



# Associate production of Z and b quarks and some applications

#### LHCTheory final meeting @ Louvain

Marco Zaro LPTHE - Université Pierre et Marie Curie

in collaboration with

Emanuele Bagnaschi, Fabio Maltoni, Alessandro Vicini







# Why again $Zb\overline{b}$ ?



- NLO(+PS) predictions available since long time ago Frederix et al, arXiv:1106.6019, Campbell et al, 1107.3714, Krauss et al, 1612.04640
- Not a rare process: measurements possible already at 7 TeV CMS: arXiv:1310.1349, arXiv:1402.1521, ATLAS: arXiv:1407.3643



b-jet p<sub>-</sub> [GeV]

2224

b-jet lyl

6

ATLAS: arXiv: 1407.3643

10<sup>-4</sup>

d(b-jet lyl)<sup>/Nb-jets</sup> [pb]

3.5

1.4 1.2

0.6

NLO Data

LO multileg Data

**ATLAS** 

Z+≥1 b-jet

0.8

# Try to improve data/theory agreement

Motivation #1:

- 4FS description is expected to capture mass effects in a more reliable way than 5FS computations 06 30 40 50  $10^{2}$ 2×10<sup>2</sup>
- But the data/theory agreement is rather bad for the 4FS

| Cross section                                    | Measured                 | MadGraph      | aMC@NLO                         | MCFM                            | MadGraph                      | aMC@NLO                         | F |
|--------------------------------------------------|--------------------------|---------------|---------------------------------|---------------------------------|-------------------------------|---------------------------------|---|
|                                                  |                          | (5F)          | (5F)                            | (parton level)                  | (4F)                          | (4F)                            | ł |
| $\sigma_{Z+1b}$ (pb)                             | $3.52 \pm 0.02 \pm 0.20$ | $3.66\pm0.22$ | $3.70^{+0.23}_{-0.26}$          | $3.03\substack{+0.30\\-0.36}$   | $3.11\substack{+0.47\\-0.81}$ | $2.36^{+0.47}_{-0.37}$          |   |
| $\sigma_{Z+2b}$ (pb)                             | $0.36 \pm 0.01 \pm 0.07$ | $0.37\pm0.07$ | $0.29\substack{+0.04 \\ -0.04}$ | $0.29\substack{+0.04\\-0.04}$   | $0.38\substack{+0.06\\-0.10}$ | $0.35\substack{+0.08\\-0.06}$   |   |
| $\sigma_{\rm Z+b}$ (pb)                          | $3.88 \pm 0.02 \pm 0.22$ | $4.03\pm0.24$ | $3.99\substack{+0.25\\-0.29}$   | $3.23\substack{+0.34 \\ -0.40}$ | $3.49\substack{+0.52\\-0.91}$ | $2.71^{+0.52}_{-0.41}$          |   |
| $\sigma_{Z+b/Z+j}$ (%)                           | $5.15 \pm 0.03 \pm 0.25$ | $5.35\pm0.11$ | $5.38\substack{+0.34 \\ -0.39}$ | $4.75\substack{+0.24 \\ -0.27}$ | $4.63^{+0.69}_{-1.21}$        | $3.65\substack{+0.70 \\ -0.55}$ |   |
| CMS, arXiv:1402.1521                             |                          |               |                                 |                                 | ĬŽb                           |                                 |   |
| $\forall$ One issue was the scale used $\forall$ |                          |               |                                 |                                 |                               |                                 |   |

One issue was the scale used



Lim, Maltoni, Ridolfi, Ubiali, arXiv: 1605.09411





## Motivation #2: precision

Z p<sub>T</sub>: run 1 measurements have already reached 0.5–1%! Gavin Salam at LHCP16

(normalised to fiducial Z cross section)





# Motivation #2: precision



- Fundamental ingredient of MC tunes
- The modelling of the W boson p<sub>T</sub> strongly relies on the understanding of the Z p<sub>T</sub> → crucial for the extraction of the W mass
- Z-p<sub>T</sub> measurements at Run-I already hit the 1% wall
- Excellent predictions exist for Z+jet production (NNLO)
- Boughezal et al, 1512.01291, Gehrmann-de Ridder et al, arXiv:1605.04295
- Are the bottom-mass effects under control?



Gehrmann-de Ridder et al, arXiv:1605.04295





#### Still, there are some issues...

 No single tune / tool able to describe simultaneously various invariant-mass and rapidity bins







# Motivation #3: learning something for ttbb

- ttbb is a crucial background for ttH production
- Multiscale and high-multiplicity process
- Theoretical uncertainties remain large at NLO, O(40%)
- Sizeable spread in predictions from different tools
- Differences mostly from  $g \rightarrow bb$ splittings from the shower

| Selection   | Tool              | $\sigma_{\rm NLO}[{\rm fb}]$ | $\sigma_{\rm NLO+PS}  [{\rm fb}]$ | $\sigma_{\rm NLO+PS}/\sigma_{\rm NLO}$ |
|-------------|-------------------|------------------------------|-----------------------------------|----------------------------------------|
| $n_b \ge 1$ | SHERPA+OPENLOOPS  | $12820^{+35\%}_{-28\%}$      | $12939^{+30\%}_{-27\%}$           | 1.01                                   |
|             | MADGRAPH5_AMC@NLO |                              | $13833^{+37\%}_{-29\%}$           | 1.08                                   |
|             | POWHEL            |                              | $10073^{+45\%}_{-29\%}$           | 0.79                                   |
| $n_b \ge 2$ | SHERPA+OPENLOOPS  | $2268^{+30\%}_{-27\%}$       | $2413^{+21\%}_{-24\%}$            | 1.06                                   |
|             | MADGRAPH5_AMC@NLO |                              | $3192^{+38\%}_{-29\%}$            | 1.41                                   |
|             | PowHel            |                              | $2570^{+35\%}_{-28\%}$            | 1.13                                   |
|             |                   |                              |                                   |                                        |









# Motivation #3: learning something for ttbb

|                                             |                                                   |                                            | Cascioli et a                             | al, arXiv:1309.5912                         |
|---------------------------------------------|---------------------------------------------------|--------------------------------------------|-------------------------------------------|---------------------------------------------|
|                                             |                                                   | ttb                                        | ttbb                                      | $\mathrm{ttbb}(m_{\mathrm{bb}} > 100)$      |
|                                             | $\sigma_{\rm LO}[{\rm fb}]$                       | $2644^{+71\%}_{-38\%}{}^{+14\%}_{-11\%}$   | $463.3^{+66\%}_{-36\%}{}^{+15\%}_{-12\%}$ | $123.4^{+63\%}_{-35\%}{}^{+17\%}_{-13\%}$   |
|                                             | $\sigma_{\rm NLO}[{\rm fb}]$                      | $3296^{+34\%}_{-25\%}{}^{+5.6\%}_{-4.2\%}$ | $560^{+29\%}_{-24\%}{}^{+5.4\%}_{-4.8\%}$ | $141.8^{+26\%}_{-22\%}{}^{+6.5\%}_{-4.6\%}$ |
|                                             | $\sigma_{ m NLO}/\sigma_{ m LO}$                  | 1.25                                       | 1.21                                      | 1.15                                        |
|                                             | $\sigma_{ m MC}[ m fb]$                           | $3313^{+32\%}_{-25\%}{}^{+3.9\%}_{-2.9\%}$ | $600^{+24\%}_{-22\%}{}^{+2.0\%}_{-2.1\%}$ | $181.0^{+20\%}_{-20\%}{}^{+8.1\%}_{-6.0\%}$ |
|                                             | $\sigma_{ m MC}/\sigma_{ m NLO}$                  | 1.01                                       | 1.07                                      | 1.28                                        |
| without g→bb<br>splittings<br>in the shower | $\sigma^{2\mathrm{b}}_{\mathrm{MC}}[\mathrm{fb}]$ | 3299                                       | 552                                       | 146                                         |
|                                             | $\sigma_{ m MC}^{ m 2b}/\sigma_{ m NLO}$          | 1.00                                       | 0.99                                      | ▼1.03                                       |
|                                             |                                                   |                                            |                                           |                                             |

PS effects are 4x larger in the Higgs signal region than for the total cross section

Turning  $g \rightarrow bb$  splittings off in the shower brings the effects in the Higgs signal region to similar values as for the total cross section





### Motivation #3:

#### learning something for tthb



without g→bb splittings in the shower





### Motivation #3:





 $m_{\rm bb}$  [GeV]





#### What we want to do

- Study Zbb and assess the impact of various sources of theoretical uncertainties (scale/PDF, matching à la Powheg or MC@NLO, parton shower, shower scale, ...)
- Include b-mass effects in inclusive Z production samples
- Assess the impact of b-mass effects on the Z  $p_{\mathsf{T}}$  distribution
- How do b-mass effects reflect on the extraction of the W mass?





#### Setup for the calculation

- Simulate the process p p → e<sup>+</sup> e<sup>-</sup> b b at fixed NLO or including matching to PS
- Use Powheg and MG5\_aMC (Powheg results not ready yet)
  - For MG5\_aMC use both HW++ and PY8, with different shower scales ( $\sim \sqrt{\hat{s}}$  as in versions  $\leq 2.5.2$ ,  $\sim H_T/2$  as in versions > 2.5.2)
- For renormalisation and factorisation scale, use  $\mu = m_T(e^+e^-)/4$
- Use 4FS PDFs (NNPDF 3.0)
- At generation, only impose m(e<sup>+</sup>e<sup>-</sup>) > 30 GeV; the analysis asks for two hard and central leptons (p<sub>T</sub>(e<sup>±</sup>) > 20 GeV, |η(e<sup>±</sup>)|<2.5) and close to the Z mass (|m(e<sup>+</sup>e<sup>-</sup>) - m<sub>Z</sub>| < 15 GeV)</li>













 In all cases, the NLOPS spectra are harder than fNLO. The shower adds radiation







- In all cases, the NLOPS spectra are harder than fNLO. The shower adds radiation
- This effect is the largest for PY8 with  $\mu_{sh}=\sqrt{\hat{s}}$  (up to 100 GeV) and HW++ with  $\mu_{sh}=\sqrt{\hat{s}}$







- In all cases, the NLOPS spectra are harder than fNLO.The shower adds radiation
- This effect is the largest for PY8 with  $\mu_{sh}=\sqrt{\hat{s}}$  (up to 100 GeV) and HW++ with  $\mu_{sh}=\sqrt{\hat{s}}$
- Predictions with lower values of  $\mu_{sh}$  (H<sub>T</sub>/2 or  $\sqrt{\hat{s}} \times 0.25$ ) are very similar
- Up to  $p_T$ =100 GeV, PY8 with  $\mu_{sh} = \sqrt{\hat{s}}$  and with  $\mu_{sh} = \sqrt{\hat{s}} \times 0.25$  represent well the range of PS effects





- Going more exclusive, differences between showers / shower scales grow as large as (or larger than) scale uncertainties
- Effects both on shape and rate





# Zbb results: $m(b_1b_2)$

(anti-k<sub>T</sub>, R=0.4, p<sub>T</sub>>30 GeV, |η|<2.5)







000

## Include b-mass effects in inclusive-Z samples

- Heavy quarks give distinctive contributions to Z-boson production
- In an inclusive (5F) Z-boson sample, two kind of contributions lead b quarks / B hadrons in the final state:
  - Backward evolution of the bb-initiated process -
  - Final-state  $g \rightarrow b\overline{b}$  splitting —
- The description of both contributions can be improved by using the Zbb 4FS calculation, where they are described at the ME-level
- Combination: take the 5FS computation, shower the events and veto all events which have B hadrons in the final state. Then add the Zbb calculation in the 4FS
- A similar strategy has been proposed to generate an unified sample for tt (+jets) and ttbb Moretti et al, arXiv:1510.08468





Flavour decomposition of the 5FS cross section

| initial state quark | cross section (pb) | %     |
|---------------------|--------------------|-------|
| u                   | $374.44\pm0.62$    | 35.0  |
| d                   | $391.15\pm0.63$    | 36.5  |
| С                   | $91.44 \pm 0.34$   | 8.6   |
| 8                   | $170.43 \pm 0.45$  | 15.9  |
| b                   | $43.13\pm0.26$     | 4.0   |
| total               | $1070.58 \pm 0.86$ | 100.0 |





# Bottom-mass effects on the Z-boson pT



- Effects are rather small, but have impact on the small- $p_T$  shape
- fNLO has a flat, slightly negative effect





# Bottom-mass effects in the m(e<sup>+</sup>e<sup>-</sup>) and $\eta(e^+e^-)$ bins



b-mass effects remain very small in all bins





# Estimate of the impact on the extraction of mw

- Comparisons between Z-pT predictions and data are used to extract non-perturbative parameters (NPPs), encoded e.g. in parton showers or hadronization models
- These NPPs are also used for other processes like charged-current Drell-Yan.
- The propagation of their uncertainties affects the extraction of quantities like  $m_{W}$
- We assume that:
  - the fit of NPPs is equally good when the standard (5FS) and our 'imporved' predictions are used
  - the NPPs do not depend on the energy (at least they do not change between m<sub>W</sub> and m<sub>Z</sub>)
- Under these assumptions, changes on the Z  $p_T$  are reflected on the W  $p_T.$  What is the effect on the extraction of  $m_W$ ?







- Generate a sample of  $p p \rightarrow e^+ v_e$  events
- Reweight the p<sub>T</sub>(W) distribution using the improved p<sub>T</sub>(Z) predictions
- Fit m<sub>W</sub> using the reweighted predictions by using p<sub>T</sub>(e<sup>+</sup>), E<sub>T</sub><sup>miss</sup> and m<sub>T</sub>(W)
- Fits are done at the level of shapes only, in the range  $\Delta m_W = \pm 50 MeV$









#### Results of the fit



- The transverse mass show the smallest sensitivity with no visible shift
- The preferred values of p<sub>T</sub>(e<sup>+</sup>) / E<sub>T</sub><sup>miss</sup> are shifted up to +7/10 MeV (NLO+PS with the highest shower scale)
- A 'reasonable' shower scale gives an effect of +4/5 MeV on  $p_T(e^+)$  /  $E_T^{miss}$
- The fNLO calculation, due to the lack of radiation, gives a shift which is even of the opposite sign; PS effects are important
- Take these numbers as indicative ones, as inputs to perform a real analysis (e.g. with true fits of NPPs using our 'improved' description)
- Some preliminary results with Powheg seem to confirm the trend





### Conclusions

- Zbb remains a very interesting process to investigate at the LHC
- Sizeable spread in predictions from different tools and matching techniques, often larger than TH uncertainties
- We have shown a technique to improve the description of inclusive Z-boson production sample by including bottom quark mass effects
- Bottom mass effects on the Z  $p_T$  spectrum remain small
- Their inclusion leads to a shift on the W mass of the order of ~5 MeV. Further studies (possibly taking into account charm effects) are welcome!