 0 ~ q(O|),z ~ p(2]0),x = g(z; 0)
1.0 -
We use Wasserstein distance,
as in WGAN . .
0 50 100 150 200 250 300

G. Louppe & K.C. arXiv:1707.07113
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TWO APPROACHES

Use simulator Learn simulator
(much more efficiently) (with deep learning)
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e (1600w + 10b)
e Approximate Bayesian e Generative Adversarial Networks (GANs),
Computation (ABC) Variational Auto-Encoders (VAE)
e Probabilistic Programming e Likelihood ratio from classitiers (CARL)
e Adversarial Variational e Autogregressive models,

Optimization (AVO) Normalizing Flows
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TWO APPROACHES

Use simulator
(much more efficiently)

e Approximate Bayesian
Computation (ABC)

e Probabilistic Programming

e Adversarial Variational
Optimization (AVO)
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TWO APPROACHES

Use simulator
(much more efficiently)

e Probabilistic Programming
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Probablilistic Programming
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INtultion

4 )
Parameters Parameters X
Program Program
Qutput Observations

CS Probabilistic Programming  Statistics



INtultion

Inference
Parameters Parameters p(x|y)
Program Program p(y|x)p(x)
Qutput Observations y

CS Probabilistic Programming  Statistics



HOW DOES IT WORK?

n short: hijack the random number generators and use
NN’s to perform a very smart type of importance sampling

Input: an inference Compilation Inference
prOb.lem denOted In Training data Test data
a universal PPL {xtm), y(m} 2| - y
. robabilistic program
(Anglican, CPProb) Py) — l
NN architecture ~

. 0.0 SIS
Output: a trained 600 <] Compilation artifact L~
inference network, ( ok % A| v 0) l
or “compilation Traning 1" ¢ P‘Zstj’ri‘;r

- 3 Dkt (p(x | y) || p(x|y

artlfaCt a(x | v: 0))
(TOrCh? PyTOrCh) Expensive / slow Cheap / fast

Le, Baydin and Wood. Inference Compilation and Universal Probabilistic Programming. AISTATS 2017.
arXiv:1610.09900



CAPTCHA breaking

Observation Generative Model

(defquery captcha
[ image num-chars tol]
(let [[w h] (size image)
;; sample random characters
num-chars (sample
(poisson num-chars))
chars (repeatedly
num-chars sample-char) ]

POS’[eI’IOI’ Samples ;; compare rendering to true image

(map (fn [y z]
(observe (normal z tol) vy))
(reduce-dim image)
(reduce-dim (render chars w h)))
;7 predict captcha text
{:text
(map :symbol (sort-by :x chars))}))

Mansinghka,, Kulkarni, Perov, and Tenenbaum
“‘Approximate Bayesian image interpretation using generative probabilistic graphics programs.” NIPS (2013).



CAPTCHA breaking

Observation Generative Model

(defquery captcha
[ image num-chars tol]
(let [[w h] (size image)
;; sample random characters
num-chars (sample
(poisson num-chars))
chars (repeatedly
num-chars sample-char) ]

POS’[eI’IOI’ Samples ;; compare rendering to true image

(map (fn [y z]
(observe (normal z tol) vy))
(reduce-dim image)
(reduce-dim (render chars w h)))
;7 predict captcha text
{:text
(map :symbol (sort-by :x chars))}))

Mansinghka,, Kulkarni, Perov, and Tenenbaum
“‘Approximate Bayesian image interpretation using generative probabilistic graphics programs.” NIPS (2013).



ANALOGY: RANDOM BUMPERS ~ RANDOM CALORIMETER SHOWER

(let [number-of-bumpers (sample (poisson 20))
bumpydist (uniform-continuous 0 10)
bumpxdist (uniform-continuous -5 14)
bumper-positions (repeatedly
number-of-bumpers
# ( (sample bumpxdist)
(sample bumpydist))

3 examples generated from simulator
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3 examples generated from simulator



UNDERSTANDING THE TAILS OF DISTRIBUTIONS

obs-dist (normal 4 0.1)]

(observe obs-dist num-balls-in-box)

3 examples generated from simulator
conditioned on ~20% of balls land in box
(~ given observed energy deposits)
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TWO APPROACHES

Use simulator Learn simulator
(much more efficiently) (with deep learning)
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TWO APPROACHES

Learn simulator
(with deep learning)
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e |ikelihood ratio from classifiers (CARL)
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CARL

The intractable likelihood ratio based on high-dimensional features x is:

p(x|6y)
p(z|61)

We can show that an equivalent test can be made from 1-D projection

p(z|01)  p(s(z;6o,601)|01) Lo

if the scalar map s: X = R has the same level sets as the likelihood ratio

s(x; 60;601) = monotonic| p(x|0y)/p(x|01) |

Estimating the density of s(x; 8o, 01) via the simulator calibrates the ratio.

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169


http://arxiv.org/abs/1506.02169

CARL

Binary classitier on balanced y=0 and y=1 labels learns

p(xly = 1)

s(x) =

~ plely =0) +pzly = 1)

Which is one-to-one with the likelihood ratio

p(x

=0 1
y=0) _,

p(x

y=1) s(x)

Can do the same thing for any two points 8¢ & 01 in
oarameter space. | call this a parametrized classifier

s(x;0p,01) =
(60, 01) p(

p(z|61)
z|6o) + p(x|61)

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169
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CARL SOFTWARE

http://diana-hep.org/carl/

®0O® (< N ® il = diana-hep.org ¢
i3t DiscoverylLinks v Higgs v RooStats v ALEPH v  Apple v News v Life Stuff v ATLAS Wikipedia, inSpire Theory&Practice v nyuespace JCSS
0 l | G | | I Meetli Jupyter Note... | Weekend rea... I early-career-... | 2016 Electio... 12-day Event... l Joint meetin... l
Index

Sub-modules

o

carl.data
carl.distributions
carl.learning

carl.ratios

Notebooks

o]

Composing and fitting
distributions
Diagnostics for
approximate likelihood
ratios

Likelihood ratios of
mixtures of normals
Parameterized inference
from multidimensional
data

Parameterized inference
with nuisance parameters
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carl module

carl isatoolbox for likelihood-free inference in Python.

The likelihood function is the central object that summarizes the information from an experiment
needed for inference of model parameters. It is key to many areas of science that report the results
of classical hypothesis tests or confidence intervals using the (generalized or profile) likelihood
ratio as a test statistic. At the same time, with the advance of computing technology, it has become
increasingly common that a simulator (or generative model) is used to describe complex processes
that tie parameters of an underlying theory and measurement apparatus to high-dimensional
observations. However, directly evaluating the likelihood function in these cases is often

impossible or is computationally impractical.

In this context, the goal of this package is to provide tools for the likelihood-free setup, including
likelihood (or density) ratio estimation algorithms, along with helpers to carry out inference on top
of these.

This project is still in its early stage of development. Join us on GitHub if you feel like contributing!

build 'passing | coverage '91% | DOI 10.5281/zenodo.47798

Likelihood-free inference with calibrated classifiers

Extensive details regarding likelihood-free inference with calibrated classifiers can be found in the
companion paper "Approximating Likelihood Ratios with Calibrated Discriminative Classifiers’, Kyle
Cranmer, Juan Pavez, Gilles Louppe. http://arxiv.org/abs/1506.02169

Installation

The following dependencies are required:

e Numpy>=1.11

Gilles Louppe
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AMORTIZED LIKELIHOOD-FREE INFERENCE

Once we've learned the function s(x; 0) to approximate the
ikelihood, we can apply it to any data x.

e unlike MCMC, we pay biggest computational costs up front

e Here we repeat inference thousands of times & check
asymptotic statistical theory

70 2.0

I .| Exact MLEs [ ] | Exact

60 |- I an Approx. MLEs | ~ Approx.
- - 7=0.5 1.5}

50 | -

40 ]
30 | —

20 |

S A

0.02 0.03 0.04 0.05 0.06 0.07 0.08

(a) Exact vs. approximated MLEs. (b) p(—2log A(y = 0.05) | v = 0.05)

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169
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TWO APPROACHES

Use simulator Learn simulator
(much more efficiently) (with deep learning)

conv (180w + 5b)

= - hon-linear
””;‘“ maxpool conv (450w + 10b) ®
. 0%0
( ' non- Imear' ¢ = 0
X O = €
) =@
= 0
s —= on. Imear maxpool i g
St fully- connecfed‘ = ©
e (1600w + 10b)
e Approximate Bayesian e Generative Adversarial Networks (GANs),
Computation (ABC) Variational Auto-Encoders (VAE)
e Probabilistic Programming e Likelihood ratio from classitiers (CARL)
e Adversarial Variational e Autogregressive models,

Optimization (AVO) Normalizing Flows


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

TWO APPROACHES

Learn simulator
(with deep learning)

conv (180w + 5b)

L hon-linear

maxpool conv (450w + 10b) ¢ (0]

non- Imear' ¢ = 0

%

¢ = 6
¢ - 0O
C = @
z : §
)8
hon- Imear maxpool Q Sl )
fully-connected @ ©

(1600w + 10b)
e Generative Adversarial Networks (GANSs),
Variational Auto-Encoders (VAE)

e |ikelihood ratio from classifiers (CARL)

e Autogregressive models,
Normalizing Flows


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

TWO APPROACHES

Learn simulator

(with deep learning)

- conv (180w + 5b)

maxpool conv (450w + 10b)

non- Imear'

maxpool
non- Imear'

(1600w + 10b)

e Autogregressive models,
Normalizing Flows
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AN ALTERNATIVE APPROACH

" NON JEIRY (0 § = beta.briefideas.org & O th )
DiscoveryLinks v Higgs v RooStats v ALEPH v Apple v News v Life Stuff v ATLAS Wikipedia, inSpire Theory&Practice v nyuespace JCSS HCG v Evernote >>
| a | a | L 4 | Reconstituting Asteroids into Mechanical Automata | NASA | The Journal of Brief Ideas +

Unifying generative models and exact likelihood-free
inference with conditional bijections

By Kyle Cranmer, Gilles Louppe Kyle Cranmer - Sign out

o oo iooncs

Recent work in density estimation uses a bijection f : X — Z (e.g. an invertible flow or
autoregressive model) and a tractable density p(z) (e.g. [1] [2] [3] [4]).

Actions

11 vote ¥ Hide =+ Collect

CEEY 111 ¥rweet 11
PEx) = plfyo) det (a’;¢(x) )‘ ,
xr Authors
Kyle Cranmer, Gilles Louppe
where ¢ are the internal network parameters for the bijection f,;. Learning proceeds via gradient Metadata

ascent V4 Y. log p(x;) with data x; (i.e. maximum likelihood wrt. the internal parameters ¢).
Since f is invertible, then this model can also be used as a generative model for X .

DOI https:/doi.org/10.5281/zenodo.198541

This can be generalized to the conditional density p(x|6) by utilizing a family of bijections Published: 8 Dec, 2016

Jfo : X — Z parametrized by @ (e.g. [5] [6]).

det ( 0f¢;a(x) ) ’
6xT

Here @ and x are input to the network (and its inverse) and ¢ are internal network parameters.
Again, learning proceeds via gradient ascent V 4 Zi log p(x;|6;) with data x;, 6;.

p(x|0) = p(f4,6(x))

We observe that not only can this model be used as a conditional generative model p(x|6), but it
can also be used to perform asymptotically exact, amortized likelihood-free inference on 6.

This is particularly interesting when @ is identified with the parameters of an intractable, non-
differentiable computer simulation or the conditions of some real world data collection process.

Comments

Many thanks to Durk Kingma, Max Welling, lan Goodfellow, and Shakir Mohamed for enlightening
discussions at NIPS2016.

Display a menu Kile Cranmer - 9 Dec, 2016




ENGINEERING BIJECTIONS

Normalizing flows and autoregressive models

Choice of Transformation Function

Approximations using Change-of-variables

Exploit the rule for change of variables for random variables:

= Begin with an initial distribution g, (zy|x).
= Apply a sequence of K invertible functions f.

; (@) -E-E-E

Sampling and Entropy
zx = fx o...0 fao fi(zo)
K
log g (1) = log o(20) — Y logdet | ==
=il /1 .
an
‘ I
4
M /// / :
XA !
~ A |
N:- [ — b ; 7 :
e o e
- = - = = = F !

-~
]
~

Distribution flows through a sequence of invertible transforms

[Rezende and Mohamed, 2015]

K
o
L =Eq z)llogp(x, 2x) 1-Eqy 5y [108 q0(20) ] — Eg 2, [Z logdet a—z];
k=1

|

= Begin with a fully-factorised Gaussian and improve by change of variables.
= Triangular Jacobians allow for computational efficiency.

Planar Flow Real NVP Inverse AR Flow

@)
I

Y1:d = Zk—1,1d
2k = 2k +uh(w ' zp_y +b) Yar1:D = H(Zh—1,1:d) + Za+1:0 © exp(s(zx—1,1:4))

I ey G
o<k, T)

2k

[Rezende and Mohamed, 2016; Dinh et al., 2016; Kingma et al., 2016]

Linear time computation of the determinant and its gradient.




WAVENET: A GENERATIVE MODEL FOR RAW AUDIO
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PHYSICS-AWARE MACHINE LEARNING

We can inject our knowledge of physics into the variational family

Physics-aware Gaussian Processes
arXiv:1709.05681

Correlation Matrix
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Final Kernel =

< 4000 0.4%
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" Poisson fluctuations
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QCD-Aware recursive neural networks
arXiv:1702.00748

QCD-Aware graph convolutional neural networks
NIPS2017 workshop
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Gaussian Processes



NEW PAPER https://arxiv.org/abs/1709.05681

Information References (44) Citations (0) Plots

Modeling Smooth Backgrounds and Generic Localized Signals with Gaussian Processes
Meghan Frate, Kyle Cranmer, Saarik Kalia, Alexander Vandenberg-Rodes, Daniel Whiteson
Sep 17, 2017 - 14 pages
e-Print: arXiv:1709.05681 [physics.data-an] | PDF

Abstract (arXiv)

We describe a procedure for constructing a model of a smooth data spectrum using Gaussian processes rather
than the historical parametric description. This approach considers a fuller space of possible functions, is robust
at increasing luminosity, and allows us to incorporate our understanding of the underlying physics. We
demonstrate the application of this approach to modeling the background to searches for dijet resonances at the
Large Hadron Collider and describe how the approach can be used in the search for generic localized signals.

Note: *Temporary entry*
Note: 14 pages, 16 figures

Keyword(s): INSPIRE: background | CERN LHC Coll | dijet | resonance | data analysis method | Gauss model |
statistics | statistical analysis
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N
Collaborative Analyses Reproducible Analyses Interoperability
Establish infrastructure for a higher-level of collaborative Streamline efforts associated to reproducibility, analysis Improve the interoperability of HEP tools with the larger
analysis, building on the successful patterns used for the preservation, and data preservation by making these native scientific software ecosystem, incorporating best practices
Higgs boson discovery and enabling a deeper concepts in the tools and algorithms from other disciplines into HEP

communication between the theoretical community and
the experimental community

Faster Processing Better Software Training
Increase the CPU and 10 performance needed to reduce the Develop software to effectively exploit emerging many- and Provide training for students in all of our core research
iteration time so crucial to exploring new ideas multi-core hardware. topics.

Promote the concept of software as a research product.

http://diana-hep.org
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The anatomy of a transit observation

signal variability noise data

astrophysics and spacecraft


https://indico.cern.ch/event/395374/timetable/#41-scalable-gaussian-processes

AN EXOPLANET EXAMPLE

10000 ="
5000

—o000
—10000

syl

relative brightness |ppm]
-

160 480 500 520
time [days]

https://speakerdeck.com/dfm/pydata-time-series-analysis-gps-and-exoplanets



the data are drawn from one

Gaussian

* the dimension is the number of data points.




A PARTICLE PHYSICS EXAMPLE OF A GAUS

SIAN PROCESS

Consider unfolding when the detector response / “folding matrix” is known

exactly (eg. no systematic uncertainty in detector response).

e the bin counts of observed distribution are uncorrelated Poisson fluctuations.

v

>

f(2) b W(al) bf) = / F(2)W (x]2)dz

truth level
detector response &

>

X

folding / smearing folded distribution

noisson fluctuations

The unfolding process gives us a best estimate for unfolded distribution f(z;) and

covariance matrix (eg. f(z;) and f(zi+1) are usually highly corre

ated)

e the result of unfolding can be considered a Gaussian Process (GP).

e (Gaussian Processes can be generalized to continuous z (unbinned distribution)



GAUSSIAN PROCESSES

where

2
Ko, 0')]7;3' = 0" 0ij + ka(zi, z;)
| —
kernel function
(Where the magic happens)

see: gaussianprocess.org/gpml  github.com/dfm/george



GAUSSIAN PROCESSES

logp(y |z, 0,0, ) =— = [y — fo(x)]' Kalz, o) " [y — fo(x)

N
logdet Ko (x, o) — Bl log 2

l\DIv—\er—

where

Ko (x, J)]ij = 0;°6;; + ka(x;, 1;)

_

kernel function
(Where the magic happens)

see: gaussianprocess.org/gpml  github.com/dfm/george



GAUSSIAN PROCESSES

246



GAUSSIAN PROCESSES ——
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https://speakerdeck.com/dfm/pydata-time-series-analysis-gps-and-exoplanets 246



GAUSSIAN PROCESSES —

https://speakerdeck.com/dfm/pydata-time-series-analysis-gps-and-exoplanets 246
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Gaussian Processes for Machine Learning

Carl Edward Rasmussen and Christopher K. I. Williams
The MIT Press, 2006. ISBN 0-262-18253-X.

[ Contents | Software | Datasets | Errata | Authors | Order ]

Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in
the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and
practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine
learning and applied statistics.

The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance
(kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many
connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks,
splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are
treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and
code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

The book is available for download in electronic format.

http://www.gaussianprocess.org/gpml/



Parametrized Function
VS.
(Gaussian Process



PARAMETRIC FUNCTION VS. GP

ad-hoc [ 2(xa, xB)
Gaussian Process ad-hoc
_: L ® data ] Gaussian Process

f(xs)

fixa)

FIG. 2: Schematic of the relationship between an ad-hoc function and the GP. An example toy dataset is shown
(left) with samples from the posterior for an ad-hoc 1-parameter function (red) and a GP (green). Each posterior
sample is an entire curve f(x), which corresponds to a particular point in the (center) plane of f(x4) vs. f(zp).
The red dots for the ad-hoc 1-parameter function trace out a 1-dimensional curve, which reveals how the function is
overly-rigid. In contrast, the green dots from the GP relax the assumptions and fill a correlated multivariate
Gaussian (with covariance indicated by the black ellipse). The covariance kernel ¥(z, z’) for the GP is shown (right)
with X(z 4, xp) corresponding to the black ellipse of the center panel.



MOAR DATA!

GP fits the background well, and continues to as we add

more data. Parametric function no longer fits well

5
10 —— Gaussian Process
¢ ¢ ATLAS data

Events per bin
'5‘ e e
% 2 ]

=
o

ANONBDU

Significance

2 3 45 6 7
m; [TEV]

=

FIG. 5: Invariant mass of dijet pairs reported by

ATLAS [15] in proton-proton collisions at /s = 13 TeV
with integrated luminosity of 3.6 fb~!. The green line
shows the resulting Gaussian process background
model. The bottom pane shows the significance of the

residual between the data and the GP model.
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Physically Motivated Kernels



CONNECTION TO UNFOLDING

It the truth level distribution 1(z) is a Gaussian Process with kernel 2(z, 2°),
then the reconstructed distribution f(x) is also a Gaussian process with Z(x,x’)

E(zc,a:')://dzdz’E(z,z')W(x,z)W(w',z’)
f(z) [ W(zl2)

| D =

> > >

folding / smearing L
h level folded distribution
Huteve < detector response L

& poisson fluctuations

If we are making predictions with Monte Carlo, truth level distribution f(z) is usually known exactly.

To think of 1(z) as a Gaussian Process, we need some notion of uncertainty (eg. parton density
functions, higher-order corrections, renormalization/factorization scales)

In unfolding, we often don’t want to make assumptions about 1(z)... it could be anything. But
regularization in unfolding is equivalent to choosing a kernel for f(z).

Even in extreme case where we assume no smoothness in 1(z), f(x) has to be smooth due to
detector resolution.



MC-TEMPLATE SMOOTHER

In H—=YY, we have used functional forms, like Bernstein polynomial. We “trust” the Monte
Carlo, and assign “spurious signal” to account for differences between MC and functional

form, but MC Stat error is a limiting factor for spurious signal etc.

Alternate idea: fit GP to MC histogram. No functional form assumed. Here only assume

length scale must be > /2 mass resolution.

= smeared distribution
250 ‘ — g::loerror
' } smeared MC samples
2) - smear truth level distributions
200 - Poisson samples
} -fit GP
. |
@ 150 |
: |
] [ i
100 1 } } |
50 1
100 110 120 130 140 150 160
Myy

https://github.com/mfrate28/gp-mc-template-smoother/blob/master/GPsmearedFitting.ipynb
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EXAMPLE: PDF UNCERTAINTIES

Y(z,z") =//dzdz'2(z, YW (z, 2)W(x',2")  (8)

t ) t o W(al2) b f(a) = / ()W (z]2)dz
. . > folding / smearing > A At >
Correlation Matrix e 2 detector response oeiomon fuctoations

& poisson fluctuations

Here we focused on truth level
distribution 1(z2).

Mass [TeV]
(-
o

Used dijet spectrum predicted at
NLO with POWHEG-BOX and look
into PDF uncertainties from

05 1 15 2 25

Mass [TeV] NNPD F3

This is the PDF uncertainty in the
truth distribution expressed as a
Gaussian Process Kernel.



EXAMPLE: JET ENERGY SCALE

Mass [TeV]
~J (@) un BN W N

Correlation Matrix

2 3 4 5 6 7
Mass [TeV]

Take for example, the jet energy scale (JES) uncertainty.
As described in Refs. [17, 27] the ATLAS JES uncer-
tainty is only a few percent for jets with pr of around 1
TeV where data are plentiful, while the the limited size
of observed examples for higher-pr jets requires an al-
ternate approach to estimating the JES. The resulting
JES uncertainty therefore grows rapidly with m;; and
has an impact of at most 15% [27]. To illustrate the co-
variance due to the JES uncertainty, consider a simplified
two-parameter model for the impact on the m;; distri-
bution: J(z,0) = 14+ 15% 012 + 5% 02(1 — 2), where z is
the true dijet invariant mass and zp,.x = 7 TeV. We use
the best fit 3-parameter fit as a proxy for f(z) and fold
in the smearing W(x|z,0) = Gaus(z|z J(2/2max, 0),0z),
where o, = 2%z is the dijet invariant mass resolu-
tion [17]. By assuming a uniform prior and an ap-
propriate scaling for 6, we sample from the posterior
Gaus(6;]0, 1)Gaus(62|0, 1) and propagate the uncertainty
in # through to the predicted bin counts f(x|f) as in
Egs. 4 and 5. This allows us to explicitly build the co-
variance matrix 3 using the simulation shown in Fig. 3.
As expected, we see a roughly block-diagonal structure
defined by low and high mass regions.

1.0
0.8
0.6
0.4

10.2
10.0
1—0.2

-0.4
—-0.6
—-0.8
-1.0

E(:r,:v’)z//dzdz'i)(z, VW (z, 2)W(z',2")  (8)
) o Wale) P @)= [ feweEk:

truth level > folding / smearing folded distribution T
detector response

& poisson fluctuations

Fven if the truth-level distribution is
known, the folding matrix may not be

known exactly.

Example: consider a jet energy scale with
2 nuisance parameters, where one
parameter dominantly affects low-pT jets
(in situ) and the other high-pT jets (limited
stats for in situ).

Propagate uncertainty in jet energy scale
to reconstructed mjj spectrum, obtain
covariance kernel.



EXAMPLE: TRADITIONAL DIJET

Correlation Matrix

1.0
0.8
IO.G
10.4

10.2
10.0

Mass [TeV]
~J (@)} w S w N

2 3 4 5 6 7
Mass [TeV]

Correlation Matrix

Mass [TeV]
~J (@) un S w N

2 3 4 5 6 7
Mass [TeV]

We can also think of the
covariance structure for current
fitting strategies.

e top: 3-parameter dijet
function

e pottom: sliding window
(SWIFT)

nese are post-fit covariance
plots.




POST-FIT PARAMETRIZED DIJET KERNEL

Correlation Matrix

1.0
5l | Io.a
0.6
_ 3 1 [Ho.4
E al l0.2
- 10.0
0 O | [1-0.2
2 6| | {1-0.4
~0.6
7l | W—-0.8
~1.0

2 3 4 5 6 7
Mass [TeV]

/N2

, d-Gta') [ A@)(@) e
o a x)4+1l(x
Y(xr,x') = Ae 2 o) 1(ay? € 7 HED

In addition to kernels constructed
bottom-up from first-principles, we
can also construct parametrized
kernels using some intuition.

GPs adapt to the data very well, so
even simple exponential-squareo
kernels often work fine.

For our dijet studies, we used a
"Gibbs kernel”, which has length
scale I(x) and amplitude vary with x

e plot shows post-fit covariance
kernel



FUTURE DIRECTIONS

Vocabulary of kernels + grammar for

composition

e physics goes into the construction of

a "Kernel” that describes covariance

of data

Structure Discovery in Nonparametric Regression
through Compositional Kernel Search

David Duvenaud, James Robert Lloyd, Roger Grosse,
Joshua B. Tenenbaum, Zoubin Ghahramani
International Conference on Machine Learning, 2013

pdf | code | poster | bibtex

(explGG+G) e GG+ G
dependent gaussian scale mixture
(¢ g. Karklin md*mxh_ 205)

(MG +G)CMT +G)+ G
Bayesmn clustered tensar factonization
S ewere ., 2009 . . ,
@utohope otol ' BIGBT +G)+ G

) erd £ - N v
binary matrix factorization (€ xp(G) e G)G + G

(Meeds et al, 2006) spamse coding
\ ’ (c.g. Okhausen and Field, 199%)
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Exploiting compositionality to explore a large space of
model structures
Roger Grosse, Ruslan Salakhutdinov, William T.

Freeman, Joshua B. Tenenbaum

Conference on Uncertainty in Artificial Intelligence, 2012

pdf | code | bibtex

Mauna Loa atmospheric CO5

(Lin x SE + SE x (Per + RQ))
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with Meghan Frate

FUTURE DlRECTlONS & Daniel Whiteson

Instead of fitting the dijet spectrum with an ad hoc 3-5
parameter function, use GP with kernel motivated from physics

Correlation Matrix

Final Kernel =
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Integration into our Statistical Procedures



BAYES VS. FREQUENTIST

The statistical interpretation of GPs can be a bit subtle. Specifically
Bayesian vs. Frequentist issues

e Most GP literature is presented in a Bayesian formalism

e the GP is usually thought of as a prior over functions, and the result of
the tit is posterior given observations

e then usually fit “hyperparameters” of kernel using marginal likelihood

However, also consistent to think of the GP likelihood where the kernel
represents auxiliary measurements / constraint terms.

A third interpretation is that the kernel represents the penalty term in
“penalized maximum likelihood” in the spirit of regularization in unfolding



INTEGRATION INTO OUR STATISTICAL PROCEDURES

Integration of GPs into our statistical procedures can be done in a few ways.

e start with our typical extended maximum likelihood for a statistical

model parametrized by 6
N

p(D,ald) = Pois(N|v(6)) Hp(:z:e]@) * Peonstr. (a]6) .
e=1
e |f we are using a binned distribution in a high-statistics regime, and we
approximate the effect of the constraint terms on the bin counts as a
Gaussian, then we can approximate this as
p(y,ald) =  IIiZ, Pois(yil f(2]0)) - Peonstr.(al6)
~ Gaus(y|f(x]6), 02) - Gaus(f(x|6) 1, %),

e The Poisson mean f(x|6) can be a parametrized signal + a Gaussian
Processs for the background.



INTEGRATION INTO OUR STATISTICAL PROCEDURES

Integration of GPs into our statistical procedures can be done in a
few ways.

1.Fully Bayesian analysis using Poisson fluctuations about a GP
mean. This is called a Cox process. Cumbersome to implement
because it is “doubly stochastic”

2.Fit the total model (parametrized signal + background GP) to the
data (assuming stat errors are Gaussian), use result as the mean
pxly) = n(x) +S(xn 0[S0 +200 v -ux) 1N standard likelihood Poisson likelihood

3.Fit the GP, use the posterior mean and covariance of the GP as a
simple Gaussian likelihood / chi-square with covariance matrix.

We used option 2., most consistent with our existing statistical
orocedures



HYPOTHESIS TESTING

Here true hypothesis has no signal, but is neither the ad-hoc function
nor the GP, so we don't expect it to be a chi-square exactly.

10° - adthocfunction Worry is GP might be too flexible.

So need to check expected
signiticance (power) by injecting

signal.
10!
0 2 4 © 8 10
(Result depends on kernel used)
10°F
— 3o
- 20
I ad-hoc function
F Gaussian Process
— 107
=
(@)
10 |
FIG. 11: Distribution of —2log(A), where A isthe (¢
likelihood ratio between the background-only and the
background-plus-signal hypotheses, for toy data with no
signal present, shown for both the ad-hoc fit (top) and 109L. ‘ - . -
the Gaussian process background model (bottom). 2000 3000 . 4000 >000 6000
Overlaid in red is a x? distribution with one degree of True Slg nal Mass [GeV]

freedom.



Modeling Generic Localized Signals

(related to spurious signal)



BUMPHUNTER

In many exotics searches, we don’t want to assume a specific
signal model.

e difficult to do likelihood-ratio based tests using shape
information, since we don't know the signal’s shape

e |nstead, typically use BumpHunter and look for a localized
signal in some mass window.

e difficulties here because BumpHunter needs a global

background estimate to do background-only toys to
correct for look elsewhere effect

e |f we are fitting background from data, this is circular do
we do this?



AN ALTERNATIVE

An alternative is to use a GP for the signal

e Use a kernel that looks tor an excess only in a localized
excess in a window around mass m with width ¢ (keeping
length scale [ for smoothness)

Sz, a') = Ae~ 3@/ = (@=m)?+@'=m))/2 1y
e Now we have a signal shape, so we can do likelihood-ratio

tests between signal and background

The issue now is that the signal has many free parameters, so
these tests will have a look-elsewhere effect.

e thisisn't a problem though, we still do background-only fits
to get the "global p-value”



LOOK-ELSEWHERE EFFECT

The plot below shows 2logA(u=0)
for the background-only.Use this N = oein s i

for global p-value.

(depends on kernel hyper parameters)
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Software & Examples



SOFTWARE

You don't need to do this yourself, there’s many Gaussian
Process packages that do this for you

e See github.com/mfrate28/ComparingGPpackages for a
comparison of GP packages

Meghan worked on some tutorials that help with common HEP
use cases

e https://github.com/mfrate?28/GP_Tutorial

We are investigating a RooFit interface.


https://github.com/mfrate28/GP_Tutorial

Physics-Aware Machine Learning

(choosing the variational family)



NN = A HIGHLY FLEXIBLE FAMILY OF FUNCTIONS

In calculus of variations, the optimization is over all functions: § = argmin L|s|
S

e |n applied calculus of variations, we consider a highly flexible family ot
functions sy and optimize: i.e. § = argmin L|sg] §~ s,
0

e Think of neural networks as a highly flexible tamily of functions

e Machine learning also includes non-convex optimization algorithms that
are effective even with millions of parameters!

Shallow neural network Deep neural network

hidden layer . hidden layer 1 hidden layer 2 hidden layer 3
input layer

input layer
output layer output layer

image credit: Michael Nielsen



CONVOLUTIONAL NEURAL NETWORKS

Another major idea of deep learning: convolutional filters

e the world is compositional = hierarchical architecture

e images are translationally invariant = shared weights
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image credit: MathWorks


https://www.mathworks.com/help/nnet/convolutional-neural-networks.html

JET SUBSTRUCTURE

Many scenarios tfor physics Beyond the Standard Model
include highly boosted W, Z, H bosons or top quarks

Low top pt High top pt

|dentifying these rests on subtle substructure inside jets

e an enormous number of theoretical effort in developing
observables and techniques to tag jets like this

b N /_I:;// 0 % Rii
Ne= Y=\
mass drop ilter ﬂ




image: Komiske, Metodiev, Schwartz arxiv:1612.01551

J E T | M A G E S Oliveira, et. al arXiv:1511.05190

Whiteson, et al arXiv:1603.09349
Barnard, et al arXiv:1609.00607

pre-process

dense layer

. quark jet

FH

R=Aa gluon jet

max-pooling

X3


http://arxiv.org/abs/arXiv:1603.09349
http://arxiv.org/abs/arXiv:1511.05190

Oliveira, et. al arXiv:1511.05190

J E T I M A G E S Whiteson, et al arXiv:1603.09349

Dawe, et al arXiv:1609.00607

Apply deep learning algorithms to classify to “jet images”
e good results (based on fast simulation & idealized unitorm calorimeter)
e preprocessed to mod out symmetries in the data

e discretization into images looses information

Average Boosted W Jet (y=1) Average QCD Jet (y=0)
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http://arxiv.org/abs/arXiv:1603.09349
http://arxiv.org/abs/arXiv:1511.05190

JETS AS A GRAPH

Using message passing neural networks over a fully connected graph
on the particles

e Two approaches for adjacency matrix for edges

lsaac Henrion

* inject physics knowledge by using d; of jet algorithms

e |earn adjacency matrix and export new jet algorithm

Example Boosted W Jet (y=1) Example QCD Jet (y=0)
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NON-UNIFORM GEOMETRY

ATLAS

Pl(m)
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NON-UNIFORM GEOMETRY

Atlantis

source:JiveXML_106382_27470 run:106382 ev:27470 lumiBlock
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HOW CAN WE IMPROVE?

mage based approaches are doing well, but....

e would be nice to be able to work with a variable length input

* avoid pre-processing into a regular-grid (eg. non-uniform
calorimeters)

* avoid representing empty pixels (sparse input)
e would be nice if classifier had nice theoretical properties
* infrared & collinear safety, robustness to pileup, etc.

e would be nice to be more data efficient, most image-based
networks use a LOT of training data.

28(



FROM IMAGES TO SENTENCES

Recursive Neural Networks showing great performance tor

Natural Language Processing tasks

e neural network’s topology given by parsing of sentence!

NP VP

N

VBG NNS VBZ ADVP

| | I/\/\/\

Parsing sentences is RB RB JJR NN

so much more fun than

VBG PP

N

going TO NP

N\

to DT NN

the dentist




FROM IMAGES TO SENTENCES

Recursive Neural Networks showing great performance tor

Natural Language Processing tasks

e neural network’s topology given by parsing of sentence!

VBG NNS VBZ ADVP

| | I/\/\/\

Parsing sentences is RB RB JJR NN

so much more fun than

VBG

Analogy: | N

going TO NP

word — particle N

to DT NN

arsing — jet algorithm
p g J 9 tr|1e denltist




QCD-INSPIRED RECURSIVE NEURAL NETWORKS
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Work with Gilles Louppe, Kyunghyun Cho, Cyril Becot e

e Use sequential recombination jet algorithms to AL A
provide network topology (on a per-jet basis) Ao A

e path towards ML models with good theoretical FIT R
properties Ao A

e Top node of recursive network provides a fixed—lengthmfi:f
embedding of a jet that can be fed to a classifier

arXiv:1702.00748 & follow up work with Joan Bruna using graph conv nets rak



QCD-INSPIRED RECURSIVE NEURAL NETWORKS
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e down-sampling by
projecting into images AL AL

looses information

tower:

1 / Background efficiency

10!

e RNN needs much less
data to train!
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HIERARCHICAL MODEL FOR THE ENTIRE EVENT

particle embedding — jet embedding = event embedding — classifier

It scales!
Event embedding Classifier
v(t1) v(tz2) v(tm)
n'(e)
hy(ty) hy (t2) hy (tar)

Jet

embeddings

Vi V2 V3 V4 Vs Ve v7 VN-1 VN

arXiv:1702.00748 & follow up work with Joan Bruna using graph conv nets



PHYSICS-AWARE MACHINE LEARNING

We can inject our knowledge of physics into the variational family

Physics-aware Gaussian Processes
arXiv:1709.05681
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QCD-Aware recursive neural networks
arXiv:1702.00748

e

QCD-Aware graph convolutional neural networks
NIPS2017 workshop

02 AR2
o . 20 2« 22’
¢ = min(py”, pii) R2




