# Some instances of broken symmetry in categorical algebra 

Tim Van der Linden

IRMP Teambuilding | 23rd of May 2017

## Understanding group cohomology via categorical algebra

In my work I develop and apply categorical algebra in its interactions with homology theory.

- Concrete aim: understanding (co)homology of groups
*Which asnects of groun cohomology are tynical for groups, and which function for more general reasons, so that a categorical argument suffices to understand and apply these in other settings?
- Conversely, what do the needs of homological algebra tell us about categories of non-abelian algebraic structures?


## Today's subject: I would like to

* sketch how our work environment arises out of a broken symmetry
* give an idea of how the broken symmetry between
homology and cohomology "may be fixed"


## Understanding group cohomology via categorical algebra

In my work I develop and apply categorical algebra in its interactions with homology theory.

- Concrete aim: understanding (co)homology of groups
- Which aspects of group cohomology are typical for groups, and which function for more general reasons, so that a categorical argument suffices to understand and apply these in other settings?
- Conversely, what do the needs of homological algebra tell us about categories of non-abelian algebraic structures?

Today's subject: I would like to

- sketch how our work environment arises out of a broken symmetry
- give an idea of how the broken symmetry between homology and cohomology "may be fixed"


## Understanding group cohomology via categorical algebra

In my work I develop and apply categorical algebra in its interactions with homology theory.

- Concrete aim: understanding (co)homology of groups
- Which aspects of group cohomology are typical for groups, and which function for more general reasons, so that a categorical argument suffices to understand and apply these in other settings?
- Conversely, what do the needs of homological algebra tell us about categories of non-abelian algebraic structures?

Today's subject: I would like to

- sketch how our work environment arises out of a broken symmetry
- give an idea of how the broken symmetry between homology and cohomology "may be fixed"


## Understanding group cohomology via categorical algebra

In my work I develop and apply categorical algebra in its interactions with homology theory.

- Concrete aim: understanding (co)homology of groups
- Which aspects of group cohomology are typical for groups, and which function for more general reasons, so that a categorical argument suffices to understand and apply these in other settings?
- Conversely, what do the needs of homological algebra tell us about categories of non-abelian algebraic structures?

Today's subject: I would like to

- sketch how our work environment arises out of a broken symmetry
- give an idea of how the broken symmetry between homology and cohomology "may be fixed"


## Understanding group cohomology via categorical algebra

In my work I develop and apply categorical algebra in its interactions with homology theory.

- Concrete aim: understanding (co)homology of groups
- Which aspects of group cohomology are typical for groups, and which function for more general reasons, so that a categorical argument suffices to understand and apply these in other settings?
- Conversely, what do the needs of homological algebra tell us about categories of non-abelian algebraic structures?

Today's subject: I would like to

- sketch how our work environment arises out of a broken symmetry
- give an idea of how the broken symmetry between homology and cohomology "may be fixed"


## Categories



A category is a directed graph with vertices called objects and edges called morphisms or arrows, having an associative composition of arrows, and loops which act as identities.

Eamples
an ordered set $(S, \leqslant)$, where $x \leqslant y$ determines an arrow $x \rightarrow y$ here any two paralle' arrows are equa'

- concrete categories: structured sets \& structure-preserving functions

Set (sets \& functions). Top (topological spaces \& continuous maps);
$A b$ and Gp ((abelian) groups \& homomorphisms); Vect ${ }_{\mathbb{K}}$ (vector spaces \&
linear maps, $\mathbb{K}$ is a field); Lie $\mathbb{K}$ ( $\mathbb{K}$-Lie algebras \& Lie algebra morphisms);
$\operatorname{Mod}_{R}(R$-modules and linear maps, $R$ is a ring $)$

## Categories



A category is a directed graph with vertices called objects and edges called morphisms or arrows, having an associative composition of arrows, and loops which act as identities.
an ordered set $(S, \leqslant)$, where $x \leqslant y$ determines an arrow $x \rightarrow y$ here any two parallel arrows are equal

- concrete categories: structured sets \& structure-preserving functions

Set (sets \& functions): Top (topological spaces \& continuous maps);
$A b$ and Gp ((abelian) groups \& homomorphisms); Vect ${ }_{\mathbb{K}}$ (vector spaces \&
linear maps, $\mathbb{K}$ is a field); Lie $\mathbb{K}$ ( $\mathbb{K}$-Lie algebras \& Lie algebra morphisms);
$\operatorname{Mod}_{R}(R$-modules and linear maps, $R$ is a ring $)$

## Categories



A category is a directed graph with vertices called objects and edges called morphisms or arrows, having an associative composition of arrows, and loops which act as identities.

Examples

- an ordered set $(S, \leqslant)$, where $x \leqslant y$ determines an arrow $x \rightarrow y$ here any two parallel arrows are equal
* concrete categories: structured sets \& structure-preserving functions Set (sets \& functions); Top (topological spaces \& continuous maps); $A b$ and Gp ((abelian) groups \& homomorphisms); Vectाk (vector spaces \& linear maps, $\mathbb{K}$ is a field); Lie $\mathbb{K}_{K}(\mathbb{K}$-Lie algebras \& Lie algebra morphisms); $\operatorname{Mod}_{R}(R$-modules and linear maps, $R$ is a ring $)$


## Categories



A category is a directed graph with vertices called objects and edges called morphisms or arrows, having an associative composition of arrows, and loops which act as identities.

## Examples

- an ordered set $(S, \leqslant)$, where $x \leqslant y$ determines an arrow $x \rightarrow y$ here any two parallel arrows are equal
- concrete categories: structured sets \& structure-preserving functions Set (sets \& functions); Top (topological spaces \& continuous maps); $A b$ and $G p$ ((abelian) groups \& homomorphisms); Vect ${ }_{\mathrm{K}}$ (vector spaces \& linear maps, $\mathbb{K}$ is a field); Lie $\mathbb{K}_{\mathbb{K}}$ ( $\mathbb{K}$-Lie algebras \& Lie algebra morphisms); $\operatorname{Mod}_{R}$ ( $R$-modules and linear maps, $R$ is a ring)


## Some universal properties/constructions

Category theory deals with objects "from the outside" via their interactions, through universal properties and constructions.

```
For instance, a terminal object is an object 1 such that
for every object \(X\) there exists a unique arrow \(X \rightarrow 1\).
    , In an ordered set \((S, \leqslant)\) viewed as a category,
    a terminal object is the same thing as a maximum.
    - In Set, an object is terminal if and only if it is a singleton set.
    - In Top, Ah, Gp, Vectn, Modr and Lien, an object is terminal
    if and only if its underlying set is a singleton.
This is the simplest example of a universal property,
but it is relevant in what follows.
Another example is that of a monomorphism \(m: M \rightarrow A\) :
for every pair of parallel arrows \(f, g: X \rightarrow M\),
if \(m \circ f=m \circ g\), then \(f=g\).
In all of the above examples, monomorphism = injective morphism,
except in \((S, \leqslant)\) where all arrows are monomorphisms.
```


## Some universal properties/constructions

Category theory deals with objects "from the outside" via their interactions, through universal properties and constructions.

For instance, a terminal object is an object 1 such that for every object $X$ there exists a unique arrow $X \rightarrow 1$.
> - In an ordered set $(S, \leqslant)$ viewed as a category, a terminal object is the same thing as a maximum.
> = In Set, an object is terminal if and only if it is a singleton set.
> - In Top, Ab, Gp, Vect $\mathbb{K}_{\mathbb{K}}$, Mod $_{R}$ and Lie $_{\mathbb{K}}$, an object is terminal
> if and onlv if its underlving set is a singleton.

This is the simplest example of a universal property, but it is relevant in what follows.

Another example is that of a monomorphism $m: M \rightarrow A$ : for every nair of narallel arrows $f, g: X \rightarrow M$
if $m \circ f=m \circ g$, then $f=g$.
In all of the above examples, monomorphism = injective morphism,
except in $(S, \leqslant)$ where all arrows are monomorphisms.

## Some universal properties/constructions

Category theory deals with objects "from the outside" via their interactions, through universal properties and constructions.

For instance, a terminal object is an object 1 such that for every object $X$ there exists a unique arrow $X \rightarrow 1$.

- In an ordered set $(S, \leqslant)$ viewed as a category, a terminal object is the same thing as a maximum.
- In Set, an obiect is terminal if and only if it is a singleton set.
* In Top, Ab, Gp, Vect $\mathbb{K}_{k}$, Mod $_{R}$ and Lieek, an object is terminal if and only if its underlying set is a singleton. This is the simplest example of a universal property, but it is relevant in what follows.

Another example is that of a monomorphism $m: M \rightarrow A$ : for every pair of parallel arrows $f, g: X \rightarrow M$,
if $m \circ f=m \circ g$, then $f=g$.
In all of the above examples, monomorphism = injective morphism,
except in $(S, \leqslant)$ where all arrows are monomorphisms.

## Some universal properties/constructions

Category theory deals with objects "from the outside" via their interactions, through universal properties and constructions.

For instance, a terminal object is an object 1 such that for every object $X$ there exists a unique arrow $X \rightarrow 1$.
> - In an ordered set $(S, \leqslant)$ viewed as a category, a terminal object is the same thing as a maximum.
> = In Set, an object is terminal if and only if it is a singleton set.
> - In Top, Ab, Gp, Vect $\mathbb{K}_{\mathbb{K}}$, Mod $_{R}$ and Lie $_{\mathbb{K}}$, an object is terminal
> if and onlv if its underlving set is a singleton.

This is the simplest example of a universal property, but it is relevant in what follows.

Another example is that of a monomorphism $m: M \rightarrow A$ : for every nair of narallel arrows $f, g: X \rightarrow M$
if $m \circ f=m \circ g$, then $f=g$.
In all of the above examples, monomorphism = injective morphism,
except in $(S, \leqslant)$ where all arrows are monomorphisms.

## Some universal properties/constructions

Category theory deals with objects "from the outside" via their interactions, through universal properties and constructions.

For instance, a terminal object is an object 1 such that for every object $X$ there exists a unique arrow $X \rightarrow 1$.

- In an ordered set $(S, \leqslant)$ viewed as a category, a terminal object is the same thing as a maximum.
- In Set, an object is terminal if and only if it is a singleton set.
- In Top, Ab, Gp, Vect $\mathbb{K}_{\mathbb{K}}, M o d_{R}$ and Lie $_{\mathbb{K}}$, an object is terminal if and only if its underlving set is a singleton.

This is the simplest example of a universal property, but it is relevant in what follows.

Another example is that of a monomorphism $m: M \rightarrow A$ : for every nair of narallel arrows $f, g: X \rightarrow M$
if $m \circ f=m \circ g$, then $f=g$.
In all of the above examples, monomorphism = injective morphism,
except in $(S, \leqslant)$ where all arrows are monomorphisms.

## Some universal properties/constructions

Category theory deals with objects "from the outside" via their interactions, through universal properties and constructions.

For instance, a terminal object is an object 1 such that for every object $X$ there exists a unique arrow $X \rightarrow 1$.

- In an ordered set $(S, \leqslant)$ viewed as a category, a terminal object is the same thing as a maximum.
- In Set, an object is terminal if and only if it is a singleton set.
if and only if its underlying set is a singleton.
This is the simplest example of a universal property, but it is relevant in what follows.

Another example is that of a monomorphism $m: M \rightarrow A$ : for every pair of parallel arrows $f, g: X \rightarrow M$,
if $m \circ f=m \circ g$, then $f=g$.
In all of the above examples, monomorphism = injective morphism,
except in $(S, \leqslant)$ where all arrows are monomorphisms.

## Some universal properties/constructions

Category theory deals with objects "from the outside" via their interactions, through universal properties and constructions.

For instance, a terminal object is an object 1 such that for every object $X$ there exists a unique arrow $X \rightarrow 1$.

- In an ordered set $(S, \leqslant)$ viewed as a category, a terminal object is the same thing as a maximum.
- In Set, an object is terminal if and only if it is a singleton set.
- In Top, Ab, Gp, Vect $t_{k}, \operatorname{Mod}_{R}$ and Liek, $_{\text {K }}$, an object is terminal if and only if its underlying set is a singleton.

This is the simplest example of a universal property, but it is relevant in what follows.

Another example is that of a monomorphism $m: M \rightarrow A:$
for every pair of parallel arrows $f, g: X \rightarrow M$,
if $m \circ f=m \circ g$, then $f=g$.
In all of the above examples, monomorphism = injective morphism,
except in $(S, \leqslant)$ where all arrows are monomorphisms.

## Some universal properties/constructions

Category theory deals with objects "from the outside" via their interactions, through universal properties and constructions.

For instance, a terminal object is an object 1 such that for every object $X$ there exists a unique arrow $X \rightarrow 1$.

- In an ordered set $(S, \leqslant)$ viewed as a category, a terminal object is the same thing as a maximum.
- In Set, an object is terminal if and only if it is a singleton set.
- In Top, Ab, Gp, Vect $t_{k}, \operatorname{Mod}_{R}$ and $L i e_{k}$, an object is terminal if and only if its underlying set is a singleton.

This is the simplest example of a universal property, but it is relevant in what follows.

Another example is that of a monomorphism $m: M \rightarrow A$ : for every pair of parallel arrows $f, g: X \rightarrow M$,
if $m \circ f=m \circ g$, then $f=g$.
In all of the above examples, monomorphism = injective morphism,
except in $(S, \leqslant)$ where all arrows are monomorphisms.

## Some universal properties/constructions

Category theory deals with objects "from the outside" via their interactions, through universal properties and constructions.

For instance, a terminal object is an object 1 such that for every object $X$ there exists a unique arrow $X \rightarrow 1$.

- In an ordered set $(S, \leqslant)$ viewed as a category, a terminal object is the same thing as a maximum.
- In Set, an object is terminal if and only if it is a singleton set.
- In Top, Ab, Gp, Vectk, $\operatorname{Mod}_{R}$ and Liek, $_{\text {K }}$, an object is terminal if and only if its underlying set is a singleton.

This is the simplest example of a universal property, but it is relevant in what follows.

Another example is that of a monomorphism $m: M \rightarrow A$ :
for every pair of parallel arrows $f, g: X \rightarrow M$,
if $m \circ f=m \circ g$, then $f=g$.
In all of the above examples, monomorphism = injective morphism,
except in $(S, \leqslant)$ where all arrows are monomorphisms.

## Some universal properties/constructions

Category theory deals with objects "from the outside" via their interactions, through universal properties and constructions.

For instance, a terminal object is an object 1 such that for every object $X$ there exists a unique arrow $X \rightarrow 1$.

- In an ordered set $(S, \leqslant)$ viewed as a category, a terminal object is the same thing as a maximum.
- In Set, an object is terminal if and only if it is a singleton set.
- In Top, Ab, Gp, Vectk, $\operatorname{Mod}_{R}$ and Liek, $_{\text {K }}$, an object is terminal if and only if its underlying set is a singleton.

This is the simplest example of a universal property, but it is relevant in what follows.

Another example is that of a monomorphism $m: M \rightarrow A$ :
for every pair of parallel arrows $f, g: X \rightarrow M$,
if $m \circ f=m \circ g$, then $f=g$.
In all of the above examples, monomorphism = injective morphism,
except in $(S, \leqslant)$ where all arrows are monomorphisms.

## Some universal properties/constructions

Category theory deals with objects "from the outside" via their interactions, through universal properties and constructions.

For instance, a terminal object is an object 1 such that for every object $X$ there exists a unique arrow $X \rightarrow 1$.

- In an ordered set $(S, \leqslant)$ viewed as a category, a terminal object is the same thing as a maximum.
- In Set, an object is terminal if and only if it is a singleton set.
- In Top, Ab, Gp, Vectk, $\operatorname{Mod}_{R}$ and Liek, $_{\text {K }}$, an object is terminal if and only if its underlying set is a singleton.

This is the simplest example of a universal property, but it is relevant in what follows.

Another example is that of a monomorphism $m: M \rightarrow A$ :
for every pair of parallel arrows $f, g: X \rightarrow M$,
if $m \circ f=m \circ g$, then $f=g$.
In all of the above examples, monomorphism = injective morphism,
except in $(S, \leqslant)$ where all arrows are monomorphisms.

## Some universal properties/constructions

Category theory deals with objects "from the outside" via their interactions, through universal properties and constructions.

For instance, a terminal object is an object 1 such that for every object $X$ there exists a unique arrow $X \rightarrow 1$.

- In an ordered set $(S, \leqslant)$ viewed as a category, a terminal object is the same thing as a maximum.
- In Set, an object is terminal if and only if it is a singleton set.
- In Top, Ab, Gp, Vect $\mathbb{K}_{\mathbb{K}}, \operatorname{Mod}_{R}$ and Lie $_{\mathbb{K}}$, an object is terminal if and only if its underlying set is a singleton.

This is the simplest example of a universal property, but it is relevant in what follows.

Another example is that of a monomorphism $m: M \rightarrow A$ :
for every pair of parallel arrows $f, g: X \rightarrow M$,
if $m \circ f=m \circ g$, then $f=g$.
In all of the above examples, monomorphism = injective morphism, except in $(S, \leqslant)$ where all arrows are monomorphisms.

A non-trivial example: groups amongst monoids
A monoid is a set $M$ equipped with an associative multiplication • which admits a unit $e_{M}$. (So, a monoid is a one-object category.) A group is a monoid whose elements are invertible.


## A non-trivial example: groups amongst monoids

A monoid is a set $M$ equipped with an associative multiplication which admits a unit $e_{M}$. (So, a monoid is a one-object category.) A group is a monoid whose elements are invertible.

In the category Mon of monoids and monoid homomorphisms, the groups may be characterised as follows: $B$ is a group iff for all

$$
0 \longrightarrow X \triangleright \stackrel{k}{\longrightarrow} A \underset{f}{\stackrel{s}{\longleftrightarrow}} B, \quad k=\operatorname{ker}(f), \quad f \circ s=1_{B}
$$

$k$ and $s$ are jointly strongly epimorphic $\qquad$
$\square$ they make sense outside the context of groups and monoids. - Recent work [Montoli-Rodelo-VdL, 2017] [García, 2017]. - Is this just mathematics made difficult?

## A non-trivial example: groups amongst monoids

A monoid is a set $M$ equipped with an associative multiplication • which admits a unit $e_{M}$. (So, a monoid is a one-object category.) A group is a monoid whose elements are invertible.
In the category Mon of monoids and monoid homomorphisms, the groups may be characterised as follows: $B$ is a group iff for all

$$
0 \longrightarrow X \triangleright \stackrel{k}{\longleftrightarrow} A \underset{f}{\stackrel{s}{\leftrightarrows}} B, \quad k=\operatorname{ker}(f), \quad f \circ s=1_{B}
$$

$k$ and $s$ are jointly strongly epimorphic, which means that $k(X)$ and $s(B)$ together generate $A$, or more precisely that $k$ and $s$ do not both factor though a monomorphism $m: M \rightarrow A$, unless $m$ is an isomorphism.

- All concepts here are categorical:
they make sense outside the context of groups and monoids.
- Recent work [Montoli-Rodelo-VdL, 2017] [García, 2017].
- Is this just mathematics made difficult?


## A non-trivial example: groups amongst monoids

A monoid is a set $M$ equipped with an associative multiplication • which admits a unit $e_{M}$. (So, a monoid is a one-object category.) A group is a monoid whose elements are invertible.
In the category Mon of monoids and monoid homomorphisms, the groups may be characterised as follows: $B$ is a group iff for all

$$
0 \longrightarrow X \triangleright \stackrel{k}{\longleftrightarrow} A \underset{f}{\stackrel{s}{\leftrightarrows}} B, \quad k=\operatorname{ker}(f), \quad f \circ s=1_{B}
$$

$k$ and $s$ are jointly strongly epimorphic, which means that $k(X)$ and $s(B)$ together generate $A$, or more precisely that $k$ and $s$ do not both factor though a monomorphism $m: M \rightarrow A$, unless $m$ is an isomorphism.

- Basic idea: $a=s f(a) \cdot\left(s\left(f(a)^{-1}\right) \cdot a\right)$
they make sense outside the context of groups and monoids.
- Recent work [Montoli-Rodelo-VdL, 2017] [García, 2017].


## A non-trivial example: groups amongst monoids

A monoid is a set $M$ equipped with an associative multiplication • which admits a unit $e_{M}$. (So, a monoid is a one-object category.) A group is a monoid whose elements are invertible.
In the category Mon of monoids and monoid homomorphisms, the groups may be characterised as follows: $B$ is a group iff for all

$$
0 \longrightarrow X \triangleright \stackrel{k}{\longleftrightarrow} A \underset{f}{\longleftrightarrow} B, \quad k=\operatorname{ker}(f), \quad f \circ s=1_{B}
$$

$k$ and $s$ are jointly strongly epimorphic, which means that $k(X)$ and $s(B)$ together generate $A$, or more precisely that $k$ and $s$ do not both factor though a monomorphism $m: M \rightarrow A$, unless $m$ is an isomorphism.

- Basic idea: $a=s f(a) \cdot\left(s\left(f(a)^{-1}\right) \cdot a\right)$
- All concepts here are categorical
they make sense outside the context of groups and monoids.
- Recent work [Montoli-Rodelo-VdL, 2017] [García, 2017].
- Is this iust mathematics made difficult?


## A non-trivial example: groups amongst monoids

A monoid is a set $M$ equipped with an associative multiplication • which admits a unit $e_{M}$. (So, a monoid is a one-object category.) A group is a monoid whose elements are invertible.
In the category Mon of monoids and monoid homomorphisms, the groups may be characterised as follows: $B$ is a group iff for all

$$
0 \longrightarrow X \triangleright \stackrel{k}{\longleftrightarrow} A \underset{f}{\stackrel{s}{\leftrightarrows}} B, \quad k=\operatorname{ker}(f), \quad f \circ s=1_{B}
$$

$k$ and $s$ are jointly strongly epimorphic, which means that $k(X)$ and $s(B)$ together generate $A$, or more precisely that $k$ and $s$ do not both factor though a monomorphism $m: M \rightarrow A$, unless $m$ is an isomorphism.

- Basic idea: $a=s f(a) \cdot\left(s\left(f(a)^{-1}\right) \cdot a\right)$
- All concepts here are categorical: they make sense outside the context of groups and monoids.
- Recent work [Montoli-Rodelo-VdL, 2017] [García, 2017]. - Is this just mathematics made difficult?


## A non-trivial example: groups amongst monoids

A monoid is a set $M$ equipped with an associative multiplication which admits a unit $e_{M}$. (So, a monoid is a one-object category.) A group is a monoid whose elements are invertible.

In the category Mon of monoids and monoid homomorphisms, the groups may be characterised as follows: $B$ is a group iff for all

$$
0 \longrightarrow X \triangleright \stackrel{k}{\longrightarrow} A \underset{f}{\stackrel{s}{\longleftrightarrow}} B, \quad k=\operatorname{ker}(f), \quad f \circ s=1_{B}
$$

$k$ and $s$ are jointly strongly epimorphic, which means that $k(X)$ and $s(B)$ together generate $A$, or more precisely that $k$ and $s$ do not both factor though a monomorphism $m: M \rightarrow A$, unless $m$ is an isomorphism.

- Basic idea: $a=s f(a) \cdot\left(s\left(f(a)^{-1}\right) \cdot a\right)$
- All concepts here are categorical: they make sense outside the context of groups and monoids.
- Recent work [Montoli-Rodelo-VdL, 2017] [García, 2017].


## A non-trivial example: groups amongst monoids

A monoid is a set $M$ equipped with an associative multiplication which admits a unit $e_{M}$. (So, a monoid is a one-object category.) A group is a monoid whose elements are invertible.

In the category Mon of monoids and monoid homomorphisms, the groups may be characterised as follows: $B$ is a group iff for all

$$
0 \longrightarrow X \triangleright \stackrel{k}{\longrightarrow} A \underset{f}{\longleftrightarrow} B, \quad k=\operatorname{ker}(f), \quad f \circ s=1_{B}
$$

$k$ and $s$ are jointly strongly epimorphic, which means that $k(X)$ and $s(B)$ together generate $A$, or more precisely that $k$ and $s$ do not both factor though a monomorphism $m: M \rightarrow A$, unless $m$ is an isomorphism.

- Basic idea: $a=s f(a) \cdot\left(s\left(f(a)^{-1}\right) \cdot a\right)$
- All concepts here are categorical: they make sense outside the context of groups and monoids.
- Recent work [Montoli-Rodelo-VdL, 2017] [García, 2017].
- Is this just mathematics made difficult?


## A non-trivial example: groups amongst monoids

A monoid is a set $M$ equipped with an associative multiplication which admits a unit $e_{M}$. (So, a monoid is a one-object category.) A group is a monoid whose elements are invertible.

In the category Mon of monoids and monoid homomorphisms, the groups may be characterised as follows: $B$ is a group iff for all

$$
0 \longrightarrow X \triangleright \stackrel{k}{\longrightarrow} A \underset{f}{\longleftrightarrow} B, \quad k=\operatorname{ker}(f), \quad f \circ s=1_{B}
$$

$k$ and $s$ are jointly strongly epimorphic, which means that $k(X)$ and $s(B)$ together generate $A$, or more precisely that $k$ and $s$ do not both factor though a monomorphism $m: M \rightarrow A$, unless $m$ is an isomorphism.

- Basic idea: $a=s f(a) \cdot\left(s\left(f(a)^{-1}\right) \cdot a\right)$
- All concepts here are categorical: they make sense outside the context of groups and monoids.
- Recent work [Montoli-Rodelo-VdL, 2017] [García, 2017].
- Is this just mathematics made difficult?

My aim is to explain how this kind of a viewpoint may be useful.

## Some universal properties/constructions

Another example is that of a product $\left(X \times Y, \pi_{X}, \pi_{Y}\right)$ of objects $X$ and $Y$, which is such that any pair of arrows $(f, g)$ as in

factors uniquely through the pair $\left(\pi_{X}, \pi_{Y}\right)$.
In other words, it is terminal amongst pairs of arrows $X \leftarrow Z \rightarrow Y$.

- In an ordered set $(S, \leqslant)$ viewed as a category,
the product of two elements $x$ and $y$ is $x \wedge y=\min \{x, y\}$.
(Indeed, $z \leqslant x \wedge y$ iff $z \leqslant x$ and $z \leqslant y . \quad x \wedge y$ is the largest such $z$.)
- In Set, Top, Ab, Gp, Mon, Vect ${ }_{k}, \operatorname{Mod}_{R}$ and Lie ${ }_{K}$, products are
cartesian, equipped with the appropriate structure.


## Some universal properties/constructions

Another example is that of a product $\left(X \times Y, \pi_{X}, \pi_{Y}\right)$ of objects $X$ and $Y$, which is such that any pair of arrows $(f, g)$ as in

factors uniquely through the pair $\left(\pi_{X}, \pi_{Y}\right)$.
In other words, it is terminal amongst pairs of arrows $X \leftarrow Z \rightarrow Y$.

- In an ordered set $(S, \leqslant)$ viewed as a category,
the product of two elements $x$ and $y$ is $x \wedge y=\min \{x, y\}$. (Indeed, $z \leqslant x \wedge y$ iff $z \leqslant x$ and $z \leqslant y . \quad x \wedge y$ is the largest such $z$. - In Set, Top, Ab, Gp, Mon, Vect $\mathbb{K}_{\mathbb{K}}$, Mod $_{R}$ and Lie $\mathbb{K}_{\mathbb{K}}$, products are cartesian, equipped with the appropriate structure.


## Some universal properties/constructions

Another example is that of a product $\left(X \times Y, \pi_{X}, \pi_{Y}\right)$ of objects $X$ and $Y$, which is such that any pair of arrows $(f, g)$ as in

factors uniquely through the pair $\left(\pi_{X}, \pi_{Y}\right)$.
In other words, it is terminal amongst pairs of arrows $X \leftarrow Z \rightarrow Y$.

- In an ordered set $(S, \leqslant)$ viewed as a category, the product of two elements $x$ and $y$ is $x \wedge y=\min \{x, y\}$.
(Indeed, $z \leqslant x \wedge y$ iff $z \leqslant x$ and $z \leqslant y . \quad x \wedge y$ is the largest such $z$.)
- In Set, Top, Ab, Gp, Mon, Vect ${ }_{k}, \operatorname{Mod}_{R}$ and Lie $_{\mathbb{K}}$, products are
cartesian, equipped with the appropriate structure.


## Some universal properties/constructions

Another example is that of a product $\left(X \times Y, \pi_{X}, \pi_{Y}\right)$ of objects $X$ and $Y$, which is such that any pair of arrows $(f, g)$ as in

factors uniquely through the pair $\left(\pi_{X}, \pi_{Y}\right)$.
In other words, it is terminal amongst pairs of arrows $X \leftarrow Z \rightarrow Y$.

- In an ordered set $(S, \leqslant)$ viewed as a category, the product of two elements $x$ and $y$ is $x \wedge y=\min \{x, y\}$. (Indeed, $z \leqslant x \wedge y$ iff $z \leqslant x$ and $z \leqslant y . \quad x \wedge y$ is the largest such $z$.)


## Some universal properties/constructions

Another example is that of a product $\left(X \times Y, \pi_{X}, \pi_{Y}\right)$ of objects $X$ and $Y$, which is such that any pair of arrows $(f, g)$ as in

factors uniquely through the pair $\left(\pi_{X}, \pi_{Y}\right)$.
In other words, it is terminal amongst pairs of arrows $X \leftarrow Z \rightarrow Y$.

- In an ordered set $(S, \leqslant)$ viewed as a category, the product of two elements $x$ and $y$ is $x \wedge y=\min \{x, y\}$. (Indeed, $z \leqslant x \wedge y$ iff $z \leqslant x$ and $z \leqslant y . \quad x \wedge y$ is the largest such $z$.)
- In Set, Top, Ab, Gp, Mon, Vect ${ }_{\mathrm{K}}, \operatorname{Mod}_{R}$ and Lie K, , products are cartesian, equipped with the appropriate structure.

Duality: the basic type of symmetry in category theory


If the arrows in a category $\mathbb{K}$ are reversed then we find a new, "opposite" category $\mathbb{K}^{\text {op }}$.

Sometimes this opposite is known: algebraic geometers understand that (affine schemes) $)^{\mathrm{op}} \simeq$ (commutative rings), for instance.

Any categorical concent has a dual
which is this concept, considered in the opposite category.

- The dual of a terminal object 1 is an initial object $0: \forall X \exists!(X \rightarrow 1)$

For instance, $\varnothing$ in Set, the one-element algebra in $G p, A b$, Vect $t_{\mathbb{K}}$, etc.

* The dual of a monomorphism is an epimorphism.
- The dual of a product is a coproduct.



## Duality: the basic type of symmetry in category theory

If the arrows in a category $\mathbb{K}$ are reversed then we find a new, "opposite" category $\mathbb{K}^{\text {op }}$.

- Sometimes this opposite is known: algebraic geometers understand that (affine schemes) ${ }^{\text {op }} \simeq$ (commutative rings), for instance.

Any categorical concept has a dual,
which is this concept, considered in the opposite category.

- The dual of a terminal object 1 is an initial object $0: \forall X \exists!(X \rightarrow 1)$

For instance, $\varnothing$ in Set, the one-element algebra in Gp, $A b$, Vect ${ }_{\mathbb{K}}$, etc.

- The dual of a monomorphism is an epimorphism.
- The dual of a product is a coproduct.

Set: disjoint union; Gp: free product; $A b, V^{2} \operatorname{lt}_{k}, \operatorname{Mod}_{R}:$ direct sum.

## Duality: the basic type of symmetry in category theory

If the arrows in a category $\mathbb{K}$ are reversed then we find a new, "opposite" category $\mathbb{K}^{\text {op }}$.

- Sometimes this opposite is known: algebraic geometers understand that (affine schemes) ${ }^{\text {op }} \simeq$ (commutative rings), for instance.
Any categorical concept has a dual, which is this concept, considered in the opposite category.

```
* The dual of a terminal object 1 is an initial object \(0: \forall X \exists!(X \rightarrow 1)\)
    For instance, \(\varnothing\) in Set, the one-element algebra in Gp, \(A b\), Vect \(\mathbb{K}_{\mathbb{K}}\), etc.
- The dual of a monomorphism is an epimorphism.
* The dual of a product is a coproduct.
Set: disjoint union; \(G p\) : free product; \(A b, \operatorname{Vect}_{k}, \operatorname{Mod}_{R}\) : direct sum.
```


## Duality: the basic type of symmetry in category theory

If the arrows in a category $\mathbb{K}$ are reversed then we find a new, "opposite" category $\mathbb{K}^{\text {op }}$.

- Sometimes this opposite is known: algebraic geometers understand that (affine schemes) ${ }^{\text {op }} \simeq$ (commutative rings), for instance.
Any categorical concept has a dual, which is this concept, considered in the opposite category.
- The dual of a terminal object 1 is an initial object 0 : $\forall X \exists$ ! $(X \rightarrow 1)$
- The dual of a monomorphism is an epimorphism.
- The dual of a product is a coproduct.

Set: disjoint union; Gp: free product; $A b, V^{2} t_{k}, M_{R}$ : direct sum.

## Duality: the basic type of symmetry in category theory

If the arrows in a category $\mathbb{K}$ are reversed then we find a new, "opposite" category $\mathbb{K}^{\text {op }}$.

- Sometimes this opposite is known: algebraic geometers understand that (affine schemes) ${ }^{\text {op }} \simeq$ (commutative rings), for instance.
Any categorical concept has a dual, which is this concept, considered in the opposite category.
- The dual of a terminal object 1 is an initial object 0 : $\forall X \exists$ ! $(X \leftarrow 0)$
- The dual of a monomorphism is an epimorphism.
- The dual of a product is a coproduct.

Set: disjoint union; Gp: free product; $A b, V^{2} t_{k}, M_{R}$ : direct sum.

## Duality: the basic type of symmetry in category theory

If the arrows in a category $\mathbb{K}$ are reversed then we find a new, "opposite" category $\mathbb{K}^{\text {op }}$.

- Sometimes this opposite is known: algebraic geometers understand that (affine schemes) ${ }^{\mathrm{op}} \simeq$ (commutative rings), for instance.
Any categorical concept has a dual, which is this concept, considered in the opposite category.
- The dual of a terminal object 1 is an initial object $0: \forall X \exists$ ! $(X \leftarrow 0)$ For instance, $\varnothing$ in Set, the one-element algebra in $G p, A b, V_{\text {ect }}$, etc.
- The dual of a monomorphism is an epimorphism.
- The dual of a product is a coproduct.

Set: disjoint union; Gp: free product; $A b, V \in c t k, M_{R}$ : direct sum.

## Duality: the basic type of symmetry in category theory

If the arrows in a category $\mathbb{K}$ are reversed then we find a new, "opposite" category $\mathbb{X}$ ㅇ.

- Sometimes this opposite is known: algebraic geometers understand that (affine schemes) ${ }^{\mathrm{op}} \simeq$ (commutative rings), for instance.
Any categorical concept has a dual, which is this concept, considered in the opposite category.
- The dual of a terminal object 1 is an initial object $0: \forall X \exists$ ! $(X \leftarrow 0)$ For instance, $\varnothing$ in Set, the one-element algebra in $G p, A b$, Vect $t_{k}$, etc.
- The dual of a monomorphism is an epimorphism.
- The dual of a product is a coproduct.

Set: disjoint union; $G p$ : free product; $A b, V^{2} t_{k}, \operatorname{Mod}_{R}$ : direct sum.

## Duality: the basic type of symmetry in category theory



If the arrows in a category $\mathbb{K}$ are reversed then we find a new, "opposite" category $\mathbb{X}$ 이.

- Sometimes this opposite is known: algebraic geometers understand that (affine schemes) ${ }^{\mathrm{op}} \simeq$ (commutative rings), for instance.
Any categorical concept has a dual, which is this concept, considered in the opposite category.
- The dual of a terminal object 1 is an initial object $0: \forall X \exists$ ! $(X \leftarrow 0)$ For instance, $\varnothing$ in Set, the one-element algebra in $G p, A b$, Vect $t_{k}$, etc.
- The dual of a monomorphism is an epimorphism.
- The dual of a product is a coproduct.


## Duality: the basic type of symmetry in category theory



If the arrows in a category $\mathbb{K}$ are reversed then we find a new, "opposite" category $\mathbb{X}$ 이.

- Sometimes this opposite is known: algebraic geometers understand that (affine schemes) ${ }^{\mathrm{op}} \simeq$ (commutative rings), for instance.
Any categorical concept has a dual, which is this concept, considered in the opposite category.
- The dual of a terminal object 1 is an initial object 0 : $\forall X \exists$ ! $(X \leftarrow 0)$ For instance, $\varnothing$ in Set, the one-element algebra in $G p, A b$, Vect $t_{k}$, etc.
- The dual of a monomorphism is an epimorphism.
- The dual of a product is a coproduct.

Set: disjoint union; $G p$ : free product; $A b$, Vect $_{k}, \operatorname{Mod}_{R}$ : direct sum.

## Certain concepts are invariant under duality

A zero object is an object which is both initial and terminal: $0=1$. The concept of a zero object is self-dual, so invariant under duality: in the opposite category, it will still be zero.

A pointed category is a category with a zero object.

- Mon, Ab, Gp, Vectr, Modr, Liek are pointed,
while Set and Top are not.
- If $(S, \leqslant)$ has a zero object, then $S$ is a singleton.


## A biproduct is a diagram


where $\left(X \oplus Y, \pi_{X}, \pi_{Y}\right)$ is a product and $\left(X \oplus Y, \iota_{X}, \iota_{Y}\right)$ is a coproduct. This is also a self-dual concept.

- If $(S, \leqslant)$ has biproducts, then $|S| \leqslant 1$, since $x=x \oplus y=y$.
- In $A b, V_{t} t_{k}$, and $\operatorname{Mod}_{R}$, every product and every coproduct
may be completed to a biproduct diagram.
- This is false for Mon, Gp and Liek.


## Certain concepts are invariant under duality

A zero object is an object which is both initial and terminal: $0=1$. The concept of a zero object is self-dual, so invariant under duality: in the opposite category, it will still be zero.
A pointed category is a category with a zero object.

- Mon, Ab, Gp, Vect ${ }^{\text {k }}$, Mod $_{\text {R }}$, Liek $_{k}$ are pointed
while Set and Top are not.
- If $(S, \leqslant)$ has a zero object, then $S$ is a singleton.


## A biproduct is a diagram


where $\left(X \oplus Y, \pi_{X}, \pi_{Y}\right)$ is a product and $\left(X \oplus Y, \iota_{X}, \iota_{Y}\right)$ is a coproduct. This is also a self-dual concept.

* If $(S, \leqslant)$ has biproducts, then $|S| \leqslant 1$, since $x=x \oplus y=y$.
- In $A b, \operatorname{Vect}_{\mathbb{K}}$, and $\operatorname{Mod}_{R}$, every product and every coproduct
may be completed to a biproduct diagram.
- This is false for Mon, Gp and Liek.


## Certain concepts are invariant under duality

A zero object is an object which is both initial and terminal: $0=1$. The concept of a zero object is self-dual, so invariant under duality: in the opposite category, it will still be zero.

A pointed category is a category with a zero object.

- Mon, Ab, Gp, Vect ${ }_{k}, \operatorname{Mod}_{R}$, Liek $_{k}$ are pointed, while Set and Top are not.
- If $(S, \leqslant)$ has a zero object, then $S$ is a singleton.


## A biproduct is a diagram


where $\left(X \oplus Y, \pi_{X}, \pi_{Y}\right)$ is a product and $\left(X \oplus Y, \iota_{X}, \iota_{Y}\right)$ is a coproduct. This is also a self-dual concept.

- If $(S, \leqslant)$ has biproducts, then $|S| \leqslant 1$, since $x=x \oplus y=y$.
- In Ab, Vect ${ }_{k}$, and $M o d_{R}$, every product and every coproduct may be completed to a biproduct diagram.
- This is false for Mon, Gp and Liek.


## Certain concepts are invariant under duality

A zero object is an object which is both initial and terminal: $0=1$. The concept of a zero object is self-dual, so invariant under duality: in the opposite category, it will still be zero.

A pointed category is a category with a zero object.

- Mon, Ab, Gp, Vect ${ }_{k}, \operatorname{Mod}_{R}$, Liek $_{k}$ are pointed, while Set and Top are not.
- If $(S, \leqslant)$ has a zero object, then $S$ is a singleton.


## A biproduct is a diagram


where $\left(X \oplus Y, \pi_{X}, \pi_{Y}\right)$ is a product and $\left(X \oplus Y, \iota_{X}, \iota_{Y}\right)$ is a coproduct. This is also a self-dual concept.

- If $(S, \leqslant)$ has biproducts, then $|S| \leqslant 1$, since $x=x \oplus y=y$.
- In $A b, \operatorname{Vect}_{\mathbb{K}}$, and $\operatorname{Mod}_{R}$, every product and every coproduct
may be completed to a biproduct diagram.
- This is false for Mon, Gp and Liek.


## Certain concepts are invariant under duality

A zero object is an object which is both initial and terminal: $0=1$. The concept of a zero object is self-dual, so invariant under duality: in the opposite category, it will still be zero.
A pointed category is a category with a zero object.

- Mon, Ab, Gp, Vectk, $\operatorname{Mod}_{R}$, Liek $_{k}$ are pointed, while Set and Top are not.
- If $(S, \leqslant)$ has a zero object, then $S$ is a singleton.

A biproduct is a diagram

$$
X \underset{\pi_{X}}{\stackrel{\iota X}{\rightleftarrows}} X \oplus Y \underset{\pi_{Y}}{\stackrel{\iota Y}{\leftrightarrows}} Y
$$

where $\left(X \oplus Y, \pi_{X}, \pi_{Y}\right)$ is a product and $\left(X \oplus Y, \iota_{X}, \iota_{Y}\right)$ is a coproduct.

- If $(S, \leqslant)$ has biproducts, then $|S| \leqslant 1$, since $x=x \oplus y=y$.
- In $A b, \operatorname{Vect}_{\mathbb{k}}$, and $\operatorname{Mod}_{R}$, every product and every coproduct
may be completed to a biproduct diagram.
- This is false for Mon, Gp and Liek.


## Certain concepts are invariant under duality

A zero object is an object which is both initial and terminal: $0=1$. The concept of a zero object is self-dual, so invariant under duality: in the opposite category, it will still be zero.
A pointed category is a category with a zero object.

- Mon, Ab, Gp, Vectk, $\operatorname{Mod}_{R}$, Liek $_{k}$ are pointed, while Set and Top are not.
- If $(S, \leqslant)$ has a zero object, then $S$ is a singleton.

A biproduct is a diagram

$$
X \underset{\pi_{X}}{\stackrel{\iota X}{\rightleftarrows}} X \oplus Y \underset{\pi_{Y}}{\stackrel{\iota Y}{\leftrightarrows}} Y
$$

where $\left(X \oplus Y, \pi_{X}, \pi_{Y}\right)$ is a product and $\left(X \oplus Y, \iota_{X}, \iota_{Y}\right)$ is a coproduct. This is also a self-dual concept.

- In $A b, \operatorname{Vect}_{\mathbb{K}}$, and $\operatorname{Mod}_{R}$, every product and every coproduct
may be completed to a biproduct diagram.
- This is false for Mon, Gp and Liek.


## Certain concepts are invariant under duality

A zero object is an object which is both initial and terminal: $0=1$. The concept of a zero object is self-dual, so invariant under duality: in the opposite category, it will still be zero.
A pointed category is a category with a zero object.

- Mon, Ab, Gp, Vectk, $\operatorname{Mod}_{R}$, Liek $_{K}$ are pointed, while Set and Top are not.
- If $(S, \leqslant)$ has a zero object, then $S$ is a singleton.

A biproduct is a diagram

$$
X \underset{\pi_{X}}{\stackrel{\iota x}{\rightleftarrows}} X \oplus Y \underset{\pi_{Y}}{\stackrel{\iota Y}{\leftrightarrows}} Y
$$

where $\left(X \oplus Y, \pi_{X}, \pi_{Y}\right)$ is a product and $\left(X \oplus Y, \iota_{X}, \iota_{Y}\right)$ is a coproduct. This is also a self-dual concept.

- If $(S, \leqslant)$ has biproducts, then $|S| \leqslant 1$
- In Ab, Vect $\mathbb{R}_{k}$, and $\operatorname{Mod}_{R}$, every product and every coproduct
may be completed to a biproduct diagram.
- This is false for Mon, Cp and Liek.


## Certain concepts are invariant under duality

A zero object is an object which is both initial and terminal: $0=1$. The concept of a zero object is self-dual, so invariant under duality: in the opposite category, it will still be zero.
A pointed category is a category with a zero object.

- Mon, Ab, Gp, Vect $t_{k}, \operatorname{Mod}_{R}, \operatorname{Lie}_{K}$ are pointed, while Set and Top are not.
- If $(S, \leqslant)$ has a zero object, then $S$ is a singleton.

A biproduct is a diagram

$$
X \underset{\pi_{X}}{\stackrel{\iota x}{\rightleftarrows}} X \oplus Y \underset{\pi_{Y}}{\stackrel{\iota Y}{\leftrightarrows}} Y
$$

where $\left(X \oplus Y, \pi_{X}, \pi_{Y}\right)$ is a product and $\left(X \oplus Y, \iota_{X}, \iota_{Y}\right)$ is a coproduct. This is also a self-dual concept.

- If $(S, \leqslant)$ has biproducts, then $|S| \leqslant 1$, since $x=x \oplus y=y$.


## Certain concepts are invariant under duality

A zero object is an object which is both initial and terminal: $0=1$. The concept of a zero object is self-dual, so invariant under duality: in the opposite category, it will still be zero.
A pointed category is a category with a zero object.

- Mon, Ab, Gp, Vect ${ }_{k}, \operatorname{Mod}_{R}$, Liek $_{k}$ are pointed, while Set and Top are not.
- If $(S, \leqslant)$ has a zero object, then $S$ is a singleton.

A biproduct is a diagram

$$
X \underset{\pi_{X}}{\stackrel{\iota x}{\rightleftarrows}} X \oplus Y \underset{\pi_{Y}}{\stackrel{\iota Y}{\leftrightarrows}} Y
$$

where $\left(X \oplus Y, \pi_{X}, \pi_{Y}\right)$ is a product and $\left(X \oplus Y, \iota_{X}, \iota_{Y}\right)$ is a coproduct. This is also a self-dual concept.

- If $(S, \leqslant)$ has biproducts, then $|S| \leqslant 1$, since $x=x \oplus y=y$.
- In $A b, V_{e c t}^{k}$, and $\operatorname{Mod}_{R}$, every product and every coproduct may be completed to a biproduct diagram.


## Certain concepts are invariant under duality

A zero object is an object which is both initial and terminal: $0=1$. The concept of a zero object is self-dual, so invariant under duality: in the opposite category, it will still be zero.
A pointed category is a category with a zero object.

- Mon, Ab, Gp, Vect ${ }_{k}, \operatorname{Mod}_{R}$, Liek $_{k}$ are pointed, while Set and Top are not.
- If $(S, \leqslant)$ has a zero object, then $S$ is a singleton.

A biproduct is a diagram

$$
X \underset{\pi_{X}}{\stackrel{\iota x}{\rightleftarrows}} X \oplus Y \underset{\pi_{Y}}{\stackrel{\iota Y}{\leftrightarrows}} Y
$$

where $\left(X \oplus Y, \pi_{X}, \pi_{Y}\right)$ is a product and $\left(X \oplus Y, \iota_{X}, \iota_{Y}\right)$ is a coproduct. This is also a self-dual concept.

- If $(S, \leqslant)$ has biproducts, then $|S| \leqslant 1$, since $x=x \oplus y=y$.
- In $A b, V_{e c t}^{k}$, and $\operatorname{Mod}_{R}$, every product and every coproduct may be completed to a biproduct diagram.
- This is false for Mon, Gp and Liek.

Abelian and non-abelian categories, first symmetry break
An abelian group a commutative group: $x \cdot y=y \cdot x$.
$A b$ is an abelian category: it is

- finitely (co)complete: universal constructions exist, and
- pointed, and such that
- every monomorphism is a kernel, every epimorphism is a cokernel.

This axiom set is self-dual. Abelian categories have biproducts.

- Framework for homological algebra, algebraic geometry etc. [Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]
- Examples: $\operatorname{Mod}_{R}(\mathrm{Ab}$ and Vect|k), sheaves of abelian groups.

Removing commutativity breaks the categorical symmetry:
no longer self-dual, the situation becomes radically different.

- Free products of groups are non-cartesian $\Rightarrow$ no biproducts; furthermore, non-normal subgroups exist.
This is where our work starts:
- to extend the framework to include non-abelian categories such as Gp, Lie $\mathbb{K}_{\mathbb{K}}$, Alg $g_{\mathbb{K}}$, XMod, Loop, HopfAlg $\mathbb{K}_{\text {, oco }}, C^{*}-A / g$; and
* to develop a unified homology theory.

Abelian and non-abelian categories, first symmetry break An abelian group a commutative group: $x \cdot y=y \cdot x$. $A b$ is an abelian category
pointed, and such that

- every monomorphism is a kernel, every epimorphism is a cokernel.

This axiom set is self-dual. Abelian categories have biproducts.

- Framework for homological algebra, algebraic geometry etc.
[Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]
- Examples: $\operatorname{Mod}_{R}(A b$ and Vect.k), sheaves of abelian groups.

Removing commutativity breaks the categorical symmetry:
no longer self-dual, the situation becomes radically different.

- Free products of groups are non-cartesian $\Rightarrow$ no biproducts;
furthermore, non-normal subgroups exist.
This is where our work starts:
* to extend the framework to include non-abelian categories such as Gp, Lie $\mathbb{K}_{\mathrm{K}}$, Alg $_{\mathbb{K}}$, XMod, Loop, HopfAlg ${ }_{\mathbb{K}, \text { coc }}, C^{*}$-Alg; and
to develop a unified homology theory.

Abelian and non-abelian categories, first symmetry break An abelian group a commutative group: $x \cdot y=y \cdot x$. $A b$ is an abelian category: it is

- finitely (co)complete: universal constructions exist
" pointed, and such that
- every monomorphism is a kernel, every epimorphism is a cokernel. This axiom set is self-dual. Abelian categories have biproducts.
- Framework for homological algebra, algebraic geometry etc.
[Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]
- Examples: $\operatorname{Mod}_{R}(A b$ and Vectik), sheaves of abelian groups.

Removing commutativity breaks the categorical symmetry:
no longer self-dual, the situation becomes radically different.

- Free products of groups are non-cartesian $\Rightarrow$ no biproducts;
furthermore, non-normal subgroups exist.
This is where our work starts:
- to extend the framework to include non-abelian categories

t to develop a unified homology theory.

Abelian and non-abelian categories, first symmetry break An abelian group a commutative group: $x \cdot y=y \cdot x$. $A b$ is an abelian category: it is

- finitely (co)complete: universal constructions exist, and
- pointed
* every monomorphism is a kernel, every epimorphism is a cokernel. This axiom set is self-dual. Abelian categories have biproducts.
- Framework for homological algehra, algehraic geometry etc. [Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964] * Examples: $\operatorname{Mod}_{R}(A b$ and VectßK), sheaves of abelian groups.

Removing commutativity breaks the categorical symרmetry:
no longer self-dual, the situation becomes radically different.

- Free products of groups are non-cartesian $\Rightarrow$ no biproducts;
furthermore, non-normal subgroups exist.
This is where our work starts:
- to extend the framework to include non-abelian categories such as Gn, lien, Algn, XMod, Ioon, HonfAlgn, $g_{n}$, $C^{*}-A / g$; and to develop a unified homology theory.


## Abelian and non-abelian categories, first symmetry break

 An abelian group a commutative group: $x \cdot y=y \cdot x$. $A b$ is an abelian category: it is- finitely (co)complete: universal constructions exist, and
- pointed, and such that
- every monomorphism is a kernel, every epimorphism is a cokernel.



## Abelian and non-abelian categories, first symmetry break

 An abelian group a commutative group: $x \cdot y=y \cdot x$. $A b$ is an abelian category: it is- finitely (co)complete: universal constructions exist, and
- pointed, and such that
- every monomorphism is a kernel, every epimorphism is a cokernel. This axiom set is self-dual.
- Framework for homological algebra, algebraic geometry etc. [Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964] - Examples: $\operatorname{Mod}_{R}\left(A b\right.$ and $\left.V_{e c t}^{k}\right)$, sheaves of abelian groups. Removing commutativity breaks the categorical symmetry: no longer self-dual, the situation becomes radically different.
- Free products of groups are non-cartesian $\Rightarrow$ no biproducts;
furthermore, non-normal subgroups exist.
This is where our work starts:
- to extend the framework to include non-abelian categories

- to develop a unified homology theory.


## Abelian and non-abelian categories, first symmetry break

 An abelian group a commutative group: $x \cdot y=y \cdot x$. $A b$ is an abelian category: it is- finitely (co)complete: universal constructions exist, and
- pointed, and such that
- every monomorphism is a kernel, every epimorphism is a cokernel. This axiom set is self-dual. Abelian categories have biproducts.
[Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964] - Examples: $\operatorname{Mod}_{R}\left(A b\right.$ and $\left.V_{e c t}^{k}\right)$, sheaves of abelian groups.

Removing commutativity breaks the categorical symmetry: no longer self-dual, the situation becomes radically different.

- Free products of groups are non-cartesian $\Rightarrow$ no biproducts;
furthermore, non-normal subgroups exist.
This is where our work starts:
- to extend the framework to include non-abelian categories

- to develop a unified homology theory.


## Abelian and non-abelian categories, first symmetry break

 An abelian group a commutative group: $x \cdot y=y \cdot x$. $A b$ is an abelian category: it is- finitely (co)complete: universal constructions exist, and
- pointed, and such that
- every monomorphism is a kernel, every epimorphism is a cokernel.

This axiom set is self-dual. Abelian categories have biproducts.

- Framework for homological algebra, algebraic geometry etc. [Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]

Removing commutativity breaks the categorical symmetry: no longer self-dual, the situation becomes radically different.

- Free products of groups are non-cartesian $\Rightarrow$ no biproducts;
furthermore, non-normal subgroups exist.
This is where our work starts:
- to extend the framework to include non-abelian categories



## Abelian and non-abelian categories, first symmetry break

 An abelian group a commutative group: $x \cdot y=y \cdot x$. $A b$ is an abelian category: it is- finitely (co)complete: universal constructions exist, and
- pointed, and such that
- every monomorphism is a kernel, every epimorphism is a cokernel. This axiom set is self-dual. Abelian categories have biproducts.
- Framework for homological algebra, algebraic geometry etc. [Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]
- Examples: $\operatorname{Mod}_{R}\left(A b\right.$ and $\left.V_{\text {ect }}\right)$, sheaves of abelian groups. Removing commutativity breaks the categorical symmetry:
no longer self-dual, the situation becomes radically different.
- Free products of groups are non-cartesian $\Rightarrow$ no biproducts;
furthermore, non-normal subgroups exist.
This is where our work starts:
- to extend the framework to include non-abelian categories



## Abelian and non-abelian categories, first symmetry break

 An abelian group a commutative group: $x \cdot y=y \cdot x$. $A b$ is an abelian category: it is- finitely (co)complete: universal constructions exist, and
- pointed, and such that
- every monomorphism is a kernel, every epimorphism is a cokernel. This axiom set is self-dual. Abelian categories have biproducts.
- Framework for homological algebra, algebraic geometry etc. [Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]
- Examples: $\operatorname{Mod}_{R}\left(A b\right.$ and $\left.V_{\text {ect }}\right)$, sheaves of abelian groups. Removing commutativity breaks the categorical symmetry: no longer self-dual, the situation becomes radically different.
- Free products of groups are non-cartesian $\Rightarrow$ no biproducts; furthermore, non-normal subgroups exist. This is where our work starts:
to extend the framework to include non-abelian categories


## Abelian and non-abelian categories, first symmetry break

An abelian group a commutative group: $x \cdot y=y \cdot x$. $A b$ is an abelian category: it is

- finitely (co)complete: universal constructions exist, and
- pointed, and such that
- every monomorphism is a kernel, every epimorphism is a cokernel. This axiom set is self-dual. Abelian categories have biproducts.
- Framework for homological algebra, algebraic geometry etc. [Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]
- Examples: $\operatorname{Mod}_{R}\left(A b\right.$ and $\left.V_{\text {ect }}\right)$, sheaves of abelian groups. Removing commutativity breaks the categorical symmetry: no longer self-dual, the situation becomes radically different.
- Free products of groups are non-cartesian $\Rightarrow$ no biproducts;
furthermore, non-normal subgroups exist.
This is where our work starts:
to extend the framework to include non-abelian categories


## Abelian and non-abelian categories, first symmetry break

An abelian group a commutative group: $x \cdot y=y \cdot x$. $A b$ is an abelian category: it is

- finitely (co)complete: universal constructions exist, and
- pointed, and such that
- every monomorphism is a kernel, every epimorphism is a cokernel. This axiom set is self-dual. Abelian categories have biproducts.
- Framework for homological algebra, algebraic geometry etc. [Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]
- Examples: $\operatorname{Mod}_{R}\left(A b\right.$ and $\left.V e c t t_{k}\right)$, sheaves of abelian groups. Removing commutativity breaks the categorical symmetry: no longer self-dual, the situation becomes radically different.
- Free products of groups are non-cartesian $\Rightarrow$ no biproducts; furthermore, non-normal subgroups exist.
- to extend the framework to include non-abelian categories


## Abelian and non-abelian categories, first symmetry break

An abelian group a commutative group: $x \cdot y=y \cdot x$. $A b$ is an abelian category: it is

- finitely (co)complete: universal constructions exist, and
- pointed, and such that
- every monomorphism is a kernel, every epimorphism is a cokernel. This axiom set is self-dual. Abelian categories have biproducts.
- Framework for homological algebra, algebraic geometry etc. [Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]
- Examples: $\operatorname{Mod}_{R}\left(A b\right.$ and $\left.V_{\text {ect }}\right)$, sheaves of abelian groups. Removing commutativity breaks the categorical symmetry: no longer self-dual, the situation becomes radically different.
- Free products of groups are non-cartesian $\Rightarrow$ no biproducts; furthermore, non-normal subgroups exist.


## This is where our work starts

* to extend the framework to include non-abelian categories
$\square$


## Abelian and non-abelian categories, first symmetry break

An abelian group a commutative group: $x \cdot y=y \cdot x$. $A b$ is an abelian category: it is

- finitely (co)complete: universal constructions exist, and
- pointed, and such that
- every monomorphism is a kernel, every epimorphism is a cokernel. This axiom set is self-dual. Abelian categories have biproducts.
- Framework for homological algebra, algebraic geometry etc. [Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]
- Examples: $\operatorname{Mod}_{R}\left(A b\right.$ and $\left.V_{\text {ect }}\right)$, sheaves of abelian groups. Removing commutativity breaks the categorical symmetry: no longer self-dual, the situation becomes radically different.
- Free products of groups are non-cartesian $\Rightarrow$ no biproducts; furthermore, non-normal subgroups exist.


## This is where our work starts:

- to extend the framework to include non-abelian categories



## Abelian and non-abelian categories, first symmetry break

An abelian group a commutative group: $x \cdot y=y \cdot x$. $A b$ is an abelian category: it is

- finitely (co)complete: universal constructions exist, and
- pointed, and such that
- every monomorphism is a kernel, every epimorphism is a cokernel. This axiom set is self-dual. Abelian categories have biproducts.
- Framework for homological algebra, algebraic geometry etc. [Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]
- Examples: $\operatorname{Mod}_{R}\left(A b\right.$ and $\left.V_{\text {ect }}\right)$, sheaves of abelian groups. Removing commutativity breaks the categorical symmetry: no longer self-dual, the situation becomes radically different.
- Free products of groups are non-cartesian $\Rightarrow$ no biproducts; furthermore, non-normal subgroups exist.


## This is where our work starts:

- to extend the framework to include non-abelian categories such as Gp, Lie $\mathbb{K}_{\mathfrak{K}}$, Alg $g_{\mathfrak{K}}$, XMod, Loop, HopfAlg ${ }_{\mathbb{K}, \text { coc }}, C^{*}-A l g$; and
- to develop a unified homology theory.

Abelian and non-abelian categories, first symmetry break Aim: extend basic group (co)homology to "all those" categories.

- When is a variety of algebras "sufficiently close" to Gp?
- How to capture homological properties of Gp categorically?

Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]
A variety of algebras is semi-abelian iff it is pointed and protomodular: for all

$k$ and $s$ are jointly strongly epimorphic.

- This is the condition that distinguishes groups amongst monoids. - It is equivalent to the Split Short Five Lemma.
- Homological diagram lemmas; actions vs. semi-direct products; etc. - Gp, Lie $\mathbb{K}_{\mathfrak{K}}$, Alg $g_{\mathbb{K}}$, XMod, Loop, HopfAlg ${ }_{K . c o c} C^{*}-$ Alg. Not self-dual!

Non-commutativity enables the study of commutativity itself

- commutator theory
- derived functors of abelianisation
- categorical Galois theory

Abelian and non-abelian categories, first symmetry break Aim: extend basic group (co)homology to "all those" categories.

- When is a variety of algebras "sufficiently close" to Gp?
- How to capture homological properties of Gp categorically? Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]
A variety of algebras is semi-abelian iff it is pointed and protomodular: for all

$k$ and $s$ are jointly strongly epimorphic.
This is the condition that distinguishes groups amongst monoids. v It is equivalent to the Split Short Five Lemma.
- Homological diagram lemmas; actions vs. semi-direct products; etc. - Gp, Lien, $A \lg g_{\mathbb{K}}$, XMod, Loop, HopfAlg $\mathbb{K}_{K}$ coc, $C^{*}-\Delta \lg$. Not self-dual!

Non-commutativity enables the study of commutativity itself

- commitator theory
- derived functors of abelianisation
- categorical Galois theory

Abelian and non-abelian categories, first symmetry break Aim: extend basic group (co)homology to "all those" categories.

- When is a variety of algebras "sufficiently close" to Gp?
- How to capture homological properties of Gp categorically? Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]
A variety of algebras is semi-abelian iff it is pointed and protomodular: for all

$k$ and $s$ are jointly strongly epimorphic.
This is the condition that distinguishes groups amongst monoids. v It is equivalent to the Split Short Five Lemma.
- Homological diagram lemmas; actions vs. semi-direct products; etc. -Cp, Lien, $A \lg _{\mathbb{K}}$, XM1od, Loop, HopfA $\lg _{\mathbb{R}, \text { coc }} C^{*}-A \lg$. Not self-dual!

Non-commutativity enables the study of commutativity itself

- commitator theory
- derived functors of abelianisation
- categorical Galois theory

Abelian and non-abelian categories, first symmetry break Aim: extend basic group (co)homology to "all those" categories.

- When is a variety of algebras "sufficiently close" to Gp?
- How to capture homological properties of Gp categorically? Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]
A variety of algebras is semi-abelian iff it is pointed and protomodular: for all

$k$ and $s$ are jointly strongly epimorphic.
This is the condition that distinguishes groups amongst monoids. v It is equivalent to the Split Short Five Lemma.
- Homological diagram lemmas; actions vs. semi-direct products; etc.


Non-commutativity enables the study of commutativity itself

- commutator theory
- derived functors of abelianisation
- categorical Galois theory

Abelian and non-abelian categories, first symmetry break Aim: extend basic group (co)homology to "all those" categories.

- When is a variety of algebras "sufficiently close" to Gp?
- How to capture homological properties of Gp categorically? Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]
A variety of algebras is semi-abelian iff it is pointed and protomodular: for all

$k$ and $s$ are jointly strongly epimorphic.
This is the condition that distinguishes groups amongst monoids. v It is equivalent to the Split Short Five Lemma.
- Homological diagram lemmas; actions vs. semi-direct products; etc. - Gp, Lien, $A \lg g_{\mathbb{K}}$, XMod, Loop, HopfAlg $\mathbb{K}_{K}$ coc, $C^{*}-\Delta \lg$. Not self-dual!

Non-commutativity enables the study of commutativity itself

- commitator theory
- derived functors of abelianisation
- categorical Galois theory


## Abelian and non-abelian categories, first symmetry break

 Aim: extend basic group (co)homology to "all those" categories.- When is a variety of algebras "sufficiently close" to Cp?
- How to capture homological properties of Gp categorically? Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]
A variety of algebras is semi-abelian iff it is pointed and protomodular: for all

$$
0 \longrightarrow X \longmapsto \stackrel{k}{\longrightarrow} A \underset{f}{\stackrel{s}{\leftrightarrows}} B, \quad k=\operatorname{ker}(f), \quad f \circ s=1_{B}
$$

$k$ and $s$ are jointly strongly epimorphic.

> This is the condition that distinguishes groups amongst monoids. It is equivalent to the Split Short Five Lemma. - Homological diagram Iommas; actions vs. semi-direct products; etc. * Gp, Lie $\mathbb{K}_{K}$, Alg $_{\mathbb{K}}$, XMod, Loop, HopfAlg $\mathbb{K}_{k, c o c}, C^{*}-A l g$. Not self-dual!

Non-commutativity enables the study of commutativity itself

- commutator theory
- derived functors of abelianisation
- categorical Galois theory


## Abelian and non-abelian categories, first symmetry break

Aim: extend basic group (co)homology to "all those" categories.

- When is a variety of algebras "sufficiently close" to Cp?
- How to capture homological properties of Gp categorically? Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]
A variety of algebras is semi-abelian iff it is pointed and protomodular: for all

$$
0 \longrightarrow X \longmapsto \stackrel{k}{\longrightarrow} A \underset{f}{\stackrel{s}{\leftrightarrows}} B, \quad k=\operatorname{ker}(f), \quad f \circ s=1_{B}
$$

$k$ and $s$ are jointly strongly epimorphic.

- This is the condition that distinguishes groups amongst monoids.
* It is equivalent to the Split Short Five Lemma.
- Homological diagram lemmas; actions vs. semi-direct products; etc. - Cp, Lien, $A \lg _{\mathbb{K}}$, XMod, Loop, HopfA $\lg _{\mathbb{K}, ~ c o c} C^{*}-\Delta \lg$. Not self-dual!

Non-commutativity enables the study of commutativity itself

- commutator theory
* derived functors of abelianisation
- categorical Galois theory


## Abelian and non-abelian categories, first symmetry break

Aim: extend basic group (co)homology to "all those" categories.

- When is a variety of algebras "sufficiently close" to Gp?
- How to capture homological properties of Gp categorically? Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004] A variety of algebras is semi-abelian iff it is pointed and protomodular: for all

$$
0 \longrightarrow X \longmapsto \stackrel{k}{\longrightarrow} A \underset{f}{\stackrel{s}{\leftrightarrows}} B, \quad k=\operatorname{ker}(f), \quad f \circ s=1_{B}
$$

$k$ and $s$ are jointly strongly epimorphic.

- This is the condition that distinguishes groups amongst monoids.
- It is equivalent to the Split Short Five Lemma.
-Homological diagram lemmas; actions vs. semi-direct products; etc. -Gp, Lie $\mathbb{K}_{\mathbb{K}}$, Alg $_{\mathbb{K}}$, XMod, Loop, HopfAlg $\mathbb{K}_{\mathbb{K}, c o c}, C^{*}$-Alg. Not self-dual!


## Non-commutativity enables the study of commutativity itself

- commutator theory
- derived functors of abelianisation
- categorical Galois theory


## Abelian and non-abelian categories, first symmetry break

Aim: extend basic group (co)homology to "all those" categories.

- When is a variety of algebras "sufficiently close" to Gp?
- How to capture homological properties of Gp categorically? Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004] A variety of algebras is semi-abelian iff it is pointed and protomodular: for all

$$
0 \longrightarrow X \longmapsto \stackrel{k}{\longrightarrow} A \underset{f}{\stackrel{s}{\leftrightarrows}} B, \quad k=\operatorname{ker}(f), \quad f \circ s=1_{B}
$$

$k$ and $s$ are jointly strongly epimorphic.

- This is the condition that distinguishes groups amongst monoids.
- It is equivalent to the Split Short Five Lemma.
- Homological diagram lemmas; actions vs. semi-direct products; etc.

Non-commutativity enables the study of commutativity itself

- commutator theory
- derived functors of abelianisation
- categorical Galois theory


## Abelian and non-abelian categories, first symmetry break

Aim: extend basic group (co)homology to "all those" categories.

- When is a variety of algebras "sufficiently close" to Gp?
- How to capture homological properties of Gp categorically? Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004] A variety of algebras is semi-abelian iff it is pointed and protomodular: for all

$$
0 \longrightarrow X \longmapsto \stackrel{k}{\longrightarrow} A \stackrel{s}{\leftrightarrows} B, \quad k=\operatorname{ker}(f), \quad f \circ s=1_{B}
$$

$k$ and $s$ are jointly strongly epimorphic.

- This is the condition that distinguishes groups amongst monoids.
- It is equivalent to the Split Short Five Lemma.
- Homological diagram lemmas; actions vs. semi-direct products; etc.
- Gp, Lie $\mathbb{K}_{\mathbb{K}}, A l g_{\mathfrak{K}}$, XMod, Loop, HopfAlg ${ }_{K}$, coc,$C^{*}-A l g$. Not self-dual!

Non-commutativity enables the study of commutativity itself

- commutator theory
- derived functors of abelianisation
- categorical Galois theory


## Abelian and non-abelian categories, first symmetry break

Aim: extend basic group (co)homology to "all those" categories.

- When is a variety of algebras "sufficiently close" to Gp?
- How to capture homological properties of Gp categorically? Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004] A variety of algebras is semi-abelian iff it is pointed and protomodular: for all

$$
0 \longrightarrow X \stackrel{k}{\longrightarrow} A \stackrel{s}{\leftrightarrows} B, \quad k=\operatorname{ker}(f), \quad f \circ s=1_{B}
$$

$k$ and $s$ are jointly strongly epimorphic.

- This is the condition that distinguishes groups amongst monoids.
- It is equivalent to the Split Short Five Lemma.
- Homological diagram lemmas; actions vs. semi-direct products; etc.
- Gp, Lie $\mathbb{K}_{\mathfrak{K}}$, Alg $g_{\mathfrak{K}}$, XMod, Loop, HopfAlg $g_{K, c o c}, C^{*}-A l g$. Not self-dual!

Non-commutativity enables the study of commutativity itself

- commutator theory
- derived functors of abelianisation
- categorical Galois theory


## Abelian and non-abelian categories, first symmetry break

Aim: extend basic group (co)homology to "all those" categories.

- When is a variety of algebras "sufficiently close" to Gp?
- How to capture homological properties of Gp categorically? Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004] A variety of algebras is semi-abelian iff it is pointed and protomodular: for all

$$
0 \longrightarrow X \stackrel{k}{\longrightarrow} A \stackrel{s}{\leftrightarrows} B, \quad k=\operatorname{ker}(f), \quad f \circ s=1_{B}
$$

$k$ and $s$ are jointly strongly epimorphic.

- This is the condition that distinguishes groups amongst monoids.
- It is equivalent to the Split Short Five Lemma.
- Homological diagram lemmas; actions vs. semi-direct products; etc.
- Gp, Lie $\mathbb{K}_{\mathfrak{K}}, A l g_{\mathfrak{K}}$, XMod, Loop, HopfAlg ${ }_{K}$, coc,$C^{*}-A l g$. Not self-dual!

Non-commutativity enables the study of commutativity itself

- commutator theory
- derived functors of abelianisation
- categorical Galois theory


## Homology and cohomology, second symmetry break

Theorem [Hopf, 1942; Brown-Ellis, 1988; Donadze-Inassaridze-Porter, 2005]
[Everaert-Gran-VdL, 2008]
The derived functors of the abelianisation functor

$$
a b: \mathbb{X} \rightarrow A b(\mathbb{X}): X \mapsto X /[X, X]
$$

may be calculated as

$$
H_{n+1}(X, a b) \cong \frac{\left[F_{n}, F_{n}\right] \wedge \bigwedge_{i \in n} \operatorname{Ker}\left(f_{i}\right)}{L_{n}[F]}
$$

where $F$ is an $n$-presentation of $X$.


What about the cohomology groups $H^{n+1}(X, A)$ ?

- Does Yoneda's interpretation extend to a non-abelian setting?
* Is there a duality between homology and cohomology?


## Homology and cohomology, second symmetry break

Theorem [Hopf, 1942; Brown-Ellis, 1988; Donadze-Inassaridze-Porter, 2005]
[Everaert-Gran-VdL, 2008]
The derived functors of the abelianisation functor

$$
a b: \mathbb{X} \rightarrow A b(\mathbb{X}): X \mapsto X /[X, X]
$$

may be calculated as

$$
H_{n+1}(X, a b) \cong \frac{\left[F_{n}, F_{n}\right] \wedge \bigwedge_{i \in n} \operatorname{Ker}\left(f_{i}\right)}{L_{n}[F]}
$$

where $F$ is an $n$-presentation of $X$.

- Proof technique based on categorical Galois theory [Janelidze, 1990]


What about the cohomology groups $H^{n+1}(X, A)$ ?

- Does Yoneda's interpretation extend to a non-abelian setting?
v Is there a duality between homology and cohomology?


## Homology and cohomology, second symmetry break

Theorem [Hopf, 1942; Brown-Ellis, 1988; Donadze-Inassaridze-Porter, 2005]
[Everaert-Gran-VdL, 2008]
The derived functors of the abelianisation functor

$$
a b: \mathbb{X} \rightarrow A b(\mathbb{X}): X \mapsto X /[X, X]
$$

may be calculated as

$$
H_{n+1}(X, a b) \cong \frac{\left[F_{n}, F_{n}\right] \wedge \bigwedge_{i \in n} \operatorname{Ker}\left(f_{i}\right)}{L_{n}[F]}
$$

where $F$ is an $n$-presentation of $X$.

- Proof technique based on categorical Galois theory [Janelidze, 1990]
- $[X, X]$ is commutator $(G p)$, Lie bracket $\left(L i e_{\mathbb{K}}\right)$, product $X X\left(A / g_{\mathbb{K}}\right)$, or...


What about the cohomology groups $H^{n+1}(X, A)$ ?

- Does Yoneda's interpretation extend to a non-abelian setting? v Is there a duality between homology and cohomology?


## Homology and cohomology, second symmetry break

Theorem [Hopf, 1942; Brown-Ellis, 1988; Donadze-Inassaridze-Porter, 2005]
[Everaert-Gran-VdL, 2008]
The derived functors of the abelianisation functor

$$
a b: \mathbb{X} \rightarrow A b(\mathbb{X}): X \mapsto X /[X, X]
$$

may be calculated as

$$
H_{n+1}(X, a b) \cong \frac{\left[F_{n}, F_{n}\right] \wedge \bigwedge_{i \in n} \operatorname{Ker}\left(f_{i}\right)}{L_{n}[F]}
$$

where $F$ is an $n$-presentation of $X$.

- Proof technique based on categorical Galois theory [Janelidze, 1990]
- $[X, X]$ is commutator $(G p)$, Lie bracket $\left(L i e_{\mathbb{K}}\right)$, product $X X\left(A / g_{\mathbb{K}}\right)$, or...
- $L_{n}[F] \cong \bigvee_{I \subseteq n}\left[\bigwedge_{i \in I} \operatorname{Ker}\left(f_{i}\right), \bigwedge_{i \in n \backslash I} \operatorname{Ker}\left(f_{i}\right)\right]$
if $\mathbb{K}$ satisfies the additional condition (SH) [Rodelo-VdL, 2012]
What about the cohomology groups $H^{n+1}(X, A)$ ?
" Does Yoneda's interpretation extend to a non-abelian setting? - Is there a duality between homology and cohomology?


## Homology and cohomology, second symmetry break

Theorem [Hopf, 1942; Brown-Ellis, 1988; Donadze-Inassaridze-Porter, 2005]
[Everaert-Gran-VdL, 2008]
The derived functors of the abelianisation functor

$$
a b: \mathbb{X} \rightarrow A b(\mathbb{X}): X \mapsto X /[X, X]
$$

may be calculated as

$$
H_{n+1}(X, a b) \cong \frac{\left[F_{n}, F_{n}\right] \wedge \bigwedge_{i \in n} \operatorname{Ker}\left(f_{i}\right)}{L_{n}[F]}
$$

where $F$ is an $n$-presentation of $X$.

- Proof technique based on categorical Galois theory [Janelidze, 1990]
- $[X, X]$ is commutator $(G p)$, Lie bracket $\left(L i e_{\mathbb{K}}\right)$, product $X X\left(A / g_{\mathbb{K}}\right)$, or...
- $L_{n}[F] \cong \bigvee_{I \subseteq n}\left[\bigwedge_{i \in I} \operatorname{Ker}\left(f_{i}\right), \bigwedge_{i \in n \backslash I} \operatorname{Ker}\left(f_{i}\right)\right]$
if $\mathbb{K}$ satisfies the additional condition (SH) [Rodelo-VdL, 2012]
What about the cohomology groups $H^{n+1}(X, A)$ ?
" Does Yoneda's interpretation extend to a non-abelian setting? - Is there a duality between homology and cohomology?


## Homology and cohomology, second symmetry break

Theorem [Hopf, 1942; Brown-Ellis, 1988; Donadze-Inassaridze-Porter, 2005]
[Everaert-Gran-VdL, 2008]
The derived functors of the abelianisation functor

$$
a b: \mathbb{X} \rightarrow A b(\mathbb{X}): X \mapsto X /[X, X]
$$

may be calculated as

$$
H_{n+1}(X, a b) \cong \frac{\left[F_{n}, F_{n}\right] \wedge \bigwedge_{i \in n} \operatorname{Ker}\left(f_{i}\right)}{L_{n}[F]}
$$

where $F$ is an $n$-presentation of $X$.

- Proof technique based on categorical Galois theory [Janelidze, 1990]
- $[X, X]$ is commutator $(G p)$, Lie bracket $\left(L i e_{\mathbb{K}}\right)$, product $X X\left(A / g_{\mathbb{K}}\right)$, or...
- $L_{n}[F] \cong \bigvee_{I \subseteq n}\left[\bigwedge_{i \in I} \operatorname{Ker}\left(f_{i}\right), \bigwedge_{i \in n \backslash I} \operatorname{Ker}\left(f_{i}\right)\right]$
if $\mathbb{K}$ satisfies the additional condition (SH) [Rodelo-VdL, 2012]
What about the cohomology groups $H^{n+1}(X, A)$ ?
" Does Yoneda's interpretation extend to a non-abelian setting? - Is there a duality between homology and cohomology?


## Homology and cohomology, second symmetry break

Theorem [Hopf, 1942; Brown-Ellis, 1988; Donadze-Inassaridze-Porter, 2005]
[Everaert-Gran-VdL, 2008]
The derived functors of the abelianisation functor

$$
a b: \mathbb{X} \rightarrow A b(\mathbb{X}): X \mapsto X /[X, X]
$$

may be calculated as

$$
H_{n+1}(X, a b) \cong \frac{\left[F_{n}, F_{n}\right] \wedge \bigwedge_{i \in n} \operatorname{Ker}\left(f_{i}\right)}{L_{n}[F]}
$$

where $F$ is an $n$-presentation of $X$.

- Proof technique based on categorical Galois theory [Janelidze, 1990]
- $[X, X]$ is commutator $(G p)$, Lie bracket $\left(L i e_{\llbracket K}\right)$, product $X X\left(A / g_{\mathbb{K}}\right)$, or...
- $L_{n}[F] \cong \bigvee_{I \subseteq n}\left[\bigwedge_{i \in I} \operatorname{Ker}\left(f_{i}\right), \bigwedge_{i \in n \backslash I} \operatorname{Ker}\left(f_{i}\right)\right]$
if $\mathbb{K}$ satisfies the additional condition ( $\mathbf{S H}$ ) [Rodelo-VdL, 2012]
What about the cohomology groups $H^{n+1}(X, A)$ ?


## Homology and cohomology, second symmetry break

Theorem [Hopf, 1942; Brown-Ellis, 1988; Donadze-Inassaridze-Porter, 2005]
[Everaert-Gran-VdL, 2008]
The derived functors of the abelianisation functor

$$
a b: \mathbb{X} \rightarrow A b(\mathbb{X}): X \mapsto X /[X, X]
$$

may be calculated as

$$
H_{n+1}(X, a b) \cong \frac{\left[F_{n}, F_{n}\right] \wedge \bigwedge_{i \in n} \operatorname{Ker}\left(f_{i}\right)}{L_{n}[F]}
$$

where $F$ is an $n$-presentation of $X$.

- Proof technique based on categorical Galois theory [Janelidze, 1990]
- $[X, X]$ is commutator $(G p)$, Lie bracket $\left(L i e_{\mathbb{K}}\right)$, product $X X\left(A / g_{\mathbb{K}}\right)$, or...
- $L_{n}[F] \cong \bigvee_{I \subseteq n}\left[\bigwedge_{i \in I} \operatorname{Ker}\left(f_{i}\right), \bigwedge_{i \in n \backslash I} \operatorname{Ker}\left(f_{i}\right)\right]$
if $\mathbb{K}$ satisfies the additional condition ( $\mathbf{S H}$ )
[Rodelo-VdL, 2012]
What about the cohomology groups $H^{n+1}(X, A)$ ?
- Does Yoneda's interpretation extend to a non-abelian setting?


## Homology and cohomology, second symmetry break

Theorem [Hopf, 1942; Brown-Ellis, 1988; Donadze-Inassaridze-Porter, 2005]
[Everaert-Gran-VdL, 2008]
The derived functors of the abelianisation functor

$$
a b: \mathbb{X} \rightarrow A b(\mathbb{X}): X \mapsto X /[X, X]
$$

may be calculated as

$$
H_{n+1}(X, a b) \cong \frac{\left[F_{n}, F_{n}\right] \wedge \bigwedge_{i \in n} \operatorname{Ker}\left(f_{i}\right)}{L_{n}[F]}
$$

where $F$ is an $n$-presentation of $X$.

- Proof technique based on categorical Galois theory [Janelidze, 1990]
- $[X, X]$ is commutator $(G p)$, Lie bracket $\left(L i e_{\mathbb{K}}\right)$, product $X X\left(A / g_{\mathbb{K}}\right)$, or...
- $L_{n}[F] \cong \bigvee_{I \subseteq n}\left[\bigwedge_{i \in I} \operatorname{Ker}\left(f_{i}\right), \bigwedge_{i \in n \backslash I} \operatorname{Ker}\left(f_{i}\right)\right]$
if $\mathbb{K}$ satisfies the additional condition ( $\mathbf{S H}$ )
[Rodelo-VdL, 2012]
What about the cohomology groups $H^{n+1}(X, A)$ ?
- Does Yoneda's interpretation extend to a non-abelian setting?
- Is there a duality between homology and cohomology?


## Homology and cohomology, second symmetry break

Theorem [Hopf, 1942; Brown-Ellis, 1988; Donadze-Inassaridze-Porter, 2005]
[Everaert-Gran-VdL, 2008]
The derived functors of the abelianisation functor

$$
a b: \mathbb{X} \rightarrow A b(\mathbb{X}): X \mapsto X /[X, X]
$$

may be calculated as

$$
H_{n+1}(X, a b) \cong \frac{\left[F_{n}, F_{n}\right] \wedge \bigwedge_{i \in n} \operatorname{Ker}\left(f_{i}\right)}{L_{n}[F]}
$$

where $F$ is an $n$-presentation of $X$.

- Proof technique based on categorical Galois theory [Janelidze, 1990]
- $[X, X]$ is commutator $(G p)$, Lie bracket $\left(L i e_{\mathbb{K}}\right)$, product $X X\left(A / g_{\mathbb{K}}\right)$, or...
- $L_{n}[F] \cong \bigvee_{I \subseteq n}\left[\bigwedge_{i \in I} \operatorname{Ker}\left(f_{i}\right), \bigwedge_{i \in n \backslash I} \operatorname{Ker}\left(f_{i}\right)\right]$
if $\mathbb{K}$ satisfies the additional condition (SH) [Rodelo-VdL, 2012]
What about the cohomology groups $H^{n+1}(X, A)$ ?
- Does Yoneda's interpretation extend to a non-abelian setting?
- Is there a duality between homology and cohomology?

Actually the situation is symmetric... the symmetry was just invisible

## Cohomology: abelian vs. semi-abelian



Theorem [Yoneda, 1960] [Rodelo-VdL, 2016]
If $X$ is an object, and $A$ an abelian object, in $X$ that satisfies (SH), then

$$
H^{n+1}(X, A) \cong C E x t^{n}(X, A)
$$

## The dual space

A simple example of duality is the dual vector space construction:

$$
\begin{aligned}
(-)^{*}: \text { Vect }_{\mathbb{K}} & \rightarrow \text { Vect }_{\mathrm{K}}^{\mathrm{op}}: \\
V & \mapsto V^{*}=\operatorname{Hom}(V, \mathbb{K}) \\
(f: V \rightarrow W) & \mapsto\left(f^{*}=(-) \circ f: W^{*} \rightarrow V^{*}\right)
\end{aligned}
$$

If $V$ is finite-dimensional then $V^{* *} \cong V$, but in general not.
The relationship between homology and cohomology of groups (with trivial coefficients) may be simplified by viewing it this way:

Theorem [Peschke-VdL, 2016]
Let $G$ be a group and $n \geqslant 1$. Then for $a b: G p \rightarrow A b: X \mapsto X /[X, X]$,

$$
\left.H_{n+1}(G, a b) \cong \operatorname{Hom}^{( } H^{n+1}(C,-), 1_{A b}\right)
$$

- So here $1_{A b}$ acts as some kind of a dualising object.
- This is a consequence of a non-additive derived Yoneda lemma.


## The dual space

$$
\underset{f^{*}(x)=x \circ f L^{\prime}}{V} W
$$

A simple example of duality is the dual vector space construction:

$$
\begin{aligned}
(-)^{*}: \text { Vect }_{\mathbb{K}} & \rightarrow \text { Vect }_{\mathbb{K}}^{\mathrm{op}}: \\
V & \mapsto V^{*}=\operatorname{Hom}(V, \mathbb{K}) \\
(f: V \rightarrow W) & \mapsto\left(f^{*}=(-) \circ f: W^{*} \rightarrow V^{*}\right)
\end{aligned}
$$

If $V$ is finite-dimensional then $V^{* *} \cong V$, but in general not.
The relationship between homology and cohomology of groups (with trivial coefficients) may be simplified by viewing it this way:

Theorem [Peschke-VdL, 2016]
Let $G$ be a group and $n \geqslant 1$. Then for $a b: G p \rightarrow A b: X \mapsto X /[X, X]$,

- So here $1_{A b}$ acts as some kind of a dualising object.
- This is a consequence of a non-additive derived Yoneda lemma.


## The dual space

A simple example of duality is the dual vector space construction:

$$
\begin{aligned}
(-)^{*}: \text { Vect }_{\mathbb{K}} & \rightarrow \text { Vect }_{\mathrm{K}}^{\mathrm{op}}: \\
V & \mapsto V^{*}=\operatorname{Hom}(V, \mathbb{K}) \\
(f: V \rightarrow W) & \mapsto\left(f^{*}=(-) \circ f: W^{*} \rightarrow V^{*}\right)
\end{aligned}
$$

If $V$ is finite-dimensional then $V^{* *} \cong V$, but in general not.
The relationship between homology and cohomology of groups (with trivial coefficients) may be simplified by viewing it this way:

Theorem [Peschke-VdL, 2016]
Let $G$ be a group and $n \geqslant 1$. Then for $a b: G p \rightarrow A b: X \mapsto X /[X, X]$,

$$
\left.H_{n+1}(G, a b) \cong \operatorname{Hom}^{( } H^{n+1}(C,-), 1_{A b}\right)
$$

- So here $1_{A b}$ acts as some kind of a dualising object.
- This is a consequence of a non-additive derived Yoneda lemma.


## The dual space

A simple example of duality is the dual vector space construction:

$$
\begin{aligned}
(-)^{*}: \text { Vect }_{\mathbb{K}} & \rightarrow \text { Vect }_{\mathbb{K}}^{\mathrm{op}}: \\
V & \mapsto V^{*}=\operatorname{Hom}(V, \mathbb{K}) \\
(f: V \rightarrow W) & \mapsto\left(f^{*}=(-) \circ f: W^{*} \rightarrow V^{*}\right)
\end{aligned}
$$

If $V$ is finite-dimensional then $V^{* *} \cong V$, but in general not.
The relationship between homology and cohomology of groups (with trivial coefficients) may be simplified by viewing it this way: Theorem [Peschke-VdL. 2016] Let $G$ be a group and $n \geqslant 1$. Then for $a b: G p \rightarrow A b: X \mapsto X /[X, X]$, $H_{n+1}(G, a b) \cong \operatorname{Hom}\left(H^{n+1}(G,-), 1_{A b}\right)$.

## The dual space

A simple example of duality is the dual vector space construction:

$$
\begin{aligned}
(-)^{*}: \text { Vect }_{\mathbb{K}} & \rightarrow \text { Vect }_{\mathbb{K}}^{\mathrm{op}}: \\
V & \mapsto V^{*}=\operatorname{Hom}(V, \mathbb{K}) \\
(f: V \rightarrow W) & \mapsto\left(f^{*}=(-) \circ f: W^{*} \rightarrow V^{*}\right)
\end{aligned}
$$

If $V$ is finite-dimensional then $V^{* *} \cong V$, but in general not.
The relationship between homology and cohomology of groups (with trivial coefficients) may be simplified by viewing it this way:
$\qquad$
$\square$

## The dual space

A simple example of duality is the dual vector space construction:

$$
\begin{aligned}
(-)^{*}: \text { Vect }_{\mathbb{K}} & \rightarrow \text { Vect }_{\mathbb{K}}^{\mathrm{op}}: \\
V & \mapsto V^{*}=\operatorname{Hom}(V, \mathbb{K}) \\
(f: V \rightarrow W) & \mapsto\left(f^{*}=(-) \circ f: W^{*} \rightarrow V^{*}\right)
\end{aligned}
$$

If $V$ is finite-dimensional then $V^{* *} \cong V$, but in general not.
The relationship between homology and cohomology of groups (with trivial coefficients) may be simplified by viewing it this way:

## Theorem [Peschke-VdL, 2016]

Let $G$ be a group and $n \geqslant 1$. Then for $a b: G p \rightarrow A b: X \mapsto X /[X, X]$,

$$
H_{n+1}(G, a b) \cong \operatorname{Hom}\left(H^{n+1}(G,-), 1_{A b}\right)
$$

## The dual space

A simple example of duality is the dual vector space construction:

$$
\begin{aligned}
(-)^{*}: \text { Vect }_{\mathbb{K}} & \rightarrow \text { Vect }_{\mathbb{K}}^{\mathrm{op}}: \\
V & \mapsto V^{*}=\operatorname{Hom}(V, \mathbb{K}) \\
(f: V \rightarrow W) & \mapsto\left(f^{*}=(-) \circ f: W^{*} \rightarrow V^{*}\right)
\end{aligned}
$$

If $V$ is finite-dimensional then $V^{* *} \cong V$, but in general not.
The relationship between homology and cohomology of groups (with trivial coefficients) may be simplified by viewing it this way:

## Theorem [Peschke-VdL, 2016]

Let $G$ be a group and $n \geqslant 1$. Then for $a b: G p \rightarrow A b: X \mapsto X /[X, X]$,

$$
H_{n+1}(G, a b) \cong \operatorname{Hom}\left(H^{n+1}(G,-), 1_{A b}\right)
$$

- So here $1_{A b}$ acts as some kind of a dualising object.


## The dual space

A simple example of duality is the dual vector space construction:

$$
\begin{aligned}
(-)^{*}: \text { Vect }_{\mathbb{K}} & \rightarrow \text { Vect }_{\mathbb{K}}^{\mathrm{op}}: \\
V & \mapsto V^{*}=\operatorname{Hom}(V, \mathbb{K}) \\
(f: V \rightarrow W) & \mapsto\left(f^{*}=(-) \circ f: W^{*} \rightarrow V^{*}\right)
\end{aligned}
$$

If $V$ is finite-dimensional then $V^{* *} \cong V$, but in general not.
The relationship between homology and cohomology of groups (with trivial coefficients) may be simplified by viewing it this way:

## Theorem [Peschke-VdL, 2016]

Let $G$ be a group and $n \geqslant 1$. Then for $a b: G p \rightarrow A b: X \mapsto X /[X, X]$,

$$
H_{n+1}(G, a b) \cong \operatorname{Hom}\left(H^{n+1}(G,-), 1_{A b}\right)
$$

- So here $1_{A b}$ acts as some kind of a dualising object.
- This is a consequence of a non-additive derived Yoneda lemma.


## Conclusion

Category theory tries to make things look so easy they look trivial.

* In the present case, it allowed us to simplify aspects of
a classical theory-group (co)homology-
from a new perspective and find new results.
* Since we eliminate those arguments that depend on $\mathbb{X}=G p$, such results are automatically true for many algebraic categories $\mathbb{X}$.
*We single out conditions on $\mathbb{K}$ that "bring it closer" to Cp or liek.
" My personal project of "understanding cohomology of groups" is, in a first approach, almost complete.
- Still some onen questions in the case of non-trivial coefficients: mainly, commutator theory must be further developed.
-What are the limits?
Where does "group theory without groups" end?


## Conclusion

Category theory tries to make things look so easy they look trivial.

- In the present case, it allowed us to simplify aspects of a classical theory-group (co)homologyfrom a new perspective and find new results.
* Since we eliminate those arguments that depend on $\mathbb{X}=G p$, such results are automatically true for many algebraic categories $\mathbb{X}$.
* We single out conditions on $\mathbb{K}$ that "bring it closer" to Gp or Liek.
*My personal project of "understanding cohomology of groups" is, in a first approach, almost complete.
- Still some open questions in the case of non-trivial coefficients: mainly, commutator theory must be further developed.
- What are the limits?

Where does "group theory without groups" end?

## Conclusion

Category theory tries to make things look so easy they look trivial.

- In the present case, it allowed us to simplify aspects of a classical theory-group (co)homologyfrom a new perspective and find new results.
- Since we eliminate those arguments that depend on $\mathbb{X}=G p$, such results are automatically true for many algebraic categories $\mathbb{X}$.
* We single out conditions on $\mathbb{X}$ that "bring it closer" to Gp or Liek.
"My personal project of "understanding cohomology of groups" is, in a first approach, almost complete.
- Still some open questions in the case of non-trivial coefficients: mainly, commutator theory must be further developed.
-What are the limits?
Where does "group theory without groups" end?


## Conclusion

Category theory tries to make things look so easy they look trivial.

- In the present case, it allowed us to simplify aspects of a classical theory-group (co)homologyfrom a new perspective and find new results.
- Since we eliminate those arguments that depend on $\mathbb{X}=G p$, such results are automatically true for many algebraic categories $\mathbb{X}$.
- We single out conditions on $\mathbb{X}$ that "bring it closer" to Gp or Liek.
"My personal project of "understanding cohomology of groups" is, in a first approach, almost complete.
- Still some open questions in the case of non-trivial coefficients: mainly, commutator theory must be further developed.
- What are the limits?

Where does "group theory without groups" end?

## Conclusion

Category theory tries to make things look so easy they look trivial.

- In the present case, it allowed us to simplify aspects of a classical theory-group (co)homologyfrom a new perspective and find new results.
- Since we eliminate those arguments that depend on $\mathbb{X}=G p$, such results are automatically true for many algebraic categories $\mathbb{X}$.
- We single out conditions on $\mathbb{X}$ that "bring it closer" to Gp or Liek.
- My personal project of "understanding cohomology of groups" is, in a first approach, almost complete.
- Still some open questions in the case of non-trivial coefficients: mainly, commutator theory must be further developed.
- What are the limits?

Where does "group theory without groups" end?

## Conclusion

## Category theory tries to make things look so easy they look trivial.

- In the present case, it allowed us to simplify aspects of a classical theory-group (co)homologyfrom a new perspective and find new results.
- Since we eliminate those arguments that depend on $\mathbb{X}=G p$, such results are automatically true for many algebraic categories $\mathbb{X}$.
- We single out conditions on $\mathbb{X}$ that "bring it closer" to Gp or Liek.
- My personal project of "understanding cohomology of groups" is, in a first approach, almost complete.
- Still some open questions in the case of non-trivial coefficients: mainly, commutator theory must be further developed.
- What are the limits?

Where does "group theory without groups" end?

## Conclusion

## Category theory tries to make things look so easy they look trivial.

- In the present case, it allowed us to simplify aspects of a classical theory-group (co)homologyfrom a new perspective and find new results.
- Since we eliminate those arguments that depend on $\mathbb{X}=G p$, such results are automatically true for many algebraic categories $\mathbb{X}$.
- We single out conditions on $\mathbb{K}$ that "bring it closer" to Gp or Liek.
- My personal project of "understanding cohomology of groups" is, in a first approach, almost complete.
- Still some open questions in the case of non-trivial coefficients: mainly, commutator theory must be further developed.
- What are the limits?

Where does "group theory without groups" end?

Thank you!

