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Data Analysis in
Experimental Particle Physics
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Different languages

● Second time in my life that I give a 
talk to a mixed audience of 
physicists and mathematicians
● But the first time was 17 years ago...

● Please don't hesitate to stop me if 
my jargon is unintelligible

● If question comes from the Math 
side, large probability that I will not 
even understand the question; 
please be patient with me
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Standard Model (SM)
in a nutshell
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Known elementary particles, and their inter-relationships:

(Gravity is not part of the picture)
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The Large Hadron Collider
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https://inspirehep.net/record/1119569
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CMS
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Some big questions that
LHC was designed to address

Origin of mass Nature of Dark Matter

Behaviour of early Universe Reason for matter / 
antimatter imbalance
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LHC check-list
● Confirmation (or not) of the Brout-Englert-Higgs mechanism, i.e., 

explaining where the mass of elementary particles is coming from

● Done

● Check if Dark Matter is made of new particles; if so, study them

● Trying hard

● Study the hot medium that filled the early Universe

● Very advanced (using special LHC runs with heavy ions as projectiles)

● Explain the matter/anti-matter imbalance of the Universe

● Trying hard

● Search for additional particles, forces, dimensions of space

● Due to LHC data, some of the most promising theories of 2010 are 
seriously in trouble in 2017 (still alive if "fine tuned" a bit)

● Precisely measure the properties of the known particles

● Unprecedented precision achieved almost everywhere
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How did we do that,
in practice?

data knowledge
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Human spectrum of Particle Physics

● This distinction emerged in Physics around the early XX century

● Enrico Fermi (1901-1954) was probably the last physicist able to 
be at once a great theorist and a great experimentalist

● Nowadays, at least in Particle Physics, hopping from one side of 
the spectrum to the other is very unusual

● But:

● Exp-theory collaborations still happen (rarely)

● Undergraduate training is almost the same

Experimentalists Theorists
(wall)
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Human spectrum of Particle Physics

● Unlikely that a detector builder and a true theorist will coauthor a 
paper or even attend the same conference (unless it's a big one)

● Data analysts and phenomenologists usually attend the same 
conferences and sometimes co-author a paper

● A 100% detector builder and a 100% data analyst usually coauthor 
hundreds of papers, but they may not talk to each other for years!

● The split happened recently (80's?), with the start of Big Science
● However, having both skills is still considered an asset for career: 

perception that the ideal experimental physicist is a bit of everything

Experimentalists Theorists

Detector
builders Phenomenologists

Data
analysts

True 
theorists
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Data analysis in 1937

S.Neddemeyer & C.Anderson, Phys.Rev. 51 (1937) 884
(Proof that cosmic rays contained new particles)

Raw data: Reduced data: The Money Plot:

Mathematical tools used:
+, -, , 

Level of physics insight 
required: huge
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Data analysis in 2017

CMS Coll. (M.Komm, AG, et ~2000 al.), JHEP 04 (2016) 073

Some complicated features (example):

The Money Plot:Machine-learned 
discriminant:

After machine-learning and fit, 
but before unfolding:

Mathematical tools used:
● Boosted Decision Trees
● Maximum Likelihood fit with 

nuisance marginalization
● Matrix inversion with Tikhonov 

regularization

(proof that top quarks 
can be polarized)
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CP3 spectrum

Experimentalists Theorists

Detector
builders Phenomenologists

Data
analysts

True 
theorists

● Qualitative / subjective classification based on
https://cp3.irmp.ucl.ac.be/Members 
(from professors to grad students)

● Bottom line: the subject of data analysis is very relevant at 
CP3, directly (experimental side) or indirectly (theory side)

https://cp3.irmp.ucl.ac.be/Members


 14

Image from http://www.symmetrymagazine.org/article/august-2012/particle-physics-tames-big-data
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Example: the CMS inner tracker

● Innermost part of CMS; a cylinder of 1.2 m radius (CMS: 7.5 m)
● Electrically charged particles (and only them) give a signal each time they 

cross one of its layers
● Each layer is made of several modules, each module has hundreds of 

sensitive units (pixels or microstrips) with spatial resolution of O(0.1 mm)
● Its volume is only a fraction of all CMS, but it dominates the size of its raw 

data with its 77 millions of sensitive units
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Raw data from the tracker

Data-frame; each bin between 
header and tick mark corresponds 

to the position of a strip

Example from one of the two 
technologies employed in the CMS 
tracker (microstrips):

● A block of 128 microstrips is read-
out by a single chip

● This chip sends as output a 
data-frame (see figure)

● Fluctuating part: electronic noise
● Passage of a particle gives a signal 

that sticks out of that noise: a hit
● (Can also give signal in a few 

consecutive strips; they get 
clustered into a single hit)

● From then on, we only process the 
hits and ignore other microstrips

● This is just an example of data 
reduction
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More data reduction:
Tracking

Solenoidal field along z: deflection in x-y (or r-f) plane
We sample the trajectory in a discrete number of crossings with 
the detector; from those crossings we must infer the trajectory
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Find the track

Where is the 50 GeV track? (Hint: it is very straight)
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Find the track

These data are from Tevatron, a past accelerator operating at ~1/7 of LHC energy
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Tracking at LHC

LHC achieves large intensities by very dense proton bunches (large 
number of protons, small volume)  several proton-proton 

interactions during each bunch crossing (pileup)
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What we need

● We need track-finding to be efficient
● We cannot afford to miss many tracks

● We need the track sample to be very pure
● We cannot afford to contaminate the sample with many 

fakes (i.e., wrong hit combinations)

● And it has to be fast

● To summarize:
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After local data reduction

We start from a collection of hits, associated to a 
position and an uncertainty
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Seeding

Fast fit to get initial trajectory, trying all combinations of hits in a 
small subset of layers
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Trajectory building

For illustration, let's consider these two seeds and let's see how 
trajectories are built from there.
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Trajectory building

Trajectory is propagated from layer to layer taking into account the 
uncertainties on the hit positions, energy loss, multiple scattering. 

The Kalman Filter technique is employed in CMS
(I have backup slides if you are interested)

http://en.wikipedia.org/wiki/Kalman_filter
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Trajectory building
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Trajectory building

When no hits are found, track is probably fake
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Trajectory building
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Trajectory building
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Trajectory building
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Trajectory building

Now we have a track, and a preliminary estimate of its parameters; 
but this estimate can be biased by the constraints that we applied 

to reduce combinatorics, hence a final fit must be done.
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Track fitting

Final fit to the hits, to get a better estimate of the trajectory

If c2 of the fit is poor, ignore this track
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In summary
Channels (strips, pixels, …) giving 

signal are clustered into “hits”

A minimal number of hits (or, in 
special cases, information from 
another detector) is used for an 

initial estimate of track direction

Pattern recognition step: all 
available hits are used to infer the 

particle trajectory

Final estimate of the track 
parameters using the full set of 

associated hits

Removal of low-quality tracks, 
likely to be fakes
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Iteratively

N-th step: Remove associated hits: (N+1)-th step:
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So far so good, but...

Plot for the High Level Trigger (HLT) 
during 2016 data taking.

Timing is dominated by tracking, 
although HLT runs a simplified version.

HL-LHC: 10 time more luminosity

● Run II of LHC (started in 2015): 
large jump in collision 
frequency, more pileup, also 
more particles produced at each 
interaction because of larger 
collision energy

● And it will become much much 
worse in the future runs of LHC 
(dubbed High-Luminosity LHC)

● The "seeding step", in particular, 
scales very badly with 
increasing multiplicities

● And since 2017 we have one 
more layer in the detector, 
making combinatorics worse
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Cellular Automata (CA)

● Solution for seeding, chosen by CMS starting from 2017 operations
● A graph of all the possible connections between layers is created
● Doublets (“cells”) are created for each pair of layers
● Fast computation of the compatibility between two connected cells
● No knowledge of the world outside adjacent neighboring cells 

required, making it easy to parallelize
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Cellular Automata (CA)

Degree of compatibility between hits is checked in r-z and x-y views:



 38

Cellular Automata (CA)

● If two cells satisfy all the compatibility 
requirements they are said to be 
neighbors and their state is set to 0

● In the evolution stage, their state 
increases in discrete generations if there 
is an outer neighbor with the same state

● At the end of the evolution stage the 
state of the cells will contain the 
information about the length

● If one is interested in quadruplets, there 
will be surely one starting from a state 2 
cell, pentuplets from state 3, etc.
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What we need, and where we stand

● We need track-finding to be efficient

● We need the track sample to be very pure

● And it has to be fast
Automaton works well
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Hough Transform
● The methods seen so far are all local: a global fit would be better 

but too slow: very large combinatorics of hits, and very large error 
matrices because errors are correlated across the whole trajectory

● Novel idea: use Hugh Transforms in tracking, following example 
from digital image processing

Points are hits;
Lines are possible 
trajectories;
Dashed line is true one

Points are trajectories;
Point where the lines 
intersect gives the 
best-fit trajectory

Reduce dimensionality 
by binning and choose 
by majority vote
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Resolving ambiguity: Graphs

Ferenc Sikler, proceedings in preparation from this talk:
https://indico.cern.ch/event/577003/contributions/2415235/attachments/1424172/2183976/sikler_denseTracking_ctdwit17.pdf

● Several track candidates may 
share some hits (the larger the 
multiplicity, the more often that 
happens)

● Our goal is to assign all hits to at 
most one track

● Most methods are local; not 
easy to consider total merit of all 
tracks (sum of c2)

● To keep total CPU time 
manageable, recent proposal 
based on graph theory
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Resolving ambiguity: Graphs

Ferenc Sikler, proceedings in preparation from this talk:
https://indico.cern.ch/event/577003/contributions/2415235/attachments/1424172/2183976/sikler_denseTracking_ctdwit17.pdf

Process is similar to exploring 
decision trees of deterministic 
games such as Chess or Go
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Further data reduction:
from particles to "jets"

Illustration credit: Flip Tanedo

Quarks are never naked, but 
we need to undress them
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How to build jets

Illustration credit: Flip Tanedo

Two popular ways:
● Cone-based algorithms:

● Find a set of seeds (e.g., the highest-
energy particles in the event)

● Sum vectors of all particles in a cone 
around the seeds

● Use those sum vectors as new seeds, 
and repeat until convergence

● Clustering algorithms:
● Calculate distances d

ij
 (according to 

some metrics) between particles i and 
j, for all i,j, and distance d

iB
 between 

particle i and the beam axis
● If d

ij
<d

iB
, combine i+j; else, call i a jet
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Infra-red (IR) stability

From G.Salam, arXiv:0906.1833 [hep-ph], Eur.Phys.J.C67 (2010) 637

A jet algorithm is said to be IR-unstable if the addition of a 
low-momentum particle (with arbitrarily low momentum) 
can change the outcome of the jet finding, making the 
theory-experiment comparison quite ill-defined
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Fast and wrong, or right and slow?

● The blue curve is for a 
cone algorithm
● IR-unstable...
● ...but a lot faster

● The black curve is for a 
clustering algorithm
● IR-stable...
● ...but much slower
● Gets worse as N grows: 

finding minimal value of d
ij
, 

d
iB
 is a O(N2) operation 

done N times
● (Really?)
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Jet finding with Voronoi cells

M.Cacciari, G.Salam, arXiv:hep-ph/0512210, Phys.Lett.B641 (2006) 57
Making use of work by Dirichlet (1850) and Voronoi (1908)

O(N3) became O(N lnN)

Example of a Paradigm Shift: 
since a decade, nobody uses 
cone algorithms anymore
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Higher level analysis

● All that we have seen so far is run centrally in CMS

● Now that the complexity of the problem is reduced to a 
small set of jets and other high-level objects (e, m, t, g), you 
can start the very last bit of analysis, e.g., your PhD thesis

● It may look very different, depending on the question you 
want to address, e.g.:

● Search for a new particle, for which you have a model
● Search for new particles, as model-independently as possible
● Measure a certain quantity, and compare it with models
● Measure a certain quantity, for which there is no expectation 

(e.g., a fundamental parameter of Nature)
● Measure the distribution of a quantity versus another one
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Hypothesis testing

● Quantify the agreement of data with a null hypothesis H
0
 

(e.g., the Standard Model)
● In case we only test H

0
, methods may resemble to what is 

elsewhere called Anomaly Detection
● See Alessia Saggio's seminar (pharmaceutical shop anomalies):

https://agenda.irmp.ucl.ac.be/conferenceDisplay.py?confId=2558

● Or quantify which one is best between H
0
 or H

1
, e.g.:

● H
0
 = only backgrounds exist, and behave as in SM

● H
1
 = like H

0
 but also the Higgs exists and behaves as in SM

● Or select which sub-set of {H
i
 } is consistent with data

● {H
i
} is often a continuum, e.g.: m=10.0±1.0 GeV, meaning 

that 9.0<m<11.0 GeV is the 68% confidence interval for m

https://agenda.irmp.ucl.ac.be/conferenceDisplay.py?confId=2558
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Anomaly detection,
the way we prefer it

Dream of every particle physicist:

● Study a simple feature of data, 
e.g., some invariant mass

● Find a spectacular anomaly with a 
clear interpretation, e.g., a peak 
rising from a smooth background

● Get a Nobel Prize

(Or at least get it awarded to your boss, 
or to some theorist who predicted it.)
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Anomaly detection,
the tough way

CMS Coll., CMS-PAS-EXO-14-016
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Anomaly detection,
the tough way

CMS Coll., CMS-PAS-EXO-14-016

MC: Monte Carlo

(If you don't know 
what s and p-value 
are, just ask, I have 

a backup slide)



 53

"Unfolding", i.e., ill-posed linear inversion problems

In some cases, useful to report some data distribution after 
correcting for the experimental nuisances such as:

● Bias from selection
● Resolution
● Background

In principle, a trivial matrix equation: y = Mx + b
x/y: unfolded/observed data (histogram); M: bin-by-bin migration matrix; b: background

CMS Coll. (M.Komm, AG, et ~2000 al.), JHEP 04 (2016) 073
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"Unfolding", i.e., ill-posed linear inversion problems

Illustrative plots from G.Cowan, Conf.Proc. C0203181 (2002) 248-257 [link]

In principle, a trivial matrix equation: y = Mx + b, but stochastic 
noise affects y, M and b. Nasty things can happen upon inversion:

Problem solved by regularization (e.g., add curvature-dumping term)

Highly controversial problem in HEP because any conceivable 
regularization introduces a bias towards expectation

More in my blog posts on unfolding here: [1] - [2] - [3] - [4]

https://www.ippp.dur.ac.uk/Workshops/02/statistics/proceedings/cowan.pdf
https://amva4newphysics.wordpress.com/2016/06/28/lost-in-unfolded-space-part-i/
https://amva4newphysics.wordpress.com/2016/07/07/lost-in-unfolded-space-part-ii-and-then-i-accidentally-divided-by-zero/
https://amva4newphysics.wordpress.com/2016/07/27/lost-in-unfolded-space-part-iii-let-a-hundred-flowers-bloom-let-a-hundred-schools-of-thought-contend-mao-tse-tung/
https://amva4newphysics.wordpress.com/2016/08/13/lost-in-unfolded-space-last-episode-thou-shalt-not-unfold/
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Machine Learning (ML)

CP3 is a node of the European Training Network AMVA4NewPhysics, whose 
mission is to explore the suitability of novel ML methods for particle physics

● Some particle physicists started using ML techniques in the 90s, 
typically facing resistance by old-schoolers who were afraid of 
delegating physics intuition to „black boxes“

● Nowadays, Neural Networks (NN) and Boosted Decision Trees 
(BDT) are very standard tools, widely used in LHC analyses

● Probably because most „low hanging fruits“ have been reaped 
already, and what remains are the toughest cases

Neural Network: Decision Tree:
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http://www.asimovinstitute.org/neural-network-zoo/
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Identication of boosted top quarks

Mihailo Backovic et al, arXiv:1501.05968 [hep-ph], JHEP 1507 (2015) 086

From http://www.quantumdiaries.org/2012/08/05/boost/ 

● At very high momentum, decay 
products tend to form a single jet

● Several algorithms discriminate 
those cases from the background 
using sub-clustering inside jets

● What about using digital image 
recognition methods, e.g.:

http://www.quantumdiaries.org/2012/08/05/boost/
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Deep Learning

Basic idea: learn multiple levels of representations that 
correspond to different levels of abstraction

Computationally tough, but suitable for parallelization ( GPUs)
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CMS Coll. (O. Bondu, S. Brochet, C. Delaere, M. Delcourt, B. Francois, V. Lemaître, M. Vidal 
Marono, S. Wertz, et al.), CMS-PAS-HIG-17-006

● Methodological novelty: mass and coupling hypotheses are inputs 
to the Deep NN, which is trained for all hypotheses at once

● Therefore, the algorithm learns how to interpolate
● Trained on a GPU, order of magnitude gain in wall-clock time

http://cds.cern.ch/record/2257068?ln=en
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Another kind of anomaly detection:
Data Quality Monitoring (DQM)

Cartoon / slide from Yandex / IBM speakers at the 
Inter-experimental Machine Learning Working Group Workshop on Machine Learning

Null hypothesis: 
data are ok

Goal: minimize 
grey zone, save 
time of humans

https://indico.cern.ch/event/595059/overview
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Ultimate hypothesis testing
 that we call Matrix Element Method (MEM)

Illustrat ion from
 A

.S
ag gio

To discriminate between competing hypotheses, full likelihood 
of each of them is computed with Monte Carlo from A to Z

Computationally very heavy  parallelization
Case-by-case implementation is painful  general tool
MoMEMta project at CP3, successor of MadWeight
Example of experiment-theory collaboration
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MEM + decision trees

Recursively separate one of the backgrounds 
against the others, using the MEM weights 
under the respective hypotheses.
The choice of which background to separate 
at each step is based on the maximization of 
the purity improvement (for this specific bkg)

Work in progress by Brieuc Francois
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Conclusions

● Whether you are from M or P, 
I hope this talk was not too 
boring for you!
● Where the definition of boring 

depends on the discipline, as 
the figure explains
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Thanks for your attention

Image credit: www.holidaysuites.be
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...and thanks to my sources:

● Marco Rovere

● Who clarified the role of CA in CMS tracking and pointed me to 
the Connecting The Dots talks

● Ferenc Sikler

● Who sent me his preliminary article draft about solving the 
tracking decision trees with graph theory methods

● Boris Mangano

● Who made the pedagogical cartoons on CMS tracking and 
explained me several practical tracking issues

● Fosco Loregian and Michael Weiss

● Who gave me "math feedback" on an early draft

● I also stole material from F. Ragusa, F. Pantaleo, S. Neuhaus, 
F. Tanedo, G. Salam, M.Kagan, A.Saggio
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Statistical significance

● Given some data X and a suitable test statistic T one starts with the p-value, 
i.e. the probability of obtaining a value of T at least as extreme as the one 
observed, if H0 is true.

● p can be converted into the corresponding number of "sigma," i.e. standard 
deviation units from a Gaussian mean. This is done by finding x such that 
the integral from x to infinity of a unit Gaussian N(0,1) equals p:

pdte
x

t


 

2

2

2

1



Slide partially copied from T.Dorigo
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Cellular Automata (CA)

Picture from https://qualityswdev.com/2011/07/31/conways-game-of-life-in-scala/ 

In general, a CA consists of a regular grid 
of cells, each in a finite number of states. 

For each cell, a set of cells called its 
neighborhood is defined. 

An initial state (time t = 0) is selected by 
assigning a state for each cell.

The new state of each cell depends from 
the current states of the cell and its 
neighborhood.

Famous example: Conway's Game of Life

https://qualityswdev.com/2011/07/31/conways-game-of-life-in-scala/
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Kalman Filter in tracking

Slide from Boris Mangano
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Algorithm time per event [ms]

2016 Pixel Tracks 29.3 ± 13.1

Triplet Propagation 72.1 ± 25.7

GPU Cellular Automaton 1.2 ± 0.9

CPU Cellular Automaton 14 ± 6.2

Tracking timing: 2016 vs 2017,
standard vs CA, CPU vs GPU
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Jet finding with Voronoi diagrams

Slide from Gavin Salam
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Correlation is not causation

Source: http://tylervigen.com/spurious-correlations 

http://tylervigen.com/spurious-correlations
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