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A category is a directed graph with
vertices called objects and edges called morphisms or arrows, having
an associative compaosition of arrows, and loops which act as identities.

Examples
» an ordered set (S, <), where x < y determines an arrow x — y
here any two parallel arrows are equal
» concrete categories: structured sets & structure-preserving functions

Set (sets & functions); Top (topological spaces & continuous maps);

Ab and Gp ((abelian) groups & homomorphisms); Vecty (vector spaces &
linear maps, K is a field); Liex (K-Lie algebras & Lie algebra morphisms);
Modg (R-modules and linear maps, R is a ring)
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Category theory deals with objects “from the outside” via their
interactions, through universal properties and constructions.

For instance, a terminal object is an object 1 such that
for every object X there exists a unique arrow X — 1.

> In an ordered set (S, <) viewed as a category,

a terminal object is the same thing as a maximum.
» In Set, an object is terminal if and only if it is a singleton set.
» In Top, Ab, Gp, Vectyk, Modg and Liek, an object is terminal

if and only if its underlying set is a singleton.

This is the simplest example of a universal property,
but it is relevant in what follows.

Another example is that of a monomorphism m: M — A:

for every pair of parallel arrows f, g: X — M,

if mof = mog, thenf = g.

In all of the above examples, monomorphism = injective morphism,
except in (S, <) where all arrows are monomorphisms.
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A monoid is a set M equipped with an associative multiplication -
which admits a unit eys. (So, a monoid is a one-object category.)
A group is a monoid whose elements are invertible.

In the category Mon of monoids and monoid homomorphisms,
the groups may be characterised as follows: B is a group iff for all

OHXHA S B, k = ker(f), fos=1g
f

k and s are jointly strongly epimorphic, which means
that k(X) and s(B) together generate A, or more precisely
that k and s do not both factor though a monomorphism m: M — A,
unless m is an isomorphism.
> Basic idea: a = sf(a) - (s(f(a)™!) - a)
» All concepts here are categorical:
they make sense outside the context of groups and monoids.
» Recent work [Montoli-Rodelo-VdL, 2017] [Garcia, 2017].
» Is this just mathematics made difficult?
My aim is to explain how this kind of a viewpoint may be useful.
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Some universal properties/constructions
Another example is that of a product (X x Y, 7y, wy) of objects X and Y,

which is such that any pair of arrows (f, g) as in

Z

X~ g

N, A

XxXY

factors uniquely through the pair (7y, 7y).
In other words, it is terminal amongst pairs of arrows X <— Z — Y.

> In an ordered set (S, <) viewed as a category,
the product of two elements x and y is x A y = min{x, y}.
(Indeed, z < x Ayiffz< xand z < y. x A yis the largest such z.)
» In Set, Top, Ab, Gp, Mon, Vectyk, Modg and Liek, products are
cartesian, equipped with the appropriate structure.
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If the arrows in a category X are reversed
then we find a new, “opposite” category X°P.
» Sometimes this opposite is known: algebraic geometers understand
that (affine schemes)® ~ (commutative rings), for instance.
Any categorical concept has a dual,
which is this concept, considered in the opposite category.
» The dual of a terminal object 1 is an initial object 0: VX 3!(X < 0)
For instance, & in Set, the one-element algebra in Gp, Ab, Vecty, etc.
» The dual of a monomorphism is an epimorphism.

» The dual of a product is a coproduct.
Set: disjoint union; Gp: free product; Ab, Vectyk, Modg: direct sum.
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Certain concepts are invariant under duality

A zero object is an object which is both initial and terminal: 0 = 1.
The concept of a zero object is self-dual, so invariant under duality:
in the opposite category, it will still be zero.
A pointed category is a category with a zero object.
» Mon, Ab, Gp, Vecty, Modg, Lie are pointed,
while Set and Top are not.

» 1f (S, <) has a zero object, then S is a singleton.

A biproduct is a diagram

15 Ly
XT——=XpY=—=Y,
X Ty

where (X@® Y, my, my) is a product and (X @ Y, tx, ty) is a coproduct.
This is also a self-dual concept.
> 1f (S, <) has biproducts, then |S| < 1, sincex =x@y =y.
» In Ab, Vecty, and Modg, every product and every coproduct
may be completed to a biproduct diagram.

» This is false for Mon, Gp and Liek.
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Theorem  [Hopf, 1942; Brown-Ellis, 1988; Donadze-Inassaridze-Porter, 2005]
[Everaert-Gran-VdL, 2008]
The derived functors of the abelianisation functor
ab: X — Ab(X): X — X/[X, X]
may be calculated as
[Foy Fa] A /\ien Ker(f;)
Ln[F] ’

Hn+1(X7 ab) =

where F is an n-presentation of X.
» Proof technique based on categorical Galois theory [Janelidze, 1990]
> [X, X] is commutator (Gp), Lie bracket (Liek), product XX (Algy), or...

> L[ = Vg, [/\iel Ker(f;), /\ien\/ Ker(fi)]

if X satisfies the additional condition (SH) [Rodelo-VdL, 2012]

What about the cohomology groups H" (X, A)?

» Does Yoneda’s interpretation extend to a non-abelian setting?

» Is there a duality between homology and cohomology?
Actually the situation is symmetric... the symmetry was just invisible



Cohomology: abelian vs. semi-abelian
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Theorem [Yoneda, 1960] [Rodelo-VdL, 2016]

If X is an object, and A an abelian object, in X that satisfies (SH), then
H™ (X, A) = CExt(X, A).
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A simple example of duality is the dual vector space construction:
(—=)*: Vectx — Vecty,
Vi V* = Hom(V, K)
(f: V> W) > (ff = (=)of: W* — V¥)
If Vis finite-dimensional then V** =~ V, but in general not.
The relationship between homology and cohomology of groups
(with trivial coefficients) may be simplified by viewing it this way:

Theorem [Peschke-VdL, 2016]
Let G be a group and n = 1. Then forab: Gp — Ab: X — X/[X, X],

Hni1(G,ab) = Hom(H™ (G, —), 1ap).

» So here 1,5, acts as some kind of a dualising object.

» This is a consequence of a non-additive derived Yoneda lemma.
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In the present case, it allowed us to simplify aspects of
a classical theory—group (co)homology—
from a new perspective and find new results.

Since we eliminate those arguments that depend on X = Gp,
such results are automatically true for many algebraic categories X.

We single out conditions on X that “bring it closer” to Gp or Liek.

My personal project of “understanding cohomology of groups”
is, in a first approach, almost complete.

Still some open questions in the case of non-trivial coefficients:
mainly, commutator theory must be further developed.

What are the limits?
Where does “group theory without groups” end?



Thank you!



