CRC Beam lines and access CMS upgrade meeting

E.Cortina

UCLouvain

March 14, 2017

E.Cortina (UCLouvain)

CRC Beam lines and access

March 14, 2017 1 / 24

3

< 回 ト < 三 ト < 三 ト

CRC facilities at Louvain-la-Neuve

Located at Louvain-Ia-Neuve (~20 km from Brussels)

Institut de Recherche en Mathématique et Physique (IRMP) Center for Cosmology, Particle Physics and Phenomenology (CP3) Centre de Ressources du Cyclotron (CRC)

Three irradiation facilities

- NIF: Neutron Irradiation Facility
 - Fast Neutrons (0-50 MeV)
 - Flux: 10¹¹n/(cm² s)
- LIF: Proton Irradiation Facility
 - Protons 10-60 MeV
 - Flux: $5 \times 10^8 p/(cm^2 s)$
- HIF: Heavy-Ion Irradiation Facility
 - Heavy Ion "cocktails"
 - Electronic failures induced by radiation

CRC facilities at Louvain-la-Neuve

1. HIF: Heavy Ion Facility

3

<ロ> (日) (日) (日) (日) (日)

HIF: Heavy Ion Facility

Facility to measure the response of electronic components to single event effects (SEE).

E.Cortina (UCLouvain)

Single Event Effects

SEE: Effects caused by a single energetic particle. Depends on energy released (LET)

Non-destructive effects (Soft errors) SET: Single Event Transient SEU: Single Event Upset SBU: Single Bit Upset MBU: Multiple Bit Upset SEFI: Single Event Functional Interruption SEL: Single Event Latchup

Destructive effects (Hard errors) SHE: Single Hard Error (bit stuck) SEL: Single Event Latchup SEB: Single Event Burnout SEGR: Single Event Gate Rupture SEDR: Single Event Dielectric Rupture

How to measure SEE

$$\int = \frac{Nsee}{\Phi} = Nomber of SEE$$

$$\int = \Phi = Plueue ions - o \Phi : 4 - 10^4 ions/cm^2 s - s deel time$$

$$\Phi = beHer stitistical enver$$

$$= \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}} \right)$$

$$\int = \sigma set \left(A - e^{-\left(\frac{L-Lm}{W}\right)^{S}$$

E.Cortina (UCLouvain)

1.10

1 mil () () ()

HIF facility: the pictures

< 🗗

HIF characteristics

- Two heavy ions cocktails covering a wide range of LET and ranges.
 - Fully characterisation of SEE response of electronic components.
 - Fast ion changing within the same cocktail (few minutes)
- $\bullet\,$ Beam flux is variable between a few ions/s.cm^2 and $\sim 10^4 \; ions/s.cm^2$
 - Can be modified from user station
 - \blacktriangleright Online monitoring \rightarrow high precision in fluence delivered
- Several and redundant metrology
 - Fluence and energy
 - Moving frame, alignment system
 - ESA SEU monitor: 4x4 Mbit SRAM (Atmel AT60142F) arranged in a square region of 24mm x 24mm
- Beam homogeneity of 10% on a 25 mm diameter.
- Standard mechanical interface and feedthroughs
- Irradiations are done in vacuum and for most of the ions naked chips are needed.

HIF "cocktails"

	[DUT energy	Range	LET
		M/Q	lon	[MeV]	$[\mu m Si]$	$[{\rm MeV/mg/cm^2}]$
<u> </u>	High LET	5	$^{15}N^{3+}$	60	59	3.3
. <u> </u>		5	²⁰ Ne ⁴⁺	78	45	6.4
kta.		5	⁴⁰ Ar ⁸⁺	151	40	15.9
<u>,</u> ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		4.94	⁸⁴ Kr ¹⁷⁺	305	39	40.4
0.	-	4.96	¹²⁴ Xe ²⁵⁺	420	37	67.7
Cockt	High L	5 4.94 4.96	⁴⁰ Ar ⁸⁺ ⁸⁴ Kr ¹⁷⁺ ¹²⁴ Xe ²⁵⁺	151 305 420	40 39 37	15.9 40.4 67.7

	on	3.25	¹³ C ⁴⁺	131	292	1.1
2	rati	3.14	²² Ne ⁷⁺	235	216	3
tail	leti	3.33	⁴⁰ Ar ¹²⁺	372	117	10.2
<u>č</u> ki	per	3.22	⁵⁸ Ni ¹⁸⁺	567	100	20.4
Ö	-r	3.32	⁸³ Kr ²⁵⁺	756	92	32.6
	Ξ	3.54	¹²⁴ Xe ³⁵⁺	995	73	62.5

E.Cortina (UCLouvain)

3

<ロ> (日) (日) (日) (日) (日)

Quality assurance

For each run/cocktail a whole calibration and quality assurance procedure is performed.

- 1. Fluence: PPAC+PIPS
- 2. Profile: PIPS+SEU monitor
- 3. Energy: PIPS

3

A D A D A D A

QA: Beam profile and beam energy

1) Horizontal profile

Reference beam :	⁴⁰ Ar ⁸⁺ 151MeV
Horizontal homogeneity :	24 mm
Minimum X value(mm) :	-12 mm
Maximum X value (mm) :	+12 mm

<u>Cocktail</u>	<u>Particle</u>	Energy DUT (MeV)	<u>Measured</u> <u>energy</u> (MeV)
	¹⁵ N ³⁺	60	60
	²⁰ Ne ⁴⁺	78	76
M/Q =5	$^{40}Ar^{8+}$	151	144
	⁸⁴ Kr ¹⁷⁺	305	290
	¹²⁴ Xe ²⁵⁺	420	410

イロト イポト イヨト イヨト

3

QA: SEU monitor

E.Cortina (UCLouvain)

User station control panel

3

イロト イヨト イヨト イヨト

2. NIF: Neutron Irradiation Facility

3

イロト イヨト イヨト イヨト

NIF: Neutron Irradiation Facility

Bulk damage in materials.

- 50 MeV deuterons on Be target:
- $I_d \sim \mu A$
- $\bullet\,$ Filters for γ and low energy neutrons
 - 10 mm polyethylene
 - 1 mm cadmium
 - 1 mm lead
- Cool box (downto -25 C)

d(cm)	R(cm)	t(h)
5	2	1.6
20	5	24
40	8	88

- d : distance to target
- R : Radius (80% neutrons)

t : time for
$$\Phi = 10^{14}$$
 n/cm² ($I_d = 1 \mu A$)

Neutron Energy

- Continuous spectra
- Low energy neutrons removed
- MPV = 23 MeV
- Maximum neutron energy 50 MeV

Figure 3.12 : Comparaison des résultats de "déconvolution" ajustés par une fonction « spline »avec quelques points mesurés par Meulders et al. [42].

3

(日) (同) (三) (三)

Fluence control

• Deuterons current measured continuously.

$$\Phi({
m n/cm}^2) = 10^{14} rac{I(\mu A) \, t(h)}{0.079 r^{1.902}}$$

• Alanine dosimeters: present in all irradiations

$$D(Gy) = \Phi \times K$$
 K=4.16 fGy m²

NIF control

- Control fully automatized
 - Instantaneous and integrated current
 - Beam control
 - Box temperature and movement

currents	movement	STOP the program only from this buttom Anilant]
Park Scrutzent. Comments Starting time Starting time Comments Starting time Starting time Starting time Starting time Starting time Starting time Starting time Starting time Starting Sta	translet to wait internal-to wait	Aglent PPCA	Initial deterministic (minoski) Part 0 Image: Constraint (minoski) Image: Constraint (minos
fluence (n/e	om*2)	PANIC (BEAM OFF)	2000 0.00 00:00 00:00 00:01 00:01 00:01 Ristlye Time F

3

< 17 ▶

3. LIF: Proton Irradiation Facility

3

イロト イヨト イヨト イヨト

LIF: Proton Irradiation Facility

- Protons 62 MeV + Energy degraders (Polystyrene blocks)
- Max Flux: $10^9 p/(cm^2 s)$
- $\bullet\,$ Homogeneity: $\pm 10\%$ on a diameter of 8 cm
- Spot size: collimator from 1-8 cm
- Dosimetry:
 - Profile: Water Phantom + diodes
 - Flux: Ionization chamber
 - Energy: Faraday cup + SEU monitor from ESA

E.Cortina (UCLouvain)

CRC Beam lines and access

March 14, 2017 21 / 24

Energy degraders and control

3

イロト イポト イヨト イヨト

Tested were two types of pure silica-high OH quartz fibers with 200 μ core, produced by Polymicro (USA) and Fryazino (Russia). Both found to be good enough for the upgrade of LHCb ECAL calibration

Transparency loss measured after short (20-30 min) annealing, for LHCb dose rates (< 0.01 rad/s) can be considered as an upper limit.

7	daga luqud	transparency loss, % / m		
	dose, krad	Polymicro	Rus	
	100	0.14	0.23	
	300	0.45	0.54	
	530	0.8	1.2	
	825	1.2	1.9	

I. Guz, P. Shatalov

system.

E.Cortina (UCLouvain

CRC Beam lines and access

March 14, 2017 24 / 24

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Access to CRC

CRC runs from March to December (2-3 weeks break in summer)

- HIF 2/3 weeks/month
- LIF,NIF 1-2 days/month
- Access cost: \sim 750 EUR/h (for all facilities) \sim 400 EUR/h (for belgian universities) "Free" for AIDA2020 (belgian institutes not eligible) "Free" for UCL users
- Contact persons:

Nancy.Postiau@uclouvain.be Eduardo.Cortina@uclouvain.be (for AIDA2020)

□ ▶ ▲ □ ▶ ▲ □