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``Few percent accuracy’’: NNLO
•αs ~ 0.1 → For TYPICAL PROCESSES, we need NLO for ~ 10% and NNLO for ~ 

1% accuracy. Processes with large perturbative corrections (Higgs): N3LO
•less dependence on unphysical variation (μR,F) → dynamical scales and `art’ 

of scale choice become less of an issue
•in several cases important test of perturbative stability (Higgs, VV…)
•F.O.: possible to accurately reproduce experimental fiducial volume 

Different ingredients: two-loop (VV), one-loop+j (RV), tree+jj (RR)

TWO BIG PROBLEMS: 
LOOP AMPLITUDES / IR STRUCTURE OF EXTRA EMISSION



Loop amplitudes: status
•Amplitude COMPLEXITY GROWS VERY FAST with the number of scales: 

invariants (~# legs) and particle masses

•Despite a lot of recent progress (some inspired by N=4 SYM ideas), 
still pretty limited knowledge. State of the art: 
•Analytically: 2 -> 2, external masses (pp->VV*)  [FC, Henn, Melnikov, 

Smirnov, Smirnov (2014-15); Gehrmann, Manteuffel, Tancredi (2014-15)]

•Numerically: 2->2, internal/external masses (pp-> tt, pp->HH) 
[Czakon; Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke (2016)]
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where we are using an “all-outgoing” convention
for the momentum (pi) and helicity (λi) labeling.
The Mandelstam variables are s = (p1 + p2)2,
t = (p1 + p4)2, and u = (p1 + p3)2.

We consider both QCD corrections with inter-
nal gluon lines and QED corrections with internal
photons. For the QCD corrections, the depen-
dence of the finite remainder in eq. (1) on quark
charges, N , Nf and the renormalization scale µ,
may be extracted as,

M(2)fin
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)
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The two-loop renormalized QED corrections are
a little simpler, since in this case the amplitudes
are free of infrared divergences,

M(2)QED
gg→γγ = 4 δa1a2

( Nf
∑

j=1

Q4
j

)

×Sλ1λ2λ3λ4
F SL

λ1λ2λ3λ4
. (3)

We quote our results in the physical s-channel
(s > 0; t, u < 0). In order to reduce the size of
the expressions we define

x =
t

s
, y =

u

s
, X = ln(−x), Y = ln(−y),

X̃ = X + iπ, Ỹ = Y + iπ,

Ξ = X̃2 + π2, Υ = Ỹ 2 + π2,

Z± = X ± Y, Z̃ = (X − Y )2 + π2,

A±
n = Lin(−x) ± ζn, B = Li2(−x) −

π2
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,

C±
n (x, y) = Lin(−x) ± Lin(−y).

The explicit forms for the F L

λ1λ2λ3λ4
appearing

in eq. (2) are
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[Bern, De Freitas, Dixon [2002]



Loop amplitudes: general remarks
Computation of loop-amplitudes in two steps (see Nicolas’ talk):
1. reduce all the integrals of your amplitudes to a minimal set of 

independent `master’ integrals
2. compute the independent integrals

At one-loop:
• independent integrals are always the same (box, tri., bub., tadpoles)
• only (1) is an issue. Very well-understood (tensor reduction, unitarity…)

Beyond one-loop: reduction not well understood, MI many and 
process-dependent (and difficult to compute…)



Two-loop: the integrand

•Going beyond: significant improvements of tools, NEW IDEAS

•So far: based on traditional IBP-LI RELATIONS [Tkachov; Chetyrkin and Tkachov 

(1981); Gehrmann and Remiddi (2000)] / LAPORTA ALGORITHM [Laporta (2000)]

•Motivated by the one-loop success, many interesting attempts to generalize 
unitarity ideas / OPP approach to two-loop case

•A lot of recent progress → see Ben’s talk
•Towards 2→3 processes: 5/6-gluon all-plus amplitudes at two-loops [Badger, 

Frellesvig, Zhang (2013); Badger, Mogull, Ochiruv, O’Connell (2015); Badger, Mogull, Peraro 
(2016)] 

•Interesting numerical techniques (e.g. finite field reconstruction [von 
Manteuffel, Schabinger (2015); Peraro (2016)]) are being studied

Z
ddkF (k; {pj}) =

Z
dd(k + ↵q)F (k + ↵q; {pj})

Can these techniques be systematized and applied to GENERIC PROCESSES
(many legs, massive particles…)? 



•For a large class of processes (~ phenomenologically relevant scattering 
amplitudes with massless internal lines) we think we know (at least in 
principle) how to compute the (very complicated) MI. E.g.: differential 
equations [Kotikov (1991); Remiddi (1997); Henn (2013); Papadopoulos (2014)]. Recent 
results for very complicated processes: planar 3-jet [Gehrmann, Henn, Lo Presti 

(2015)], towards planar Vjj/Hjj [Papadopoulos, Tommasini, Wever (2016)]

Two-loop: master integrals

•In these cases, the basis function for the result is very well-known 
(Goncharov PolyLogs) and several techniques allow to efficiently handle 
the result (symbol, co-products…) and numerically evaluate it

•Unfortunately, we know that GPL are not the end of the story. Typical 
example: amplitudes with internal massive particles

•Progress in this cases as well (e.g. [Tancredi and Remiddi (2016); Adams, Bogner, 
Weinzierl (2015-16)]) but no satisfactory understanding yet. Last year: planar 
MI for Higgs pt with exact mass dependence [Bonciani et al (2016)]

Can we find good ways to efficiently evaluate generic MIs (beyond 
GPLs)?



NNLO computations: IR subtraction

•IR divergences hidden in PS integrations
•After integrations, all singularities are manifest and cancel (KLN)
•We are interested in realistic setup (arbitrary cuts, arbitrary 

observables) → we need fully differential results, we are not allowed 
to integrate over the PS

•The challenge is to EXTRACT PS-INTEGRATION SINGULARITIES 
WITHOUT ACTUALLY PERFORMING THE PS-INTEGRATION

VV RRRV
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The solution: two philosophies

Phase space slicing
Z

|M |2FJd�d =

Z �

0

⇥|M |2FJd�d

⇤
s.c.

+

Z 1

�
|M |2FJ�4 +O(�)

Same problem at NLO. Two different approaches have been developed

Subtraction
Z

|M |2FJd�d =

Z
(|M |2FJ � S)d�4 +

Z
Sd�d

•conceptually simple, straightforward implementation
•must be very careful with residual δ dependence (esp. in diff. distr.)
•highly non-local → severe numerical cancellations

•in principle can be made fully local → less severe numerical problems
•requires the knowledge of subtraction terms, and their integration
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Both methods have proven useful for 2→ 2 computations

SubtractionZ
|M |2FJd�d =

Z
(|M |2FJ � S)d�4 +

Z
Sd�d

•qt subtraction [Catani, Grazzini] → H, V, VH, VV, HH → see Marius’ talk
•N-jettiness [Boughezal et al; Gaunt et al] → H, V, γγ, VH, Vj, Hj, single-

top

•antenna [Gehrmann-de Ridder, Gehrmann, Glover] → jj, Hj, Vj
•Sector-decomposition+FKS [Czakon; Boughezal, Melnikov, Petriello; 

Czakon, Heymes; FC, Melnikov, Röntsch] → ttbar, single-top, Hj
•P2B [Cacciari, Dreyer, Karlberg, Salam, Zanderighi] → VBFH, single-top
•Colorful NNLO [Del Duca, Somogyi, Tocsanyi, Duhr, Kardos]: only e+e- so far
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Some of these techniques are quite generic 

IN PRINCIPLE, they allow for ARBITRARY COMPUTATIONS 

IN PRACTICE: `genuine’ 2→2 REACTIONS, with big 
computer farms

TYPICAL RUNTIME: 100.000 CPU hours (typical setup)



Slicing: a closer look
Due to its highly non-local character, slicing leads to large numerical 
cancellations → abandoned at NLO

Why can we use it at NNLO?
•huge increase in computing power
•significant progress in NLO computations (speed/stability) → the CPU-

intensive ‘+J’ part is highly optimized for free (fully inherited by NLO)
•NNLO corrections smaller than NLO ones: can allow for larger 

uncertainty on them, without affecting the final result → δcut can be 
chosen not too prohibitively small (although careful if extreme precision 
is required, see mW determinations)

•So far, relatively `simple’ kinematics configurations tested. It would be 
interesting to stress-test slicing on e.g. 2→3 (impossible right now) or 
with intricate IR configurations (di-jet) 

•Interesting theoretical development: towards leading power corrections 
in δ (would allow for larger δcut). Non trivial for generic processes



Subtraction: a closer look
Very different approaches, each with its own merits/problems
•antenna: almost fully local subtraction, fully analytic. Entirely worked 

out only for massless processes (technical problems, difficult integrated 
subtractions)

•sector-decomposition+FKS: fully local, numerical integration of 
integrated subtractions. As a consequence, massive processes are not a 
problem 

•projection to Born: local, very nice trick to get integrated subtraction for 
free, but requires prior knowledge of dσNNLO/dΦBorn → limited 
applicability, small room for checks

Many results, but still in `proof-of-concept’ phase
•an obviously optimal framework has not appeared yet
•despite flood of results, (a lot of) theoretical work still needed
•all the `latest technologies’ in NLO not present here
•large room for improvement



Recent NNLO results: top
T-CHANNEL SINGLE-TOP 
PLUS TOP-DECAY (NWA)

4

NNLOp

NLOp

LO

NNLOp!LO NLOp!LO

LHC 13 TeV, top quark, corr."production#

µR, p!µF, p!mt

µR, d!mt

"4 "2 0 2 4

0.0

0.2

0.4

0.6

0.8

0.6

0.8

1.0

1.2

ηj

R
at

io
d
σ
!d

η
j
$p

b
%

FIG. 2. Predicted pseudorapidity distribution of the non-b
jet in the final state from top quark production with decay at
13 TeV with fiducial cuts applied. Only QCD corrections in
production are included.
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FIG. 3. Predicted transverse momentum distribution of the
leading b-jet from top quark production with decay at 13 TeV
with fiducial cuts applied. Only QCD corrections in decay are
included.

is less than one since there are more u-valence quarks
than d-valence quarks in the proton, and it decreases
with pseudorapidity because the d/u ratio decreases at

large x [48]. The uncertainty flags show the statistical
uncertainty from the MC integration. The ratios of the
three curves are shown in the lower panel. The spread
of the LO, NLO, and NNLO predictions is about 1% in
the central region. At large |⌘

l

|, the NLO correction can
reach about 2%, and the additional NNLO correction is
well below one percent. Also shown in the lower panel
are the 68% confidence-level uncertainty bands for three
sets of NNLO PDFs: CT14 [48], MMHT2014 [56] and
NNPDF3.0 [57]. For simplicity, we obtained these bands
using the LO matrix elements and the NNLO PDFs, and
we verified that quantitatively similar central values of
the bands are obtained if we use NLO matrix elements.
Since the PDF induced uncertainty is much larger than
the theoretical uncertainty of its NNLO prediction, the
charge ratio can be used reliably to further discriminate
among and constrain the PDFs, provided that experi-
mental uncertainties can be controlled to the same level,
as is also pointed out in [24]. This charge ratio may
also be sensitive to certain kinds of physics beyond the
SM [58].
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FIG. 4. Ratios of the fiducial cross sections of top anti-quark
to top quark production with decay at 13 TeV as a function
of the pseudorapidity of the charged lepton. The lower panel
shows ratios to the LO prediction as well as dependence on
the choice of PDFs.

Summary. We present the first calculation of NNLO
QCD corrections to t-channel single top quark produc-
tion with decay at the LHC in the 5-flavor scheme in
QCD, neglecting the cross-talk between the hadronic
systems of the two incoming protons. Our calculation
provides a fully di↵erential simulation at NNLO for
t-channel single top-quark production with leptonic
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High-Precision Differential Predictions for Top-Quark Pairs at the LHC

Michal Czakon,1 David Heymes,2 and Alexander Mitov2
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We present the first complete next-to-next-to-leading order (NNLO) QCD predictions for differ-
ential distributions in the top-quark pair production process at the LHC. Our results are derived
from a fully differential partonic Monte Carlo calculation with stable top quarks which involves no
approximations beyond the fixed-order truncation of the perturbation series. The NNLO correc-
tions improve the agreement between existing LHC measurements [V. Khachatryan et al. (CMS
Collaboration), Eur. Phys. J. C 75, 542 (2015)] and standard model predictions for the top-quark
transverse momentum distribution, thus helping alleviate one long-standing discrepancy. The shape
of the top-quark pair invariant mass distribution turns out to be stable with respect to radiative
corrections beyond NLO which increases the value of this observable as a place to search for physics
beyond the standard model. The results presented here provide essential input for parton distri-
bution function fits, implementation of higher-order effects in Monte Carlo generators as well as
top-quark mass and strong coupling determination.

INTRODUCTION

There is remarkable overall agreement between stan-
dard model (SM) predictions for top-quark pair produc-
tion and LHC measurements. Measurements of the total
inclusive cross section at 7, 8, and 13 TeV [1–5] agree well
with next-to-next-to leading order (NNLO) QCD pre-
dictions [6–11]. Differential measurements of final state
leptons and jets are generally well described by exist-
ing NLO QCD Monte Carlo (MC) generators. Concern-
ing top-quark differential distributions, the description of
the top-quark pT has long been in tension with data [12–
14]; see also the latest differential measurements in the
bulk [15] and boosted top [16] regions. The first 13 TeV
measurements have just appeared [17, 18] and they show
similar results; i.e., MC predictions tend to be harder
than data.

This “pT discrepancy” has long been a reason for con-
cern. Since the top quark is not measured directly, but
is inferred from its decay products, any discrepancy be-
tween top-quark-level data and SM prediction implies
that, potentially, the MC generators used in unfolding
the data may not be accurate enough in their description
of top-quark processes. With the top quark being a main
background in most searches for physics beyond the SM
(BSM), any discrepancy in the SM top-quark description
may potentially affect a broad class of processes at the
LHC, including BSM searches and Higgs physics.

The main “suspects” contributing to such a discrep-
ancy are higher order SM corrections to top-quark pair
production and possible deficiencies in MC event gener-
ators. A goal of this work is to derive the NNLO QCD
corrections to the top-quark pT spectrum at the LHC
and establish if these corrections bridge the gap between
LHC measurements, propagated back to top-quark level
with current MC event generators, and SM predictions
at the level of stable top quarks.

PP → tt-+X(8TeV)
mt=173.3 GeV
MSTW2008
µF,R/mt∈{0.5,1,2}

Czakon, Heymes, Mitov (2015)
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FIG. 1: Normalized top-antitop pT distribution vs CMS
lepton+jets data [15]. NNLO error band from scale vari-
ation only. The lower panel shows the ratios LO/NNLO,
NLO/NNLO, and data/NNLO.

Our calculations are for the LHC at 8 TeV. They show
that the NNLO QCD corrections to the top-quark pT
spectrum are significant and must be taken into account
for proper modeling of this observable. The effect of
NNLO QCD correction is to soften the spectrum and
bring it closer to the 8 TeV CMS data [15]. In addition
to the top-quark pT, all major top-quark pair differential
distributions are studied as well.

TTBAR DIFFERENTIAL 
DISTRIBUTIONS

[Berger, G
ao, Yuan, Zhu (2016)]

[C
zakon, H

eym
es, M

itov (2016)]

•Small inclusive corrections
•LARGE CORRECTIONS in exclusive region
•Similar behavior observed in Higgs in 

VBF [Cacciari et al (2015)]

→ see Davide’s talk



Application of f.o. results: H and jet vetoes
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Figure 2. Comparison of matched N3LO+NNLO results for the jet veto efficiency to NNLO+NNLL
results (left) and to pure N3LO predictions (right).

transverse momentum differential spectrum. For a more detailed discussion of this we refer
the reader to Appendix A.

Fig. 2 shows the impact of matching the NNLL resummed results with the N3LO
result, compared to NNLO+NNLL results (left) and to pure N3LO results (right). In the
left-hand plot, one sees a clear reduction in uncertainties in going from NNLO+NNLL to
N3LO+NNLL, as expected given the impact of the N3LO results shown in Fig. 1. While
the NNLO+NNLL results had a substantially smaller uncertainty band than pure NNLO,
once one includes one additional order in ↵s, resummation brings essentially no further
reduction, as is visible in the right-hand plot. It does, however, induce a small shift in
the central value (and uncertainty band), whose magnitude is slightly smaller than the
uncertainty itself.

2.4 Jet-radius dependence and small-R effects

Two terms in Eq. (2.5) are connected with the choice of jet definition and in particular
depend on the jet radius R. Fclust

(R) accounts for clustering of independent soft emissions
and for commonly used values of R is given by [5, 13]

Fclust
(R) =

4↵2
s(pt,veto)C

2
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� ⇡2R2
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+

R4

16

◆
. (2.12)

Fcorrel
(R) [13] comes from the correlated part of the matrix element for the emission of two

soft partons. For our purposes it is useful to further split it into two parts,

Fcorrel
(R) =

4↵2
s(pt,veto)CAL

⇡2

✓
f1 ln

1

R
+ freg(R)

◆
, (2.13)

where the coefficient of the logarithm of R is

– 8 –

[Banfi, FC, Dreyer, Monni, Salam, Zanderighi, Dulat (2015)]

•Combination of f.o. N3LO (Higgs inclusive) and NNLO (H+J 
exclusive) with NNLL resummation, LLR resummation, mass effects…

•No breakdown of fixed (high) order till very low scales
•Even more so for Z+jet [Gerhmann-De Ridder et al (2016)]



Application of NNLO results: H pT
[Monni, Re, Torrielli (2016)]

•Matching of NNLO H+J with NNLL Higgs pT resummation
•Significant reduction of perturbative uncertainties
•Again, no breakdown of perturbation theory (resummation effects: 

25% at pT = 15 GeV, ~0% at pT = 40 GeV)
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at NNLL+NNLO (red), NNLL+NLO (green),
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µR = µF = mH, and Q = mH/2. The perturbative un-
certainty for all predictions is estimated by varying both
µR and µF by a factor of two in either direction while
keeping 1/2 ≤ µR/µF ≤ 2. Moreover, for central µR and
µF scales we vary the resummation scale Q by a factor of
two in either direction.
To validate our result, in the main panel of figure 1 we
show the comparison of our prediction for the Higgs-
transverse-momentum spectrum at NNLL+NLO to that
obtained with HqT [4, 35]. As expected, we observe a very
good agreement over the entire pH

t range between these

two results, which have the same perturbative accuracy.
Our NNLL+NLO prediction is moderately higher in the
peak of the distribution, and lower at intermediate pH

t
values, although this pattern may slightly change with
different central-scale choices. These small differences
have to do with the different treatment of subleading ef-
fects in the two resummation methods. The agreement
of the two results, both for the central scale and for the
uncertainty band, is even more evident in the lower inset
of figure 1, which displays the ratio of the various dis-
tributions, each normalised to its central-scale inclusive
rate, to our normalised central NNLL+NLO curve.
For comparison, figure 1 also reports the pH

t distribu-
tion obtained with the NLO version of POWHEG+MiNLO
[36–38], and with the MadGraph5 aMC@NLO+FxFx [39–41]
event generators, using default renormalisation and fac-
torisation scales for the two methods (in FxFx a merging
scale µQ = mH/2 has been employed). Both genera-
tors are interfaced to Pythia8.2 [42], without includ-
ing hadronisation, underlying event, and primordial k⊥
(whose impact has been checked to be fully negligible
for this observable), and use PDF4LHC15 parton densi-
ties at NLO. By inspecting the normalised ratios shown
in the lower panel, one observes that the shape of the
Monte-Carlo predictions deviates significantly from the
NNLL+NLO results at pH

t ! 60GeV.
Figure 2 shows the comparison of the matched

NNLL+NNLO result to the NNLL+NLO and the fixed-
order NNLO predictions. The inclusion of the NNLO
corrections leads to a 10− 15% increase in the matched
spectrum for pH

t > 15GeV, and to a consistent reduction
in the perturbative uncertainty, to the ±10%-level in
the considered pH

t range. The impact of resummation
on the fixed order becomes increasingly important for
pH

t ! 40GeV, reaching about 25% at pH

t = 15GeV. For
pH

t " 40GeV, the matched prediction reduces to the
NNLO one.

In this letter we have presented a new method, entirely
formulated in momentum space, for the resummation
of the transverse momentum of a colour-singlet final
state in hadronic collisions. We have used it to obtain
the first NNLL+NNLO prediction for the Higgs-boson
transverse-momentum spectrum at the LHC. Higher-
order logarithmic corrections beyond NNLL can be
systematically included within this framework. Our
approach does not rely on any specific factorisation
theorem, and therefore it can be generalised to treat
any observable featuring kinematic cancellations in the
infrared region – like for instance φ∗ in Drell-Yan pair
production [43] or the oblateness in electron-positron
annihilation – as well as to compute any other observable
which can be treated with the methods of refs. [25, 26].
Notably, this paves the way for formulating a simulta-
neous resummation for the Higgs and the leading-jet
transverse momenta at NNLL.

We are very grateful to F. Caola for providing us with
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keeping 1/2 ≤ µR/µF ≤ 2. Moreover, for central µR and
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two in either direction.
To validate our result, in the main panel of figure 1 we
show the comparison of our prediction for the Higgs-
transverse-momentum spectrum at NNLL+NLO to that
obtained with HqT [4, 35]. As expected, we observe a very
good agreement over the entire pH

t range between these

two results, which have the same perturbative accuracy.
Our NNLL+NLO prediction is moderately higher in the
peak of the distribution, and lower at intermediate pH

t
values, although this pattern may slightly change with
different central-scale choices. These small differences
have to do with the different treatment of subleading ef-
fects in the two resummation methods. The agreement
of the two results, both for the central scale and for the
uncertainty band, is even more evident in the lower inset
of figure 1, which displays the ratio of the various dis-
tributions, each normalised to its central-scale inclusive
rate, to our normalised central NNLL+NLO curve.
For comparison, figure 1 also reports the pH

t distribu-
tion obtained with the NLO version of POWHEG+MiNLO
[36–38], and with the MadGraph5 aMC@NLO+FxFx [39–41]
event generators, using default renormalisation and fac-
torisation scales for the two methods (in FxFx a merging
scale µQ = mH/2 has been employed). Both genera-
tors are interfaced to Pythia8.2 [42], without includ-
ing hadronisation, underlying event, and primordial k⊥
(whose impact has been checked to be fully negligible
for this observable), and use PDF4LHC15 parton densi-
ties at NLO. By inspecting the normalised ratios shown
in the lower panel, one observes that the shape of the
Monte-Carlo predictions deviates significantly from the
NNLL+NLO results at pH

t ! 60GeV.
Figure 2 shows the comparison of the matched

NNLL+NNLO result to the NNLL+NLO and the fixed-
order NNLO predictions. The inclusion of the NNLO
corrections leads to a 10− 15% increase in the matched
spectrum for pH

t > 15GeV, and to a consistent reduction
in the perturbative uncertainty, to the ±10%-level in
the considered pH

t range. The impact of resummation
on the fixed order becomes increasingly important for
pH

t ! 40GeV, reaching about 25% at pH

t = 15GeV. For
pH

t " 40GeV, the matched prediction reduces to the
NNLO one.

In this letter we have presented a new method, entirely
formulated in momentum space, for the resummation
of the transverse momentum of a colour-singlet final
state in hadronic collisions. We have used it to obtain
the first NNLL+NNLO prediction for the Higgs-boson
transverse-momentum spectrum at the LHC. Higher-
order logarithmic corrections beyond NNLL can be
systematically included within this framework. Our
approach does not rely on any specific factorisation
theorem, and therefore it can be generalised to treat
any observable featuring kinematic cancellations in the
infrared region – like for instance φ∗ in Drell-Yan pair
production [43] or the oblateness in electron-positron
annihilation – as well as to compute any other observable
which can be treated with the methods of refs. [25, 26].
Notably, this paves the way for formulating a simulta-
neous resummation for the Higgs and the leading-jet
transverse momenta at NNLL.
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F.o. vs PS example: VBF@NNLO
[Cacciari, Dreyer, Karlberg, Salam, Zanderighi (2015)]

• Despite tiny corrections to the inclusive rate, sizable corrections 
in the fiducial region

• Although for many observables PS does a good job, for others it 
mis-models corrections
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FIG. 2: From left to right, di↵erential cross sections for the transverse momentum distributions for the two leading jets, pt,j1
and pt,j2 , for the Higgs boson, pt,H , and the distribution for the rapidity separation between the two leading jets, �yj1,j2 .

interpretation is that since NNLO e↵ects redistribute jets
from higher to lower pt’s (cf. the plots for pt,j1 and pt,j2),
they reduce the cross section for any observable defined
with VBF cuts. As pt,H grows larger, the forward jets
tend naturally to get harder and so automatically pass
the pt thresholds, reducing the impact of NNLO terms.

As observed above for the total cross section with VBF
cuts, the NNLO di↵erential corrections are sizeable and
often outside the uncertainty band suggested by NLO
scale variation. One reason for this might be that NLO
is the first order where the non-inclusiveness of the jet
definition matters, e.g. radiation outside the cone modi-
fies the cross section. Thus NLO is, in e↵ect, a leading-
order calculation for the exclusive corrections, with all
associated limitations.

To further understand the size of the NNLO correc-
tions, it is instructive to examine a NLO plus parton
shower (NLOPS) calculation, since the parton shower
will include some approximation of the NNLO correc-
tions. For this purpose we have used the POWHEG VBF
H+2-jet calculation [20], showered with PYTHIA version
6.428 with the Perugia 2012 tune [35]. The POWHEG part
of this NLOPS calculation uses the same PDF, scale
choices and electroweak parameters as our full NNLO
calculation. The NLOPS results are included in Fig. 2,
at parton level, with multi-parton interactions (MPI)
switched o↵. They di↵er from the NLO by an amount
that is of a similar order of magnitude to the NNLO
e↵ects. This lends support to our interpretation that fi-
nal (and initial)-state radiation from the hard partons
is responsible for a substantial part of the NNLO correc-
tions. However, while the NLOPS calculation reproduces
the shape of the NNLO corrections for some observables

(especially pt,H), there are others for which this is not
the case, the most striking being perhaps �yj1,j2 . Par-
ton shower e↵ects were also studied in Ref. [36], using
the MC@NLO approach [37]. Various parton showers
di↵ered there by up to about 10%.

In addition to the NNLO contributions, precise phe-
nomenological studies require the inclusion of EW con-
tributions and non-perturbative hadronisation and MPI
corrections. The former are of the same order of magni-
tude as our NNLO corrections [13]. Using Pythia 6.428
and Pythia 8.185 we find that hadronisation corrections
are between �2 and 0%, while MPI brings up to +5%
at low pt’s. The small hadronisation corrections appear
to be due to a partial cancellation between shifts in pt
and rapidity. We leave a combined study of all e↵ects
to future work. The code for our calculation will also be
made public.

With the calculation presented in this letter, di↵er-
ential VBF Higgs production has been brought to the
same NNLO level of accuracy that has been available for
some time now for the ggH [38, 39] and VH [40] pro-
duction channels. This constitutes the first fully di↵er-
ential NNLO 2 ! 3 hadron-collider calculation, an ad-
vance made possible thanks to the factorisable nature of
the process. The NNLO corrections are non-negligible,
5–10%, i.e. an order of magnitude larger than the cor-
rections to the inclusive cross section. Their size might
even motivate a calculation one order higher, to N3LO,
to match the precision achieved recently for the ggH to-
tal cross section [41]. With the new “projection-to-Born”
approach introduced here, we believe that this is within
reach. It would also be of interest to obtain NNLO plus
parton shower predictions, again matching the accuracy

VBF
•NNLO inclusive K-factor ~ 1%
•Actual correction ~ 10%
•Not captured by NLO or PS
•Non-trivial jet dynamics, modeled 

at NLO
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Inclusive vs exclusive: VBF@NNLO

Proper fiducial comparison very 
important, especially for processes 
involving jet or sophisticated event 
definition / reconstruction

Similar considerations for pp→ VV 
(jet vetoes..) → see Marius’ talk



Recent NNLO results: dijet
[Currie, Glover, Pires (2016)]

~40 partonic channels, highly non-trivial color flow. Realistic jet
2
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FIG. 1: Double-di↵erential inclusive jet cross-sections mea-
surement by ATLAS [6] and NNLO perturbative QCD pre-
dictions as a function of the jet pT in slices of rapidity, for
anti-kT jets with R = 0.4 normalized to the NLO result. The
shaded bands represent the scale uncertainty of the theory
predictions obtained by varying µR and µF as described in
the text. The red dashed line displays the NNLO/NLO ratio
corrected multiplicatively for electroweak corrections [37].

Nc, to all these subprocesses. In practice this amounts
to calculating the N2

c , NcNF and N2
F corrections to all

LO subprocesses, where NF is the number of light quark
flavours. We include the full LO and NLO coe�cients in
this calculation but note that retaining only the leading
colour correction to all partonic subprocesses at NLO
gives the full result to within a few percent across all
distributions. The analogous subleading colour contri-
butions at NNLO are expected to be small and we do
not include them in this study. To support this assump-
tion we note that the subleading colour NNLO contribu-
tion for pure gluon scattering was presented in a previ-
ous study [34] and found to be negligible. We construct
subtraction terms to regulate all IR divergences in the
phase space integrals and cancel all explicit poles in the
dimensional regularization parameter, ✏ = (4� d)/2, the
details of which for the antenna subtraction method can
be found in [25, 34, 36]. The IR finite cross section at
NNLO is then integrated numerically in four dimensions
over the appropriate two-, three- or four-parton massless
phase space to yield the final result.

In Fig. 1 we present the results for the double-
di↵erential inclusive jet cross section at NLO and NNLO,
normalized to the NLO theoretical prediction to empha-
size the impact of the NNLO correction to the NLO re-

 0.8
 0.9

 1
 1.1
 1.2

NNLOJET

K
 fa

ct
or

   |yj| < 0.5   

ATLAS, 7 TeV, anti-kt jets, R=0.4

NLO/LO
NNLO/LO
NNLO/NLO

 0.8
 0.9

 1
 1.1
 1.2

0.5 < |yj| < 1.0

 0.8
 0.9

 1
 1.1
 1.2

1.0 < |yj| < 1.5

 0.8
 0.9

 1
 1.1
 1.2

1.5 < |yj| < 2.0

 0.8
 0.9

 1
 1.1
 1.2

2.0 < |yj| < 2.5

 0.8
 0.9

 1
 1.1
 1.2

 100  200  500  1000

2.5 < |yj| < 3.0

NNPDF3.0

pT (GeV)

FIG. 2: NLO and NNLO k-factors for jet production atp
s = 7 TeV. The lines correspond to the double di↵erential

k-factors (ratios of perturbative predictions in the perturba-
tive expansion) for pT > 100 GeV and across six rapidity |y|
slices.

sult. The collider setup is proton-proton collisions at a
centre of mass energy of

p
s = 7 TeV where the jets are

reconstructed using the anti-kT jet algorithm [35] with
R = 0.4. We use the NNPDF3.0 NNLO PDF set [15]
with ↵s(M2

Z) = 0.118 throughout this paper for LO,
NLO and NNLO predictions to emphasise the behaviour
of the higher order coe�cient functions at each pertur-
bative order. By default we set the renormalization and
factorization scales µR = µF = pT1, where pT1 is the
pT of the leading jet in each event. To obtain the scale
uncertainty of the theory prediction we vary both scales
independently by a factor of 1/2 and 2 with the constraint
1/2  µR/µF  2. We find that the NNLO coe�cient
has a moderate positive e↵ect on the cross section, 10%
at low pT across all rapidity slices relative to NLO. This is
significant because it is precisely in this region where the
majority of the cross section lies, especially in the cen-
tral rapidity slices, and it is where we observe the largest
NNLO e↵ects. At higher pT we see that the relative size
of the NNLO correction to NLO decreases to the 1-2%
level and so the perturbative series converges rapidly.

Given that we see a moderate NNLO correction to the
NLO prediction in the region where the bulk of the cross
section lies, it is instructive to compare to the available
data. The data points in Fig. 1 represent the ATLAS
data for an integrated luminosity of 4.5 fb�1 [6], nor-
malized to the NLO prediction. We do not include non-

•Non trivial shape correction (scale choice?), sizable effect (jet dynamics?)
•Large effect on PDF? (see also jj in DIS [Niehues, Currie, Gehrmann (2016)])



Recent NNLO results: VJ 4

results of refs. [46, 47] we will adopt the choice therein
for all our results, namely the use of ↵em(mZ) = 1/127.9.
This choice has previously been theoretically motivated
in refs. [47, 48] and, as we will observe later, it is sup-
ported phenomenologically by an improved description
of ATLAS data [4, 8].

In order to validate the method, we first study the de-
pendence of the power corrections on the jet cone size R
that is indicated in Fig. 1. We compute the NNLO coef-
ficient in the perturbative expansion of the cross-section
(��NNLO), for R = 0.2 and R = 0.4, for photons with
p�

T > 150 GeV. Our results are shown in Fig. 2. We
observe that for ⌧ cut

1 & 0.14 GeV the power corrections
result in predictions for the NNLO coe�cient that are
quite di↵erent for the two values of R. However, for
⌧ cut
1 . 0.14 GeV the predictions tend towards the same
result and are in much better agreement. We also note
that the smaller cone size has a much flatter dependence
on ⌧ cut

1 . Although some residual e↵ect from power cor-
rections can be seen for R = 0.2, the cross section is
essentially asymptotic for ⌧ cut

1 . 0.7 GeV.
Given that our calculation is ultimately insensitive to

R we can thus choose our value to expedite the onset
of asymptotic behavior. We thus choose R = 0.2 hence-
forth. In Figure 3 we present the ⌧ cut

1 dependence for
the softer region 65 < p�

T < 150 GeV, which corresponds
to the softest photons we study in this paper. It is clear
that the power corrections are sizable for ⌧ cut

1 & 0.2 GeV,
but that there is little dependence on ⌧ cut

1 in the region
⌧ cut
1  0.1 GeV. This is in line with the expected scaling
from the harder (> 150 GeV) region we studied previ-
ously. For our subsequent comparison with ATLAS data
we set ⌧ cut

1 = {0.1, 0.2, 0.7} GeV for the phase space
regions p�

T > {65, 150, 470} GeV respectively.

In Fig. 4 we compare our NNLO (and NLO) predictions
from MCFM with 8 TeV ATLAS data [4]. The shaded
bands represent the scale uncertainty, obtained by con-
sidering relative deviations using a six-point scale varia-
tion about our central choice: {µR, µF } = {�1p

�
T , �2p

�
T }

with �i 2 {2, 1, 1/2} and �1 6= ��1
2 . It is clear that the

scale dependence is greatly reduced for the NNLO predic-
tion when compared to NLO. For the central scale choice
the NNLO prediction is around 5% larger than NLO.
The central scale is close to the maximum of the uncer-
tainty band, with deviations around +1% and �4% over
much of the range. The tendency of the theoretical pre-
diction to overestimate the data in the high pT region is
more pronounced when the NNLO correction is included.
This leads to a significant disagreement between theory
and data, far outside the NNLO scale uncertainty band.
We note that our larger value of ↵em, results in a much
better agreement with data than the lower choice used
in [4] (c.f. also ref. [8]).
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Figure 4: A comparison of the MCFM predictions for
the transverse momentum of the photon to ATLAS 8 TeV
data [4].

Given the small uncertainty in the NNLO QCD predic-
tion, and the resulting tension with data, it is especially
important to investigate the impact of additional theoret-
ical e↵ects not included in the pure QCD prediction. At
high energies it is well-known that the impact of Sudakov
e↵ects, arising from the virtual radiation of heavy elec-
troweak bosons, is important for this process [8, 46, 47].
Using a parametrized form that captures the e↵ect of
these leading-logarithmic electroweak corrections to good
accuracy [47] it is possible for us to also account for these
e↵ects. We thus modify our NNLO prediction by rescal-
ing it by a factor [1 + ��ew

V (p�
T )], where ��ew

V (p�
T ) is

specified in ref. [47].
Accounting for both NNLO QCD and electroweak ef-

fects in this way provides the improved prediction shown
in the top panel of Fig 5. This shows a dramatic im-
provement in the overall agreement between our theoret-
ical prediction and data after the inclusion of electroweak
e↵ects. It is a remarkable feat that the experimental and
theoretical uncertainties are now under such good control
that the inclusion of the electroweak corrections becomes
mandatory to ensure agreement between theory and data
at energies as low as a few hundred GeV. To indicate
the level of improvement that the NNLO QCD correc-
tions provide, the lower panel shows a comparison of our
best prediction and the previous most accurate calcula-
tion presented in ref. [8]. The result of ref. [8], obtained
using the PeTeR code, accounts for threshold resumma-
tion to N3LL accuracy and also includes the same elec-

•Z/Wj, γj known. Zj: independent computations
•Highly improved theoretical accuracy (~exp error)
•Small deviations evident (PDFs? NP? Isolation?)
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Figure 4. The unnormalised double-di↵erential transverse momentum distribution for the Z boson
in windows of invariant mass of the leptons, m``, with a rapidity cut on the Z boson of |yZ | < 2.4.
The ATLAS data is taken from Ref. [15]. The luminosity error is not shown. The green bands
denote the NLO prediction with scale uncertainty and the blue bands show the NNLO prediction
with scale uncertainty.

against a parton at high transverse momentum. So our NNLO prediction for the inclusive

cross section in these mass bins is e↵ectively only NLO accurate, with consequently larger

scale dependence. In the three bins with larger m``, the scale uncertainty on the NNLO

prediction is below 0.7%, which results in tension between data and theory at the level of

two standard deviations.

Combining together the unnormalised di↵erential distribution with the inclusive cross

sections, we obtain the normalised distributions shown in Figure 6. Because of the large

scale uncertainty in the inclusive cross section, the theoretical errors dominate the low m``

bins. At large m``, the tension between the data and NNLO theory is largely relieved.

At the highest values of pZT , the tendency of the data to fall below the theory prediction

may be an indication of the onset of electroweak corrections [11], which are negative in

this region. Any remaining tension for medium values of pZT could potentially be accounted

for revisiting the parton distribution functions (especially the gluon distribution) in the

kinematical region relevant to this measurement.

The same tension between NNLO theory and ATLAS data for the unnormalised distri-

bution is visible in Figure 7, which shows the unnormalised double-di↵erential distribution

with respect to the transverse momentum of the Z boson for 66 GeV < m`` < 116 GeV
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Figure 4. The unnormalised double-di↵erential transverse momentum distribution for the Z boson
in windows of invariant mass of the leptons, m``, with a rapidity cut on the Z boson of |yZ | < 2.4.
The ATLAS data is taken from Ref. [15]. The luminosity error is not shown. The green bands
denote the NLO prediction with scale uncertainty and the blue bands show the NNLO prediction
with scale uncertainty.

against a parton at high transverse momentum. So our NNLO prediction for the inclusive

cross section in these mass bins is e↵ectively only NLO accurate, with consequently larger

scale dependence. In the three bins with larger m``, the scale uncertainty on the NNLO

prediction is below 0.7%, which results in tension between data and theory at the level of

two standard deviations.

Combining together the unnormalised di↵erential distribution with the inclusive cross

sections, we obtain the normalised distributions shown in Figure 6. Because of the large

scale uncertainty in the inclusive cross section, the theoretical errors dominate the low m``

bins. At large m``, the tension between the data and NNLO theory is largely relieved.

At the highest values of pZT , the tendency of the data to fall below the theory prediction

may be an indication of the onset of electroweak corrections [11], which are negative in

this region. Any remaining tension for medium values of pZT could potentially be accounted

for revisiting the parton distribution functions (especially the gluon distribution) in the

kinematical region relevant to this measurement.

The same tension between NNLO theory and ATLAS data for the unnormalised distri-

bution is visible in Figure 7, which shows the unnormalised double-di↵erential distribution

with respect to the transverse momentum of the Z boson for 66 GeV < m`` < 116 GeV
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NNLO: status and future
•A lot of theoretical progress in the recent past
•This lead to realistic 2→2 PHENOMENOLOGY AT NNLO
•Many interesting features

•Greatly reduced th. uncertainties (expected)
•Stability w.r.t. logarithmic corrections (not so obvious) → fiducial region

•And a few surprises
•Non trivial jet dynamics (larger than naively expected corrections)
•Curious data/theory discrepancies (PDFs? NP?)

•A lot more to explore
•More pheno: e.g. jet dynamics @ NNLO vs mergedPS, NNLOprod⊗decay…
•2→2 in ``extreme’’ kinematics (boosted/off-shell H+j and pp→VV)
•better understanding of jet dynamics: pp → 3j. Also: αs, maybe some extra 

handle to understand NP effects?
•Important backgrounds / precision tests: Hjj (VBF contamination, jet-bin 

correlations…), Vjj, ttj



NNLO: status and future
•Almost all these direction would require significant theoretical 

progress. For example
•extreme kinematics: quark-mass effects in the loops, mixed QCD-EW → 

new ways of computing / evaluating MI?
•Breaking the 2 → 2 barrier highly non trivial

•2-loop: better integrands methods, efficient evaluation of MI 
•1-loop: stable/fast 2→4 loop amplitudes in the soft/collinear region
•more efficient IR subtraction (2→1 ~ 100 CPU hours, 2→2 ~ 100.000 CPU 

hours). E.g.: NLP soft/collinear terms in slicing, different slicing variables, 
``import’’ NLO technology in subtraction schemes…

•even if the goal is ≠ from NLO, at least some degree of automation
•Beyond NNLO?

•N3LO beyond the Higgs and ``simple’’ processes?
•NNLO and beyond: ≲ 1% ~ ΛQCD/100 GeV. NP effects (already now for mt, 

mw, pt,Z?)
EXCITING TIMES AHEAD!



Thank you  
very much for 
your attention!



``Few percent’’: the theory side
d� =

Z
dx1dx2f(x1)f(x2)d�part(x1, x2)FJ(1 +O(⇤QCD/Q))

Input parameters: ~few percent.
In principle improvable

NP effects: ~ few percent
No good control/understanding 

of them at this level. LIMITING 
FACTOR FOR FUTURE DEVELOPMENT

HARD SCATTERING MATRIX ELEMENT

•αs ~ 0.1 → For TYPICAL PROCESSES, we need NLO for ~ 10% 
and NNLO for ~ 1 % accuracy. Processes with large 
perturbative corrections (Higgs): N3LO

•Going beyond that is neither particularly useful (exp. 
precision) NOR POSSIBLE GIVEN OUR CURRENT UNDERSTANDING 
OF QCD, even if we knew how to compute multi-loop 
amplitudes and had NKLO subtraction schemes (NP effects)



Non-perturbative effects in Z pT
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impact of 0.5 GeV shift of Z pT

0.5 GeV is perhaps conservative(?) 
Suggests up to 2% effects could be 

present.

➤ Inclusive Z cross section should have  
~Λ2/M2 corrections (~10-4 ?) 

➤ Z pT is not inclusive so corrections can 
be ~Λ/M. 

➤ Size of effect can’t be probed by turning 
MC hadronisation on/off 
[maybe by modifying underlying MC 
parameters?] 

➤ Shifting Z pT by a finite amount 
illustrates what could happen

32A conceptually similar problem is present for the W momentum in top decays

[G. Salam, ``Future challenges for precision QCD’’]



Parton distribution functions circa 2016UNCERTAINTIES ON PARTONIC LUMINOSITIES — V. RAPIDITY(Y) AND MASS
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[plots by G
. Salam

]

•Big improvement w.r.t. few years ago [better handling on fit, larger data 
coverage (LHC)]. Reasonable consensus among different groups

•FOR CENTRAL EW PRODUCTION: 2/3% PRECISION

• Going below may require some rethinking of PDF uncertainty



dijet: pt vs pt,1
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[J. Currie, CMS workshop Jan. 2017]


