

FE hybrid cold test system status

14/03/2017 Jarne De Clercq, Jelena Luetic, Pascal Vanlaer

Introduction

- Front-end hybrids for phase II tracker modules are complex objects: high routing density and folding
- ~14000 modules, ~28000 FE hybrids of 10 different variations
- In order to guarantee a high module yield also a high component yield is required.
- Testing at tracker conditions: T = -30°C at cooling points + low humidity
- Testing in production environment, should be fast
- Prototype system was designed and build at CERN by Tomasz Gadek

UNIVERSITEIT IN production

Electrical testing

- Power consumption
- Reading and writing from all CBC registers
- Calibrate the CBC
- Occupancy measurement
- Shorts finding

Recent changes

- Mainly on the software side:
 - added a GUI for monitoring cold box and running of the test
 - GUI interfaces with DB
 - DB can be accessed via web ulletinterface
- Most recent update: <u>https://</u> indico.cern.ch/event/613723/ contributions/2474074/ attachments/1416740/2170407/ FEH_test_system_23_02_2017_c mstkele.pdf

- Database status: CONNECTED/ DISCONNECTED

Search.

8. Electrical configuration and control parameters

cern.ch/prototypeFEHtesting/db

Web interface to the DB

Prototype FEH test results

6

Output of the test results during front-end hybrid prototyping phase.

Row	Hybrid serial number	Date	Time	Hybrid type	Passed test	Exit code	Test results
1	2SFE18LFFFBBA	2017-02-03	16:42:45	25FE18L	1	0	Results
2	25FE18L111222	2017-02-03	16:36:26	2SFE18L	1	0	Results
3	error	2017-02-03	16:32:36	errorL	1	0	Results
4	2SFE18LAAAB8B	2017-02-03	16:31:53	2SFE18L	1	0	Results
5	2SFE18R122445	2017-02-03	12:08:37	2SFE18R	1	0	Results
6	2SFE40RAAABBB	2017-02-03	11:53:25	2SFE40R	1	0	Results
7	PSMOCKU123456	2017-02-03	11:50:51	PSMOCKU	1	0	Results
8	25FE18L122557	2017-02-03	11:48:09	25FE18L	0	1	Results
9	2SFE18RABCBCA	2017-02-03	11:01:11	2SFE18R	1	0	Results
10	2SFE18LABCCBA	2017-02-03	10:59:29	2SFE18L	0	1	Results
11	25FE40L111222	2017-02-02	17:12:58	25FE40L	0	1	Results
12	2SFE18L111444	2017-02-02	17:10:29	2SFE18L	0	1	Results
13	2SFE18L555444	2017-02-02	14:14:46	2SFE18L	1	0	Results
14	PSMOCKU444555	2017-02-02	13:57:23	PSMOCKU	1	0	Results
15	2SFE18L147585	2017-02-02	13:56:19	2SFE18L	1	0	Results
< 1	2 3 4 >					Show 15	i 🗸 entries.

Plan for duplication

1.Dry air supply:

- We don't have a central compressed/dry air supply in the lab
- Start tests with nitrogen bottle

2. Cooling:

- Use relic chiller from petal production
- Has good specifications

3. Electrical connections:

- PCB for electrical connection to the hybrid is not ready yet
- Expected to be submitted: first week of April*
- First test of box will be done with PS-MCK hybrid*

(https://indico.cern.ch/event/613723/contributions/2474061/attachments/1416835/2169902/ Schedule_February_2017.pdf)

Status and short term plan

- DAQ system: present, GLIB based
- Many parts were ordered. About half have arrived for duplicating dry air and cooling part
- Still waiting for other parts to arrive
- Environmental monitoring (thermocouples + humidity sensors) was set-up
- Can use old box + sensors + nitrogen to get familiar with the system + check the potential of nitrogen for drying
- Mount peltiers and check if we can reach -30°C

Open questions

- What are the T specs of the phase II tracker?
 - FE hybrid test system designed for -30°C at cooling contacts
 - New phase II specs: cooling at -35 or even -40°C?
 - Current system with peltiers is very challenging to reach -35°C.
 - Open question:
 - Initial idea was to duplicate
 - Question now if we want to put more R&D effort into this...:
 - Use cooling liquid directly to cool?
 - Look into other dry air sources (nitrogen, ...)
 - Injecting cold dry air?

Open questions?

- What are the T specs of the phase II tracker?
 - System designed for -30°C at cooling contacts
 - New phase II specs: cooling at -35 or even -40°C?
 - Current system with peltiers is very challenging to reach -35°C.
 - Open question:
 - Initial idea was to duplicate
 - Question now if we want to put more R&D effort into this...:
 - Use cooling liquid directly to cool?
 - Injecting cold dry air?
 - Look into other dry air sources (nitrogen, ...)

Chiller specs

Operating T: -25°C to 40°C

T (°C)	Cooling power (kW)
15	1.2
0	1
-10	0.7
-15	0.4