Tasting SUSY(-GUTs) at the LHC

Björn Herrmann

Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTh) Université Savoie Mont Blanc — CNRS Annecy — France

CP3 — Université Catholique de Louvain — Louvain-la-Neuve — 10 may 2017

Tasting SUSY(-GUTs) at the LHC

Introduction

Exploring the MSSM with non-minimal flavour violation at the TeV scale

Towards a test of SUSY-GUTs at the LHC

Conclusion

Flavour violation in the Standard Model

The Yukawa matrices are the only source of flavour violation, leading to quark-flavour violating interactions parametrized by the **CKM-matrix**:

Flavour-changing interactions proceed via charged currents (W-boson) — no flavour-changing neutral currents!

Similar situation and parametrization for lepton-flavour violation: **PMNS matrix** (not discussed here...)

Flavour violation beyond the Standard Model

Two ways of dealing with physics beyond the Standard Model:

 Assume same flavour structure as in Standard Model, flavour-changing currents remain related to CKM-matrix — minimal flavour violation (MFV)

2. Allow for **new sources** of flavour violation: corresponding interactions not related to CKM-matrix any more (no suppression!) — <u>non-minimal flavour violation</u> (NMFV)

The Minimal Supersymmetric Standard Model

SM Particles		Spin		Spin	K	Superpartners	
Quarks	$\begin{pmatrix} u_L & d_L \end{pmatrix}$	1/2	Q	0	$\begin{pmatrix} \tilde{u}_L & \tilde{d}_L \end{pmatrix}$ Squar		
	u_R^\dagger	1/2	$ \overline{u}$	0	$ ilde{u}_R^*$		
	d_R^\dagger	1/2	\bar{d}	0	$ ilde{d}_R^*$		
Leptons	$egin{pmatrix} u & e_L \end{pmatrix}$	1/2		0	$egin{pmatrix} ilde{ u} & ilde{e}_L \end{pmatrix}$	Sleptons	
	e_R^\dagger	1/2	\bar{e}	0	$ ilde{e}_R^*$		
Higgs	$\begin{pmatrix} H_u^+ & H_u^0 \end{pmatrix}$	0	H_u				
	$\begin{pmatrix} H^0_d & H^d \end{pmatrix}$	0	H_d	1/2	$ ilde{\chi}^0_{1,2,3,4}$	Neutralinos	
W bosons	W^0, W^{\pm}	1		1/2	$\tilde{\chi}_{1,2}^{\pm}$	Charginos	
B boson	B^0	1			,		
Gluon	g	1		1/2	${ ilde g}$	Gluino	
Graviton	G	2		3/2	\tilde{G}	Gravitino	

Flavour violation in the squark sector

In the super-CKM basis, the squark sector is parametrized by two mass matrices:

$$\mathcal{M}_{\tilde{u}}^{2} = \begin{pmatrix} V_{\text{CKM}} M_{\tilde{Q}}^{2} V_{\text{CKM}}^{\dagger} + m_{u}^{2} + D_{\tilde{u},L} & \frac{v_{u}}{\sqrt{2}} T_{u}^{\dagger} - m_{u} \frac{\mu}{\tan \beta} \\ \frac{v_{u}}{\sqrt{2}} T_{u} - m_{u} \frac{\mu^{*}}{\tan \beta} & M_{\tilde{U}}^{2} + m_{u}^{2} + D_{\tilde{u},R} \end{pmatrix}$$
$$\mathcal{M}_{\tilde{d}}^{2} = \begin{pmatrix} M_{\tilde{Q}}^{2} + m_{d}^{2} + D_{\tilde{d},L} & \frac{v_{d}}{\sqrt{2}} T_{d}^{\dagger} - m_{d} \mu \tan \beta \\ \frac{v_{d}}{\sqrt{2}} T_{d} - m_{d} \mu^{*} \tan \beta & M_{\tilde{D}}^{2} + m_{d}^{2} + D_{\tilde{d},R} \end{pmatrix}$$

Non-minimally flavour-violating terms manifest as **non-diagonal entries** in the soft mass matrices $(M_{\tilde{Q}}^2, M_{\tilde{U}}^2, M_{\tilde{D}}^2)$ and the trilinear coupling matrices (T_u, T_d) — **dimensionless and scenario-independent parametrization**:

$$\delta_{LL} = \frac{(M_{\tilde{Q}}^2)_{23}}{(M_{\tilde{Q}})_{22}(M_{\tilde{Q}})_{33}} , \quad \delta_{RR}^u = \frac{(M_{\tilde{U}}^2)_{23}}{(M_{\tilde{U}})_{22}(M_{\tilde{U}})_{33}}$$
$$\delta_{RL}^u = \frac{v_u}{\sqrt{2}} \frac{(T_u)_{23}}{(M_{\tilde{Q}})_{22}(M_{\tilde{U}})_{33}} , \qquad \delta_{LR}^u = \frac{v_u}{\sqrt{2}} \frac{(T_u)_{32}}{(M_{\tilde{Q}})_{33}(M_{\tilde{U}})_{22}}$$
etc.

Mass eigenstates are obtained via two 6x6 rotation matrices (generalized "mixing angles"):

$$\operatorname{diag}(m_{\tilde{q}_1}^2, \dots, m_{\tilde{q}_6}^2) = \mathcal{R}_{\tilde{q}} \mathcal{M}_{\tilde{q}}^2 \mathcal{R}_{\tilde{q}}^{\dagger} \qquad \qquad m_{\tilde{q}_1} < \dots < m_{\tilde{q}_6}$$

Flavour violation in the squark sector

The flavour-violating elements influence squark masses, flavour decomposition, production cross-sections and open new decay channels — characteristic signatures at the LHC

Signatures of squark flavour violation at the LHC

The flavour-violating elements influence squark masses, flavour decomposition, production cross-sections and open new decay channels — characteristic signatures at the LHC

Impact on neutralino dark matter

Additional channels (and favoured co-annihilation) can increase annihilation cross-section — mild impact on dark matter relic density and (co)annihilation channels

Impact on neutralino dark matter

Additional channels (and favoured co-annihilation) can increase annihilation cross-section — mild impact on dark matter relic density and (co)annihilation channels

Herrmann, Klasen, Le Boulc'h — Phys. Rev. D84 (2011) 095007 — arXiv:1106.6229 [hep-ph]

Exploring the MSSM with non-minimal flavour violation

K. De Causmaecker, B. Fuks, B. Herrmann, F. Mahmoudi, B. O'Leary, W. Porod, N. Strobbe, S. Sekmen JHEP 1511 (2015) 125 — arXiv:1510.01159 [hep-ph]

Experimental constraints on squark mixing

The flavour-violating elements may induce flavour-changing neutral currents (FCNC) or lift the CKM-suppression — severe **experimental constraints**

Observable	Exp. result and uncertainties	
m_h	$(125.5 \pm 2.5) \text{ GeV}$	ATLAS + CMS (2013)
$BR(B \to X_s \gamma)$	$(3.43 \pm 0.21^{\text{stat}} \pm 0.07^{\text{sys}} \pm 0.24^{\text{th}}) \cdot 10^{-4}$	HFAG (2013); Misiak et al. (2013), Mahmoudi (2007)
$BR(B_s \to \mu\mu)$	$(2.9 \pm 0.7^{\exp} \pm 0.29^{\text{th}}) \cdot 10^{-9}$	LHCb + CMS (2013), Mahmoudi et al. (2012)
$BR(B \to X_s \mu \mu)$	$(1.60 \pm 0.68^{\exp} \pm 0.16^{\text{th}}) \cdot 10^{-6}$	BaBar (2004); Belle (2005); Hurth et al. (2008, 2012)
$BR(B_u \to \tau \nu)$	$(1.05 \pm 0.25^{\exp} \pm 0.29^{\text{th}}) \cdot 10^{-4}$	PDG (2012); Mahmoudi (2008, 2009)
ΔM_{B_s}	$(17.719 \pm 0.043^{\text{exp}} \pm 3.3^{\text{th}}) \text{ ps}^{-1}$	HFAG (2012); Ball et al. (2006)
ϵ_K	$(2.228 \pm 0.011) \cdot 10^{-3}$	PDG (2012)
$BR(K_0 \to \pi_0 \nu \nu)$	$\leq 2.6 \cdot 10^{-8}$	E391a (2010)
$BR(K_+ \to \pi_+ \nu \nu)$	$1.73^{+1.15}_{-1.05} \cdot 10^{-10}$	E949 (2008)

Consider only flavour mixing between the 2nd and 3rd generations of squarks (less constrained and most interesting) — seven independent NMFV-parameters

 $\delta_{LL}, \quad \delta_{u,RR}, \quad \delta_{u,RL}, \quad \delta_{u,LR}, \quad \delta_{d,RR}, \quad \delta_{d,RL}, \quad \delta_{d,LR}$

Exploring the full parameter space

TeV-scale MSSM with additional NMFV-parameters governed by 19+3 parameters — efficient study of the full parameter space: Markov-Chain Monte-Carlo (MCMC)

Parameter	Scanned range	Parameter	Scanned range
$\alpha_s(m_Z)$	$\mathcal{N}(0.1184, 0.0007)$	aneta	[10, 50]
$m_t^{ m pole}$	$\mathcal{N}(173.3, 1.3928)~{ m GeV}$	μ	$[100, 850] { m ~GeV}$
$m_b(m_b)$	$\mathcal{N}(4.19, 0.12)~\mathrm{GeV}$	m_A	$[100, 1600] { m GeV}$
$M_{\tilde{Q}_{1,2}}$	[300, 3500] GeV	M_1	$[100, 1600] {\rm GeV}$
$M_{ ilde{Q}_3}$	$[100, 3500] { m GeV}$	$M_{ ilde{\ell}}$	$[100, 3500] { m GeV}$
$M_{ ilde{U}_{1,2}}$	$[300, 3500] { m GeV}$	δ_{LL}	[-0.8, 0.8]
$M_{ ilde{U}_3}$	$[100, 3500] { m GeV}$	δ^u_{RR}	[-0.8, 0.8]
$M_{ ilde{D}_{1,2}}$	$[300, 3500] { m GeV}$	δ^d_{RR}	$[-0.8, \ 0.8]$
$M_{ ilde{D}_3}$	$[100, 3500] { m GeV}$	δ^u_{LR}	[-0.5, 0.5]
Λ	[-10000, 10000] GeV	δ^u_{RL}	$[-0.5, \ 0.5]$
A_{f}	or $ A_f < 4 \max\{M_{\tilde{q}}, M_{\tilde{\ell}}\}$	δ^d_{LR}	[-0.05, 0.05]
		δ^d_{RL}	[-0.05, 0.05]

Impose Higgs mass and flavour constraints (SPHEND W.Porod, SUPERISD N. Mahmoudi) In addition, require neutralino LSP plus vacuum stability (VEVACIDUS B.O'Leary) — study distributions of input parameters and physical quantities

Results — flavour-conserving parameters

Results — physical squark masses

Benchmark scenarios for future studies

In total, typical features of NMFV captured in four benchmark scenarios

Towards a test of SUSY-GUTs at the LHC — the example of SU(5)

S. Fichet, B. Herrmann, Y. Stoll — Phys. Lett. B 742 (2015) 69-73 — arXiv:1403.3397 [hep-ph] S. Fichet, B. Herrmann, Y. Stoll — JHEP 05 (2015) 091 — arXiv:1501.05307 [hep-ph] B. Herrmann, S. Fichet — to be published...

Motivation

Assumption (optimistic!): A new state is observed at LHC — e.g. squark...

Question: What can we learn from it...?

In particular: What can we learn about grand unification...?

In the following: Consider the example of SU(5)-like unification in Supersymmetry...

SU(5) — Standard Model and MSSM

Matter (super)fields fit into complete representations of the SU(5) gauge group

Sfermions belonging to same representations share common soft mass matrices

SU(5)-specific relations — GUT scale

Requiring the superpotential to be invariant implies:

If SUSY-breaking mediated by SU(5) singlet, these relations propagate into soft sector:

$$\begin{pmatrix} T_d \end{pmatrix}_{ij} = (T_\ell)_{ji} \iff \begin{pmatrix} T_d = T_\ell^t \\ T_u \end{pmatrix}_{ij} = (T_u)_{ji} \iff \begin{pmatrix} T_u = T_\ell^t \\ T_u = T_u^t \end{pmatrix} \text{ at GUT scale}$$

Renormalization group evolution — we expect at the TeV scale:

SU(5)-specific relations — TeV scale

Renormalization group equations (one-loop) of up-type Yukawa and trilinear couplings

$$\begin{split} 16\pi^2 \ \beta_{Y_u} \ &= Y_u \Big[3 \operatorname{Tr} \big\{ Y_u^{\dagger} Y_u \big\} + 3 Y_u^{\dagger} Y_u + Y_d^{\dagger} Y_d - \frac{16}{3} g_3^2 - 3g_2^2 - \frac{13}{15} g_1^2 \Big] \\ 16\pi^2 \ \beta_{T_u} \ &= T_u \Big[3 \operatorname{Tr} \big\{ Y_u^{\dagger} Y_u \big\} + 5 Y_u^{\dagger} Y_u + Y_d^{\dagger} Y_d - \frac{16}{3} g_3^2 - 3g_2^2 - \frac{13}{15} g_1^2 \Big] \\ &+ Y_u \Big[6 \operatorname{Tr} \big\{ T_u Y_u^{\dagger} \big\} + 4 Y_u^{\dagger} T_u + 2Y_d^{\dagger} T_d + \frac{32}{3} M_3 g_3^2 + 6M_2 g_2^2 + \frac{26}{15} M_1 g_1^2 \Big] \end{split}$$

Beta-functions mostly dominated by symmetric contributions, while non-symmetric terms are suppressed...

$$\left\{ SU(5) - \text{type SUSY GUT} \right\} \Longrightarrow \left\{ T_u \approx T_u^t \text{ at TeV scale} \right\}$$
Related observables at LHC....?

SU(5)-specific relations — TeV scale

Asymmetry at the TeV scale **does not exceed a few percent** for typical scenarios — such a precision difficult to reach at LHC...

Flavour violation in the squark sector

Hypothesis of non-minimal flavour violation in the squark sector **not obviously disfavoured by experimental data** (B-physics, K-physics, Higgs mass...)

Lightest squark states (mixtures of stop and charm) accessible at the LHC — and not completely ruled out (yet...?)

Testing the SU(5) hypothesis at the LHC

Any test of the SU(5) relation relies on a comparison involving at least two (up-type) squarks The mass spectrum may exhibit different features:

Natural supersymmetry	→ Effective theory approach
Heavy supersymmetry	→ Effective theory approach
Top-charm supersymmetry	→ Mass insertion approximation

S. Fichet, B. Herrmann, Y. Stoll — Phys. Lett. B 742 (2015) 69-73, arXiv:1403.3397 [hep-ph] S. Fichet, B. Herrmann, Y. Stoll — JHEP 05 (2015) 091, arXiv:1501.05307 [hep-ph]

Need for a more general analysis not relying on specific mass hierarchies:

Bayesian statistics (on one slide...)

Probability = "measurement of the **<u>degree of belief</u>** about a proposition"

Important application: Comparison of two models with respect to given data

In practice, the probability densities (and thus the SDDR) can be evaluated by using **Markov Chain Monte Carlo** methods...

Test scenario — derived from SU(5) boundary conditions

$\left[\left(M_{10}^{2} \right)_{ij} \right]$	j = 1	j = 2	j = 3	$\left(M_{\mathbf{\bar{5}}}^2\right)_{ij}$	j = 1	j=2	j = 3
i = 1	$(10000)^2$	0	0	i = 1	$(8600)^2$	0	0
i=2	0	$(609)^2$	$(841)^2$	i=2	0	$(1180)^2$	0
i = 3	0	$(841)^2$	$(1564)^2$	i = 3	0	0	$(1317)^2$

$(T_u)_{ij}$	j = 1	j = 2	j = 3
i = 1	0	0	0
i = 2	0	0	-575
i = 3	0	-575	-1055

$(T_d)_{ij}$	j=1	j = 2	j=3
i = 1	0	0	0
i = 2	0	0	0
i = 3	0	0	-70

$M_{1/2}$	962
$M_{H_{u,d}}^2$	$(1343)^2$
$\tan \beta$	10
$ \operatorname{sign}(\mu) $	+1

Renormalisation group evolution

and spectrum calculation: **SPHENO** [W. Porod 2003-2015]

3

	$m_{ ilde{u}_1}$	$m_{ ilde{u}_2}$	$m_{ ilde{u}_3}$	$m_{ ilde{u}_4}$	m_{h^0}	$m_{ ilde{\chi}_1^0}$	$\left(T_u\right)_{33}$	$(T_u)_{23}$	$(T_u)_{32}$
R	1144.6	1405.4	1468.8	1786.5	122.6	419.3	-2017.0	-810.6	-884.3
C	1153.9	1381.1	1471.3	1792.5	121.4	419.2	-1965.2	1199.1	-1252.7

Counter example at TeV scale

 $(T_u)_{23} \approx -(T_u)_{32}$

Test observables — Large Hadron Collider

Consider production of up-type squarks and subsequent decay into top and charm jets

Statistical errors evaluated assuming Gaussian distributions for these observables

Minimal scenario — SU(5) case

Optimistic scenario — SU(5) case

High-luminosity scenario — SU(5) case

High-luminosity scenario — Counter example

Conclusion

Conclusion

Non-minimally flavour-violating terms may be present in the Lagrangian of a supersymmetric theory — interesting signatures at colliders (but rather mild impact w.r.t. dark matter)

Several non-minimally flavour violating terms can be simultaneously sizeable

Flavour-violating couplings may open windows towards GUT physics — effective theory and MCMC approaches in order to test SU(5) hypothesis

