

FIRMWARE DEVELOPMENT FOR THE FC7 BASED TESTBOARD

Jarne De Clercq, Thomas Lenzi, Alexandre Leonard, <u>Jelena Luetić</u>

Belgian tracker phase II workshop - 14.03.2017.

BLOCK DEVELOPMENT – D19C

From S.Mersi

DETECTOR VERSIONS

Dates to be checked / updated with Electronics group. Electronics components described here are considered if part of the connection chain, even if not necessarily integrated on a module.

2×CBC2 — No CIC — Electrical readout	(Present)
 With GLIB, with legacy FC7 and possibly with d19c (if t 	packwards compatibility)
8×CBC2 — No CIC — Electrical readout	(Present)
 With GLIB and possibly with d19c (if backwards compared) 	atibility – might be very interesting)
2×CBC3 — No CIC — Electrical readout	(April 2017 ?)
– With d19c	
2×CBC3 — No CIC — Optical readout	(~Summer 2017 ?)
- With d19c	
N×(2×MPA) — No CIC — Electrical readout	(~Summer 2017?)
- With d19c	
N×(2×MPA) — No CIC — Electrical readout	(??)
- With d19c	
8×CBC3 — No CIC — Optical readout	(??)
– With d19c	
8×CBC3 — CIC — Optical readout	(??)
– With d19c	

CBC3 EMULATOR

- Basic CBC3 functionality:
 - Receives fast command sequence
 - ► Outputs stub data @ 320 MHz
 - Outputs triggered data upon reception of a trigger signal
 - ► Implemented I2C slave with registers on 2 pages
 - Implemented "channel masking" through I2C mask registers (by default all channels masked)
- ► Input ports same as for CBC3 chip, except for I2C SDA line
 - ► no IOBUF, miso and mosi lines directly connected
- Tested with 2CBC3 emulated hybrids

CBC3 EMULATOR

PHY BLOCK CURRENT STATUS

- Code merged with Command generator and Fast command block
- Discovered and resolved some timing issues
- ► Tested in test bench
- Tested with FPGA using python scripts
- ► Changed triggered data output as agreed with L. Charles
 - triggered data now goes to hybrid block in 8 consecutive clock cycles
- Ready for first commit

DEVELOPMENT TIMELINE

Integration strategy:

- ► FPGA with CBC3 emulator
- adding backward compatibility with CBC2
- ► March: first firmware integration test

► June:

- Software/firmware integration test
- beam-test-like configuration
- Phy block to do list:
 - ► Delay lines
 - Implement emulator flag
 - ► MPA interface

BACKUP

TEST BOARD ON FC7

- A data acquisition card, based on FC7 with electrical or optical connectivity, able to readout 2S or PS (prototype) modules, with or without the CIC
- To support
 - component prototyping and qualifications
 - integration tests
 - beam tests
 - production quality control
- Or dacFC7eo2PwowoCcibpqc in brief (if you come up with a better name I'd be happy, otherwise d19c is good enough to me)

From S.Mersi

DELAY LINES

- The idea is to implement delay line to the CBC3 using the MMCM
- Delay the input clock and fast command lines wrt. the "fixed"
 320 MHz clock on the FPGA
- Phase shift dynamically determined by looking at the synch bit, still needs to be implemented
- ► Implementation done per hybrid or per CBC?

DELAY LINES

- Fixed phase shift value of 18.6 ps, no limit on number of consecutive shifts
- ► It takes 12 clock cycles before MMCM is ready for the next shift
- After the phase shift we will probably need to issue a hard reset to the CBC
- From the discussion with Kirika not sure what will happen with the CBC if we mess around with the clock

Investigating also the solution from Kirika

MMCM

Figure 3-7: Phase-Shift Timing Diagram

* <u>https://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf</u>