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Understanding group cohomology via categorical algebra

In my work I develop and apply categorical algebra
in its interactions with homology theory.

§ Concrete aim: understanding (co)homology of groups

§ Which aspects of group cohomology are typical for groups,
and which function for more general reasons, so that a categorical
argument suffices to understand and apply these in other settings?

§ Conversely, what do the needs of homological algebra tell us
about categories of non-abelian algebraic structures?

Today’s subject: I would like to

§ sketch how our work environment arises out of a broken symmetry

§ give an idea of how the broken symmetry between
homology and cohomology “may be fixed”
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Categories [Eilenberg-MacLane, 1945]

C 1C`i

A
f

,2
h ,2

1A 5> B

1B

U_

g

:E

A category is a directed graph with
vertices called objects and edges called morphisms or arrows, having
an associative composition of arrows, and loops which act as identities.

Examples

§ an ordered set (S,ď), where x ď y determines an arrow x Ñ y

here any two parallel arrows are equal

§ concrete categories: structured sets & structure-preserving functions

Set (sets & functions); Top (topological spaces & continuous maps);
Ab and Gp ((abelian) groups & homomorphisms); VectK (vector spaces &
linear maps, K is a field); LieK (K-Lie algebras & Lie algebra morphisms);
ModR (R-modules and linear maps, R is a ring)
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Some universal properties/constructions
Category theory deals with objects “from the outside” via their
interactions, through universal properties and constructions.

For instance, a terminal object is an object 1 such that
for every object X there exists a unique arrow X Ñ 1.

§ In an ordered set (S,ď) viewed as a category,
a terminal object is the same thing as a maximum.

§ In Set, an object is terminal if and only if it is a singleton set.

§ In Top, Ab, Gp, VectK, ModR and LieK, an object is terminal
if and only if its underlying set is a singleton.

This is the simplest example of a universal property,
but it is relevant in what follows.

Another example is that of a monomorphism m : M Ñ A:
for every pair of parallel arrows f, g : X Ñ M,
if m˝f = m˝g, then f = g.

In all of the above examples, monomorphism = injective morphism,
except in (S,ď) where all arrows are monomorphisms.
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A non-trivial example: groups amongst monoids
A monoid is a set M equipped with an associative multiplication ¨

which admits a unit eM. (So, a monoid is a one-object category.)
A group is a monoid whose elements are invertible.

In the category Mon of monoids and monoid homomorphisms,
the groups may be characterised as follows: B is a group iff for all

0 ,2 X � ,2 k ,2 A
f

,2,2 B,lrslr k = ker(f), f ˝ s = 1B

k and s are jointly strongly epimorphic, which means
that k(X) and s(B) together generate A, or more precisely
that k and s do not both factor though a monomorphism m : M Ñ A,
unless m is an isomorphism.

§ Basic idea: a = sf(a) ¨
(
s(f(a)´1) ¨ a

)
§ All concepts here are categorical:
they make sense outside the context of groups and monoids.

§ Recent work [Montoli-Rodelo-VdL, 2017] [García, 2017].
§ Is this just mathematics made difficult?
My aim is to explain how this kind of a viewpoint may be useful.
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Some universal properties/constructions
Another example is that of a product (X ˆ Y, πX, πY) of objects X and Y,
which is such that any pair of arrows (f, g) as in

Z
f

z�

g

�$
D!xf,gy

��

X Y

X ˆ Y

πX

Zd

πY

:D

factors uniquely through the pair (πX, πY).

In other words, it is terminal amongst pairs of arrows X Ð Z Ñ Y.

§ In an ordered set (S,ď) viewed as a category,
the product of two elements x and y is x ^ y = mintx, yu.
(Indeed, z ď x ^ y iff z ď x and z ď y. x ^ y is the largest such z.)

§ In Set, Top, Ab, Gp, Mon, VectK, ModR and LieK, products are
cartesian, equipped with the appropriate structure.
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If the arrows in a category X are reversed
then we find a new, “opposite” category Xop.

§ Sometimes this opposite is known: algebraic geometers understand
that (affine schemes)op » (commutative rings), for instance.

Any categorical concept has a dual,
which is this concept, considered in the opposite category.

§ The dual of a terminal object 1 is an initial object 0: @X D!(X Ñ 1)
For instance, ∅ in Set, the one-element algebra in Gp, Ab, VectK, etc.

§ The dual of a monomorphism is an epimorphism.
§ The dual of a product is a coproduct.

Set: disjoint union; Gp: free product; Ab, VectK, ModR: direct sum.
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Certain concepts are invariant under duality
A zero object is an object which is both initial and terminal: 0 = 1.
The concept of a zero object is self-dual, so invariant under duality:
in the opposite category, it will still be zero.

A pointed category is a category with a zero object.

§ Mon, Ab, Gp, VectK, ModR, LieK are pointed,
while Set and Top are not.

§ If (S,ď) has a zero object, then S is a singleton.

A biproduct is a diagram

X
ιX ,2 X ‘ Y

πY
,2

πX
lr Y,

ιYlr

where (X ‘ Y, πX, πY) is a product and (X ‘ Y, ιX, ιY) is a coproduct.
This is also a self-dual concept.

§ If (S,ď) has biproducts, then |S| ď 1, since x = x ‘ y = y.

§ In Ab, VectK, and ModR, every product and every coproduct
may be completed to a biproduct diagram.

§ This is false for Mon, Gp and LieK.
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Abelian and non-abelian categories, first symmetry break
An abelian group a commutative group: x ¨ y = y ¨ x.

Ab is an abelian category: it is
§ finitely (co)complete: universal constructions exist, and
§ pointed, and such that
§ every monomorphism is a kernel, every epimorphism is a cokernel.

This axiom set is self-dual. Abelian categories have biproducts.
§ Framework for homological algebra, algebraic geometry etc.
[Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]

§ Examples: ModR (Ab and VectK), sheaves of abelian groups.

Removing commutativity breaks the categorical symmetry:
no longer self-dual, the situation becomes radically different.

§ Free products of groups are non-cartesian ñ no biproducts;
furthermore, non-normal subgroups exist.

This is where our work starts:
§ to extend the framework to include non-abelian categories
such as Gp, LieK, AlgK, XMod, Loop, HopfAlgK,coc, C

˚-Alg; and
§ to develop a unified homology theory.
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Abelian and non-abelian categories, first symmetry break
Aim: extend basic group (co)homology to “all those” categories.

§ When is a variety of algebras “sufficiently close” to Gp?
§ How to capture homological properties of Gp categorically?

Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]

A variety of algebras is semi-abelian iff it is pointed and protomodular:
for all

0 ,2 X � ,2 k ,2 A
f

,2,2 B,lrslr k = ker(f), f ˝ s = 1B

k and s are jointly strongly epimorphic.
§ This is the condition that distinguishes groups amongst monoids.
§ It is equivalent to the Split Short Five Lemma.
§ Homological diagram lemmas; actions vs. semi-direct products; etc.
§ Gp, LieK, AlgK, XMod, Loop, HopfAlgK,coc, C

˚-Alg. Not self-dual!

Non-commutativity enables the study of commutativity itself
§ commutator theory
§ derived functors of abelianisation
§ categorical Galois theory



Abelian and non-abelian categories, first symmetry break
Aim: extend basic group (co)homology to “all those” categories.

§ When is a variety of algebras “sufficiently close” to Gp?
§ How to capture homological properties of Gp categorically?

Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]

A variety of algebras is semi-abelian iff it is pointed and protomodular:
for all

0 ,2 X � ,2 k ,2 A
f

,2,2 B,lrslr k = ker(f), f ˝ s = 1B

k and s are jointly strongly epimorphic.
§ This is the condition that distinguishes groups amongst monoids.
§ It is equivalent to the Split Short Five Lemma.
§ Homological diagram lemmas; actions vs. semi-direct products; etc.
§ Gp, LieK, AlgK, XMod, Loop, HopfAlgK,coc, C

˚-Alg. Not self-dual!

Non-commutativity enables the study of commutativity itself
§ commutator theory
§ derived functors of abelianisation
§ categorical Galois theory



Abelian and non-abelian categories, first symmetry break
Aim: extend basic group (co)homology to “all those” categories.

§ When is a variety of algebras “sufficiently close” to Gp?
§ How to capture homological properties of Gp categorically?

Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]

A variety of algebras is semi-abelian iff it is pointed and protomodular:
for all

0 ,2 X � ,2 k ,2 A
f

,2,2 B,lrslr k = ker(f), f ˝ s = 1B

k and s are jointly strongly epimorphic.
§ This is the condition that distinguishes groups amongst monoids.
§ It is equivalent to the Split Short Five Lemma.
§ Homological diagram lemmas; actions vs. semi-direct products; etc.
§ Gp, LieK, AlgK, XMod, Loop, HopfAlgK,coc, C

˚-Alg. Not self-dual!

Non-commutativity enables the study of commutativity itself
§ commutator theory
§ derived functors of abelianisation
§ categorical Galois theory



Abelian and non-abelian categories, first symmetry break
Aim: extend basic group (co)homology to “all those” categories.

§ When is a variety of algebras “sufficiently close” to Gp?
§ How to capture homological properties of Gp categorically?

Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]

A variety of algebras is semi-abelian iff it is pointed and protomodular:
for all

0 ,2 X � ,2 k ,2 A
f

,2,2 B,lrslr k = ker(f), f ˝ s = 1B

k and s are jointly strongly epimorphic.
§ This is the condition that distinguishes groups amongst monoids.
§ It is equivalent to the Split Short Five Lemma.
§ Homological diagram lemmas; actions vs. semi-direct products; etc.
§ Gp, LieK, AlgK, XMod, Loop, HopfAlgK,coc, C

˚-Alg. Not self-dual!

Non-commutativity enables the study of commutativity itself
§ commutator theory
§ derived functors of abelianisation
§ categorical Galois theory



Abelian and non-abelian categories, first symmetry break
Aim: extend basic group (co)homology to “all those” categories.

§ When is a variety of algebras “sufficiently close” to Gp?
§ How to capture homological properties of Gp categorically?

Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]

A variety of algebras is semi-abelian iff it is pointed and protomodular:
for all

0 ,2 X � ,2 k ,2 A
f

,2,2 B,lrslr k = ker(f), f ˝ s = 1B

k and s are jointly strongly epimorphic.
§ This is the condition that distinguishes groups amongst monoids.
§ It is equivalent to the Split Short Five Lemma.
§ Homological diagram lemmas; actions vs. semi-direct products; etc.
§ Gp, LieK, AlgK, XMod, Loop, HopfAlgK,coc, C

˚-Alg. Not self-dual!

Non-commutativity enables the study of commutativity itself
§ commutator theory
§ derived functors of abelianisation
§ categorical Galois theory



Abelian and non-abelian categories, first symmetry break
Aim: extend basic group (co)homology to “all those” categories.

§ When is a variety of algebras “sufficiently close” to Gp?
§ How to capture homological properties of Gp categorically?

Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]

A variety of algebras is semi-abelian iff it is pointed and protomodular:
for all

0 ,2 X � ,2 k ,2 A
f

,2,2 B,lrslr k = ker(f), f ˝ s = 1B

k and s are jointly strongly epimorphic.
§ This is the condition that distinguishes groups amongst monoids.
§ It is equivalent to the Split Short Five Lemma.
§ Homological diagram lemmas; actions vs. semi-direct products; etc.
§ Gp, LieK, AlgK, XMod, Loop, HopfAlgK,coc, C

˚-Alg. Not self-dual!

Non-commutativity enables the study of commutativity itself
§ commutator theory
§ derived functors of abelianisation
§ categorical Galois theory



Abelian and non-abelian categories, first symmetry break
Aim: extend basic group (co)homology to “all those” categories.

§ When is a variety of algebras “sufficiently close” to Gp?
§ How to capture homological properties of Gp categorically?

Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]

A variety of algebras is semi-abelian iff it is pointed and protomodular:
for all

0 ,2 X � ,2 k ,2 A
f

,2,2 B,lrslr k = ker(f), f ˝ s = 1B

k and s are jointly strongly epimorphic.
§ This is the condition that distinguishes groups amongst monoids.
§ It is equivalent to the Split Short Five Lemma.
§ Homological diagram lemmas; actions vs. semi-direct products; etc.
§ Gp, LieK, AlgK, XMod, Loop, HopfAlgK,coc, C

˚-Alg. Not self-dual!

Non-commutativity enables the study of commutativity itself
§ commutator theory
§ derived functors of abelianisation
§ categorical Galois theory



Abelian and non-abelian categories, first symmetry break
Aim: extend basic group (co)homology to “all those” categories.

§ When is a variety of algebras “sufficiently close” to Gp?
§ How to capture homological properties of Gp categorically?

Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]

A variety of algebras is semi-abelian iff it is pointed and protomodular:
for all

0 ,2 X � ,2 k ,2 A
f

,2,2 B,lrslr k = ker(f), f ˝ s = 1B

k and s are jointly strongly epimorphic.
§ This is the condition that distinguishes groups amongst monoids.
§ It is equivalent to the Split Short Five Lemma.
§ Homological diagram lemmas; actions vs. semi-direct products; etc.
§ Gp, LieK, AlgK, XMod, Loop, HopfAlgK,coc, C

˚-Alg. Not self-dual!

Non-commutativity enables the study of commutativity itself
§ commutator theory
§ derived functors of abelianisation
§ categorical Galois theory



Abelian and non-abelian categories, first symmetry break
Aim: extend basic group (co)homology to “all those” categories.

§ When is a variety of algebras “sufficiently close” to Gp?
§ How to capture homological properties of Gp categorically?

Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]

A variety of algebras is semi-abelian iff it is pointed and protomodular:
for all

0 ,2 X � ,2 k ,2 A
f

,2,2 B,lrslr k = ker(f), f ˝ s = 1B

k and s are jointly strongly epimorphic.
§ This is the condition that distinguishes groups amongst monoids.
§ It is equivalent to the Split Short Five Lemma.
§ Homological diagram lemmas; actions vs. semi-direct products; etc.
§ Gp, LieK, AlgK, XMod, Loop, HopfAlgK,coc, C

˚-Alg. Not self-dual!

Non-commutativity enables the study of commutativity itself
§ commutator theory
§ derived functors of abelianisation
§ categorical Galois theory



Abelian and non-abelian categories, first symmetry break
Aim: extend basic group (co)homology to “all those” categories.

§ When is a variety of algebras “sufficiently close” to Gp?
§ How to capture homological properties of Gp categorically?

Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]

A variety of algebras is semi-abelian iff it is pointed and protomodular:
for all

0 ,2 X � ,2 k ,2 A
f

,2,2 B,lrslr k = ker(f), f ˝ s = 1B

k and s are jointly strongly epimorphic.
§ This is the condition that distinguishes groups amongst monoids.
§ It is equivalent to the Split Short Five Lemma.
§ Homological diagram lemmas; actions vs. semi-direct products; etc.
§ Gp, LieK, AlgK, XMod, Loop, HopfAlgK,coc, C

˚-Alg. Not self-dual!

Non-commutativity enables the study of commutativity itself
§ commutator theory
§ derived functors of abelianisation
§ categorical Galois theory



Abelian and non-abelian categories, first symmetry break
Aim: extend basic group (co)homology to “all those” categories.

§ When is a variety of algebras “sufficiently close” to Gp?
§ How to capture homological properties of Gp categorically?

Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]

A variety of algebras is semi-abelian iff it is pointed and protomodular:
for all

0 ,2 X � ,2 k ,2 A
f

,2,2 B,lrslr k = ker(f), f ˝ s = 1B

k and s are jointly strongly epimorphic.
§ This is the condition that distinguishes groups amongst monoids.
§ It is equivalent to the Split Short Five Lemma.
§ Homological diagram lemmas; actions vs. semi-direct products; etc.
§ Gp, LieK, AlgK, XMod, Loop, HopfAlgK,coc, C

˚-Alg. Not self-dual!

Non-commutativity enables the study of commutativity itself
§ commutator theory
§ derived functors of abelianisation
§ categorical Galois theory



Abelian and non-abelian categories, first symmetry break
Aim: extend basic group (co)homology to “all those” categories.

§ When is a variety of algebras “sufficiently close” to Gp?
§ How to capture homological properties of Gp categorically?

Answer: [Janelidze-Márki-Tholen, 2002; Borceux-Bourn, 2004]

A variety of algebras is semi-abelian iff it is pointed and protomodular:
for all

0 ,2 X � ,2 k ,2 A
f

,2,2 B,lrslr k = ker(f), f ˝ s = 1B

k and s are jointly strongly epimorphic.
§ This is the condition that distinguishes groups amongst monoids.
§ It is equivalent to the Split Short Five Lemma.
§ Homological diagram lemmas; actions vs. semi-direct products; etc.
§ Gp, LieK, AlgK, XMod, Loop, HopfAlgK,coc, C

˚-Alg. Not self-dual!

Non-commutativity enables the study of commutativity itself
§ commutator theory
§ derived functors of abelianisation
§ categorical Galois theory



Homology and cohomology, second symmetry break

Theorem [Hopf, 1942; Brown-Ellis, 1988; Donadze-Inassaridze-Porter, 2005]

[Everaert-Gran-VdL, 2008]

The derived functors of the abelianisation functor

ab : X Ñ Ab(X) : X ÞÑ X/[X, X]
may be calculated as

Hn+1(X, ab) –
[Fn, Fn] ^

Ź

iPn Ker(fi)

Ln[F]
,

where F is an n-presentation of X.
§ Proof technique based on categorical Galois theory [Janelidze, 1990]
§ [X, X] is commutator (Gp), Lie bracket (LieK), product XX (AlgK), or…

§ Ln[F] –
Ž

IĎn

[
Ź

iPI Ker(fi),
Ź

iPnzI Ker(fi)
]

if X satisfies the additional condition (SH) [Rodelo-VdL, 2012]

What about the cohomology groups Hn+1(X,A)?
§ Does Yoneda’s interpretation extend to a non-abelian setting?
§ Is there a duality between homology and cohomology?

Actually the situation is symmetric… the symmetry was just invisible
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Theorem [Yoneda, 1960] [Rodelo-VdL, 2016]
If X is an object, and A an abelian object, in X that satisfies (SH), then

Hn+1(X,A) – CExtn(X,A).



The dual space

A simple example of duality is the dual vector space construction:

(´)˚ : VectK Ñ VectopK :

V ÞÑ V˚ = Hom(V,K)

(f : V Ñ W) ÞÑ (f˚ = (´)˝f : W˚ Ñ V˚)

If V is finite-dimensional then V˚˚ – V, but in general not.

The relationship between homology and cohomology of groups
(with trivial coefficients) may be simplified by viewing it this way:

Theorem [Peschke-VdL, 2016]

Let G be a group and n ě 1. Then for ab : Gp Ñ Ab : X ÞÑ X/[X, X],

Hn+1(G, ab) – Hom(Hn+1(G,´), 1Ab).

§ So here 1Ab acts as some kind of a dualising object.

§ This is a consequence of a non-additive derived Yoneda lemma.
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Conclusion

Category theory tries to make things look so easy they look trivial.

§ In the present case, it allowed us to simplify aspects of
a classical theory—group (co)homology—
from a new perspective and find new results.

§ Since we eliminate those arguments that depend on X = Gp,
such results are automatically true for many algebraic categories X.

§ We single out conditions on X that “bring it closer” to Gp or LieK.

§ My personal project of “understanding cohomology of groups”
is, in a first approach, almost complete.

§ Still some open questions in the case of non-trivial coefficients:
mainly, commutator theory must be further developed.

§ What are the limits?
Where does “group theory without groups” end?
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Thank you!


