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~Few percent accuracy”: NNLLO

* s~ 0.1 = For TYPICAL PROCESSES, we need NLO for ~ 10% and NNLO for ~
1% accuracy. Processes with large perturbative corrections (Higgs): N3LO

e less dependence on unphysical variation (urr) — dynamical scales and “art’
of scale choice become less of an issue

*in several cases important test of perturbative stability (Higgs, VV...)

* F.O.: possible to accurately reproduce experimental fiducial volume

Different ingredients: two-loop (VV), one-loop+j (RV), tree+jj (RR)

TWO BIG PROBLEMS: i
LOOP AMPLITUDES / IR STRUCTURE OF EXTRA EMISSION |

i




L.oop amplitudes: status

e Amplitude COMPLEXITY GROWS VERY FAST with the number of scales:
invariants (~# legs) and particle masses
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 Despite a lot of recent progress (some inspired by N=4 SYM ideas),
still pretty limited knowledge. State of the art:

* Analytically: 2 -> 2, external masses (pp->VV*) [FC, Henn, Melnikov,
Smirnov, Smirnov (2014-15); Gehrmann, Manteuffel, Tancredi (2014-15)]

e Numerically: 2->2, internal / external masses (pp-> tt, pp->HH)
[Czakon; Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke (2016)]



Loop amphtudes: general remarks

Computation of loop-amplitudes in two steps (see Nicolas’ talk):

1. reduce all the integrals of your amplitudes to a minimal set of
independent ‘master” integrals

2. compute the independent integrals

At one-loop:

e independent integrals are always the same (box, tri., bub., tadpoles)
e only (1) is an issue. Very well-understood (tensor reduction, unitarity...)

Beyond on-loop:reductionnot W'evllﬂ understood, MI many an '
| process-dependent (and difficult to compute...) S




Iwo-loop: the integrand

¢So far: based on traditional IBP-LI RELATIONS [Tkachov; Chetyrkin and Tkachov
(1981); Gehrmann and Remiddi (2000)] / LAPORTA ALGORITHM [Laporta (2000)]

/ddkF(k (pi}) = /dd(k +aq)F'(k+ ag; {p;})

* Going beyond: significant improvements of tools, NEW IDEAS

* Motivated by the one-loop success, many interesting attempts to generalize
unitarity ideas / OPP approach to two-loop case

* A lot of recent progress — see Ben’s talk

e Towards 2—3 processes: 5/ 6-gluon all-plus amplitudes at two-loops [Badger,
Frellesvig, Zhang (2013); Badger, Mogull, Ochiruv, O’Connell (2015); Badger, Mogull, Peraro
(2016)]

e Interesting numerical techniques (e.g. finite field reconstruction [von
Manteuffel, Schabinger (2015); Peraro (2016)]) are being studied

| | Can these techniques be systematized and applied to GENERIC PROCESSES '
( many legs, massive particles...)? |




Iwo-loop: master integrals

e For a large class of processes (~ phenomenologically relevant scattering
amplitudes with massless internal lines) we think we know (at least in
principle) how to compute the (very complicated) MI. E.g.: differential

equations [Kotikov (1991); Remiddi (1997); Henn (2013); Papadopoulos (2014)]. Recent
results for very complicated processes: planar 3-jet [Gehrmann, Henn, Lo Presti

(2015)], towards planar Vjj / Hjj [Papadopoulos, Tommasini, Wever (2016)]

'« In these cases, the basis function for the result is very well-known -
- (Goncharov PolyLogs) and several techniques allow to efficiently handle |
| the result (Symbol co-products.. .) and numerlcally evaluate it ]
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e Unfortunately, we know that GPL are not the end of the story. Typical
example: amplitudes with internal massive particles

® Progress in this cases as well (e. €. [Tancredi and Remiddi (2016); Adams, Bogner,
Weinzierl (2015-16)]) but no satisfactory understanding yet. Last year: planar
MI for nggs p: with exact mass dependence [Bonciani et al (2016)]

Canwe nd good ways toefﬁczently evaluate generzc Mls ( beyond o

ePL? |



NNLO computations: 1R subtraction

IR divergences hidden in PS integrations

e After integrations, all singularities are manifest and cancel (KLN)

e We are interested in realistic setup (arbitrary cuts, arbitrary
observables) — we need fully differential results, we are not allowed
to integrate over the PS

e The challenge is to EXTRACT PS-INTEGRATION SINGULARITIES
WITHOUT ACTUALLY PERFORMING THE PS-INTEGRATION



The solution: two philosophies

Same problem at NLO. Two different approaches have been developed
Phase space slicing

o)
/ M2Fdg — / |MPFrdéd) . / M2Fy65 + O(9)

e conceptually simple, straightforward implementation
e must be very careful with residual d dependence (esp. in diff. distr.)

e highly non-local — severe numerical cancellations
Subtraction
/\M|2Fjd¢d _ /(|M|2FJ —8)dou + /qusd

*in principle can be made fully local — less severe numerical problems

e requires the knowledge of subtraction terms, and their integration



The solution: two philosophies

Both methods have proven useful for 2— 2 computations

Phase space slicing

) 1
/|M\2Fjdgbd:/ [|M!2Fjdgbd]8.c.+/ IM|?Frps + O(6)
0 d

® g: subtraction [Catani, Grazzini] = H, V, VH, VV, HH — see Marius’ talk

* N-jettiness [Boughezal et al; Gaunt et al] = H, V, vy, VH, Vj, Hj, single-
top

Subtraction

/|M|2Fjdgbd :/(\M\ZFJ—S)dqb4+/Sd¢d

* antenna [Gehrmann-de Ridder, Gehrmann, Glover] — Jj, Hj, V]

* Sector-decomposition+FKS [Czakon; Boughezal, Melnikov, Petriello;
Czakon, Heymes; FC, Melnikov, Roéntsch] — ttbar, single-top, Hj

® P2B [Cacciari, Dreyer, Karlberg, Salam, Zanderighi] — VBFy, single-top

® Colorful NNLO [Del Duca, Somogyi, Tocsanyi, Duhr, Kardos]: only e*e” so far



The solution: two philosophies




Slicing: a closer look

Due to its highly non-local character, slicing leads to large numerical
cancellations — abandoned at NLO

Why can we use it at NNLO?

e huge increase in computing power

e significant progress in NLO computations (speed / stability) — the CPU-
intensive ‘+]” part is highly optimized for free (fully inherited by NLO)

e NNLO corrections smaller than NLO ones: can allow for larger
uncertainty on them, without affecting the final result — ¢yt can be
chosen not too prohibitively small (although careful if extreme precision
is required, see mw determinations)

*So far, relatively simple” kinematics configurations tested. It would be
interesting to stress-test slicing on e.g. 2—3 (impossible right now) or
with intricate IR configurations (di-jet)

e Interesting theoretical development: towards leading power corrections
in d (would allow for larger dcut). Non trivial for generic processes



Subtraction: a closer look

Very different approaches, each with its own merits/problems

e antenna: almost fully local subtraction, fully analytic. Entirely worked
out only for massless processes (technical problems, difficult integrated

subtractions)

o sector-decomposition+FKS: fully local, numerical integration of
integrated subtractions. As a consequence, massive processes are not a

problem

e projection to Born: local, very nice trick to get integrated subtraction for
free, but requires prior knowledge of doNNLO / dPBorn — Jimited

applicability, small room for checks

Many results, but stil

* an obviously optimal

e despite flood of resul

| in “proof-of-concept’ phase

| framework has not appeared yet

ts, (a lot of) theoretical work still needed

e all the “latest technologies” in NLO not present here

e large room for improvement



Recent NNLO results: top
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— see Davide’s talk

* LARGE CORRECTIONS in exclusive region
e Similar behavior observed in Higgs in

VBEF [Cacciari et al (2015)]



Application of f.o. results: Il and jet vetoes

[Banfi, FC, Dreyer, Monni, Salam, Zanderighi, Dulat (2015)]
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e Combination of f.o. N3LO (Higgs inclusive) and NNLO (H+]
exclusive) with NNLL resummation, LLg resummation, mass effects...

e No breakdown of fixed (high) order till very low scales
e Even more so for Z+jet [Gerhmann-De Ridder et al (2016)]



Application of NNLO results: H pr

[Monni, Re, Torrielli (2016)]
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e Matching of NNLO H+J with NNLL Higgs prresummation
eSignificant reduction of perturbative uncertainties

e Again, no breakdown of perturbation theory (resummation effects:
25% at pr =15 GeV, ~0% at pt = 40 GeV)



[Cacciari et al (2015)]

Inclusive vs exclusive: VBF@NNI.0O
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e NNLO inclusive K-factor ~ 1%
¢ Actual correction ~ 10%

* Not captured by NLO or PS

e Non-trivial jet dynamics, modeled
at NLO

Similar considerations for pp— VV
(jet vetoes..) — see Marius’ talk

| Proper fiducial comparison very
limportant, especially for processes
linvolving jet or sophisticated event

|definition / reconstruction |




Recent NNLO results: dijet

[Currie, Glover, Pires (2016)]

~40 partonic channels, highly non-trivial color flow. Realistic jet

0.8
0.6
14
1.2

0.8
0.6
14
1.2

Ratio to NLO

0.8
0.6
1.2

0.8
0.6
0.4
12

0.8
0.6
0.4

NNLOJET

ATLAS, 7 TeV, anti-k; jets, R=0.4

s NLO
= NNLO

...... NNLOXEW NNLOJET

ATLAS, 7 TeV, anti-k; jets, R=0.4

— NLO/LO

— NNLO/LO

— NNLO/NLO

12 —
11

| ——

0.9
0.8

12

11

0.9

05<l|yl<10
|

\

12
11

-H (]

0.9
0.8

1.0<|yj<15
|

12
11

K factor

0.9
0.8

—

|

1-1 1

2.0/< lyjl < 2.5 12

0.9

| 0.8

20<|yl<25
|

25L|w|<30 12

l

|
NNPDF3.0

11 =
NNPDF3.0 — 09 —
| — 08 —

25<|y] <30
|

100

500
pr (GeV)

1000 100 200

500
pT (GeV)

1000

e Non trivial shape correction (scale choice?), sizable effect (jet dynamics?)

e Large effect on PDF? (see also jj in DIS [Niehues, Currie, Gehrmann (2016)])



Recent NN1.O results: VJ
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NNIL.O: status and future

e A lot of theoretical progress in the recent past

¢ This lead to realistic 2—2 PHENOMENOLOGY AT NNLO

* Many interesting features
e Greatly reduced th. uncertainties (expected)

e Stability w.r.t. logarithmic corrections (not so obvious) — fiducial region

* And a few surprises
e Non trivial jet dynamics (larger than naively expected corrections)
e Curious data/theory discrepancies (PDFs? NP?)

* A lot more to explore
e More pheno: e.g. jet dynamics @ NNLO vs mergedPS, NNLOprod@decay- - -
¢2—2 in “extreme” kinematics (boosted/ off-shell H+j and pp—VYV)

e better understanding of jet dynamics: pp — 3j. Also: as, maybe some extra
handle to understand NP effects?

e Important backgrounds / precision tests: Hjj (VBF contamination, jet-bin
correlations...), Vjj, ttj



NNIL.O: status and future

e Almost all these direction would require significant theoretical

progress. For example

e extreme kinematics: quark-mass effects in the loops, mixed QCD-EW —
new ways of computing / evaluating MI?
e Breaking the 2 — 2 barrier highly non trivial
¢ 2-loop: better integrands methods, efficient evaluation of MI

e 1-loop: stable/fast 2—4 loop amplitudes in the soft/collinear region

e more efficient IR subtraction (2—1 ~ 100 CPU hours, 2—2 ~ 100.000 CPU

hours). E.g.: NLP soft/collinear terms in slicing, different slicing variables,
“import” NLO technology in subtraction schemes. ..

eeven if the goal is = from NLO, at least some degree of automation

* Beyond NNLO?
e N3LO beyond the Higgs and ““simple” processes?
e NNLO and beyond: = 1% ~ Aqgcp/100 GeV. NP effects (already now for m,
My, Pr,z?)
EXCITING TIMES AHEAD!



Thank you
very much for

your attention!



“Few percent”: the theory side

do = /dx1dx2f($1)f(wz)d0part(331, 22)F7(1+ O(Aqep/Q))

/ /

Input parameters: ~few percent. NP effects: ~ few percent

In principle improvable No good control /understanding
of them at this level. LIMITING

FACTOR FOR FUTURE DEVELOPMENT

i HARD SCATTERING MATRIX ELEMENT
; s~ (0.1 — For TYPICAL PROCESSES, we need NLO for ~ 10%

| and NNLO for ~ 1 % accuracy. Processes with large
| perturbative corrections (Higgs): N°LO

e Going beyond that is neither particularly useful (exp. |
| precision) NOR POSSIBLE GIVEN OUR CURRENT UNDERSTANDING |
: OF QCD, even if we knew how to compute multi-loop
| amplitudes and had NXLO subtraction schemes (NP effects) |



Non-perturbative effects in Z pr
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[G. Salam, ““Future challenges for precision QCD”]
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* Big improvement w.r.t. few years ago [better handling on fit, larger data

coverage (LHC)]. Reasonable consensus among different groups
e FOR CENTRAL EW PRODUCTION: 2 /3% PRECISION
» Going below may require some rethinking of PDF uncertainty
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[J. Currie, CMS workshop Jan. 2017]



